
Automata Learning Through Counterexample
Guided Abstraction Refinement?

Fides Aarts1, Faranak Heidarian1??, Harco Kuppens1, Petur Olsen2, and
Frits Vaandrager1

1 Institute for Computing and Information Sciences, Radboud University Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, the Netherlands

2 Department of Computer Science, Aalborg University, Aalborg, Denmark

Abstract. Abstraction is the key when learning behavioral models of
realistic systems. Hence, in most practical applications where automata
learning is used to construct models of software components, researchers
manually define abstractions which, depending on the history, map a
large set of concrete events to a small set of abstract events that can be
handled by automata learning tools. In this article, we show how such
abstractions can be constructed fully automatically for a restricted class
of extended finite state machines in which one can test for equality of
data parameters, but no operations on data are allowed. Our approach
uses counterexample-guided abstraction refinement: whenever the cur-
rent abstraction is too coarse and induces nondeterministic behavior,
the abstraction is refined automatically. Using Tomte, a prototype tool
implementing our algorithm, we have succeeded to learn – fully auto-
matically – models of several realistic software components, including
the biometric passport and the SIP protocol.

1 Introduction

The problem to build a state machine model of a system by providing inputs
to it and observing the resulting outputs, often referred to as black box system
identification, is both fundamental and of clear practical interest. A major chal-
lenge is to let computers perform this task in a rigorous manner for systems with
large numbers of states. Many techniques for constructing models from observa-
tion of component behavior have been proposed, for instance in [3, 20, 10]. The
most efficient such techniques use the setup of active learning, where a model of
a system is learned by actively performing experiments on that system. Learn-
Lib [20, 11, 17], for instance, the winner of the 2010 Zulu competition on regular
inference, is currently able to learn state machines with at most 10,000 states.
During the last few years important developments have taken place on the bor-
derline of verification, model-based testing and automata learning, see e.g. [4, 15,

? Supported by STW project 11763 Integrating Testing And Learning of Interface
Automata (ITALIA) and EU FP7 grant no 214755 (QUASIMODO).

?? Supported by NWO/EW project 612.064.610 Abstraction Refinement for Timed
Systems (ARTS).

20]. There are many reasons to expect that by combining ideas from these three
areas it will become possible to learn models of realistic software components
with state-spaces that are many orders of magnitude larger than what tools can
currently handle. Tools that are able to infer state machine models automati-
cally by systematically “pushing buttons” and recording outputs have numerous
applications in different domains. For instance, they support understanding and
analyzing legacy software, regression testing of software components [13], proto-
col conformance testing based on reference implementations, reverse engineering
of proprietary/classified protocols, fuzz testing of protocol implementations [8],
and inference of botnet protocols [6].

Abstraction turns out to be the key for scaling existing automata learning
methods to realistic applications. Dawn Song et al [6], for instance, succeeded
to infer models of realistic botnet command and control protocols by placing an
emulator between botnet servers and the learning software, which concretizes
the alphabet symbols into valid network messages and sends them to botnet
servers. When responses are received, the emulator does the opposite — it ab-
stracts the reponse messages into the output alphabet and passes them on to
the learning software. The idea of an intermediate component that takes care of
abstraction is very natural and is used, implicitly or explicitly, in many case stud-
ies on automata learning. Aarts, Jonsson and Uijen [1] formalized the concept
of such an intermediate abstraction component. Inspired by ideas from predi-
cate abstraction [16], they defined the notion of a mapper A, which is placed
in between the teacher M and the learner, and transforms the interface of the
teacher by an abstraction that maps (in a history dependent manner) the large
set of actions of the teacher into a small set of abstract actions. By combining
the abstract machine H learned in this way with information about the mapper
A, they can effectively learn a (symbolically represented) state machine that is
equivalent to M. Aarts et al [1] demonstrated the feasibility of their approach
by learning models of (fragments of) realistic protocols such as SIP and TCP
[1], and of the new biometric passport [2]. The learned SIP model is an extended
finite state machine with 29 states, 3741 transitions, and 17 state variables with
various types (booleans, enumerated types, (long) integers, character strings,..).
This corresponds to a state machine with an astronomical number of states and
transitions, thus far fully out of reach of automata learning techniques.

In this article, we present an algorithm that is able to compute appropriate
abstractions for a restricted class of system models. We also report on a pro-
totype implementation of our algorithm named Tomte, after the creature that
shrank Nils Holgersson into a gnome and (after numerous adventures) changed
him back to his normal size again. Using Tomte, we have succeeded to learn
fully automatically models of several realistic software components, including
the biometric passport and the SIP protocol.

Nondeterminism arises naturally when we apply abstraction: it may occur
that the behavior of a teacher or system-under-test (SUT) is fully deterministic
but that due to the mapper (which, for instance, abstracts from the value of
certain input parameters), the SUT appears to behave nondeterministically from

2

the perspective of the learner. We use LearnLib as our basic learning tool and
therefore the abstraction of the SUT may not exhibit any nondeterminism: if
it does then LearnLib crashes and we have to refine the abstraction. This is
exactly what has been done repeatedly during the manual construction of the
abstraction mappings in the case studies of [1]. We formalize this procedure and
describe the construction of the mapper in terms of a counterexample guided
abstraction refinement (CEGAR) procedure, similar to the approach developed
by Clarke et al [7] in the context of model checking. The idea to use CEGAR
for learning state machines has been explored recently by Howar at al [12], who
developed and implemented a CEGAR procedure for the special case in which
the abstraction is static and does not depend on the execution history. Our
approach is applicable to a much richer class of systems, which for instance
includes the SIP protocol and the various components of the Alternating Bit
Protocol.

Our algorithm applies to a class of extended finite state machines, which
we call scalarset Mealy machines, in which one can test for equality of data
parameters, but no operations on data are allowed. The notion of a scalarset
data type originates from model checking, where it has been used for symmetry
reduction [14]. Scalarsets also motivated the recent work of [5], which establishes
a canonical form for a variation of our scalarset automata. Currently, Tomte can
learn SUTs that may only remember the last and first occurrence of a parameter.
We expect that it will be relatively easy to dispose of this restriction. We also
expect that our CEGAR based approach can be further extended to systems that
may apply simple or known operations on data, using technology for automatic
detection of likely invariants, such as Daikon [9].

Even though the class of systems to which our approach currently applies is
limited, the fact that we are able to learn models of systems with data fully au-
tomatically is a major step towards a practically useful technology for automatic
learning of models of software components. The Tomte tool and all models that
we used in our experiments are available via www.italia.cs.ru.nl/tools. A
full version of this article including proofs is available via http://www.italia.

cs.ru.nl/publications/.

Acknowledgement Gábor Angyal helped with the Tomte tool.

2 Mealy Machines

We will use Mealy machines to model SUTs. A (nondeterministic) Mealy ma-
chine (MM) is a tuple M = 〈I,O,Q, q0,→〉, where I, O, and Q are nonempty
sets of input symbols, output symbols, and states, respectively, q0 ∈ Q is the

initial state, and→⊆ Q×I×O×Q is the transition relation. We write q
i/o−−→ q′ if

(q, i, o, q′) ∈→, and q
i/o−−→ if there exists a q′ such that q

i/o−−→ q′. Mealy machines
are assumed to be input enabled : for each state q and input i, there exists an

output o such that q
i/o−−→. A Mealy machine is deterministic if for each state q

and input symbol i there is exactly one output symbol o and exactly one state q′

3

such that q
i/o−−→ q′. We say that a Mealy machine is finite if the set Q of states

and the set I of inputs are finite.
Intuitively, at any point in time, a Mealy machine is in some state q ∈ Q. It

is possible to give inputs to the machine by supplying an input symbol i ∈ I.

The machine then (nondeterministically) selects a transition q
i/o−−→ q′, produces

output symbol o, and transforms itself to the new state q′.

Example 1. Figure 1 depicts a Mealy machine M = 〈I,O,Q, q0,→〉 that we
will use as a running example in the article. M describes a simple login pro-
cedure in which a user may choose a login name and password once, and then
may use these values for subsequent logins. Let L = {INIT,OUT, IN} be the

Fig. 1. Mealy machine

set of location names used in the diagram. Then the set of states is given
by Q = L × N × N, the initial state is q0 = (INIT, 0, 0), the set of inputs
is I = {Register(i, p), Login(i, p), Logout | i, p ∈ N} and the set of outputs is
O = {OK,NOK}. In Section 4, we will formally define the symbolic representa-
tion used in Figure 1 and its translation to Mealy machines, but the reader will
have no difficulty to associate a transition relation→ to the diagram of Figure 1,
assuming that in a state (l, i, p), i records the value of variable ID, and p records
the value of variable PW.

The transition relation of a Mealy machine is extended to sequences by defin-

ing
u/s⇒ to be the least relation that satisfies, for q, q′, q′′ ∈ Q, u ∈ I∗, s ∈ O∗,

i ∈ I, and o ∈ O,

– q
ε/ε⇒ q, and

– if q
i/o→ q′ and q′

u/s⇒ q′′ then q
i u/o s⇒ q′′.

Here we use ε to denote the empty sequence. Observe that q
u/s⇒ q′ implies

|u| = |s|. A state q ∈ Q is called reachable if q0
u/s⇒ q, for some u and s.

An observation over input symbols I and output symbols O is a pair (u, s) ∈
I∗×O∗ such that sequences u and s have the same length. For q ∈ Q, we define
obsM(q), the set of observations of M from state q, by

obsM(q) = {(u, s) ∈ I∗ ×O∗ | ∃q′ : q
u/s⇒ q′}.

4

We write obsM as a shorthand for obsM(q0). Note that, since Mealy machines are
input enabled, obsM(q) contains at least one pair (u, s), for each input sequence
u ∈ I∗. We call M behavior deterministic if obsM contains exactly one pair
(u, s), for each u ∈ I∗. It is easy to see that a deterministic Mealy machine is
also behavior deterministic.

Two states q, q′ ∈ Q are observation equivalent, denoted q ≈ q′, if obsM(q) =
obsM(q′). Two Mealy machinesM1 andM2 with the same sets of input symbols
I are observation equivalent, notation M1 ≈ M2, if obsM1

= obsM2
. We say

that M1 ≤M2 if obsM1 ⊆ obsM2 .

Lemma 1. If M1 ≤M2 and M2 is behavior deterministic then M1 ≈M2.

We say that a Mealy machine is finitary if it is observation equivalent to a
finite Mealy machine.

3 Inference and Abstraction of Mealy Machines

In this section, we present slight generalizations of the active learning framework
of Angluin [3] and of the theory of abstractions of Aarts, Jonsson and Uijen [1].

3.1 Inference of Mealy Machines

We assume there is a teacher, who knows a behavior deterministic Mealy machine
M = 〈I,O,Q, q0,→〉, and a learner, who initially has no knowledge about M,
except for its sets I and O of input and output symbols. The teacher maintains
the current state of M using a state variable of type Q, which at the beginning
is set to q0. The learner can ask three types of queries to the teacher:

– An output query i ∈ I.

Upon receiving output query i, the teacher picks a transition q
i/o→ q′, where

q is the current state, returns output o ∈ O as answer to the learner, and
updates its current state to q′.

– A reset query.
Upon receiving a reset query the teacher resets its current state to q0.

– An inclusion query H, where H is a Mealy machine.
Upon receiving inclusion query H, the teacher will answer yes if the hy-
pothesized Mealy machine H is correct, that is, M ≤ H, or else supply a
counterexample, which is an observation (u, s) ∈ obsM − obsH.

Note that inclusion queries are more general than the equivalence queries used
by Angluin [3]. However, ifM≤ H andH is behavior deterministic thenM≈ H
by Lemma 1. Hence, for behavior deterministic Mealy machines, a hypothesis is
correct in our setting iff it is correct in the settings of Angluin. The reason for our
generalization will be discussed in Section 3.2. The typical behavior of a learner
is to start by asking sequences of output queries (alternated with resets) until
a “stable” hypothesis H can be built from the answers. After that an inclusion

5

query is made to find out whether H is correct. If the answer is yes then the
learner has succeeded. Otherwise the returned counterexample is used to perform
subsequent output queries until converging to a new hypothesized automaton,
which is supplied in an inclusion query, etc.

For finitary, behavior deterministic Mealy machines, the above problem is
well understood. The L∗ algorithm, which has been adapted to Mealy machines
by Niese [18], generates finite, deterministic hypotheses H that are the mini-
mal Mealy machines that agree with a performed set of output queries. Since in
practice a SUT cannot answer equivalence or inclusion queries, LearnLib “ap-
proximates” such queries by generating a long test sequence that is computed
using standard methods such as random walk or the W-method. The algorithms
have been implemented in the LearnLib tool [19], developed at the Technical
University Dortmund.

3.2 Inference Using Abstraction

Existing implementations of inference algorithms only proved effective when ap-
plied to machines with small alphabets (sets of input and output symbols).
Practical systems, however, typically have large alphabets, e.g. inputs and out-
puts with data parameters of type integer or string. In order to infer large or
infinite-state MMs, we divide the concrete input domain into a small number of
abstract equivalence classes in a state-dependent manner. We place a mapper in
between the teacher and the learner, which translates the concrete symbols in I
and O to abstract symbols in X and Y , and vice versa. The task of the learner
is then reduced to infering a “small” MM with alphabet X and Y .

3.3 Mappers

The behavior of the intermediate component is fully determined by the notion of
a mapper. A mapper encompasses both concrete and abstract sets of input and
output symbols, a set of states and a transition function that tells us how the
occurrence of a concrete symbol affects the state, and an abstraction function
which, depending on the state, maps concrete to abstract symbols.

Definition 1 (Mapper). A mapper for a set of inputs I and a set of outputs
O is a tuple A = 〈I,O,R, r0, δ,X, Y, abstr〉, where

– I and O are disjoint sets of concrete input and output symbols,
– R is a set of mapper states,
– r0 ∈ R is an initial mapper state,
– δ : R× (I ∪O)→ R is a transition function; we write r

a→ r′ if δ(r, a) = r′,
– X and Y are finite sets of abstract input and output symbols, and
– abstr : R×(I∪O)→ (X∪Y) is an abstraction function that preserves inputs

and outputs, that is, for all a ∈ I ∪O and r ∈ R, a ∈ I ⇔ abstr(r, a) ∈ X.

We say that mapper A is output-predicting if, for all o, o′ ∈ O, abstr(r, o) =
abstr(r, o′)⇒ o = o′, that is, abstr is injective on outputs for fixed r.

6

Example 2. We define a mapper A = 〈I,O,R, r0, δ,X, Y, abstr〉 for the Mealy
machine M of Example 1. The sets I and O of the mapper are the same as
for M. The mapper records the login name and password selected by the user:
R = (N ∪ {⊥}) × (N ∪ {⊥}). Initially, no login name and password have been
selected: r0 = (⊥,⊥). The state of the mapper only changes when a Register
input occurs in the initial state:

δ((i, p), a) =

{
(i′, p′) if (i, p) = (⊥,⊥) ∧ a = Register(i′, p′)
(i, p) if (i, p) 6= (⊥,⊥) ∨ a 6∈ {Register(i′, p′) | i′, p′ ∈ N}.

The abstraction forgets the parameters of the input actions, and only records
whether a login is correct or wrong: X = {Register,CLogin,WLogin, Logout} and
Y = O. The abstraction function abstr is defined in the obvious way, the only
interesting case is the Login input:

abstr((i, p), Login(i′, p′)) =

{
CLogin if (i, p) = (i′, p′)
WLogin otherwise

Mapper A is output predicting since abstr acts as the identity function on out-
puts.

A mapper allows us to abstract a Mealy machine with concrete symbols in I
and O into a Mealy machine with abstract symbols in X and Y , and, conversely,
to concretize a Mealy machine with symbols in X and Y into a Mealy machine
with symbols in I and O. Basically, the abstraction of Mealy machine M via
mapperA is the Cartesian product of the underlying transition systems, in which
the abstraction function is used to convert concrete symbols into abstract ones.

Definition 2 (Abstraction). Let M = 〈I,O,Q, q0,→〉 be a Mealy machine
and let A = 〈I,O,R, r0, δ,X, Y, abstr〉 be a mapper. Then αA(M), the abstrac-
tion of M via A, is the Mealy machine 〈X,Y ∪ {⊥}, Q×R, (q0, r0),→′〉, where
→′ is given by the rules

q
i/o−−→ q′, r

i−→ r′
o→ r′′, abstr(r, i) = x, abstr(r′, o) = y

(q, r)
x/y−−→′ (q′, r′′)

6 ∃i ∈ I : abstr(r, i) = x

(q, r)
x/⊥−−−→′ (q, r)

The second rule is required to ensure that αA(M) is input enabled. Given some
state of the mapper, it may occur that for some abstract input action x there
is no corresponding concrete input action i. In this case, an input x triggers a
special “undefined” output ⊥ and leads the state unchanged.

Example 3. Consider the abstraction of the Mealy machineM of Example 1 via
the mapper A of Example 2. States of the abstract Mealy machine αA(M) have
the form ((l, i, p), (i′, p′)) with l ∈ L and i, p, i′, p′ ∈ N. It is easy to see that,
for any reachable state, if l = INIT then (i, p) = (0, 0) ∧ (i′, p′) = (⊥,⊥) else
(i, p) = (i′, p′). In fact, αA(M) is observation equivalent to the deterministic
Mealy machine H of Figure 2. Hence αA(M) is behavior deterministic. Note
that, by the second rule in Definition 2, an abstract input CLogin in the initial
state triggers an output ⊥, since in this state there exists no concrete input
action that abstracts to CLogin.

7

Fig. 2. Abstract Mealy machine for login procedure

We now define the concretization operator, which is the dual of the abstraction
operator. For a given mapper A, the corresponding concretization operator turns
any abstract MM with symbols in X and Y into a concrete MM with symbols in
I and O. The concretization of MM H via mapper A is the Cartesian product
of the underlying transition systems, in which the abstraction function is used
to convert abstract symbols into concrete ones.

Definition 3 (Concretization). Let H = 〈X,Y ∪ {⊥}, H, h0,→〉 be a Mealy
machine and let A = 〈I,O,R, r0, δ,X, Y, abstr〉 be a mapper for I and O. Then
γA(H), the concretization of H via A, is the Mealy machine 〈I,O ∪ {⊥}, R ×
H, (r0, h0),→′′〉, where →′′ is given by the rules

r
i−→ r′

o−→ r′′, abstr(r, i) = x, abstr(r′, o) = y, h
x/y−−→ h′

(r, h)
i/o−−→′′ (r′′, h′)

r
i−→ r′, abstr(r, i) = x, h

x/y−−→ h′, 6 ∃o ∈ O : abstr(r′, o) = y

(r, h)
i/⊥−−→′′ (r, h)

The second rule is required to ensure the concretization γA(H) is input en-
abled and indeed a Mealy machine.

Example 4. If we take the abstract MM H for the login procedure displayed in
Figure 2 and apply the concretization induced by mapper A of Example 2, the
resulting Mealy machine γA(H) is observation equivalent to the concrete MM
M displayed in Figure 1. Note that the transitions with output ⊥ in H play no
role in γA(H) since there exists no concrete output that is abstracted to ⊥. Also
note that in this specific example the second rule of Definition 3 does not play
a role, since abstr acts as the identity function on outputs.

The next lemma is a direct consequence of the definitions.

Lemma 2. Suppose H is a deterministic Mealy machine and A is an output-
predicting mapper. Then γA(H) is deterministic.

The following key result estabishes the duality of the concretization and
abstraction operators.

Theorem 1. Suppose αA(M) ≤ H. Then M≤ γA(H).

8

3.4 The Behavior of the Mapper Module

We are now prepared to establish that, by using an intermediate mapper compo-
nent, a learner can indeed learn a correct model of the behavior of the teacher.
To begin with, we describe how a mapper A = 〈I,O,R, r0, δ,X, Y, abstr〉 fully
determines the behavior of the intermediate mapper component. The mapper
component for A maintains a state variable of type R, which initially is set to
r0. The behavior of the mapper component is defined as follows:

– Whenever the mapper is in a state r and receives an output query x ∈ X
from the learner, it nondeterministically picks a concrete input symbol i ∈ I
such that abstr(r, i) = x, forwards i as an output query to the teacher, and
jumps to state r′ = δ(r, i). If there exists no i such that abstr(r, i) = x then
the mapper returns output ⊥ to the learner.

– Whenever the mapper is in state r′ and receives a concrete answer o from
the teacher, it forwards the abstract version abstr(r′, o) to the learner and
jumps to state r′′ = δ(r′, o).

– Whenever the mapper receives a reset query from the learner, it changes its
current state to r0, and forwards a reset query to the teacher.

– Whenever the mapper receives an inclusion query H from the learner, it
answers yes if αA(M) ≤ H, or else answers no and supplies a counterexample
(u, s) ∈ obsαA(M) − obsH.

From the perspective of a learner, a teacher forM and a mapper component
for A together behave exactly like a teacher for αA(M). Hence, if αA(M) is fini-
tary and behavior deterministic, LearnLib may be used to infer a deterministic
Mealy machine H that is equivalent to αA(M). Our mapper uses randomization
to select concrete input symbols for the abstract input symbols contained in
LearnLib equivalence queries for H. More research will be required to find out
whether this provides a good approach for testing αA(M) ≤ H. Whenever H is
correct for αA(M), then it follows by Theorem 1 that γA(H) is correct for M.
In general, γA(H) will not be deterministic: it provides an over-approximation
of the behavior ofM. However, according to Lemma 2, if H is deterministic and
A is output-predicting, then γA(H) is also deterministic. Lemma 1 then implies
M≈ γA(H).

4 The World of Tomte

Our general approach for using abstraction in automata learning is phrased most
naturally at the semantic level. However, if we want to devise effective algorithms
and implement them, we must restrict attention to a class of automata and
mappers that can be finitely represented. In this section, we describe the class
of SUTs that our tool can learn, as well as the classes of mappers that it uses.

Below we define scalarset Mealy machines. The scalarset datatype was in-
troduced by Ip and Dill [14] as part of their work on symmetry reduction in
verification. Operations on scalarsets are restricted so that states are guaran-
teed to have the same future behaviors, up to permutation of the elements of

9

the scalarsets. On scalarsets no operations are allowed except for constants, and
the only predicate symbol that may be used is equality.

We assume a universe V of variables. Each variable v ∈ V has a domain
type(v) ⊆ N ∪ {⊥}, where N is the set of natural numbers and ⊥ denotes the
undefined value. A valuation for a set V ⊆ V of variables is a function ξ that
maps each variable in V to an element of its domain. We write Val(V) for the set
of all valuations for V . We also assume a finite set C of constants and a function
γ : C → N that assigns a value to each constant. If c ∈ C is a constant then
we define type(c) = {γ(c)}. A term over V is either a variable or a constant,
that is, an element of C ∪ V . We write T for the set of terms over V. If t is a
term over V and ξ is a valuation for V then we write JtKξ for the value to which
t evaluates: if t ∈ V then JtK = ξ(t) and if t ∈ C then JtK = γ(t). A formula
ϕ over V is a Boolean combination of expressions of the form t = t′, where t
and t′ are terms over V . We write G for the set of all formulas over V. If ξ is a
valuation for V and ϕ is a formula over V , then we write ξ |= ϕ to denote that ξ
satisfies ϕ. We assume a set E of event primitives and for each event primitive
ε an arity arity(ε) ∈ N. An event term for ε ∈ E is an expression ε(t1, . . . , tn)
where t1, . . . , tn are terms and n = arity(ε). We write ET for the set of event
terms. An event signature Σ is a pair 〈TI , TO〉, where TI and TO are finite sets
of event terms such that TI ∩ TO = ∅ and each term in TI ∪ TO is of the form
ε(p1, . . . , pn) with p1, . . . , pn pairwise different variables with type(pi) ⊆ N, for
each i. We require that the event primitives as well as the variables of different
event terms in TI ∪ TO are distinct. We refer to the variables occurring in an
event signature as parameters.

Definition 4. A scalarset Mealy machine (SMM) is a tuple S = 〈Σ,V, L, l0, Γ 〉,
where

– Σ = 〈TI , TO〉 is an event signature,
– V ⊆ V is a finite set of state variables, with ⊥∈ type(v), for each v ∈ V ; we

require that variables from V do not occur as parameters in Σ,
– L is a finite set of locations,
– l0 ∈ L is the initial location,
– Γ ⊆ L× TI ×G × (V → T)× ET ×L is a finite set of transitions. For each

transition 〈l, εI(p1, . . . , pk), g, %, εO(u1, . . . , ul), l
′〉 ∈ Γ , we refer to l as the

source, g as the guard, % as the update, and l′ as the target. We require that
g is a formula over V ∪{p1, . . . , pk}, for each v, %(v) ∈ V ∪C ∪{p1, . . . , pk}
and type(%(v)) ⊆ type(v), and there exists an event term εO(q1, . . . , ql) ∈ TO
such that, for each i, ui is a term over V with type(ui) ⊆ type(qi) ∪ {⊥},

We say S is deterministic if, for all distinct transitions τ1 = 〈l1, eI1, g1, %1, e01, l′1〉
and τ2 = 〈l2, eI2, g2, %2, e02, l′2〉 in Γ , l1 = l2 and eI1 = eI2 implies g1 ∧ g2 ≡ false.

To each SMM S we associate a Mealy machine JSK in the obvious way. The
states of JSK are pairs of a location l and a valuation ξ of the state variables.
A transition may fire if its guard, which may contain both state variables and
parameters of the input action, evaluates to true. Then a new valuation of the

10

state variables is computed using the update part of the transition. This new
valuation also determines the values of the parameters of the output action.

Definition 5 (Semantics SMM). The semantics of an event term ε(p1, . . . , pk)
is the set Jε(p1, . . . , pk)K = {ε(d1, · · · , dk) | di ∈ type(pi), 1 ≤ i ≤ k}. The seman-
tics of a set T of event terms is defined by pointwise extension: JT K =

⋃
e∈T JeK.

Let S = 〈Σ,V, L, l0, Γ 〉 be a SMM with Σ = 〈TI , TO〉. The semantics of S,
denoted JSK, is the Mealy machine 〈I,O,Q, q0,→〉, where I = JTIK, O = JTOK,
Q = L×Val(V), q0 = (l0, ξ0), with ξ0(v) =⊥, for v ∈ V , and →⊆ Q× I×O×Q
is given by the rule

〈l, εI(p1, . . . , pk), g, %, εO(u1, . . . , u`), l
′〉 ∈ Γ

∀i ≤ k, ι(pi) = di ξ ∪ ι |= g
ξ′ = (ξ ∪ γ ∪ ι) ◦ %
∀i ≤ `, JuiKξ′ = d′i

(l, ξ)
εI(d1,...,dk)/εO(d′1,...,d

′
`)−−−−−−−−−−−−−−−−→ (l′, ξ′)

Our tool can infer models of SUTs that can be defined using deterministic
SMMs that only record the first and the last occurrence of an input parameter.

Definition 6 (Restricted SMMs). Let S = 〈Σ,V, L, l0, Γ 〉 be a SMM. Vari-
able v records the last occurrence of input parameter p if for each transition
〈l, εI(p1, . . . , pk), g, %, e, l′〉 ∈ Γ , if p ∈ {p1, . . . , pk} then %(v) = p else %(v) = v.
Moreover, %(w) = v implies w = v. Variable v records the first occurrence
of input parameter p if for each transition 〈l, εI(p1, . . . , pk), g, %, e, l′〉 ∈ Γ , if
p ∈ {p1, . . . , pk} and g ⇒ v =⊥ holds then %(v) = p else %(v) = v. Moreover,
%(w) = v implies w = v. We say that S only records the first and last occurrence
of parameters if, whenever %(v) = p in some transition, v either records the first
or the last occurrence of p.

For each event signature, we introduce a family of symbolic abstractions,
parametrized by what we call an abstraction table. For each parameter p, an
abstraction table contains a list of variables and constants. If v occurs in the list
for p then, intuitively, this means that for the future behavior of the SUT it may
be relevant whether p equals v or not.

Definition 7 (Abstraction table). Let Σ = 〈TI , TO〉 be an event signature
and let P and U be the sets of parameters that occur in TI and TO, respectively.
For each p ∈ P , let vfp and vlp be fresh variables with type(vfp) = type(vlp) =

type(p)∪{⊥}, and let V f = {vfp | p ∈ P} and V l = {vlp | p ∈ P}. An abstraction

table for Σ is a function F : P∪U → (V f∪V l∪C)∗, such that, for each p ∈ P∪U ,
all elements of sequence F (p) are distinct, and, for each p ∈ U , F (p) lists all the
elements of V f ∪ V l ∪ C.

Each abstraction table F induces a mapper. This mapper records, for each
parameter p, the first and last value of this parameter in a run, using variables vfp
and vlp, respectively. In order to compute the abstract value for a given concrete

11

value d for a parameter p, the mapper checks for the first variable or constant in
sequence F (p) with value d. If there is such a variable or constant, the mapper
returns the index in F (p), otherwise it returns ⊥.

Definition 8 (Mapper induced by abstraction table). Let Σ = 〈TI , TO〉 be
a signature and let F be an abstraction table for Σ. Let P be the set of parameters
in TI and let U be the set of parameters in TO. Let, for p ∈ P ∪U , p′ be a fresh
variable with type(p′) = {0, . . . , |F (p)| − 1} ∪ {⊥}. Let TX = {ε(p′1, . . . , p′k) |
ε(p1, . . . , pk) ∈ TI} and TY = {ε(p′1, . . . , p′l) | ε(p1, . . . , pl) ∈ TO}. Then the
mapper AFΣ = 〈I,O,R, r0, δ,X, Y, abstr〉 is defined as follows:

– I = JTIK, O = JTOK, X = JTXK, and Y = JTY K.
– R = Val(V f ∪ V l) and r0(v) =⊥, for all v ∈ V f ∪ V l.
– → and abstr are defined as follows, for all r ∈ R,

1. Let o = εO(d1, . . . , dk) and let εO(q1, . . . , qk) ∈ TO. Then r
o−→ r and

abstr(r, o) = εO(first(JF (q1)Kr, d1), . . . ,first(JF (qk)Kr, dk)), where for a
sequence of values σ and a value d, first(σ, d) equals ⊥ if d does not occur
in σ, and equals the smallest index m with σm = d otherwise, and for a
sequence of terms ρ = t1 · · · tn and valuation ξ, JρKξ = Jt1Kξ · · · JtnKξ.

2. Let i = εI(d1, . . . , dk), εI(p1, . . . , pk) ∈ TI , r0 = r and, for 1 ≤ j ≤ k,

rj =

{
rj−1[dj/v

f
pj][dj/v

l
pj] if rj−1(vfpj) =⊥

rj−1[dj/v
l
pj] otherwise

(1)

Then r
i−→ rk and abstr(r, i) = εI(d

′
1, . . . , d

′
k), where, for 1 ≤ j ≤ k,

d′j = first(JF (pj)Krj−1, dj).

Strictly speaking, the mappersAFΣ introduced above are not output-predicting:
in each state r of the mapper there are infinitely many concrete outputs that
are mapped to the abstract output ⊥. However, in SUTs whose behavior can be
described by scalarset Mealy machines, the only possible values for output pa-
rameters are constants and values of previously received inputs. As a result, the
mapper will never send an abstract output with a parameter ⊥ to the learner.
This in turn implies that in the deterministic hypothesis H generated by the
learner, ⊥ will not occur as an output parameter. (Hypotheses in LearnLib only
contain outputs actions that have been observed in some experiment.) Since AFΣ
is output-predicting for all the other outputs, it follows by Lemma 2 that the
concretization γAFΣ (H) is deterministic.

The two theorems below solve (at least in theory) the problem of learning a
deterministic symbolic Mealy machine S that only records the first and last oc-
currence of parameters. By Theorems 2 and 3, we know thatM = αAFull(Σ)

Σ

(JSK)
is finitary and behavior deterministic. Thus we may apply the approach de-

scribed in Section 3.4 with mapper AFull(Σ)
Σ in combination with any tool that

is able to learn finite deterministic Mealy machines. The only problem is that
in practice the state-space of M is too large, and beyond what state-of-the-art

12

learning tools can handle. The proofs of Theorems 2 and 3 exploit the symme-
try that is present in SMMs: using constant preserving automorphisms [14] we
exhibit a finite bisimulation quotient and behavior determinacy.

Theorem 2. Let S = 〈Σ,V, L, l0, Γ 〉 be a SMM that only records the first
and last occurrence of parameters. Let F be an abstraction table for Σ. Then
αAFΣ (JSK) is finitary.

Theorem 3. Let S = 〈Σ,V, L, l0, Γ 〉 be a deterministic SMM that only records
the first and last occurrence of parameters. Then αAFull(Σ)

Σ

(JSK) is behavior deter-

ministic.

Example 5. Consider our running example of a login procedure. The mapper
induced by the full abstraction table has 8 state variables, which record the first
and last values of 4 parameters. This means that for each parameter there are
9 abstract values. Hence, for each of the event primitives Login and Register,
we need 81 abstract input actions. Altogether we need 164 abstract inputs.
The performance of LearnLib degrades severely if the number of inputs exceeds
20, and learning models with 164 inputs typically is not possible. Example 2
presented an optimal abstraction with just 4 inputs. In the next section, we
present a CEGAR approach that allows us to infer an abstraction with 7 inputs.

5 Counterexample-Guided Abstraction Refinement

In order to avoid the practical problems that arise with the abstraction table
Full(Σ), we take an approach based on counterexample-guided abstraction. We
start with the simplest mapper, which is induced by the abstraction table F with
F (p) = ε, for all p ∈ P , and only refine the abstraction (i.e., add an element to
the table) when we have to. For any table F , αAFΣ (JSK) is finitary by Theorem 2.

If, moreover, αAFΣ (JSK) is behavior deterministic then LearnLib can find a correct
hypothesis and we are done. Otherwise, we refine the abstraction by adding an
entry to our table. Since there are only finitely many possible abstractions and
the abstraction that corresponds to the full table is behavior deterministic, by
Theorem 3, our CEGAR approach will always terminate.

During the construction of a hypothesis we will not observe nondeterministic
behavior, even when table F is not full: in Tomte the mapper always chooses
a fresh concrete value whenever it receives an abstract action with parameter
value ⊥, i.e. the mapper induced by F will behave exactly as the mapper induced
by Full(Σ), except that the set of abstract actions is smaller. In contrast, during
the testing phase Tomte selects random values from a small domain. In this way,
we ensure that the full concretization γA(H) is explored. If the teacher responds
with a counterexample (u, s), with u = i1, . . . , in and s = o1, . . . , on, we may
face a problem: the counterexample may be due to the fact that H is incorrect,
but it may also be due to the fact that αAFΣ (JSK) is not behavior-deterministic.
In order to figure out the nature of the counterexample, we first construct the
unique execution of AFΣ with trace i1o1i2o2 · · · inon. Then we assign a color to
each occurrence of a parameter value in this execution:

13

Definition 9. Let r
i−→ r′ be a transition of AFΣ with i = εI(d1, . . . , dk) and

let εI(p1, . . . , pk) ∈ TI . Let abstr(r, i) = εI(d
′
1, . . . , d

′
k). Then we say that the

occurrence of value dj is green if d′j 6=⊥. Occurrence of value dj is black if
d′j =⊥ and dj equals the value of some constant or occurs in the codomain of
state rj−1 (where rj−1 is defined as in equation (1) above). Occurrence of value
dj is red if it is neither green nor black.

Intuitively, an occurrence of a value of an input parameter p is green if it
equals a value of a previous parameter or constant that is listed in the abstraction
table, an occurrence is black if it equals a previous value that is not listed in
the abstraction table, and an occurrence is red if it is fresh. The mapper now
does a new experiment on the SUT in which all the black occurrences of input
parameters in the trace are converted into fresh “red” occurrences. If, after
abstraction, the trace of the original counterexample and the outcome of the
new experiment are the same, then hypothesis H is incorrect and we forward
the abstract counterexample to the learner. But if they are different then we may
conclude that αAFΣ (S) is not behavior-deterministic and the current abstraction
is too coarse. In this case, the original counterexample contains at least one black
occurrence, which determines a new entry that we need to add to the abstraction
table.

Algorithm 1 Abstraction refinement

Input: Counterexample c = i1 · · · in
Output: Pair (p, v) with v new entry for F (p) in abstraction table
1: while abstraction not found do
2: Pick a black value b from c
3: c′ := c, where b is set to a fresh value
4: if output from running c′ on SUT is different from output of c then
5: c′′ := c, where source(b) is set to a fresh value
6: if output from running c′′ on SUT is different from output of c then
7: return (param(b), variable(source(b)))
8: else c := c′′

9: end if
10: else c := c′

11: end if
12: end while

The procedure for finding this new abstraction is outlined in Algorithm 1.
Here, for an occurrence b, param(b) gives the corresponding formal parameter,
source(b) gives the previous occurrence b′ which, according to the execution of
AFΣ , is the source of the value of b, and variable(b) gives the variable in which the
value of b is stored in the execution of AFΣ . To keep the presentation simple, we
assume here that the set of constants is empty. If changing some black value b
into a fresh value changes the observable output of the SUT, and also a change of

14

source(b) into a fresh value leads to a change of the observable output, then this
strongly suggests that it is relevant for the behavior of the SUT whether or not
b and source(b) are equal, and we obtain a new entry for the abstraction table. If
changing the value of either b or source(b) does not change the output, we obtain
a counterexample with fewer black values. If b is the only black value then, due
to the inherent symmetry of SMMs, changing b or source(b) to a fresh value in
both cases leads to a change of observable output. When the new abstraction
entry has been added to the abstraction table, the learner is restarted with the
new abstract alphabet.

6 Experiments

We illustrate the operation of Tomte by means of the Session Initiation Protocol
(SIP) as presented in [1]. Initially, no abstraction for the input is defined in the
learner, which means all parameter values are ⊥. As a result every parameter
in every input action is treated in the same way and the mapper selects a fresh
concrete value, e.g. the abstract input trace IINVITE (⊥, ⊥, ⊥), IACK (⊥, ⊥,
⊥), IPRACK (⊥, ⊥, ⊥), IPRACK (⊥, ⊥, ⊥) is translated to the concrete trace
IINVITE(1, 2, 3), IACK(4, 5, 6), IPRACK(7, 8, 9), IPRACK(10, 11, 12). In
the learning phase queries with distinct parameter values are sent to the SUT,
so that the learner constructs the abstract Mealy machine shown in Figure 3. In

Fig. 3. Hypothesis of SIP protocol

the testing phase parameter values may be duplicated, which may lead to non-
deterministic behavior. The test trace IINVITE, IACK, IPRACK, IPRACK in
Figure 4 leads to an 0200 output that is not foreseen by the hypothesis, which
produces an O481.

Rerunning the trace with distinct values as before leads to an O481 output.
Thus, to resolve this problem, we need to refine the input abstraction. There-
fore, we identify the green and black values in the trace and try to remove black
values. The algorithm first successfully removes black value 1 by replacing the
nine in the IPRACK input with a fresh value and observing the same output as
before. However, removing black value 2 changes the final outcome of the trace

15

Fig. 4. Non-determinism in SIP protocol

to an O481 output. Also replacing the first 16 with a fresh value gives an O481
output. As a result, we need to refine the input abstraction by adding an equal-
ity check between the first parameter of the last IINVITE message and the first
parameter of an IPRACK message to every IPRACK input. Apart from refin-
ing the input alphabet, every concrete output parameter value is abstracted to
either a constant or a previous occurrence of a parameter. The abstract value is
the index of the corresponding entry in the abstraction table. After every input
abstraction refinement, the learning process needs to be restarted. We proceed
until the learner finishes the inference process without getting interrupted by a
non-deterministic output.
Table 1 gives an overview of the systems we learned with the numbers of constant
and action parameters used in the models, the number of input refinement steps,
total numbers of learning and testing queries, number of states of the learned
abstract model, and the time needed for learning and testing (in seconds). These
numbers and times do not include the last equivalence query, in which no coun-
terexample has been found. In all our experiments, correctness of hypotheses was
tested using random walk testing. The outcomes depend on the return value of
function variable(b) in case b is the first occurrence of a parameter p: vfp or vlp.

Table 1 is based on the optimal choice, which equals vfp for SIP and the Login

Procedure, and vlp for all the other benchmarks. The Biometric Passport case
study [2] has also been learned fully automatically by [12]. All other benchmarks
require history dependent abstractions, and Tomte is the first tool that has been
able to learn these models fully automatically. We have checked that all models
inferred are observation equivalent to the corresponding SUT. For this purpose
we combined the learned model with the abstraction and used the CADP tool
set, http://www.inrialpes.fr/vasy/cadp/, for equivalence checking. Our tool
and all models can be found at http://www.italia.cs.ru.nl/tools.

References

1. F. Aarts, B. Jonsson, and J. Uijen. Generating models of infinite-state communi-
cation protocols using regular inference with abstraction. In ICTSS, LNCS 6435,
pages 188–204. Springer, 2010.

2. F. Aarts, J. Schmaltz, and F.W. Vaandrager. Inference and abstraction of the
biometric passport. In ISoLA, LNCS 6415, pages 673–686. Springer, 2010.

3. D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,
75(2):87–106, 1987.

4. T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt, and B. Steffen. On
the correspondence between conformance testing and regular inference. In FASE,
LNCS 3442, pages 175–189. Springer, 2005.

16

System under test Constants/ Input Learning/ States Learning/
Parameters refine- Testing Testing

ments queries time

Alternating Bit Protocol Sender 2/2 1 193/4 7 0.6s/0.1s

Alternating Bit Protocol Receiver 2/2 2 145/3 4 0.4s/0.2s

Alternating Bit Protocol Channel 0/2 0 31/0 2 0.1s/0.0s

Biometric Passport [2] 3/1 3 2199/2607 5 3.9s/32.0s

Session Initiation Protocol [1] 0/3 2 1153/101 14 3.0s/0.9s

Login procedure (Example 1) 0/4 2 283/40 4 0.5s/0.7s

Farmer-Wolf-Goat-Cabbage 4/1 4 610/1279 9 1.7s/16.2s

Palindrome/Repdigit Checker 0/16 9 1941/126 1 2.4s/3.3s
Table 1. Learning statistics.

5. S. Cassel, F. Howar, B. Jonsson, M. Merten, and B. Steffen. A succinct canonical
register automaton model. In ATVA, LNCS 6996, pages 366–380, Springer, 2011.

6. Chia Yuan Cho, Domagoj Babic, Eui Chul Richard Shin, and Dawn Song. Inference
and analysis of formal models of botnet command and control protocols. In Conf.
on Computer and Communications Security, pages 426–439. ACM, 2010.

7. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

8. P.M. Comparetti, G. Wondracek, C. Krügel, and E. Kirda. Prospex: Protocol
specification extraction. In IEEE Symposium on Security and Privacy, pages 110–
125. IEEE CS, 2009.

9. M.D. Ernst, J.H. Perkins, P.J. Guo, S. McCamant, C. Pacheco, M.S. Tschantz,
and C. Xiao. The Daikon system for dynamic detection of likely invariants. SCP,
69(1-3):35–45, 2007.

10. C. de la Higuera. Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, April 2010.

11. F. Howar, B. Steffen, and M. Merten. From ZULU to RERS. In ISoLA, LNCS
6415, pages 687–704. Springer, 2010.

12. F. Howar, B. Steffen, and M. Merten. Automata learning with automated alphabet
abstraction refinement. In VMCAI, LNCS 6538, pages 263–277. Springer, 2011.

13. H. Hungar, O. Niese, and B. Steffen. Domain-specific optimization in automata
learning. In CAV, LNCS 2725, pages 315–327. Springer, 2003.

14. C. Ip and D. Dill. Better verification through symmetry. FMSD, 9(1/2):41–75,
1996.

15. M. Leucker. Learning meets verification. In FMCO, LNCS 4709, pages 127–151.
Springer, 2006.

16. C. Loiseaux, S. Graf, J. Sifakis, A. Boujjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. FMSD, 6(1):11–44, 1995.

17. M. Merten, B. Steffen, F. Howar, and T. Margaria. Next generation LearnLib. In
TACAS, LNCS 6605, pages 220–223. Springer, 2011.

18. O. Niese. An Integrated Approach to Testing Complex Systems. PhD thesis, Uni-
versity of Dortmund, 2003.

19. H. Raffelt, B. Steffen, and T. Berg. LearnLib: a library for automata learning and
experimentation. In FMICS, pages 62–71, New York, NY, USA, 2005. ACM Press.

20. H. Raffelt, B. Steffen, T. Berg, and T. Margaria. Learnlib: a framework for ex-
trapolating behavioral models. STTT, 11(5):393–407, 2009.

17

