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Abstract. The iData Toolkit is a toolkit that allows programmers to
create interactive, dynamic web applications with state on a high level of
abstraction. The key element of this toolkit is the iData element. An iData
element is a form that is generated automatically from a type definition
and that can be plugged in in the web page of a web application. In
this paper we show how this automatic generation of forms has been
implemented. The technique relies essentially on generic programming.
It has resulted in a concise and flexible implementation. The iData Toolkit
is an excellent demonstration of the expressive power of modern generic
(poly-typical) programming techniques.

1 Introduction

In this paper we present a novel approach to programming forms in dynamic
web applications. The low level view, and standard definition, of a form is that
of a collection of (primitive) interactive elements, such as text input fields, check
boxes, radio buttons, pull down menus, and so on, that provide the application
user with a means to exchange structured information with the web application.
Seen from this point of view, and if programmed that way, creating forms results
in a lot of low level HTML coding. A high level view of forms is to think of them
as being editors of structured values of appropriate type. From the type, the
low level realization can be derived automatically. This can be done once by the
toolkit developer. Seen from that point of view, and if programmed that way,
creating forms is all about creating data types. This results in a lot less code
plumbing and no HTML-coding at all.

In the iData Toolkit project, we have adopted the high level view of forms
described above. We call these high level forms iData. An iData allows the web
application user to edit data of some specified data type. The current value of
that data type is the state of the iData. The rendering of an iData is a form in the
low level view. Rendering is determined completely by the type of the state of
the iData. Having an explicit concept of state allows us to provide the program-
mer with fine grained control over its persistency. The way a web application
works and looks is not exclusively determined by its iData. It also contains non-
interactive web elements, such as text, headers, tables, and so on. In the iData
Toolkit these are created by the programmer by means of a set of data types that



serve as a typed HTML programming language. In summary, the iData Toolkit
has the following main features:

– An iData is a typed interactive unit that can be plugged in a web page.
– An iData has typed state. The programmer controls its persistence.
– Web pages are programmed with data types.

An approach as sketched above can be implemented in any programming lan-
guage with good support for data types and type-driven programming. Mod-
ern functional programming languages such as Clean [21, 3] and Haskell [20]
come with highly expressive type systems. One example of type-driven pro-
gramming is generic programming [13, 14, 2], which has been built in in Clean
and GenericH∀skell [17]. In this paper we use Clean. We assume the reader is fa-
miliar with functional and generic programming. Clean specific language features
are explained in the text.

Server side web applications are launched by the web server as soon as a
request is received from a web browser. The application produces the requested
web page, and then terminates. Because of this behavior, every web application
needs to create a solution to store, reload, and update its intermediate state.
Many solutions to this problem have been invented. Two of them are server side
storage, and enhancing the web page with state information that is invisible to
the application user. We adopt a combination of these two solutions.

We show that generic programming provides us with concise and flexible
solutions for most of the major aspects of web programming: serialization and
deserialization, storage and retrieval of intermediate application states, printing
and parsing of the HTML data type language, tracking down and fixing edited
data structures of arbitrary type. In all, the iData Toolkit project is an excellent
case study in generic programming.

This paper is structured as follows. We first present the HTML programming
language in Sect. 2. With this language, the application developer can create
arbitrary HTML pages. Next, we show how the iData Toolkit can automatically
generate forms out of iData elements in Sect. 3. These iData elements have a
state and a visualization that can be used by the application developer in the
HTML pages. When a user manipulates a page with iData, the action of the user
needs to be recovered, as well as the states of the iData elements, and a new
collection of iData elements with possibly modified state need to be created. We
show in Sect. 4 how this can be done generically. The last step is to obtain a
good separation of the iData logic and its visualization in Sect. 5. Sect. 6 gives
a small example to give an impression of the expressiveness of the iData Toolkit.
We discuss related work in Sect. 7 and conclude in Sect. 8.

2 Programming Static Web Pages

A server side web application is started by the web server as soon as a request
is received from a client web browser. The web application receives its input
data on stdin and sends its output data on stdout. The output data contains the



web page that is sent back by the web server to the client web browser. Hence,
the purpose of every web application is to produce a web page that reflects the
application’s response to the given input. In addition, it has to retrieve state
information that is either encoded in the input date, or has been stored on disk.
These standard actions are performed by the library function

doHtml :: (*HSt→ (Html ,*HSt)) *World→ *World

(In Clean, function arguments are separated by whitespace instead of →. The
main function Start of an interactive application has type *World→ *World. Clean
uses explicit multiple environment passing for handling pure effects. The World

value represents the external environment of an application. The uniqueness
attribute * in front of the type constructor guarantees single-threaded access to
values of this type [6, 7].)

The application specific behavior is provided by the programmer with the
function of type

(*HSt→ (Html ,*HSt))

The abstract type HSt collects all states during the construction of an HTML
page. We defer its discussion until Sect. 3.2. Here, we focus on the Html type,
which is the root type of a collection of algebraic data types that capture HTML.

:: Html = Html Head Rest

:: Head = Head [HeadAttr ] [HeadTag ]
:: Rest = Body [BodyAttr ] [BodyTag ] | Frameset [FramesetAttr ] [Frame ]
:: Frame = Frame [FrameAttr ] | NoFrames [Std_Attr ] [BodyTag ]
:: BodyTag = A [A_Attr ] [BodyTag ] | . . . | Var [Std_Attr ] String

| STable [Table_Attr ] [ [BodyTag ] ]
| BodyTag [BodyTag ]
| EmptyBody

BodyTag contains the familiar HTML tags, starting with anchors (A) and ending
with variables (Var) (in total there are 76 HTML tags). The latter three alter-
natives are for easy HTML generation: STable generates a 2-dimensional table
of elements, BodyTag turns lists of elements into a single element, and EmptyBody

can be used as a zero element. Attributes are encoded as FooAttr data types.
The library function mkHtml :: String [BodyTag ] *HSt→ (Html ,*HSt) creates

a simple HTML page with given title and content.

mkHtml :: String [BodyTag ] *HSt→ (Html ,*HSt)
mkHtml title tags hst

= (Html (Head [ ‘Hd_Std [Std_Title title ] ] [ ] ) (Body [ ] tags) ,hst)

Consider the following example of a tiny “Hello world” page.

Start :: *World→ *World

Start world = doHtml (mkHtml "Hello World Example" [Txt "Hello World!" ] ) world

The corresponding HTML code is

<head title = Hello World Example></head><body>Hello World!</body>



Basically, HTML can be encoded straightforwardly into a set of algebraic data
type. There are some minor complications. In Clean, as well as in Haskell, all data
constructors have to be different. In HTML, the same attribute names can appear
in different tags. Furthermore, certain attributes, such as the standard attributes,
can be used by many tags. We do not want to repeat all these attributes for
every tag, but group them in a convenient way. To overcome these issues, we
use the following naming conventions. (1) The data constructor name represents
the corresponding HTML language element. (2) Data constructors need to start
with an uppercase character and may contain other uppercase characters, but
the corresponding HTML name is printed in lower-case format. (3) To obtain
unique names, every data constructor name is prefixed in a consistent way with
Foo_. When the name is printed we skip this prefix. (4) A constructor name is
prefixed with ‘ in case its name has to be completely ignored when printed. In
this way any indirection to any collection of commonly used attributes can be
made in the data type without causing any side effects when printed.

This approach has the following advantages. (1) One obtains a grammar for
HTML which is convenient for the programmer. (2) The type system eliminates
type and typing errors that can occur when working in plain HTML. (3) We
can define a type driven generic function for generating HTML code. (4) Future
changes of HTML are likely to change the algebraic data types only.

The generic printing routine gHpr implements the naming conventions dis-
cussed above, and prints the correct HTML code.

generic gHpr a :: *File a→ *File

(generic g a :: T a declares a kind indexed family of functions g that are over-
loaded in a with type scheme T a. *File represents a file on disk that can be
updated in place, guarded by the uniqueness attribute.) Its definition is straight-
forward polytypical code; only the CONS instance is special since it has to handle
the conventions mentioned above. This results in a universal HTML printer in
less than 20 loc. For completeness we show its code.

gHpr{|String|} file s = file<<< s

// Other basic type instances proceed analogously
gHpr{|[ ]|} gx file xs = foldl gx file xs

gHpr{|UNIT|} file _ = file

gHpr{|PAIR|} ga gb file (PAIR a b) = gb (ga file a) b

gHpr{|EITHER|} gl gr file (LEFT l) = gl file l

gHpr{|EITHER|} gl gr file (RIGHT r) = gr file r

gHpr{|OBJECT|} go file (OBJECT o) = go file o

gHpr{|CONS of t|} gc file (CONS c)
| t.gcd_name. [0 ] == ’‘’ = gc file c

| t.gcd_arity == 0 = file <+ " " <+ print t.gcd_name

| t.gcd_arity == 1 = gc (file <+ " " <+ print t.gcd_name <+ " = ") c

| otherwise = gc (file <+ " " <+ print t.gcd_name ) c

where print = toLower o stripprefix

(<<<is an overloaded operator that writes its second argument to the first argu-
ment of type *File. o is function composition. <+ is a shorthand for gHpr{|?|}.



g{|κ|} selects the overloaded function of kind κ of the generic function family g.)
Derived instances can be created for most of the HTML types (73). Types such
as HeadTag and BodyTag are not quite regular and require specialization (requiring
8 loc and 90 loc respectively).

3 Rendering iData

In the previous section we have shown how an iData Toolkit application developer
can program ‘raw’ HTML code. This HTML code may contain forms, but as we
have explained, we propose to create forms automatically from the type of the
data that they are supposed to represent. In this section we show how to render
forms from the state of iData. We first show how HTML rendering of iData is
taken care of in Sect. 3.1, and then explain what state handling is required for
this in Sect. 3.2.

3.1 Generating Forms from Types

Given a model value of type m, then a form is generated by gForm:

generic gForm m :: FormId m *HSt→ (Form m ,*HSt)

The form is represented by the record type (Form m). The changed field of this
record holds if the user has edited the form. The value field is its current value.
The form field is the actual HTML rendering of the form.

:: Form m = { changed::Bool , value::m , form:: [BodyTag ] }
Because the state of forms need to be stored (either in the web page or on disk),
they have to be identified unambiguously. This is what FormId values are for.
It is the task of the application developer to use unambiguous names (Strings).
FormId values are created with one of the functions {n, s, p}[d]FormId :: String→
FormId. In addition to the name, the programmer has control over the life span
and edit mode of the iData element.

:: FormId = { id::String , lifespan::Lifespan , mode::Mode }
:: Lifespan = Page | Session | Persistent

:: Mode = Edit | Display

The life span of an iData element is determined by {n, s, p}: its value is garbage
collected automatically after each page creation (n), is stored persistently during
a session (s), or independent of sessions (p). By default, values can be edited in
the browser. If they should be displayed only, then one of the {n, s, p}dFormId
functions can be used.

For basic types, gForm creates basic forms. We show the code for integers, for
other basic types the code is analogous. (Value is used as a union type for basic
types. UpdValue also includes selected constructor names – last alternative.)

gForm{|Int|} formid i hSt

] (form ,hSt) = mkInput formid (IV i) (UpdI i) hSt



= ({changed=False ,value=i ,form=[form]} ,hSt)

:: UpdValue = UpdI Int | UpdR Real | UpdB Bool | UpdS String | UpdC String

:: Value = IV Int | RV Real | BV Bool | SV String | NQV String

mkInput :: FormId Value UpdValue *HSt→ (BodyTag ,*HSt)
mkInput formid val updval hSt=:{cntr}

= ( Input [ Inp_Type Inp_Text , Inp_Value val , Inp_Size defsize

: case mode of Edit = [ Inp_Name identify

, ‘Inp_Std [EditBoxStyle ]
, ‘Inp_Events [OnChange callClean ] ]

Display = [ Inp_ReadOnly ReadOnly

, ‘Inp_Std [DisplayBoxStyle ] ] ] ""

, {hSt & cntr=cntr+1} )
where identify = encodeInfo (formid.id ,cntr ,updval)

(] is a non recursive let definition which scope extends downwards, but not to its
right hand side. e=:p binds variable e to pattern p; [e1, . . . , en:l] (with n > 0)
denotes a list that starts with elements e1 upto en and that has a remaining list
l; {r & −−−−→

fi = vi} is a record equal to r, but with fields fi having values vi; r.f
selects field f of record r.) Basic forms in Display mode are read-only, and show
this to the user. Basic forms in Edit mode need to ressurect the web applica-
tion on the server side, and provide it with the proper information. Whenever
the user edits the value (OnChange), the script callClean =: "toclean(this)" is
called. This script sends the states of all forms and an identification triplet of
the edited element back to the server, causing the application to be started with
the new data. The identification triplet consists of the unambiguous form iden-
tifier (formid.id), the position of the value in the generic representation (cntr),
and the value that is edited (updval). Together with the collection of all states,
this is sufficient to recover the old state and compute the next state of the web
application (Sect. 4).

For the generic constructors (UNIT, PAIR, EITHER, FIELD, OBJECT, and CONS)
gForm proceeds polytypically. UNIT values are displayed as EmptyBody. (PAIR a b)
values are placed below each other. (EITHER a b) values proceed recursively and
display either their left or right value. (OBJECT o) values proceed recursively. The
form that corresponds with (CONS c) values requires more HTML programming.

gForm{|CONS of t|} gc formid (CONS c) hst=:{cntr}
] (nc ,hst) = gc formid c {hst & cntr=cntr+1}
= ( { changed = nc.changed

, value = CONS nc.value

, form = [ STable [Tbl_CellPadding (Pixels 0)
,Tbl_CellSpacing (Pixels 0)]
[ [selector ,BodyTag nc.form ] ] ]

} , hst )
where

allConses= map (λn→ n.gcd_name) t.gcd_type_def.gtd_conses

consIndex= allConses??t.gcd_name

selector = Select [Sel_Name "CS" : cstyle ]



[Option
[ Opt_Value (encodeInfo (formid.id ,cntr ,UpdC cons))
: i f (j == consIndex) [Opt_Selected Selected:ostyle ] ostyle ]
cons \\ cons← allConses & j← [0.. ] ]

(cstyle ,ostyle)
= case formid.mode of

Edit → ( [ ‘Sel_Std [Std_Style width , EditBoxStyle ]
, ‘Sel_Events [OnChange callClean ] ] , [ ] )

Display→ ( [ ‘Sel_Std [Std_Style width , DisplayBoxStyle ]
, Sel_Disabled Disabled ] , [ ‘Opt_Std [DisplayBoxStyle ] ] )

width = "width:" +++ toString defpixel +++ "px"

It generates a pull down menu which entries correspond with all data construc-
tors. In Edit mode, the user can select one of these data constructors. Changes
are handled in the same way as with basic types, except that the selected con-
structor name is passed as argument. All in all, gForm’s implementation requires
140 loc.

Finally, gForm has been specialized for several standard form elements. We
do not discuss their implementation. It is basically in the same style as the Int

instance defined above.

3.2 Storing Form States

In the iData Toolkit, the state of a web application is the set of the states of
all iData. While a page is generated, these states are collected in the abstract
type HSt. It extends the Clean environment world :: World with a global counter
cntr :: InputId to generate position values in the generic representation of the
states, and the form states :: *FormStates that are constructed for a page.

:: *HSt = { cntr::InputId , states::*FormStates , world::*World }
:: InputId :== Int

(:: T −→a :== T ′ −→a declares that type T −→a is a synonym for type T ′ −→a .)
FormStates stores the serialized states of forms together with their FormId value
and if they have been changed (either by the user or by the web application).
FormStates is basically an association list with a look up function findState and
update function replaceState. These require the World environment in case of
Persistent forms. The boolean result of findState is true iff a previous state
was present. Finally, these functions are overloaded because of their use of the
generic serialization functions gParse and gPrint.

findState :: FormId *FormStates *World

→ (Bool ,Maybe a ,*FormStates ,*World) | gParse{|?|} a

replaceState :: FormId a *FormStates *World

→ ( *FormStates ,*World) | gPrint{|?|} a

(| appends overloading class restrictions to a function type.)
In addition, FormStates stores the edit operation of the user that caused the

application to be launched. The edit operation is determined by the element
that has been changed (the identification triplet discussed in Sect. 3.1), and the



new value that has been entered by the user. This information is retrieved from
FormStates by the function

getUserEdit :: *FormStates→ ((Maybe a ,Maybe b) ,*FormStates)
| gParse{|?|} a & gParse{|?|} b

This function is overloaded in its first result because the data is stored in seri-
alized form. For convenience, the identification string of the form that has been
edited by the user is stored separately. It is retrieved by

getUpdateId :: *FormStates→ (String ,*FormStates)

4 Creating iData

In the previous section we have shown that the rendering of an iData is a form. If
the application programmer plugs these forms in the web page of the application,
then they become available to the application user, who can start manipulating
them. Every manipulation that changes the current value of a form triggers the
execution of the application on the server side. The application has to figure out
why it has been launched. There can be only three reasons:

1. No form was edited, and there was no previous state. Initialize all forms.
2. No form was edited, and there are previous states. Recover all previous states.
3. One form was edited, and it had a previous state. Calculate the new state,

given the update information and the recovered previous state.

It is not the task of the programmer to determine these actions. This is delegated
to each application of the pivotal iData creation function, mkViewForm. The pro-
grammer uses this function to create all of his iData. Because of the complexity of
mkViewForm, we first present a slightly simplified version, viz. simplified_mkView-
Form. The full implementation of mkViewForm follows in Sect. 5.

In Sect. 4.1 we first show the generic function gUpd that can update a selected
part of any data structure with a new value of the correct type. This essential
tool is used by simplified_mkViewForm in Sect. 4.2 to compute a new state of a
form in case it has been edited by the user.

4.1 Updating the State of iData

The function gUpd constructs the new model value of type m of a form. It must be
a generic function because it needs to traverse the generic data representation of
the old model value in order to locate the generic element that has been changed.
This location has been passed to the application with the identification triplet,
as explained in Sect. 3.1.

generic gUpd m :: UpdMode m→ (UpdMode ,m)

:: UpdMode = UpdSearch UpdValue InputId | UpdCreate [ConsPos ] | UpdDone



The UpdMode type represents the two passes gUpd goes through: (UpdSearch newv

cnt) represents the search for the generic element at location cnt with new value
newv, and (UpdCreate path) represents the creation of new values for a selected
data constructor that can be found at path (:: ConsPos= ConsLeft | ConsRight).

We illustrate the working of gUpd for basic types with the case for integers
(the other cases for basic types are analogous). An existing value is replaced
with new somewhere in a generic value at position cnt if cnt = 0, otherwise it is
not changed and the position is decreased (alternatives 1–2 of gUpd). The default
value for new integers is 0 (alternative 3).

gUpd{|Int|} (UpdSearch (UpdI new) 0) _ = (UpdDone ,new)
gUpd{|Int|} (UpdSearch val cnt) i = (UpdSearch val (cnt-1) ,i)
gUpd{|Int|} (UpdCreate l) _ = (UpdCreate l,0)
gUpd{|Int|} mode i = (mode ,i)

The remaining code of gUpd proceeds polytypically except for OBJECTs:

gUpd{|OBJECT of desc|} gUpd_obj (UpdSearch (UpdC cname) 0) (OBJECT obj)
] (mode ,obj) = gUpd_obj (UpdCreate path) obj

= (UpdDone ,OBJECT obj)
where path = getConsPath (hd [cons \\ cons← desc.gtd_conses

| cons.gcd_name == cname ]

([f v \\ v ← l | p v ] is the list comprehension that creates a new list of values
f v where each v comes from a list l provided that predicate p holds.) In this
case its new value is determined by the name of the selected data constructor
(cname). At that point, gUpd switches from searching mode into creation mode,
in order to create arguments of the data constructor. The function getConsPath

:: GenericConsDescriptor→ [ConsPos ] yields the route to the desired data con-
structor.

4.2 Updating the iData

In this section we define a simplified version of the mkViewForm function, viz.
simplified_mkViewForm. At the beginning of Sect. 4, we mentioned the three sit-
uations in which forms need to be updated. The function findFormInfo performs
this case analysis. It must deserialize the input data that has been passed to
the web application and look for the form with the given identification. For this
purpose it uses the function decodeInput:

:: FormUpdate :== (InputId ,UpdValue)

decodeInput :: FormId *FormStates *World

→ (Maybe FormUpdate , (Bool ,Maybe m ,*FormStates ,*World)) | gParse{|?|} m

decodeInput formid fs world

] (updateid ,fs) = getUpdateId fs

| updateid == formid.id

= case getUserEdit fs of
((Just (sid ,pos ,UpdI i) ,newi) ,fs) // case distinction on Int

] prev_state = findState {formid & id=sid} fs world



] ni = case newi of (Just ni) → ni ; _→ i

= (Just (pos ,UpdI ni) ,prev_state)
(_ ,fs) = . . . // case distinction on other basic types

| otherwise

= (Nothing , findState formid fs world)

This function checks whether the iData element that is identified by FormId has
been edited by the user. If so, its exact location in the generic representation is
returned (of type FormUpdate), as well as its current value (the result of using
findState - see Sect. 3.2). For this reason, decodeInput requires the FormStates

and World environments. It should be noted that findState may fail to parse the
input. This makes the system type safe: if the user has entered incorrect data
(e.g. 42.0 instead of 42 for an integer form), then parsing fails, and the previous
(correct) value is restored.

Given the result of decodeInput, findFormInfo is able to determine the reason
of executing the application (the numbers to the right coincide with the cases in
the beginning of this section):

findFormInfo :: FormId *FormStates *World→ (Bool ,Maybe m ,*FormStates ,*World)
| gUpd{|?|} , gParse{|?|} m

findFormInfo formid formStates world

= case decodeInput formid formStates world of
(Just (cnt ,newv) ,(changed ,Just m ,formStates ,world)) (3.)

] m = i f changed (snd (gUpd{|?|} (UpdSearch newv cnt) m)) m

= (True , Just m , formStates ,world)
(_ , (_ ,Just m ,formStates ,world)) (2.)

= (False , Just m , formStates ,world)
(_ , (_ ,_ ,formStates ,world)) (1.)

= (False , Nothing ,formStates ,world)

The simplified_mkViewForm function brings everything together:

class gHTML m | gForm , gUpd , gPrint , gParse m

simplified_mkViewForm :: FormId m *HSt→ (Form m ,*HSt) | gHTML{|?|} m

simplified_mkViewForm formid init_m {states ,world}
= calcnextView init_m (findFormInfo formid states world)

where
calcnextView :: m (Bool ,Maybe m ,*FormStates ,*World) → (Form m ,*HSt)

| gHTML{|?|} m

calcnextView init_m (isupdated ,maybe_m ,states ,world)
] m = case maybe_m of Nothing = init_m

Just new_m = new_m

] hSt = {cntr=0,states=states ,world=world}
] (mform,{states ,world})

= gForm{|?|} formid m hSt

] (states ,world) = replaceState formid mform.value states world

] mform = {changed=isupdated ,value=m ,form=mform.form}
] hSt = {cntr=0,states=states ,world=world}
= (mform ,hSt)



simplified_mkViewForm first determines the reason why the web application was
started using findFormInfo. Given this information, it can generate the form for
the correct value m, using gForm. Finally, the new value of the form is stored in
the FormStates data structure, and the form and the updated administration are
returned.

5 iData Abstraction

In the previous section we have shown how to construct web pages with iData
elements. When the user manipulates these iData elements, the application re-
sponds with the appropriate update action and generates a new page. The iData
in a web page present a direct visualization of their state values. Two final as-
pects are lacking:

1. Applications usually impose restrictions on edited values that go beyond the
expressiveness of the type system. For this reason they need to be able to
inspect edited values themselves, and perhaps change them into other values.

2. iData elements need to be able to present their values in any manner that is
suitable to the application. In general this requires a different type than their
state type. This implies that presentation concerns are not well separated
from logic concerns.

Based on earlier work, we know that both aspects can be dealt with by means of
abstraction [1]. We improve upon the method by providing a seamless integration
of abstraction with the iData Toolkit. With abstraction, the application works
with iData that have state values of type m, but that are visualized by means
of values of type v. This is a variant of the well-known model(-controller)-view
paradigm [16]. What is special about it in this context, is that views are also
defined by means of a data type, and hence can be handled generically in exactly
the same way. This is a powerful concept, and we have used it successfully in
the past.

The relation between a model m and its view v is given by the following
collection of functions (IBimap m v):

:: IBimap m v = { toView :: m→ Maybe v→ v

, updView :: Changed→ v→ v

, fromView :: Changed→ v→ m

, resetView :: Maybe (v→ v) }
:: Changed = { isChanged :: Bool

, changedId :: String }
Model values are transformed to views with toView. It can use the previous view
value if available. The local behavior of an iData element is given by updView.
Its first argument records if it has been changed (isChanged :: Bool), and the
unambiguous name of the iData element that has been changed (changedId ::

String). This argument of type Changed has the same role in the function fromView

which transforms view values back to model values. Finally, resetView is an



optional separate normalization after the local behavior function updView has
been applied.

Abstraction is incorporated in the iData Toolkit by generalizing simplified_-
mkViewForm into the following real library function, mkViewForm. Its type is:

mkViewForm :: FormId m (IBimap m v) *HSt→ (Form m ,*HSt) | gHTML{|?|} v

Its signature is almost identical to that of simplified_mkViewForm. It has an ad-
ditional argument of type (IBimap m v), and it assumes that all the generic ma-
chinery is available for the view data type v instead of m. Its implementation
has the same structure as simplified_mkViewForm. The function calcnextView is
more verbose because it needs to render the view instead of the model value.
This also explains why it is in general possible that the creation of an iData ele-
ment with model value m returns an iData element with different output value m ‘ .
This is clearly illustrated by the highlighted sections in the adapted definition
of calcnextView below.

mkViewForm :: FormId m (IBimap m v) *HSt→ (Form m ,*HSt) | gHTML{|?|} v

mkViewForm formid init_m bm {states ,world}
= calcnextView init_m bm (findFormInfo formid states world)

where
calcnextView :: m (IBimap m v) (Bool ,Maybe v ,*FormStates ,*World)

→ (Form m ,*HSt) | gHTML{|?|} v

calcnextView init_m bm (isupdated ,maybe_v ,states ,world)
] v = bm.toView init m maybe v
] v = bm.updView isupdated v
] m = bm.fromView isupdated v
] v = case bm.resetView of

Nothing = v
Just reset = reset v

] hSt = {cntr=0,states=states ,world=world}
] (vform ,{states ,world}) = gForm{|?|} formid v hSt

] (states ,world) = replaceState formid vform.value states world

] mform = {changed=isupdated ,value=m ,form=vform.form}
] hSt = {cntr=0,states=states ,world=world}
= (mform ,hSt)

The function mkViewForm is a powerful tool to create form abstractions with.
Frequently occurring patterns of this function have been captured with wrapper
functions. Consider mkEditForm below. It can be used as a ‘store’ in Display mode,
or as a straight editor in Edit mode.

mkEditForm :: FormId m *HSt→ (Form m ,*HSt) | gHtml{|?|} m

mkEditForm formid=:{mode} m hst

= mkViewForm formid m

{ toForm = λnew old→ case old of (Just v) → v ; _→ new

, updForm = case mode of Edit→ λ_ v→ v ; Display→ λ_ _→ m

, fromForm = λ_ v→ v

, resetForm = Nothing } hst



6 Example

In order to get an impression of the expressiveness of the iData Toolkit, we give
a small example of a web application with which the user can edit arguments of
type args that are applied to a given function of type args→ res. The application
displays the results of type res. The function (apply name args f) generates the
page for function f with given name and initial arguments args:

apply :: String args (args→ res) *HSt→ (Html ,*HSt) | gHtml{|?|} args

& gHtml{|?|} res

apply name args f hSt

] (argsF ,hSt) = mkEditForm (nFormId "args") args hSt

] (resF , hSt) = mkEditForm (ndFormId "res") (f argsF.value) hSt

= mkHtml "Function Application"

[ STable [ ] [ [Txt name:argsF.form ] , [Txt " = ":resF.form ] ] ] hSt

Two iData are created. The first is the args form (argsF) for editing arguments.
The second is the res form (resF) for displaying the result, hence a display FormId

is used. It uses the value of the argsF form to compute the proper result. In the
page, the forms are placed in two subsequent rows with an additional label.

In Fig. 1 two examples of this application are shown. The first example tests

Fig. 1. (a) Determine the prime index number. (b) Summing vector values.

the function primeNr :: Int→ Maybe Int. If its argument is a prime number, then
it tells you which one it is (first, second, etc., where 2 is the first prime number).
If it is not a prime number, then Nothing is returned.

Start world = doHtml (apply "primeNr" 1 primeNr) world

The second example illustrates the fact that forms are generated from types. In
this example + is overloaded for a new type for 2-dimensional vectors, defined as
:: V = {vx::Real ,vy::Real}. The program is generated with:

Start world = doHtml (apply "+" (z ,z) (λ(a ,b) → a+b)) world

where z = {vx=0.0 ,vy=0.0}



7 Related Work

Lifting low-level Web programming has triggered a lot of research. Many authors
have worked on turning the generation and manipulation of HTML (XML) pages
into a typed discipline. Early work is by Wallace and Runciman [25] on XML
transformers in Haskell. The Haskell CGI library by Meijer [18] frees the program-
mer from dealing with CGI printing and parsing. Hanus uses similar types [12]
in Curry. Thiemann constructs typed encodings of HTML in extended Haskell in
an increasing level of precision for valid documents [23, 24]. XML transforming
programs with GenericH∀skell has been investigated in UUXML [4]. Elsman and
Larsen [10] have worked on typed representations of XML in ML [19]. Our use of
ADTs can be placed between the single, generic type used by Meijer and Hanus,
and the collection of types used by Thiemann. It allows the HTML definition to
be done completely with separate data types for separate HTML elements.

iData components are form abstractions. A pioneer project to experiment
with form-based services is Mawl [5]. It has been improved upon by means of
Powerforms [8], used in the <bigwig> project [9]. These projects provide tem-
plates which, roughly speaking, are HTML pages with holes in which scalar data
as well as lists can be plugged in (Mawl), but also other templates (<bigwig>).
They advocate compile-time systems, because this allows one to use type sys-
tems and other static analysis. Powerforms reside on the client-side of a web
application. The type system is used to filter out illegal user input. The use of
the type system is what they have in common with our approach. Because iData
are encoded by ADTs, we get higher-order forms/pages for free.

Web applications can be structured with continuations. This has been done
by Hughes, with his arrow framework [15]. Queinnec states that “A browser is
a device that can invoke continuations multiply/simultaneously” [22]. Graunke
et al [11] have explored continuations as (one of three) functional compilation
technique(s) to transform sequential interactive programs to CGI programs. Our
approach is simpler because for every page we have a complete (set of) model
value(s) that can be stored and retrieved generically in a page. An application
is resurrected simply by recovering its previous state.

8 Conclusions

There are many tools and script languages for developing web pages. For inter-
active web services many pages have to be produced in sequence that interact
with the user in a consistent and reliable way. Defining such behavior is difficult.

With the iData Toolkit interactive web applications can be specified on a high
level of abstraction. Web applications consist of static HTML parts, usually for
presentation purposes, and interactive forms, for user interaction. This distinc-
tion is explicit in the toolkit. We provide an abstract version of forms, iData.
Forms are generated from iData, and can be plugged in in arbitrary HTML pages.
The HTML pages are constructed using a library of algebraic data types. This
eliminates many type errors, and provides good documentation for program-
mers. The programmer can create intricate relationships between iData, using



standard functional programming techniques. Although the implementation of
the toolkit using advanced programming techniques, we have kept the api of
the toolkit as simple as possible. Basic knowledge of functional programming is
sufficient to get started.

A high level of abstraction has to be realized using the very low level web
technology. Yet the implementation of the iData Toolkit is concise, elegant, and
efficient. This is mainly due to the support for generic programming in Clean.
Generic functions are used for generating HTML code, for serialization and de-
serialization of values of any Clean type, for the conversion of Clean data into
interactive HTML forms, and the automatic update of values of any type when a
form is changed. This makes the iData Toolkit an excellent case study in generic
programming for the real world.
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