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Abstract. Links are established between three widely used modeling
frameworks for reactive systems: the ioco theory of Tretmans, the in-
terface automata of De Alfaro and Henzinger, and Mealy machines. It
is shown that, by exploiting these links, any tool for active learning of
Mealy machines can be used for learning I/O automata that are deter-
ministic and output determined. The main idea is to place a transducer
in between the I/O automata teacher and the Mealy machine learner,
which translates concepts from the world of I/O automata to the world
of Mealy machines, and vice versa. The transducer comes equipped with
an interface automaton that allows us to focus the learning process on
those parts of the behavior that can effectively be tested and/or are of
particular interest. The approach has been implemented on top of the
LearnLib tool and has been applied successfully to three case studies.

1 Introduction

Model-based system development is becoming an increasingly important driving
force in the software and hardware industry. In this approach, models become
the primary artifacts throughout the engineering lifecycle of computer-based sys-
tems. Requirements, behavior, functionality, construction and testing strategies
of computer-based systems are all described in terms of models. Models are not
only used to reason about a system, but also used to allow all stakeholders to
participate in the development process and to communicate with each other,
to generate implementations, and to facilitate reuse. The construction of mod-
els typically requires significant manual effort, implying that in practice often
models are not available, or become outdated as the system evolves. Automated
support for constructing behavioral models of implemented components would
therefore be extremely useful.

The problem of inducing, learning or inferring grammars and automata has
been studied for decades, but only in recent years grammatical inference a.k.a.
grammar induction has emerged as an independent field with connections to
many scientific disciplines, including bio-informatics, computational linguistics
and pattern recognition [10]. Also recently, some important developments have
taken place on the borderline of verification, testing and machine learning, see
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e.g. [6,16, 23], and researchers have shown that it is possible (at least in princi-
ple) to apply grammatical inference for learning models of software components.
Grammatical inference techniques aim at building a grammar or automaton for
an unknown language, given some data about this language. Within the setting
of active learning, it is assumed that a learner interacts with a teacher. Inspired
by work of Angluin [5] on the L* algorithm, Niese [20] developed an adaptation
of the L* algorithm for active learning of deterministic Mealy machines. This
algorithm has been further optimized in [23]. In the algorithm it is assumed that
the teacher knows a deterministic Mealy machine M. Initially, the learner only
knows the action signature (the sets of input and output symbols I and O) and
her task is to learn a Mealy machine that is equivalent to M. The teacher will
answer two types of questions — output queries (“what is the output gener-
ated in response to input i € I?”) and equivalence queries (“is an hypothesized
machine H correct, i.e., equivalent to the machine M?”). The learner always
records the current state g of Mealy machine M. In response to query i, the
current state is updated to ¢’ and answer o is returned to the learner. At any
point the learner can “reset” the teacher, that is, change the current state back
to the initial state of M. The answer to an equivalence query H is either yes
(in case M ~ H) or no (in case M % H). Furthermore, the teacher will give the
learner a counterexample that proves that the learner’s hypothesis is wrong with
every negative equivalence query response, that is, an input sequence v € I'* such
that obsp(u) # 0bsy(u). This algorithm has been implemented in the LearnLib
tool [23]. In practice, when a real implementation is used instead of an ideal-
ized teacher, the implementation cannot answer equivalence queries. Therefore,
LearnLib “approximates” such queries by generating a long test sequence that is
computed by standard methods such as state cover, transition cover, W-method,
and the UIO method (see [15]). LearnLib has been applied successfully to learn
computer telephony integrated (CTI) systems [11], and more recently to learn
parts of the SIP and TCP protocols [1] and the new biometric passport [2].

Currently, LearnLib is able to automatically learn Mealy machines with up
to 30.000 states. Nevertheless, a lot of further research will be required to make
automata based learning tools suitable for routine use on industrial case stud-
ies. An important issue, clearly, is the development of abstraction techniques
in order to be able to learn much larger state spaces (see [1], also for further
references). Another issue is the extension of automata learning techniques to
nondeterministic systems (see e.g. [29]). In this paper, we address a third issue
that hinders the application of the LearnLib tool. In practice, the restriction
of Mealy machines that each input corresponds to exactly one output is felt as
being overly restrictive. Sometimes several inputs are required before a single
output occurs, sometimes a single input triggers multiple outputs, etc.

The I/O automata of Lynch & Tuttle [18,17] and Jonsson [13] constitute
a popular modelling framework which does not suffer from the restriction that
inputs and outputs have to alternate. Our aim is to to develop efficient algorithms
for active learning of I/O automata. Hence we assume that the teacher knows
an I/0 automaton .A. We consider a setting in which the task of the learner is to



partially learn A. More specifically, we assume that the learner initially knows
an interface automaton P in the sense of De Alfaro and Henzinger [8], called
the learning purpose, and that she has to learn the part of A whose behavior
is compatible with . We think there are several good reasons to extend the
framework of active learning with a notion of a learning purpose. In principle,
the systems that we model using I/O automata will accept any input in any
state. But in practice, a learner may not be able (e.g., not fast enough) to
effectively provide any input in any state. Also, systems are often designed to
be used in a certain manner, and their behavior may become unspecified and/or
nondeterministic when they are used improperly. In such cases a learner may
decide to interact with the system following the specified interaction protocol,
for instance “after providing an input a user should wait for the system to
become quiescent before she may provide a next input”. A final motivation for
using learning purposes is that often the state space of practical systems is very
big and cannot be fully explored. By not providing certain inputs (in certain
states), the learner may focus on interesting parts of the behavior that can be
effectively learned.

Rather than developing and implementing an algorithm from scratch, we
will use LearnLib. Our idea is to place a transducer in between the IOA teacher
and the Mealy machine learner, which translates concepts from the world of
I/O automata to the world of Mealy machines, and vice versa. The transducer
and Mealy machine learner together then implement an IOA learner. Note that
this architecture is very similar to the architecture proposed in [1], where a
transducer is used to relate the large parameter spaces of realistic communication
protocols to small sets of actions that can effectively be handled by state-of-the-
art automata learning tools.

As a spin-off of our research, we establish links between three widely used
modeling frameworks for reactive systems: the ioco theory of Tretmans [26, 27],
the interface automata of De Alfaro and Henzinger [8], and Mealy machines.
In particular, we present behavior preserving maps between interface automata
and Mealy machines, and we link the ioco preorder to alternating simulation.

The rest of this paper is structured as follows. Section 2 recalls interface au-
tomata and links alternating simulation to the ioco preorder. Section 3 addresses
a basic question: what is the I/O behavior of an I/O automaton? Section 4 re-
calls Mealy machines and discusses translations between interface automata and
Mealy machines. Section 5 describes our framework for learning I/0O automata.
In Section 6, we describe the implementation of our approach and its applica-
tion to three case studies. Finally, Section 7 wraps up with some conclusions and
suggestions for further research.

2 Interface Automata

An interface automaton models a reactive system that can interact with its
environment. It is a simple type of state machine in which the transitions are as-
sociated with named actions. The actions are classified as either input or output.



The output actions are assumed to be under the control of the system whereas
the input actions are under control of the environment. The interface automata
that we study in this paper are a simplified version of the interface automata of
De Alfaro and Henzinger [8] without internal actions. Within ioco theory [26,
27] interface automata are called labelled transition systems with inputs and
outputs. Interface automata are similar to the I/O automata of Lynch & Tuttle
[18,17] and Jonsson [13]. The main difference is that in an I/O automaton in-
put actions are required to be enabled in every state. In an interface automata
certain input actions may be illegal in certain states: they are not enabled and
we assume that the environment will not generate such inputs.

In this paper, an interface automaton (IA) is defined to be a tuple A =
(I,0,Q,q°,—), where I, O and @ are finite, nonempty sets of input actions,
output actions, and states, respectively, with I and O disjoint, ¢° € Q the initial
state, and —C @ x (I U Q) x @ the transition relation. We write ¢ > ¢ if
(¢,a,q") €—. An action a is enabled in state g, notation g =, if ¢ % ¢/, for some
state ¢’. We write out 4(q), or just out(q) if A is clear from the context, for the
set {a € O | ¢ %} of output actions enabled in state q. For S C @Q a set of
states, we write out4(S) for [J{outa(q) | ¢ € S}. An I/O automaton (IOA) is
an interface automaton in which each input action is enabled in each state, that

is ¢ =, for all ¢ € Q and all i € I. A state ¢ is called quiescent if it enables no
output action. An interface automaton A is

— input deterministic if for each state ¢ € Q and for each action a € I there is
at most one outgoing transition of ¢ with label a: ¢ = q1Aq =% g2 = q1 = go;

— output deterministic if for each state ¢ € @) and for each action a € O there is
at most one outgoing transition of ¢ with label a: ¢ = 1Aq — g2 = q1 = qo;

— deterministic if it is both input and output deterministic;

— output determined if each state has at most one outgoing output transition:

ngl/\ngg/\{OMOQ}QOéol:02/\q1:q2.

Figure 1 displays a simple example of a deterministic IOA that is also output
determined. The initial state is marked with an extra circle, there is a single
input action in and there are two output actions outl and out2.

Fig. 1. A deterministic, output determined IOA.

Let A4y = (1,0,Q1,¢),—1) and Ay = (I,0,Q2,q3, —2) be interface au-
tomata with the same signature. Let A = T UO and let X,Y C A. A binary
relation R C Q1 X Q2 is an XY -simulation from A; to As if whenever (¢,7) € R
and a € A it holds that:



— if g%, ¢’ and @ € X then there exists a r’ € Qg s.t. 7 5 7" and (¢',r') € R.
— if 7 %5 7/ and a € Y then there exists a ¢’ € Q1 s.t. ¢ =1 ¢’ and (¢/,7') € R.

We write A; <xy As if there exists an XY -simulation from A; to Ay that
contains (¢?, ¢3). AA-simulations are commonly known as bisimulations and O1I-
simulations are known as alternating simulations [4]. De Alfaro and Henzinger
[8] propose alternating simulations as the primary notion of refinement for TAs.
In their approach, one TA refines another if it has weaker input assumptions and
stronger output guarantees. We often write A; <, As instead of A; <o Az and
Aq = As instead of A; <44 As. There are several obvious inclusions between
the different preorder, e.g. it follows that A; <y As implies A; <xy As.

Figure 2 shows an example of an alternating simulation between two IAs
with inputs {in1, n2} and outputs {out!, out2,d}.

outl d

Fig. 2. Example of alternating simulation (from left to right IA).

Suppose that A; <, As and that R is the largest alternating simulation from

A to As. We define AS( A1, As), the alternating simulation interface automaton
induced by A; and A, as the structure (1,0, R, (¢?,¢3), —) where

(g,7) = (¢,r") & q-51 ¢ and r o1’

Figure 3 shows the alternating simulation TA induced by the TAs of Figure 2.
The following lemma follows easily from the definitions.

inl

d outl

Fig. 3. IA induced by alternating simulation of Figure 2.

Lemma 1. Suppose A1 <, As. Then A1 <pa AS(A1, As) <ar As.

Larsen, Nyman and Wasowski [14] criticize interface automata and alternat-
ing simulations for being unable to express liveness properties and since they
allow for trivial implementations: an IA 7 with a single state that accepts all
inputs but never produces any output is a refinement of any IA over the same
signature. In order to fix this problem, Larsen, Nyman and Wasowski [14] de-
fine model automata, an extension of interface automata with modality. In this
paper, we propose a different solution, which is very simple and in the spirit of
I/O automata and ioco theory: we make quiescence observable.



Let A= (I,0,Q,q°, —) be an IA and let § be a fresh symbol (not in I UO).
Then the §-extension of A, notation A%, is the IA obtained by adding d-loops
to all the quiescent states of A. Formally, A° = (I,0s,Q,q", —') where O5 =

O U {6} and —'=— U{q 2q | ¢ € Q quiescent}. For A; and As ITAs with the
same signature, we define A; <5 Ay < A <, AS.

Observe that in general A; <,s5 As implies A; <, As, but A; <, A3 does not
imply A; <45 Asz: even though 7 <, A, for any TA A with the same signature as
our trivial IA 7, we do in general not have 7 <,s A. If A° enables a sequence of
input actions leading to a state 7 from which an output is possible, then 7 must
enable the same sequence of inputs leading to a related state g. But whereas ¢
enables a d-transition, r does not enable a matching J-transition. In order to
argue that <,5 indeed is a reasonable notion of implementation, we will now
show that — under certain determinacy assumptions — <5 coincides with the
well-known ioco preorder of [26, 27].

We extend the transition relation to sequences by defining, for o € (I UO)*,
= to be the least relation that satisfies, for ¢,¢’,¢" € Q and a € TUO,

q=q
4= d N Sq" = q=q"
Here € denotes the empty sequence. We say that o € (I UO)* is a trace of A

if ¢° 3 ¢, for some state ¢, and write Traces(A) for the set of traces of A. We

write A after o for the set {g € Q | ¢° = g} of states of A that can be reached
with trace o. Let A; and Ay be IA with the same signature. Then A; and As
are input-output conforming, notation A4; ioco As, if

Vo € Traces(AS) : out( A} after o) C out(A3 after o)

The results below link alternating simulation and the ioco preorder. These
results generalize a similar, recent result of Veanes and Bjgrner [28], which is
stated in a setting of fully deterministic systems. We first state a small technical
lemma.

Lemma 2. Let A; and Ay be IAs with the same action signature such that Ay
s input deterministic and As is output deterministic. Let R be an alternating
simulation from Ay to As. Let o € (IUO)*, ¢1 € Q1 and qo € Q2 such that
0 % 0 %

4} = q1 and ¢ = q2. Then (q1,92) € R.

Theorem 1. Let A; and Ay be [As with the same action signature such that Ay
s input deterministic and As is output deterministic. Then Ay <,s As implies

A; ioco As.

Theorem 2. Let A; and Ay be IAs with the same action signature such that Ay
18 input enabled and As is deterministic. Then Ay ioco Ay implies A1 <.5 As.

Corollary 1. Let Ay be an input deterministic IOA and let Ay be a determin-
istic IA with the same action signature. Then Ay ioco As iff A1 <u5 As.

Observe that all the determinacy conditions in the above results are essential:
as soon as one assumption is left out the corresponding result no longer holds.



3 The I/O Behavior of I/O Automata

In order to be able to learn I/O automata, we need to decide which type of
questions the learner may ask to the teacher. One obvious proposal would be to
allow for membership queries of the form “Is sequence u € (IUO)* a (quiescent)
trace of the IOA?”. However, there is strong evidence that this is an inefficient
approach. In his PhD thesis [20], Niese compared two algorithms for learning
Mealy machines. The first algorithm, an optimized version of Angluin’s [5] L*
algorithm, allowed for membership queries “Is sequence u € (I x O)* a trace
of the MM?”. The second algorithm supported membership queries “What is
the output generated by the MM in response to input sequence u € I*?”. Niese
showed that the second algorithm has a much better performance and requires
less membership queries. We expect that for IOAs the situation is very similar.

Lynch & Tuttle [18, 17] and Jonsson [13] do not define a notion of input/output
behavior for I/O automata, that is, given a stream of input values that is pro-
vided by the environment, the stream of output values that is computed by the
I/O automaton. The main reason for this is that such a notion of behavior is
not compositional. Instead, the behavior of an IOA is defined in terms of traces,
sequences of input and output actions that may be observed during runs of the
automaton. Henzinger [9] links determinism to predictability and calls a reactive
system deterministic if, for every stream of input values that is provided by the
environment, the stream of output values that is computed by the system is
unique. The example IOA of Figure 1 is not deterministic in this sense since the
input stream in in may either lead to the output stream owutl or to the output
stream out2. One obvious way to proceed is to restrict the class of IOA that one
calls deterministic, and and to study a notion of input/output behavior for this
restricted class. This route is explored by Panangaden and Stark [21] in their
study of “monotone” processes. We will explore a different route, in which the
power of testers is slightly increased and the IOA of Figure 1 becomes again
behavior deterministic.

If a system is predictable then one may expect that, for any history of input
and output actions, the time required by the system to produce its next output
(if any) is more or less known. Predictability is at the basis of the assumption
in ioco theory that quiescence is observable: whenever a test is carried out,
it is assumed that if a system does not produce an output within some fixed
time T after the last input, it will never produce an output. By the same line
of reasoning, one could assume that there exists a fixed time ¢ such that the
system never produces an output within time ¢ after an input. Hence, if one
assumes that the tester can compute faster than the IUT, then in principle the
tester always has the choice to either wait for the next output of the IUT or to
generate its next input before time ¢, that is, before occurrence of the output.
Based on these considerations, we slightly increase the power of the testers: at
any point we let the tester decide who is going to perform the next step, the
IUT or the tester itself.

Formally, we introduce a fresh delay action A. By performing A, the envi-
ronment gives an IOA the opportunity to perform its next output (if any). Let



In = IU{A}. The behavior of an environment can then be described by an
environment sequence in (Ia)*, that is, a sequence of input actions interleaved
with delay actions. Let A = (I,0,Q,¢°, —) be an IA and let ¢,¢' € Q, e € (Ia)*

and u € (I UOgs)*. We write ¢ A ¢’ to indicate that as a result of offering envi-
ronment sequence e in state g, As may produce trace u and end up in state ¢'.

Formally, e:/>u is the least relation that satisfies ¢ E:>/€ q and:
e/u 4 N eifui
q=>qgNg —qd Niel=q = ¢q

e/u

A
GBI AS " hoeOs=q° Ly
For each environment sequence e € (Ia)*, we define obs4(e) to be the set of
traces that may be observed when offering e to Ajs, that is, obsa(e) = {u €

(IUOs)* | g€ Q : q° P:/f q}. Let A; and Ay be two IOAs with the same
sets I and O of input and output actions, respectively, We write A; C As,
if obs4,(e) C obsa,(e), for all environment sequences e € (Ip)*. If Ais a
deterministic and output determined IOA then obs4(e) contains exactly one
element for each input sequence e. Thus, with this notion of observable behavior,
a deterministic and output determined IOA is also behavior deterministic in the
sense of Henzinger [9].

Even though our notion of observation is based on a stronger notion of testing
than ioco theory, the resulting notion of preorder is the same.

Theorem 3. Let A; and As be I0As with the same inputs and outputs. Then
.A1 iOCO Az Zﬁc .A1 E Ag.

4 From Interface Automata to Mealy Machines and Back

A (nondeterministic) Mealy machine (MM) is a tuple M = (I,0,Q,q°,—),
where I, O and @ are finite, nonempty sets of inputs, outputs, and states, re-
spectively, ¢° € Q is the initial state, and —C @Q x I x O x @Q is the transition

relation. We write ¢ e q if (¢,i,0,¢") €—, and ¢ He if there exists a ¢’ such that
q He ¢'. Mealy machines are assumed to be input enabled: for each state ¢ and in-
put i, there exists an output o such that ¢ 1/—? The transition relation is extended

to sequences by defining “4* t0 be the least relation that satisfies, for q,q¢’, ¢” € Q,

u/s , i/o wi/so

ueI*,seO*,iGI,andon:q;/eqandq=>q’/\q 5S¢ = q =

A state ¢ € Q is called reachable if ¢° ué/s q, for some v and s. A Mealy machine

is deterministic iff given a state ¢ and an input ¢ there is exactly one output o

and exactly one state ¢’ such that ¢ He q.

For g € Q and u € I*, define obs (g, u) to be the set of output sequences that
may be produced when offering input sequence u to M, that is, obsa(q,u) =

{s€O0*|3Jg:q u:/>s q}. Two states q,¢’ € Q are observation equivalent, notation



g~ ¢, if obsa(q,u) = obsp(q’,u), for all input strings u € I*. Write 0bsaq(u)
as a shorthand for 0bs((q°, u). Two Mealy machines M; and My with the same
sets of inputs I are observation equivalent, notation My = Mo, if obsa, (u) =
0bs m, (u), for all input strings w € I'*. If M is deterministic then obsaq(u) is a
singleton set for each input sequence u. Thus a deterministic Mealy machine is
also behavior deterministic in the sense of Henzinger [9].

We call an interface automaton active if each state enables an output action.
Observe that for any interface automaton A, the §-extension A° is active. Active
interface automata can be translated to equivalent Mealy machines. We translate

each input transition ¢ ER ¢’ to a transition ¢ Ay ¢’ in the Mealy machine, where
+ is a fresh output action denoting that the input is accepted. If input 4 is not

enabled in state ¢, then we add a self-loop ¢ g q to the Mealy machine. Here
— is a fresh output symbol denoting that the input is illegal. The fresh input
action A (“delay”) is used to probe for possible outputs: each output transition

A
g > ¢ translates to a transition ¢ Ao ¢’ in the Mealy machine.
Formally, for active IA A = (I,0,Q,q°,—), the Mealy machine T(A) is
defined as the structure (In,0 U {+, -}, @Q,q°, —'), where
i i/+
i€cIng—=q¢d =qg—"¢
i i/—
icINgA=q—"q
Afo
0€0ONGS G =q—" ¢

Figure 4 illustrates transformation 7. We now define transformation R, the

Fig. 4. Result of applying T to the J-extension of the IA of Figure 3.

inverse of transformation 7', which takes a Mealy machine and turns it into
an TA. Let M = (Io,0U{+,-},Q,¢"°,—) be a Mealy machine. Then R(M) is
the 1A (I,0,Q, ¢°,—'), where

o

iEI/\qiﬁq' = ¢—'q¢ and OEOAqA—/>Oq' = qg—'¢
If one takes any total IA A and applies first T" and then R, one gets back A.
Theorem 4. Let A be a total IA. Then A= R(T(A)).

Observe that if A is deterministic and output determined then T'(A) is de-
terministic, and if M is deterministic then R(M) is deterministic and output



determined. In order to obtain a dual version of Theorem 4, we need to impose
three additional conditions on M. Let M be a Mealy machine whose inputs
include A and whose outputs include + and —. Then M is separated if an input
in I always leads to an output + or —, and input A always leads to an output

in O: q gAY qd = (i=A<%&o0€0). Mis consistent if there exists no state ¢
and input 4 for which both outputs + and — are possible: —=(g gy Aq l/_). M
is stable if an output — does not lead to a change of state: ¢ s qd = q=¢.
Clearly, for any total IA A, T(A) is separated, consistent and stable. Note that
deterministic Mealy machines are consistent. Using the conditions of separation,
consistency and stability, it is easy to prove M = T(R(M)).

Theorem 5. Let M be a separated, consistent and stable Mealy machine with
inputs Ia and outputs O U {+,—}. Then M = T(R(M)).

5 Learning I/O Automata

In this section, we present our approach for active learning of I/O automata.
We assume that the teacher knows a deterministic and output determined IOA
A=(I1,0,Q,q° —). We consider a setting in which the task of the learner is to
partially learn A: the learner initially knows a deterministic interface automaton
P = (1,04, P,p°,—'), called the learning purpose, and has to learn the part of
A whose behavior is compatible with P. We require A% <, P.

The teacher and learner play the following game. The teacher records the
current state of A, which initially is ¢°, and the learner records the current state

of P, which initially is p°. Suppose that the teacher is in state ¢ and the learner is
i
in state p. The learner now can do four things: (1) If an input transition p —' p’

is enabled then it may jump to p’ and present input 4 to the teacher, which will

then jump to the state ¢’ such that ¢ = ¢’. (2) The learner may present a delay
A to the teacher. If the teacher enables some output o, then it will jump to the
unique state ¢’ such that ¢ — ¢’ and return answer o to the learner. If no output
action is enabled in ¢ then the teacher returns §. The learner then jumps to the
unique state p’ that can be reached by the answer o or § that it has just received
(by the assumption that A° <, P we know this state exists). (3) The learner
may return to its initial state and ask the teacher to do the same (“‘reset”). (4)
The learner may pose a preorder query (“is an hypothesized IA H correct?”).
An hypothesis is a deterministic, output determined IA H such that H® <47 P.
An hypothesis is correct if A <,s H. If H is correct then the teacher returns the
answer yes. If an hypothesis is not correct then, by Corollary 1, H® has a trace
o such that the unique output o enabled by A? after ¢ differs from the unique
output enabled by H? after o. The teacher then returns the answer no together
with counterexample o o.

In order to appreciate our learning framework, consider the trivial learning
purpose Py, displayed in Figure 5 (left). Here notation ¢ : I means that we
have an instance of the transition for each input ¢ € I. Notation o : O is defined

10



Fig.5. A trivial learning purpose (left) and a learning purpose with a nontrivial §
transition (right).

similarly. If H is an hypothesis, then by definition H® <a; Pipin. This just
means that H is input enabled. If H is correct then A <,s H. Since both A
and H are deterministic, output determined IAs, this means that A and H are
bisimilar! The following lemma provides some key insight in our approach in
case of an arbitrary learning purpose. It implies that if hypothesis H is correct,
H? is bisimilar to AS(A°, P).

Lemma 3. Suppose A1, Ay and As are [As, Ay is active and input determinis-
tic, As is output determined, Az is output deterministic, and A1 <, A3 <ay As.
Then Ag ~p AS(A1, Az)

It is important that a learning purpose may contain nontrivial § transitions.
As an example, consider the IA of Figure 5 (right). This learning purpose ex-
pressing that after an input one has to wait until the system gets into a quiescent
state before offering the next input. It is not possible to express this without
¢’s. But since in the end we want to learn IAs without §’s, we need an operation
that eliminates all J-transitions from an automaton. Let A = (I,0s,Q, ¢", —)

be an IA. Let = be the smallest equivalence relation that contains 2, Then we
define p(A) to be the quotient 1A (I,0,Q/=,q¢°/ =, —') where

¢/ =2%4d/=<TIrr q=rAr S A =¢

The following lemma implies that under certain conditions operation p preserves
bisimulation equivalence.

Lemma 4. Suppose A1 and As are deterministic, output determined IAs, Ay
has outputs O, As has outputs Og, and both IAs share the same sets of inputs I.
Suppose furthermore that Ay satisfies the following triangle property, for i € I:

q KX NG5 q" = q 5 q". Then AS =~y Ay implies Ay =y p(Az).

We always assume that the learning purpose P satisfies the triangle property.
Under this assumption, it follows using the above lemma that, if hypothesis H
is correct, H is bisimilar to p(AS(A°, P)).

Rather than developing and implementing an algorithm from scratch, we use
the LearnLib tool [23] to implement our learning approach. We place a transducer
in between the IOA teacher and the Mealy machine learner, which records the
current state p of the learning purpose P and translates concepts from the world
of I/O automata to the world of Mealy machines, and vice versa, using the
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translation functions defined in the previous section. Initially, the MM learner
only knows a signature consisting of inputs I and outputs Os U {4, —}. The
behavior of the transducer is as follows:

— Whenever the transducer receives an output query ¢ € I from the MM
learner, it checks if 7 is enabled in the current state of P. If the input is
not enabled (“illegal”) then the transducer returns an output — to the MM
learner. If the output is enabled then the transducer returns an output + to
the MM learner, updates state p to the unique state p’ with an i-transition
from p to p’, and forwards ¢ to the IOA teacher.

— Whenever the transducer receives an output query A this is forwarded di-
rectly to the IOA teacher. When it receives a response o € Oy, the transducer
updates state p accordingly, and forwards o to the MM learner.

— Whenever the transducer receives a “reset” from the MM learner, it resets
its state to p°, and forwards the “reset” to the IOA teacher.

— Whenever the transducer receives an equivalence query H from the MM
learner, then it first checks whether p(R(H)) <a; P (since both TAs are
deterministic, this can be done in time linear in the size of their synchronous
product). If p(R(H)) does not conform to learning purpose P, then an answer
no is returned to the MM learner, together with a distinguishing trace in
which all output symbols are replaced by A. If p(R(H)) <ar P then the
transducer forwards the preorder query p(R(H)) to the IOA teacher. The
transducer forwards a subsequent response of the IOA teacher to the MM
learner, but with all output symbols replaced by A. If the response is yes
then the transducer has successfully learned an IA p(R(H)) that meets all
the requirements.

Observe that when LearnLib is used, equivalence queries are always separated
and stable. We claim that the algorithm always terminates and that the trans-
ducer indeed learns an IOA that is equivalent to p(AS(A?,P)). In order to see
why this claim is true, a key observation is that the IOA teacher and transducer
together behave like a teacher for Mealy machine T(AS(A%, P)).

Lemma 5. The IOA teacher and transducer together behave like a teacher for
Mealy machine T(AS(A?, P)).

The main technical result of this article is that the MM learner and the trans-
ducer together will succeed in learning p(AS(A?,P)), that is, the subautomaton
of A induced by the learning purpose P:

Theorem 6. The composition of MM learner and transducer behaves like a
learner for I/0 automata, that is, execution will terminate after a finite num-
ber of queries, and upon termination the transducer has learned an IA that is

bisimilar to p(AS(A%, P)).
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6 Experiments

We have implemented and applied our approach to infer three types of 1/O
automata. In this section, we first describe our experimental setup, thereafter
its application to the three case studies.!

To serve as IOA teacher, we read in an I/O automaton specified in Alde-
baran format [3]. We connect the IOA teacher to a transducer equipped with
an interface automaton, which is also described in Aldebaran format. As MM
learner in our framework, we use the LearnLib library [22].

In our first (trivial) case study we learned the IOA shown in Figure 1. Because
the interaction with this automaton is not constrained, we used an interface
automaton that accepts every input and output, see Figure 5. The inferred Mealy
machine model can be transformed to the IOA by transformations R and p.

A model of the electronic passport [12,7] has been inferred in a second ex-
periment. We provided the IOA teacher with a model of the protocol taken from
Mostowski et al. [19]. Analyzing the behavior of the automaton revealed that
almost always the passport reacts like a Mealy machine: 13 out of 14 inputs gen-
erate an output symbol before a new input symbol can be transferred. Following
this information, we defined an interface automaton in which inputs alternate
with outputs or quiescence, see Figure 6 (left). Because no output is generated
in response to a Reset input in the IOA, an output d occurs within the Mealy
machine that is learned. In fact, the inferred Mealy machine has one additional
state, which can only be reached by a A/§ transition. After applying trans-
formation R and p, we obtained the corresponding subautomaton of the IOA
that was given to the teacher. With respect to learning performance, we observe
that inferring an IOA requires more membership queries than learning the same
behavior as a Mealy machine having i/o instead of i/4+ and A/o transitions.
Inferring an IOA of the electronic passport required 44294 membership queries,
whereas learning the corresponding Mealy machine with i/o transitions merely
needed 1079 queries. The difference can be explained by the fact that 80,72%
of the membership queries asked to infer the passport IOA comprised unspec-
ified input sequences. Because of the Mealy machine behavior of the IOA, no
outputs are defined for most consecutive inputs. Moreover, membership queries
were asked for the additional state.

In a third case study we applied our approach to learn a model of the Session
Initiation Protocol (SIP) [25,24]. The teacher is supplied with an IOA based
on a Mealy machine generated using inference and abstraction techniques [1].
Analyzing the structure of the automaton showed that each input symbol is
followed by one or more outputs. Furthermore, in the initial state only certain
inputs are allowed. To concentrate the learning on this restricted behavior, we
used the interface automaton shown in Figure 6 (right). Again, by applying

L All TIOAs and interface automata used in the different case studies as well
as the corresponding learned Mealy machines can be found at the URL
http://www.mbsd.cs.ru.nl/publications/papers/fvaan/LearningIOAs/.
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Fig. 6. IA in which each input is followed by at most one output (left) and IA in which
initially only certain inputs are allowed and two consecutive inputs are not allowed
(right).

transformation p and R, the inferred Mealy machine could be converted to the
corresponding subautomaton of the IOA given to the teacher.

7 Conclusions and Future work

We have presented an approach for active learning of deterministic and output
determined I/O automata. By eliminating the restriction from Mealy machines
that inputs and outputs have to alternate, we have extended the class of models
that can be learned. Our approach has been implemented on top of the LearnLib
tool and has been applied successfully to three case studies. A new idea intro-
duced in this paper is to use interface automata to focus the learning process to
interesting/relevant parts of the behavior. Both in the passport and the SIP case
study, the use of interface automata greatly reduced the number of queries. The
efficiency of our learning approach can be improved by integrating this notion
of interface automata within LearnLib: in this way it will be possible to further
reduce the number of membership queries. Obvious topics for future research are
to extend our approach to automata with nondeterminism and silent transitions,
and to integrate our transducers with the ones used in [1] for data abstraction.
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