
Introduction
Register Automata

The determinizer
Conclusions

Learning Nondeterministic Register Automata
Using Mappers

Fides Aarts Paul Fiterău-Broştean Harco Kuppens
Frits Vaandrager

ICIS, Radboud Universiteit Nijmegen

MBSD Colloquium, 19 February 2015

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Background: grammatical inference

Teacher Learner

Angluin’s L∗ algorithm for active learning deterministic FSMs
Learner poses membership and equivalence queries

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Learning reactive systems

Angluin’s algorithm has been extended to Mealy machines by Niese
and implemented in the LearnLib tool.

Membership queries are replaced by output queries: which
output is generated in response to a sequence of inputs?

Equivalence queries are approximated by test sequences
generated using algorithms for model based testing

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Learning reactive systems

Angluin’s algorithm has been extended to Mealy machines by Niese
and implemented in the LearnLib tool.

Membership queries are replaced by output queries: which
output is generated in response to a sequence of inputs?

Equivalence queries are approximated by test sequences
generated using algorithms for model based testing

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Learning reactive systems

Angluin’s algorithm has been extended to Mealy machines by Niese
and implemented in the LearnLib tool.

Membership queries are replaced by output queries: which
output is generated in response to a sequence of inputs?

Equivalence queries are approximated by test sequences
generated using algorithms for model based testing

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Learning reactive systems (cnt)

Active learning may provide models of reactive systems in
situations where we have no access to the code (black box) and
not even a specification, e.g. to learn reference implementations

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Learning reactive systems (cnt)

Active learning may provide models of reactive systems in
situations where we have no access to the code (black box) and
not even a specification, e.g. to learn reference implementations

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Challenges

Research challenges:

Handle data and large state spaces

Handle nondeterministic systems

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Challenges

Research challenges:

Handle data and large state spaces

Handle nondeterministic systems

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Challenges

Research challenges:

Handle data and large state spaces

Handle nondeterministic systems

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Use mappers to handle data

Learner Abstractor Teacher (SUL)

ICTSS’10, FMSD 2015

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Use CEGAR to construct mappers automatically

Learner Abstractor Teacher (SUL)

Analyzer

FM’12: automatic construction of abstractions for SUL that can be
modeled by (restricted) register automaton; implemented in Tomte

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Learning with four “action heroes”

Learner Abstractor

Analyzer

Lookahead

Oracle

Determinizer Teacher (SUL)

PhD Thesis Fides and ISOLA’14: deterministic register automata
This work: class of nondeterministic register automata

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Today: the determinizer

Learner Abstractor

Analyzer

Lookahead

Oracle

Determinizer Teacher (SUL)

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Register automaton for FIFO-set

l0start l1 l2

Push(in)/OK()
v :=in

Pop()/NOK()
in 6= v
Push(in)/OK()
w :=in

in = v
Push(in)/NOK()

out = v
Pop()/Return(out)

out = v
Pop()/Return(out)
v :=w

Push()/NOK()

Each action carries a single data parameter (in or out)

Example trace (data values that do not matter omitted):
Push(12) OK() Push(12) NOK() Push(4) OK Pop() Return(12) Pop() Return(4)

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Nondeterministic register automaton for login procedure

l0start l1 l2

Register()/OK(out)
pwd:=out

in = pwd
Login(in)/OK()

in 6= pwd
Login(in)/NOK()

Logout()/OK()

ChangePassword(in)/OK()
pwd:=in

Example traces:
Register() OK(2345) Login(543) NOK() Login(2345) OK()
Register() OK(9345)

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Formulas

We assume an infinite set V of variables.

An atomic formula is an expression x = y or x 6= y , with x , y ∈ V.

A formula ϕ is a conjunction of atomic formulas. Write Φ(X ) for
set of formulas with variables taken from X .

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Register automata

A register automaton (RA) is a tuple R = 〈I ,O,V , L, l0, Γ〉, where

I and O are finite sets of input symbols and output symbols,
respectively

V ⊆ V is a finite set of state variables; we assume special
variables in and out not contained in V ; we write
Vi/o = V ∪ {in, out}
L is finite set of locations

l0 ∈ L is initial location

Γ ⊆ L× I × Φ(Vi/o)× (V → Vi/o)× O × L is a finite set of
transitions. We require that out does not occur negatively in
guards, that is, not in subformulae x 6= y .

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Mealy machines

A Mealy machine is a tuple M = 〈I ,O,Q, q0,→〉, where

I and O are nonempty sets of input and output actions,
respectively,

Q is a set of states,

q0 ∈ Q is the initial state, and

→⊆ Q × I × O × Q is the transition relation.

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Semantics of register automata

Let R = 〈I ,O,V , L, l0, Γ〉 be a register automaton.
The semantics of R, denoted JRK, is the Mealy machine
〈I × (Z \ {0}),O × (Z \ {0}), L× Val(V ), (l0, ξ0),→〉, where
ξ0(v) = 0 for all v ∈ V , and relation → is given by the rule

〈l , i , g , %, o, l ′〉 ∈ Γ
ι = ξ ∪ {(in, d), (out, e)} ι |= g ξ′ = ι ◦ %

(l , ξ)
i(d)/o(e)−−−−−→ (l ′, ξ′)

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Behavior determinism

A partial run of Mealy machine M is a finite sequence

α = q0 i0 o0 q1 i1 o1 q2 · · · in−1 on−1 qn,

beginning and ending with a state, s.t. for all j < n, qj
ij/oj−−→ qj+1.

A run of M is a partial run that starts with initial state q0.
A trace of M is a finite sequence β = i0 o0 i1 o1 · · · in−1 on−1

obtained by erasing all states from a run of M.
A set S of traces is behavior deterministic if, for all traces
β i o ∈ S and β i o ′ ∈ S , we have o = o ′.
M is behavior deterministic if its set of traces is so.

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Input determinism versus behavior determinism

Register automaton R is behavior deterministic if JRK is behavior
deterministic.
R is input deterministic if for each state and for each input action
at most one transition may fire.
In our work we only consider input deterministic register automata.

l0start l1 l2

Register()/OK(out)
pwd:=out

in = pwd
Login(in)/OK()

in 6= pwd
Login(in)/NOK()

Logout()/OK()

ChangePassword(in)/OK()
pwd:=in

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Automorphisms

A zero respecting automorphism is a bijection h : Z→ Z such that
h(0) = 0.

Zero respecting automorphisms can be lifted to the valuations,
states, actions, runs and traces of a register automaton.

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Neat traces

Consider a trace β of register automaton R:

β = i0(d0) o0(e0) i1(d1) o1(e1) · · · in−1(dn−1) on−1(en−1)

We say that β has neat inputs if each input value is either equal to
a previous value, or equal to the largest preceding value plus one.
Similarly, we say that β has neat outputs if each output value is
either equal to a previous value, or equal to the smallest preceding
value minus one.
A trace is neat if it has neat inputs and neat outputs, and a run is
neat if its trace is neat.

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

We only need to study neat traces!

Proposition. For every run α there exists a zero respecting
automorphism h such that h(α) is neat.

Problem: the learner may generate neat inputs only, but we cannot
force the SUL to only generate neat outputs.

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Mappers

A mapper for a set of inputs I and a set of outputs O is a
deterministic Mealy machine A = 〈I ∪O,X ∪Y ,R, r0, δ, λ〉, where

I and O are disjoint sets of concrete input and output
symbols,

X and Y are finite sets of abstract input and output symbols,
and

λ : R × (I ∪ O)→ (X ∪ Y ), referred to as the abstraction
function, respects inputs and outputs, that is, for all a ∈ I ∪O
and r ∈ R, a ∈ I ⇔ λ(r , a) ∈ X .

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Mapper for determinizer

Learner Teacher

0

2

1

2

3 3

1

−1

−2

−3 −3

−2

0

−1
i(1)

Determinizer

4 4

Idea: mapper stores part of automorphism constructed thus far

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Mapper for determinizer

Learner Teacher

0

2

1

2

3 3

1

−1

−2

−3 −3

−2

0

−1

Determinizer

4 4

i(1)

Idea: mapper stores part of automorphism constructed thus far

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Mapper for determinizer

Learner Teacher

0

2

1

2

3 3

1

−1

−2

−3 −3

−2

0

−1

Determinizer

4 4

o(3)

Idea: mapper stores part of automorphism constructed thus far

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Mapper for determinizer

Learner Teacher

0

2

1

2

3 3

1

−1

−2

−3 −3

−2

0

−1

Determinizer

4 4

o(−1)

Idea: mapper stores part of automorphism constructed thus far

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Mapper for determinizer

Learner Teacher

0

2

1

2

3 3

1

−1

−2

−3 −3

−2

0

−1

Determinizer

4 4

i(2)

Idea: mapper stores part of automorphism constructed thus far

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Mapper for determinizer

Learner Teacher

0

2

1

2

3 3

1

−1

−2

−3 −3

−2

0

−1

Determinizer

4 4

i(2)

Idea: mapper stores part of automorphism constructed thus far

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Mapper for determinizer

Learner Teacher

0

2

1

2

3 3

1

−1

−2

−3 −3

−2

0

−1

Determinizer

4 4

o(1)

Idea: mapper stores part of automorphism constructed thus far

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Mapper for determinizer

Learner Teacher

0

2

1

2

3 3

1

−1

−2

−3 −3

−2

0

−1

Determinizer

4 4

o(1)

Idea: mapper stores part of automorphism constructed thus far

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Mapper for determinizer

Learner Teacher

0

2

1

2

3 3

1

−1

−2

−3 −3

−2

0

−1

Determinizer

4 4

i(3)

Idea: mapper stores part of automorphism constructed thus far

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Mapper for determinizer

Learner Teacher

0

2

1

2

3 3

1

−1

−2

−3 −3

−2

0

−1

Determinizer

4 4

i(4)

Idea: mapper stores part of automorphism constructed thus far

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Mapper for determinizer

Learner Teacher

0

2

1

2

3 3

1

−1

−2

−3 −3

−2

0

−1

Determinizer

4 4

o(−3)

Idea: mapper stores part of automorphism constructed thus far

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Mapper for determinizer

Learner Teacher

0

2

1

2

3 3

1

−1

−2

−3 −3

−2

0

−1

Determinizer

4 4

o(−2)

Idea: mapper stores part of automorphism constructed thus far

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

A register automaton with nondeterministic behavior

l0start l1 l2

button()/reel(symbol)
v :=symbol

button()/reel(symbol)
w :=symbol

v 6= w
button()/lose()

v = w
button()/win()

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Collisions

Let β be a trace of R.
Then we say that β ends with a collision if

the last output value e is not fresh, and

the sequence obtained by replacing e by any other value
(except 0) is also a trace of R.

Trace β has a collision if it has a prefix that ends with a collision.

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Handling collisions

Collisions are typically very rare

Collisions can be detected by repeating experiments

We just assume that collisions do not occur!!!

If collisions are rare one cannot learn behavior anyway

If they occur frequently one should not use our algorithm, but
e.g. algorithm of Volpato & Tretmans

Proposition.The set of collision free neat traces of an input
deterministic register automaton is behavior deterministic.

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Conclusions

1 We have developed a mapper-based learning algorithm for
class of nondeterministic register automata

2 Algorithm implemented in Tomte

3 Tomte outperforms LearnLib on common benchmarks

4 LearnLib does not handle nondeterministic systems but does
support operations on data

5 Future: extend Tomte to setting with operations on data

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Conclusions

1 We have developed a mapper-based learning algorithm for
class of nondeterministic register automata

2 Algorithm implemented in Tomte

3 Tomte outperforms LearnLib on common benchmarks

4 LearnLib does not handle nondeterministic systems but does
support operations on data

5 Future: extend Tomte to setting with operations on data

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Conclusions

1 We have developed a mapper-based learning algorithm for
class of nondeterministic register automata

2 Algorithm implemented in Tomte

3 Tomte outperforms LearnLib on common benchmarks

4 LearnLib does not handle nondeterministic systems but does
support operations on data

5 Future: extend Tomte to setting with operations on data

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Conclusions

1 We have developed a mapper-based learning algorithm for
class of nondeterministic register automata

2 Algorithm implemented in Tomte

3 Tomte outperforms LearnLib on common benchmarks

4 LearnLib does not handle nondeterministic systems but does
support operations on data

5 Future: extend Tomte to setting with operations on data

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Conclusions

1 We have developed a mapper-based learning algorithm for
class of nondeterministic register automata

2 Algorithm implemented in Tomte

3 Tomte outperforms LearnLib on common benchmarks

4 LearnLib does not handle nondeterministic systems but does
support operations on data

5 Future: extend Tomte to setting with operations on data

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata



Introduction
Register Automata

The determinizer
Conclusions

Conclusions

1 We have developed a mapper-based learning algorithm for
class of nondeterministic register automata

2 Algorithm implemented in Tomte

3 Tomte outperforms LearnLib on common benchmarks

4 LearnLib does not handle nondeterministic systems but does
support operations on data

5 Future: extend Tomte to setting with operations on data

Aarts, Fiterău-Broştean, Kuppens and Vaandrager Learning Nondeterministic Register Automata


	Introduction
	Register Automata
	The determinizer
	Conclusions

