
Inference and Abstraction of the Biometric
Passport?

Fides Aarts1, Julien Schmaltz1,2, and Frits Vaandrager1

1 Institute for Computing and Information Sciences, Radboud University Nijmegen
{f.aarts,f.vaandrager}@cs.ru.nl

2 School of Computer Science, Open University of The Netherlands
julien.schmaltz@ou.nl

Abstract. Model-based testing is a promising software testing tech-
nique for the automation of test generation and test execution. One
obstacle to its adoption is the difficulty of developing models. Learning
techniques provide tools to automatically derive automata-based mod-
els. Automation is obtained at the cost of time and unreadability of the
models. We propose an abstraction technique to reduce the alphabet
and large data sets. Our idea is to extract a priori knowledge about the
teacher and use this knowledge to define equivalence classes. The latter
are then used to define a new and reduced alphabet. The a priori knowl-
edge can be obtained from informal documentation or requirements. We
formally prove soundness of our approach. We demonstrate the practi-
cal feasibility of our technique by learning a model of the new biometric
passport. Our automatically learned model is of comparable size and
complexity of a previous model manually developed in the context of
testing a passport implementation. Our model can be learned within one
hour and slightly refines the previous model.

1 Introduction

Learning techniques, e.g., regular inference (also known as automata learn-
ing) [4], can be used to automatically create a model from an existing imple-
mentation. The regular inference algorithms provide sequences of inputs, called
membership queries, to a system and observe the responses. In addition, equiva-
lence queries check whether the procedure is completed. The practical applica-
tion of learning techniques faces two issues: (1) the time to learn a model grows
very fast with the size of the input alphabet and (2) automatically learned mod-
els are hard to read. Recently, a new abstraction technique has been proposed
to reduce the size of the input alphabet and learn readable models [1, 2].

Model-based testing (MBT) is a promising software testing approach provid-
ing full automation of test-cases generation and test-cases execution. Test-cases
are automatically derived from a specification model of the System Under Test

? Supported by the European Community’s 7th Framework Programme No. 214755
(QUASIMODO).

1



(SUT). The MBT paradigm requires the existence of a formal model. Developing
models is a complex, time-consuming, and error-prone task. Moreover, software
systems evolve rapidly and models have to be updated or even new models have
to be constructed. This cost of developing and maintaining models is a major
obstacle to the wide adoption of MBT. Learning techniques could here play a
role. In contrast to models, prototypes and partial implementations are always
available during the development of software. One could learn a model from a
reference implementation and use this model to test whether new implementa-
tions are still conforming to this reference model. Learning techniques could be
used to derive the model at the first place.

In this paper, we apply the abstraction technique of Aarts et al. [1, 2] to
learn a model of the new generation of biometric passports [10, 6]. The main
idea of the abstraction technique is to extract a bit of a priori knowledge from
documentation or interviews and use it to divide concrete parameter values into
a small number of equivalence classes. This speeds up the learning process and
reduces model size. In contrast to a previous application of this technique [1, 2]
we validate our automatically derived model against a previous hand-made spec-
ification of the passport [13]. This specification was used to validate the Dutch
implementation of the biometric passport using the ioco-theory for MBT [16].
We implemented our abstraction as a mapping module and connected it to the
LearnLib library for regular inference [15]. After translating our automatically
derived Mealy machine to a Labelled Transition System (LTS), we used the tool
JTorX [5] to show that this learned model is ioco-conforming to the hand-made
specification. Our model can be learned within one hour and is of compara-
ble complexity and readability as the hand-made one. It took several hours to
develop the latter.

Our main contribution is to demonstrate and validate the applicability of
our abstraction technique for learning automata to a practical and realistic case-
study. The main result is that the model learned is comparable in size and correct
w.r.t. to a previously hand-made specification. The time needed for a computer
to learn the model from an existing implementation is much less than the time
needed by a human to develop it.

The rest of the paper is organized as follows. In the next section, we give
an overview of our approach. In Section 3, we review the Mealy machine model,
regular inference, and our abstraction technique. Section 4 gives a short overview
of the biometric passport; the experiments and according results are reported in
Section 5. Finally, Section 6 contains conclusions and directions for future work.

2 Overview

Our approach works as follows. The goal is to learn a model of a SUT - the bio-
metric passport. For the learning process we use three components: a Learner
(LearnLib), a Teacher (SUT), and an intermediate layer called Abstraction map-
ping that reduces the alphabet of the SUT, see Learning box in Figure 1. The
abstraction mapping is created using a priori knowledge extracted from informal

2



specifications, observing the behavior of the SUT, interviews with experts, etc.
Eventually, the learning algorithm generates a Mealy machine model of the SUT.
If a reference model is available, we can validate the learned implementation to
check whether it is correct with respect to the specification. In our approach, we
use the testing relation ioco [16, 17], which is implemented in the JTorX tool [5].
The Mealy machine model has to be transformed to an Input-Output Transition
System (IOTS) to allow comparison with the specification represented as a LTS,
see Validation box in Figure 1. We use an abstracted version of the specification
to conform to the alphabet defined in the IOTS. The abstract LTS is based on
a formal model created by Mostowski et al. [13] to adopt model-based testing.
Their model was fed to the testing tool TorXakis (based on TorX [18]) that
automatically generates and executes test cases on-the-fly. By comparing the
responses of the SUT to those specified in the model, a verdict can be made, see
MBT box in Figure 1.

Fig. 1. Overview

3



3 Inference and Abstraction of Mealy Machines

In this section, we present basic principles of Mealy machines, how to infer them
and to what extent abstraction techniques can be useful within learning.

3.1 Mealy Machines

A (nondeterministic) Mealy machine (MM) is a tuple M = 〈I,O,Q, q0,→〉,
where

– I, O and Q are finite, nonempty sets of input symbols, output symbols, and
states, respectively,

– q0 ∈ Q is the initial state, and
– →⊆ Q× I ×O ×Q is the transition relation.

We write q
i/o→ q′ if (q, i, o, q′) ∈→, and q

i/o→ if there exists a q′ such that q
i/o→ q′.

Mealy machines are assumed to be input enabled : for each state q and input i,

there exists an output o such that q
i/o→. The transition relation is extended to

sequences by defining
u/s⇒ to be the least relation that satisfies, for q, q′, q′′ ∈ Q,

u ∈ I∗, s ∈ O∗, i ∈ I, and o ∈ O.

q
ε/ε⇒ q

q
u/s⇒ q′ ∧ q′

i/o→ q′′ ⇒ q
u i/s o⇒ q′′

A Mealy machine is deterministic if for each state q and input i there is exactly

one output o and exactly one state q′ such that q
i/o→ q′.

An intuitive interpretation of a Mealy machine is as follows. At any point
in time, the machine is in some state q ∈ Q. It is possible to give inputs to the
machine by supplying an input symbol i ∈ I. The machine then (nondetermin-

istically) selects a transition q
i/o→ q′, produces output symbol o, and transforms

itself to the new state q′.
For q ∈ Q and u ∈ I∗, define obsM(q, u) to be the set of output sequences that

may be produced when offering input sequence u to M, that is, obsM(q, u) =

{s ∈ O∗ | ∃q : q
u/s⇒ q}. Two states q, q′ ∈ Q are observation equivalent, notation

q ≈ q′, if obsM(q, u) = obsM(q′, u), for all input strings u ∈ I∗. We write
obsM(u) as a shorthand for obsM(q0, u). Two Mealy machines M1 and M2

with the same sets of inputs I are observation equivalent, notationM1 ≈M2, if
obsM1(u) = obsM2(u), for all input strings u ∈ I∗. We say that M is behavior
deterministic if obsM(u) is a singleton set for each input sequence u. It is easy
to see that a deterministic Mealy machine is also behavior deterministic.

LetM1 andM2 be two Mealy machines with the same sets of input symbols.
A bisimulation between M1 and M2 is a relation S ⊆ Q1 ×Q2 satisfying:

q1 S q2 ∧ q1
i/o→1 q′1 ⇒ ∃q′2 : q2

i/o→2 q′2 ∧ q′1 S q′2,

q1 S q2 ∧ q2
i/o→2 q′2 ⇒ ∃q′1 : q1

i/o→2 q′1 ∧ q′1 S q′2.

4



We say that Mealy machines M1 and M2 are bisimilar, notation M1 'M2, if
there exists a bisimulation relation between them that contains the pair (q01 , q

0
2).

Since the union of bisimulations is again a bisimulation, there exists a largest
bisimulation. We write q1 ' q2 if the pair (q1, q2) ∈ Q1 ×Q2 is contained in the
largest bisimulation. The following lemma is well-known and easy to prove.

Lemma 1. Let M1 and M2 be Mealy machines with the same sets of inputs I
and letM2 be deterministic. Then, for q1 ∈ Q1 and q2 ∈ Q2, q1 ' q2 iff q1 ≈ q2.

3.2 Inference of Mealy Machines

In this section, we present the setting for inference of Mealy machines. For this
purpose we make use of an extension to Angluin’s L∗ algorithm [4] due to Niese
[14]. There is a Teacher , who knows a behavior deterministic Mealy machine
M, and a Learner, who initially has no knowledge about M, except for its sets
I and O of input and output symbols. The Learner can ask two types of queries
to the Teacher :

– A membership query consists in asking what the response is to an input
string u ∈ I∗. The Teacher answers with an output string s ∈ O∗.3

– An equivalence query consists in asking whether a hypothesized machine H
is correct, i.e., whether H is observation equivalent to M. The Teacher will
answer yes if H is correct or else supply a counterexample, which is a string
u ∈ I∗ such that u produces a different output string for both automata,
i.e., obsM(u) 6= obsH(u)

The typical behavior of a Learner is to start by asking a sequence of membership
queries until a “stable” hypothesisH can be built from the answers. After that an
equivalence query is made to find out whether H is equivalent toM. If the result
is successful, the Learner has succeeded. Otherwise the returned counterexample
is used to perform subsequent membership queries until converging to a new
hypothesized automaton, which is supplied in an equivalence query, etc.

3.3 Inference Using Abstraction

Existing implementations of inference algorithms only proved effective when ap-
plied to machines with small alphabets (sets of input and output symbols).
Practical systems, however, typically do not have small alphabets. An example
are communication protocols that interact with each other via messages consist-
ing of an action type and a number of parameters, each of which can potentially
take on a large number of values. As a result, the number of input and output
symbols may be astronomical. In previous work, we developed a technique for

3 Actually, the term membership query does not conform to this setting, because we do
not check whether a certain string belongs to the language or not. In fact, the term
output query would be more appropriate. However, because it is commonly used, we
decided to keep the term membership query in the continuation of this paper.

5



using regular inference to infer models of large-state Mealy machines [1, 2]. The
main idea is to transform the interface of the SUT by an abstraction mapping.
We have adapted ideas from predicate abstraction [12, 8], which has been suc-
cessful for extending finite-state model checking to larger and even infinite state
spaces.

Assume that we are given the task of inferring a (possibly large) Mealy ma-
chine M that describes the behavior of a SUT. In order to make the learning
task feasible, we place a transducer in between the Learner and the SUT, which
transforms large (parameter) domains of input and output strings of machine
M into small ones. The combined behavior of the SUT and the transducer can
be described by a Mealy machine MA, which has smaller alphabets and (hope-
fully) also a smaller state space. This makes the task for the Learner simpler.
All membership and equivalence queries generated by the Learner are trans-
lated by the transducer into realistic messages with possibly large (parameter)
domains to accomplish the communication with the SUT, see the Learning part
in Figure 1. Answers to queries are handled the opposite way around. To create
an abstraction mapping for the transducer, we need to define when and how a
concrete symbol is mapped to an abstract symbol. In general, this may require a
set V of state variables to remember previous values and expressions that define
when to update them. When not enough a priori knowledge about the behavior
of M is available in the informal specification, an initial observation phase or
interviews may be needed to create the abstraction mapping. Once we have in-
ferred a Mealy machine equivalent toMA, we have learned quite a bit about the
behavior of the SUT, that is, aboutM. In fact, in some cases (and this includes
the biometric passport) we can even inferM fromMA if we are willing to make
certain structural assumptions (e.g. symmetries) about the behavior of the SUT.

Example. Consider a parameter Id that is used for a session establishment. We
know that the SUT establishes a connection for the first generated Id value. All
other newly generated values are treated in the same way, i.e. they are rejected.
Accordingly, we can divide the values into two equivalence classes FIRST and
NEW. The learning algorithm generates one of these two abstract values, which
are translated to a concrete value by the abstraction mapping. Moreover, we
store the concrete value in a state variable firstId or newId. These variables
can be used to map a concrete output value to an abstract one. Assume that
according to the specification, the SUT should return the Id received in the
previous input message. By comparing the generated concrete output value to
the value in the state variable, we can assign the output symbol one of the
abstract values: EQUAL or NOT EQUAL.

4 Biometric Passport

The biometric passport is an electronic passport provided with a computer chip
and antenna to authenticate the identity of travelers. The data stored on the

6



passport are highly confidential, e.g. they might contain fingerprints or an iris
scan of its owner, and are protected via several mechanisms to avoid and detect
attacks. Examples of used protocols are Basic Access Control (BAC), Active
Authentication (AA), and Extended Access Control (EAC) [6]. Official standards
are documented in the International Civil Aviation Organisation’s (ICAO) Doc
9303 [10].
In this paper, we take a look at the interaction of the following messages:

– Reset resets the system.
– GetChallenge followed by CompleteBAC forms a BAC, which establishes

secure messaging with the passport by encrypting transmitted information.
– FailBAC constitutes an invalid BAC.
– ReadFile(int file) tries to access highly sensitive data specified in a certain

file, which is represented as an integer value in the range from 256 up to
(and including) 511.

– AA prevents cloning of passport chips.
– CA followed by TA forms an EAC, which uses mutual authentication and

stronger encryption than BAC to control access to highly confidential data.
– FailEAC constitutes a valid CA and an invalid TA.

For each of these messages a value OK or NOK may be returned by the SUT.
A global overview of the valid behavior is depicted in Figure 2, where a BAC
consists of a GetChallenge followed by a CompleteBAC and an EAC constitutes
a CA followed by a TA. The files 257 and 258 should be readable after a BAC.
File 257 contains Machine Readable Zone (MRZ) data, i.e. name, date of birth,
nationality, document number, etc. whereas file 258 contains a facial image. File
259 comprises biometric data like fingerprints or an iris scan, which are only
readable after a BAC followed by an EAC. All other files should not be readable
at any point in time.

Fig. 2. Simplified model of the biometric passport

5 Experiments

We have implemented and applied our approach to infer a model of the biometric
passport described in Section 4. In this section, we first describe our experimen-
tal setup, thereafter its application and a validation of our technique.

7



We used an authentic biometric passport as SUT. The data on the chip could
be accessed via a smart card reader; JMRTD1 served as API. We connected
the SUT to an abstraction mapping, which performed a translation as described
in Section 5.1. As Learner, we used the LearnLib library [15], developed at the
Technical University Dortmund. This tool provides a Java implementation of the
L* algorithm adapted by Niese. Because LearnLib views the SUT as a black box,
equivalence queries can only be approximated by a large number of membership
queries. In our experiments we used the W-Method by Chow [7] for equivalence
approximation.

5.1 Abstraction Mapping

As described in Section 4, only the ReadFile message has a parameter called file,
which can take on integer values in the range from 256 up to (and including) 511.
Actually, each of these numbers has to be considered separately in the inference
process, which would require a lot of time and memory space. By taking a closer
look at the informal specification of the passport, we discovered that different
files should be treated in the same way by the SUT. As one can see in Figure
2, files 257 and 258 should be readable after a BAC, 259 after a BAC followed
by an EAC and the rest of the files should never be readable. Using this a
priori knowledge about the passport, we can divide the values into three disjoint
equivalence classes, which are:

– ValidAfterBAC refers to the files that can be read after a BAC, i.e. 257 and
258.

– ValidAfterEAC refers to the files that only can be read after a BAC followed
by an EAC, i.e. 259.

– NotValid refers to the files that can never be read, i.e. all files except for 257,
258 and 259.

In the abstraction mapping an abstract value is translated to a concrete one by
randomly choosing an element within the corresponding equivalence class. If the
numbers are partitioned incorrectly, then there are two values in the same class
that will produce a different response. This non-deterministic behavior will be
detected by LearnLib, which will give an error message.

5.2 Results

The inference performed by LearnLib needed about one thousand membership
queries and one equivalence query, and resulted in a model HA with five states
and 55 transitions. Without our abstraction mapping, the Mealy machine would
have had 1320 transitions, but also five states. The total learning time took less
than one hour4. This is significantly shorter than deriving the model manually

4 The experiments have been carried out on a PC with an Intel Pentium M 1.86GHz
processor and 1GB of RAM.

8



from the informal specs, which took about 5 hours. All results are summarized
in Table 1. For presentation purposes, we have depicted the model as follows: (1)
we removed self-transitions with NOK as output. Because the model is input-
enabled all missing entries refer to this kind of transition. (2) Transitions with
same source location, output symbol and next location (but with different input
symbols) are merged by concatenating the input symbols, separated by a bar (|).
The resulting transition diagram has five locations and 19 transitions as shown
in Figure 3.

Membership queries 1078a

Total input symbols used in membership queries 4158

Average membership query length 3,867

Equivalence queries 1

Total learning time < 60 minutes

a This number does not include membership queries used for equivalence approxima-
tion.

Table 1. Learning statistics

Fig. 3. Learned model HA of the biometric passport

9



The implementation of the biometric passport does not respond to a Reset
input. For all other outputs the reaction time is dependent on the input symbol.
If the waiting time for an output is too short, then an output symbol may be
returned after a timeout has been assumed. In contrast, if the waiting time is too
long, then the passport application crashes after certain inputs. As a solution,
we changed the API of the SUT, so that it returns an OK symbol for each Reset
input. By always returning an output symbol, we do not have to struggle with
appropriate waiting times per input symbol. Instead, we wait until an output is
received.

According to the passport specification, the implementation should be determin-
istic. However, surprisingly, the passport application sometimes exhibits non-
deterministic behavior. LearnLib is restricted to infer behavior deterministic
Mealy machines and cannot cope with non-deterministic behavior. Analyzing the
external behavior of the system revealed that after a GetChallenge, Complete-
BAC, CA, TA input sequence mostly an OK is returned, but in some rare cases
it can also be a NOK. Together with Mostowski et al. we tried to examine the
internal behavior of the application to understand where the non-determinism
originates from. During their work this problem has also been encountered, but
it has never been reported. Because a TA call includes numerous complex and
long calculations, a problem can arise at several places. Moreover, external cir-
cumstances may influence the produced results like connection to or temperature
of the smart card reader. In the end, we could not clearly determine the fault
location and had to accept that the inference can fail once in a while.

5.3 The Behavior of the SUT

We assume that the behavior of the digital passport can be modeled in terms of
a behavior deterministic Mealy machineM. Clearly, due to the abstraction that
we applied, the learned model HA is not equivalent to M: even the alphabets
are different. Let MA be the Mealy machine obtained from M by renaming
each action ReadFile(file) in accordance with the abstraction mapping defined
in Section 5.1. We assume that alsoMA is behavior deterministic. Since the SUT
and the transducer together behave like MA, the learned model HA should be
equivalent toMA. LearnLib implements several algorithms that can be used to
“approximate” equivalence queries, that is, to establish that the hypothesized
machine HA is observation equivalent to the modelMA of the teacher. We have
used the well-known W-method of [7] (see also [11]). This method assumes a
known upper bound on the number of states n of MA. Depending on n the W-
method provides a test sequence of input symbols u with the property thatMA
and HA are observation equivalent iff they produce the same output in response
to u. But assuming that we have established equivalence of MA and HA, what
have we learned about M?

We reverse the abstraction mapping and construct a “concrete” model H of
the passport as follows. We replace each ValidAfterBAC transition in HA by
two transitions with the same source and target but with labels ReadFile(257)

10



and ReadFile(258), respectively. Similarly, we replace each transition with la-
bel ValidAfterEAC by an identical transition with label ReadFile(259). Finally,
we replace each transition with label NotValid by 253 identical transitions with
labels ReadFile(256), ReadFile(260), ReadFile(261), . . ., ReadFile(511), respec-
tively.

The following theorem states that if M treats equivalent input symbols in
an equivalent way, observation equivalence of MA and HA implies observation
equivalence of M and H. So provided we are willing to make a structural as-
sumption about the behavior of the biometric passport, our abstraction does not
lead to any loss of information.

Theorem 1. Call two input actions i1, i2 of Mealy machine M equivalent, no-
tation i1 ≡ i2, if they are mapped to the same abstract action. Suppose that in
M equivalent inputs induce identical outputs and equivalent successor states:

i1 ≡ i2 ∧ q
i1/o1→ q1 ∧ q

i2/o2→ q2 ⇒ o1 = o2 ∧ q1 ≈ q2.

Then MA ≈ HA implies M≈ H.

Proof. Suppose MA ≈ HA. We must show that M ≈ H. Since HA is deter-
ministic, Lemma 1 implies that MA ' HA. Let S be the maximal bisimulation
between MA and HA. It suffices to prove that S is a bisimulation between M
and H, since by Lemma 1 this implies M≈ H.

Since S relates the initial states of MA and HA, it also relates the initial
states of M and H.

Suppose that (q, r) ∈ S and q
i/o→M q′. Suppose that the abstraction function

maps i to j. Then q
j/o→MA q′. Since S is a bisimulation between MA and HA,

there exists a state r′ such that r
j/o→HA r′ and (q′, r′) ∈ S. By construction of

H, r
i/o→H r′.

Now suppose that (q, r) ∈ S and r
i/o→H r′. Suppose the abstraction function

maps i to j. Then, by construction of H, r
j/o→HA r′. Since S is a bisimulation

betweenMA andHA, there exists a state q′ such that q
j/o→MA q′ and (q′, r′) ∈ S.

Therefore, by construction ofMA, there exists a concrete input label k such that

the abstraction maps k to j and q
k/o→M q′. SinceM is input enabled, there exists

an output label p and a state q′′ such that q
i/p→M q′′. Oberve that i ≡ k. Hence,

by the assumption of the theorem, o = p and q′ ≈M q′′. By construction ofMA,
this implies q′ ≈MA q′′ By Lemma 1, applied to MA and HA, using the fact
that (q′, r′) ∈ S, we obtain (q′′, r′) ∈ S.

5.4 Validation

To validate the learned model of the biometric passport, we compared it to a ref-
erence model taken from Mostowski et al. [13]. The specification is a LTS made

11



in Haskell5 and has to be transformed to a different format to allow comparison
with the inferred Mealy machine described in the DOT6 language.

For the comparison, we used JTorX [5], a tool to test whether the ioco test-
ing relation holds between a given specification and a given implementation.
Intuitively, an implementation i ∈ IOT S(LI , LU ) is input-output conforming
to specification s ∈ LT S(LI , LU ) if any experiment derived from s and executed
on i leads to an output from i that is foreseen by s. For a formal definition, we
refer to [17]. We have supplied JTorX with the specification and implementa-
tion as LTS - represented in Aldebaran7 format. The learned Mealy machine has
been transformed to a LTS by splitting each transition into two with the input
symbol on the first transition and the output on the second one connected by an
additional state. As a result, the input-enabledness of the Mealy machine gets
lost. To convert the learned LTS to an IOTS, JTorX adds self-loop transitions
to the according states. Furthermore, we removed the output OK for a Reset
input, because it is unknown by the specification, see Section 5.2.

According to JTorX, the implementation is ioco conforming to the specification,
but not vice versa. This is not surprising as the learned model is input-enabled
while the specification is not. For example, the specification does not specify a
CompleteBAC input in the initial state while the learned implementation does,
see Figure 4 for a fragment of the specification. We only show the inputs in
the initial state with according outputs, because the entire model contains too
many states and transitions. As one can see, the automaton corresponds to a
Mealy machine. Except for the Reset input, each input is followed by an output.
If we would transform the specification to a Mealy machine, it would not be
input-enabled. Because LearnLib infers an input-enabled Mealy machine of the
implementation, it contains more behavior than described by the specification,
which is allowed by the ioco testing relation.

6 Conclusions and Future Work

Using regular inference and abstraction, we have managed to infer a model of
the biometric passport that describes how the passport responds to certain input
sequences. Although quite a number of papers have been written on regular infer-
ence of state machines, the number of real applications to reactive systems is still
limited. The case study that we describe here is a small but real application. The
new biometric passport is going to be used by millions of people, and it is vital
that the confidential information stored on this passport is well-protected. Our

5 http://www.haskell.org
6 http://www.graphviz.org
7 http://www.inrialpes.fr/vasy/cadp/man/aldebaran.html

12



Fig. 4. Specification fragment of the biometric passport

model, which slightly refines the earlier model of [13], may serve as a reference
model for testing different implementations of the biometric passport.

The data abstraction that we applied when learning the passport may seem
rather obvious (and indeed is much simpler than the abstractions applied in
[1, 2]), but is nevertheless crucial for the successful application of our learning
framework. In order to prevent brute force attacks, the biometric passport only
allows for about one input message per second. Without abstraction, the time
needed to apply the framework (and in particular the approximation of equiv-
alence queries via e.g. the W-method) would become prohibitively large. We
have proven that under some reasonable assumptions about the behavior of the
biometric passport, our abstraction does not lead to any loss of information.

The earlier model of [13] has been created manually in about 5 hours, whereas
our model has been produced automatically in less than one hour. Our ambition
is to further develop the learning framework, so that also for other applications
it becomes feasible to mechanize and speed-up the time-consuming and error
prone process of constructing reference models.

Due to the problems with the non-deterministic behavior of the passport,
an obvious topic for future research is to extend our approach to inference of
non-deterministic systems. Such an extension will be essential, when doing more
real-world case studies like this one.

If inferring an input-enabled Mealy machine is too time-consuming and we are
only interested in parts of the implementation, we may extend our abstraction
mappings with an interface automaton (IA) as suggested by [3]. An interface
automaton [9] is a labelled transition system with input and outputs, where

13



certain input actions may be illegal in certain states. When an input symbol
or sequence generated by the learning algorithm is not allowed by the specified
IA, this part of the implementation will not be inferred. By adding restrictions,
we can focus on those parts of the implementation that are described by the
specification.

Acknowledgement We are grateful to Falk Howar from the TU Dortmund for his
generous LearnLib support, and Wojciech Mostowski for providing assistance
with JMRTD.

References

1. F. Aarts. Inference and Abstraction of Communication Protocols. Master’s thesis,
Radboud University Nijmegen and Uppsala University, 2009.

2. F. Aarts, B. Jonsson, and J. Uijen. Generating Models of Infinite-State Communi-
cation Protocols using Regular Inference with Abstraction. In Proceedings ICTSS
2010, 22nd IFIP International Conference on Testing Software and Systems, 2010.

3. F. Aarts and F. Vaandrager. Learning I/O Automata. In Proceedings CONCUR
2010, 21th International Conference on Concurrency Theory, pages 71–85, 2010.

4. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987.

5. A. Belinfante. JTorX: A tool for on-line model-driven test derivation and execution.
In TACAS, pages 266–270, 2010.

6. BSI. Advanced security mechanisms for machine readable travel documents - ex-
tended access control (eac) - version 1.11. Technical Report TR-03110, German
Federal Office for Information Security (BSI), Bonn, Germany, 2008.

7. T.S. Chow. Testing software design modeled by finite-state machines. IEEE Trans.
on Software Engineering, 4(3):178–187, May 1978. Special collection based on
COMPSAC.

8. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. Journal of the ACM,
50(5):752–794, 2003.

9. L. de Alfaro and T.A. Henzinger. Interface automata. In V. Gruhn, editor, Pro-
ceedings of the Joint 8th European Software Engineering Conference and 9th ACM
SIGSOFT Symposium on the Foundation of Software Engineering (ESEC/FSE-
01), volume 26 of Software Engineering Notes, pages 109–120, New York, Septem-
ber 2001. ACM Press.

10. ICAO. Doc 9303 - machine readable travel documents - part 1-2. Technical report,
International Civil Aviation Organization, 2006. Sixth edition.

11. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines
– a survey. Proc. IEEE, 84(8):1090–1126, 1996.

12. C. Loiseaux, S. Graf, J. Sifakis, A. Boujjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6(1):11–44, 1995.

13. W. Mostowski, E. Poll, J. Schmaltz, J. Tretmans, and R. Wichers Schreur. Model-
based testing of electronic passports. In FMICS ’09: Proceedings of the 14th In-
ternational Workshop on Formal Methods for Industrial Critical Systems, pages
207–209, Berlin, Heidelberg, 2009. Springer-Verlag.

14



14. O. Niese. An integrated approach to testing complex systems. Technical report,
Dortmund University, 2003. Doctoral thesis.

15. H. Raffelt, B. Steffen, and T. Berg. Learnlib: a library for automata learning and
experimentation. In FMICS ’05: Proceedings of the 10th international workshop
on Formal methods for industrial critical systems, pages 62–71, New York, NY,
USA, 2005. ACM Press.

16. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Soft-
ware - Concepts and Tools, 17(3):103–120, 1996.

17. J. Tretmans. Model based testing with labelled transition systems. In Formal
Methods and Testing, pages 1–38, 2008.

18. J. Tretmans and H. Brinksma. TorX: Automated model-based testing. In A. Hart-
man and K. Dussa-Ziegler, editors, First European Conference on Model-Driven
Software Engineering, pages 31–43, December 2003.

15


