
Generic Generation of Elements of Types

Pieter Koopman and Rinus Plasmeijer

Institute for Computing and Information Science,
Radboud University Nijmegen, The Netherlands

{pieter,rinus }@cs.ru.nl

Abstract

For a model based automatic test system it is essential to generate elements of the
used data types automatically. In this paper we introduce an elegant algorithm that is
able to generate a list of all elements of arbitrary types using generic programming
techniques. In order to allow exhaustive testing for finite types we need to be able
to determine that all elements of type are generated. This is done by systematic
generation of the elements of a type.
In order to improve the results of testing we also show a variant of the generation
algorithm that yields the elements in a pseudo random order. Both algorithms are
very efficient and lazy; only the elements actually needed are generated.
Using the interface functions of restricted data types, like search trees, and the algo-
rithms introduced here it is also possible to generate instances of these types. The
elements stored in an instance of the search tree are generated by the default generic
algorithm.

1 INTRODUCTION

In this paper we describe an elegant generic algorithm that yields a list of all ele-
ments of a type. Such an algorithm was needed in our model based test tool GAST

[7, 8, 16]. Also in other application areas it is handy or necessary to be able to
generate one or more instances of an arbitrary type. For instance in Generic Edi-
tor Components [1], where the data generation is used to create an instance for all
arguments of a chosen constructer of an algebraic data type.

Generic programming is a programming technique where manipulations of
data types are specified on a general representation of the data types instead of
the data types themselves. Usually the system takes care of the conversion be-
tween the actual types and their generic representation and vice versa. There are
various variants of generic programming for functional programming described.
Most implementations of generics in functional programming languages are based
on the ideas of Ralf Hinze [5, 6]. There are various implementations in Haskell,
like Generic Haskell [4] and thescrap your boilerplateapproach [10, 11]. In this
paper we will use generic programming in CLEAN [12] as introduced by [2].

Basically a test system represents a predicate of the form∀x ∈ T.P(x) by a
functionP : : T → Bool . Test systems like QuickCheck [3] and GAST evaluates
this function for a fixed numberN of elements of typeT. In order to do this the
test system has to be able to generate elements of this type. If the system generates

an elementtc of type T such thatP(tc) yields False, the test system has found
a counterexample: the property does not hold. When the property holds for all
generated test data the property passes the test. If the size of typeT is less thanN,
the property can even be proven by exhaustive testing. In GAST this is achieved by
generating each instance of the type exactly once.

A popular way to generate elements of a type is by some pseudo random algo-
rithm. Experience shows that a well chosen pseudo random generation and suffi-
cient number of tests most likely covers all interesting cases and hence discovers
counterexamples if they exists. Tools like QuickCheck and Torx [13] use pseudo
random generation of test data. In GAST we use a systematic generation of test
data for logical properties. The main advantage of this approach is that it is easy
to detect that all elements of the type are generated and hence that the property is
proven by exhaustive testing. An additional advantage is that systematic test data
generation is that it makes testing more effective. In pseudo random testing it can-
not be avoided that tests are repeated (the same test value is generated again), but
this repetition of the test does not give any additional information in a referential
transparent context.

Experiments have not shown examples where fully random data generation is
more efficient that systematic data generation. There are plenty examples where
the systematic data generation that starts with common boundary values is more
effective. Since the systematic data generation is also very efficient, this way of
testing is usually more effective than testing using pseudo random data.

For the implementation of the generation algorithm in a functional program-
ming language a class is the most obvious language construct. The user has to
define an instance of this class for each new type used in the predicates. This is
some work for the test engineer. QuickCkeck uses this approach in the generation
of test data. Experience indicates that it requires at least some practice to write an
effective test data generation algorithm for new types in this way. Using a generic
programming approach has as advantage that the instance of a new type can be
derived instead of coded by hand for each new data type. Only for data types with
more restrictions than imposed by the type system, like balanced search trees, a
manual implementation needs to be provided. Even for those types the generic
algorithm can be used to determine the values to be inserted in the instance of the
restricted type.

The problem solved here is unlike the scrap your boilerplate approach, since
there is not data type to be traversed. Instead the elements of data type have to be
generated out of thin air. It should be fairly easy to express the described algorithm
in Generic Haskell [4].

In the next section we shortly review the original systematic data generation
of GAST. In section 3 we introduce basic generic data generation algorithm. In
section 4 we show how the order of test data generated can be changed in pseudo
random way. Since the data generation algorithm uses only the type information,
it cannot work correctly for restricted data types like search trees, balanced trees,
AVL-trees et cetera. In section 5 we show how instances of these types can be

generated. Finally there are some conclusions. The reader is assumed to be familiar
with generic programming in functional languages.

2 PREVIOUS WORK

One of the distinguishing features of GAST is that it is able to generate test data
in a systematic way. This guarantees that test are never repeated, which is useless
in a referential transparent language like CLEAN. For finite data types it is even
possible to prove properties using a test system: a property is proven if it holds for
all elements of the finite data type. GAST has used a systematic generic algorithm
to generate test data from the very beginning. In this section we will review the
original algorithm and the design decisions behind it.

In general it is impossible to test a property for all possible values. The number
of values is simply too large (e.g. for the typeInt), or even infinite (for every
recursive data type). Boundary value analysis is a well-known technique in testing
that tells that not all values are equally interesting for testing. The values where
the specification or implementation indicates a bound and the values very close to
such a bound are interesting test values. For numbers values like 0, 1 and−1 are
the most frequently occurring test values. For recursive types the non-recursive
constructor ([] for lists andLeaf for trees) and small instances are the obvious
boundary values. Therefor, these values have to be in the beginning of the list
of data values generated. When specific boundary values for some situation are
known, it is easy to include these in the tests, see [8] for details.

The initial algorithm [7] was rather simple, but also very crude and inefficient.
The basic approach of the initial data generation algorithm was to use a tree to
record the generic representations of the the values generated. For each new value
to be generated the tree was extended according to the new value. In order to
generate all small values early, the tree was extended in a breadth-first fashion.
The definition of the tree used is:

: : Trace = Empty
| Unit
| Pair [(Trace ,Trace)] [(Trace ,Trace)]
| Either Bool Trace Trace
| Int [Int]
| Done

The constructorEmpty is used to indicate parts of the tree that are not yet visited.
Initially, the entire tree is not yet visited. The constructorUnit indicates that a
constructor is generated here. The two list of tuples of traces in aPair together
implement an efficient queue of new traces to be considered. TheEither pairs the
traces corresponding to the generic constructorsLEFT and andRIGHT. The Boolean
indicates the direction where the first extension ought has to be sought. For basic
types, like integers, special constructors, likeInt , are used to record the values
generated. When the generation algorithm discovers that some part of the tree

cannot be extended it is replaced byDone, in order to prevent fruitless traversals in
future extensions of the tree. See [7] for more details.

3 GENERIC DATA GENERATION: BASIC APPROACH

The new generic data generation algorithm presented in this paper does not use a
tree to record generated values. The use of the tree can be very time consuming.
For instance the generation of all tuples of two characters takes nearly 20 minutes
on a windows pc.

The generic functiongen generates the lazy list of all values of a type by gen-
erating all relevant generic representations [2] of the members of that type.

generic gen a : : [a]

For the typeUINT there is only one possibility: the constructorUNIT.

gen {|UNIT |} = [UNIT]

For aPAIR that combines two kinds of values a naive definition using a list–com-
prehension would be[Pair a b \\ a←f , b←g] . However, we do not want the
first element off to be combined with all elements ofg before we consider the
second element off , but some fair mixing of the values. This is also known as
dovetailing. Suppose thatf is the list [a,b,c, ..] andg the list [u,v,w, ..]. The de-
sired order of pairs isPAIR au, PAIR av, PAIR bu, PAIR aw, PAIR bv, PAIR cu, ..
rather thanPAIR au, PAIR av, PAIR aw, .., PAIR bu, PAIR bv, PAIR bw, ... Thedi-
agonalizing list comprehensionsfrom Mirandatm [15] and the functiondiag2 from
the CLEAN standard environment exactly do this job. The functiondiag2 is type
[a] [b] → [(a ,b)] , i.e. it generates a list of tuples with the elements of the argu-
ment lists in the desired order. Using a simplemapfunction, or list comprehension
the tuples are transformed to pairs.

gen {|PAIR |} f g = [PAIR a b \\ (a ,b)←diag2 f g]

For the choice in the typeEITHERwe use an additional Boolean argument to merge
the elements in a nice interleaved way. The definition of the functionMerge is
somewhat tricky in order to avoid that it becomes strict in one of its list arguments.
If the functionMerge becomes strict in one of its list arguments it generates all
possible values before the current value is yielded. This causes aHeap full error.

gen {|EITHER|} f g = Merge True f g
where

Merge : : ! Bool [a] [b] → [EITHER a b]
Merge left as bs
| left

= case as of
[] = map RIGHT bs
[a :as] = [LEFT a : Merge (not left) as bs]

= case bs of
[] = map LEFT as
[b :bs] = [RIGHT b: Merge (not left) as bs]

In order to let this merge algorithm terminate for recursive data types we assume
that the non recursive case (likeNil for lists, Leaf for trees) is listed first in the
type definition. Using some insight knowledge of the generic representation of
allow us to make the right initial choice ingen {|EITHER|} . In principle the generic
representation contains sufficient information to find the terminating constructor
dynamically, but this is more expensive and does not add any additional power.
Since the order of constructors in a data type does not have any other significance
in CLEAN the assumption on the order of constructors is not considered a serious
one.

The actual implementation of generics in CLEAN uses some additional con-
structors in order to store additional information about constructors, fields in a
record etcetera. The associated instances for the generic functiongen are:

gen {|CONS|} f = map CONS f
gen {|OBJECT|} f = map OBJECT f
gen {|FIELD |} f = map FIELD f

Finally we have to provide instances ofgen for the basic types of CLEAN. Some
examples are:

gen {|Int |} = [0 : [i \\ n← [1 . .maxint] , i ← [n, −n]]]
gen {|Bool |} = [False ,True]
gen {|Char |} = map toChar ([32 . .126] ++ [9 ,10 ,13]) / / the printable characters
gen {|String |} = map toString lists
where

lists : : [[Char]]
lists = gen{|?|}

After these preparations the generation of user defined type like

: : Color = Red | Yellow | Blue
: : Rec = { c : : Color , b : : Bool , i : : Int }
: : ThreeTree = ThreeLeaf | ThreeNode ThreeTree ThreeTree ThreeTree
: : Tree x = Leaf | Node (Tree x) x (Tree x)

and predefined types like two and three tuple can be derived by

derive gen Color , Rec, ThreeTree , Tree , (,) , (, ,)

Unfortunately the order of elements in the predefined type list does not obey the
give assumption. The predefinedConsconstructer is defined before theNil con-
structer. This implies thatgen would always chooses theConsconstructer if generic
generation would be derived for lists.

Instead of changing the assumption, or the implementation of CLEAN, we sup-
ply a specific instance ofgen for lists, instead of deriving one. A straight forward
implementation is de direct translation of the general algorithm, where the order of
constructors is reversed (first the empty list[]).

gen {| [] |} f = [[] : [[h :t] \\ (h ,t)←diag2 f (gen {|∗→∗|} f)]]

Here the parameterf is the list of all elements that should be placed in the generated
lists. The value of this list will be provided by the generic system. A somewhat

type values
[Color] [Red,Yellow ,Blue]

[Int] [0 ,1,−1 ,2,−2 ,3,−3 ,4,−4 ,5,−5 ,6,−6 ,7,−7 ,8,−8 ,9 , · · ·
[(Color ,Color)] [(Red,Red) , (Yellow ,Red) , (Red,Yellow)

, (Blue ,Red) , (Yellow ,Yellow) , (Red,Blue)
, (Blue ,Yellow) , (Yellow ,Blue) , (Blue ,Blue)]

[[Color]] [[] , [Red] , [Yellow] , [Red,Red] , [Blue]
, [Yellow ,Red] , [Red,Yellow] , [Blue ,Red]
, [Yellow ,Yellow] , [Red,Red,Red] , · · ·

[[Int]] [[] , [0] , [1] , [0 ,0] ,[−1] , [1 ,0] , [0 ,1] , [2] ,[−1 ,0]
, [1 ,1] , [0 ,0 ,0] ,[−2] , [2 ,0] ,[−1 ,1] , [1 ,0 ,0] , · · ·

[Rec] [(Rec Red False 0) , (Rec Yellow False 0)
, (Rec Red True 0) , (Rec Blue False 0)
, (Rec Yellow True 0) , (Rec Red False 1)
, (Rec Blue True 0) , (Rec Yellow False 1) , · · ·

[Tree Color] [Leaf , (Node Leaf Red Leaf)
, (Node (Node Leaf Red Leaf) Red Leaf)
, (Node Leaf Yellow Leaf)
, (Node(Node(Node Leaf Red Leaf)Red Leaf)Red Leaf)
, (Node (Node Leaf Red Leaf) Yellow Leaf)
, (Node Leaf Red (Node Leaf Red Leaf)) , · · ·

TABLE 1. Examples of lists of values generated bygen

more efficient implementation uses a cycle to use the generated lists as the tails of
new lists.

gen {| [] |} f = list where list = [[] : [[h :t] \\ (h ,t)←diag2 f list]]

Here the functiondiag2 is used again to get the desired mix extending existing lists
and generating new lists with elements that are not used until now.

3.1 Examples

In order to illustrate the behavior of this algorithm we show (a part of) the list of
values generated for some of the example types introduced above. The list of all
values of type can be generated by an appropriate instance ofgen. For instance the
list of all elements of the typeColor can be generated by:

list : : [Color]
list = gen{|?|}

The list of values generated bylist with the indicated types are are show in table
1. For the typesRec andTree Color the list of values is infinite, only an initial
fragment of these lists is shown. Also forInt only an initial fragment of the list of
values can be shown.

Note that the order of elements for parameterized types like(Color ,Color) and
[Color] reflects the dovetail behavior of the generation algorithm.

This algorithm is efficient. Generating 106 elements of a type takes typical 2 to
7 seconds on a basic windows PC, depending on the type of elements generated.

This algorithm generates all 9604 pairs of printable characters within 0.01 sec-
onds, while the original algorithm outlined in section 2 needs 1136 seconds. This
is five orders of magnitude faster.

4 PSEUDO RANDOM DATA GENERATION

The actual algorithm used in GAST is slightly more complicated. It uses a stream of
pseudo random numbers to make small perturbations to the order of elements gen-
erated. Basically the choice betweenLeft andRight in ggen {|Either |} becomes a
pseudo random one instead of strictly interleaved.

It is a widespread believe among testers that pseudo random generation of test
values is needed in order to find issues1 quickly. This seems somewhat in contra-
diction with rule that boundary values should be tested first. When we consider a
predicate with multiple universal quantified variables of the same type, it can make
sense to try the elements type in a somewhat different order for the various vari-
ables. We have encountered a number of examples where this indeed finds issues
faster. On the other hand it is very easy to create examples where any perturbation
of the order of test data delays the finding of counterexamples. In order to achieve
the best of both worlds GAST uses a systematic generation of data values with a
pseudo random perturbation of the order of elements discussed in section 3.

Is simple solution would be to randomize the generated list of elements based
on a sequence of pseudo random numbers. This implies that test values will be
generated (long) before they are actually used in the tests. This consumes just
space and is considered undesirable in a lazy language like CLEAN.

As indicated above, the solution used in GAST is to replace the strict interleaved
order of the choice in the instance ofgen for EITHER by a pseudo random choice.
The change of selectingLEFT of Right deserves some attention. At first sight a
chance of 50% seems fine. This works also very well for nonrecursive type like
Color , and recursive types like list andTree form section 3.

For a type likeThreeTree this approach fails. If we chose the constructor
ThreeLeaf with probability 50% than the change that all three arguments of the
constructorThreeNode terminate becomes too low. In practise such an algorithm
generates too much huge or infinite data structures.

This problem can be solved by an elaborated analysis of the types involved in
the data generation. Due to the possibility of nested and mutually recursive data
types this analysis is far from simple. Fortunately, the is again a simple solution.

1A counterexample found by testing is called anissueuntil that it is clear that it is actually an
error in the implementation. Other possible sources of counterexamples are for instance incorrect
specifications and inaccuracies of the test system.

We still assume that nonrecursive constructor is the first constructor of a data type
(if it exists). By increasing the probability of choosing the left branch in the re-
cursive calls we can ensure that the small instance are near the beginning of the
generated list of values.

In order to implement this we give the generic functionggen two arguments.
The first is an integer indicating the recursion depth, the second one is a list of
pseudo random numbers guiding the choice between left and right.

generic ggen a : : Int [Int] → [a]

The instance of this generation function forEITHER is the only one that changes
significantly.

ggen {|EITHER|} f g n rnd = Merge n 1 (f n r3) (g (n+1) r4)
where

(r1 ,r2) = split rnd
(r3 ,r4) = split r2

Merge : : Int RandomStream [a] [b] → [EITHER a b]
Merge n [i :r] as bs
| (i rem n) 6= 0

= case as of
[] = map RIGHT bs
[a :as] = [LEFT a : Merge n r as bs]

= case bs of
[] = map LEFT as
[b :bs] = [RIGHT b: Merge n r as bs]

The functionssplit splits a random stream into two independent random streams.
Also the order of elements in the predefined data types is changed in a pseudo

random way. For enumeration types likeBool andChar the given order of elements
is randomized.

ggen {|Bool |} n rnd = randomize [False ,True] rnd 2 (λ_ . [])
ggen {|Char |} n rnd
= randomize (map toChar [32 . .126]++[9 ,10 ,13]) rnd 98 (λ_ . [])

randomize : : [a] [Int] Int ([Int] → [a]) → [a]
randomize list rnd n c = rand list rnd n []
where

rand [] rnd n [] = c rnd
rand [] rnd n [x] = [x :c rnd]
rand [] rnd n l = rand l rnd n []
rand [a :x] [i :rnd] n l

| n==0 | | (i rem n) == 0
= [a :rand x rnd (n−1) l]
= rand x rnd n [a :l]

For integers and reals we even generate pseudo random values after the common
boundary values. This introduces the possibility that tests are repeated, but for

these types it is usually less work than preventing duplicates. Due to the size of
these types proofs are not feasible anyway.

ggen {|Int |} n rnd = randomize [0 ,1,−1 ,maxint ,minint] rnd 5 id

This algorithm appears to be very effective in practise. It works also for some
types that does not obey the rule that the nonrecursive constructor is the first one.
Termination depends on the ratio between the number of points of recursion in the
type and the number of constructors. One of the examples is the type list. This
implies that this generation for lists can be derived in the from the general generic
algorithm. In contrast to the previous algorithm, no hand coded definition is needed
here.

derive ggen []

GAST uses the Marsenne Twister algorithm [14] from the CLEAN libraries for
the generation of pseudo random numbers.

4.1 Examples

The exact effect of the pseudo random data generation depends on the pseudo ran-
dom numbers supplied as argument. By default the random numbers are generated
by the functiongenRandInt from the CLEAN library MersenneTwister . The seed
can be fixed to obtain repeatable tests, or for instance be obtained from the clock
to obtain different test values for each run. The list of all pairs of colors with 42 as
seed for the random number generation is generated by:

list : : [(Color ,Color)]
list = ggen {|?|} 2 (genRandInt 42)

In table 2 we show the effects using the default random stream of GAST.
Note that the generated lists of values contain the same elements as the lists

generated by the algorithmgen in section 3.1. The property that all instances of
a type occur exactly once is preserved2. This algorithm needs about 40% more
time to generate the same number of elements for a type compared to the function
gen, but it is still very efficient. The test system GAST spends it time on evaluating
predicates and the administration of the test results, but not on generating test data.

5 RESTRICTED DATA TYPES

Types like search trees, balanced trees, AVL-trees, ordered lists have more restric-
tions than the type system imposes. Since the generic algorithm does not know

2The shown instance for integers is the only exception. It generates pseudo random numbers
with period 219937−1, and the 623-dimensional equidistribution property is assured. The type is so
large that a proof by exhaustive testing in not feasible, preventing duplicated integers in more
expensive than repeating the test for the duplicates if they might be generated. It is easy to change
this definition, if that would be desired.

type values
[Color] [Red,Blue ,Yellow]

[Int] [0,−2147483648 ,2147483647 ,−1 ,1 ,684985474

,862966190 ,−1707763078 ,−930341561 ,−1734306050

,−114325444 ,−1262033632 ,−702429463 ,−913904323 , · · ·
[(Color ,Color)] [(Red,Red) , (Yellow ,Red) , (Red,Blue)

, (Blue ,Red) , (Yellow ,Blue) , (Red,Yellow)
, (Blue ,Blue) , (Yellow ,Yellow) , (Blue ,Yellow)]

[[Color]] [Red] , [] , [Yellow] , [Red,Red] , [Blue] , [Yellow ,Red]
, [Red,Yellow] , [Blue ,Red] , [Yellow ,Yellow]
, [Red,Red,Red,Red,Red] , [Blue ,Yellow] , . .

[[Int]] [[1] ,[] ,[−2147483648] , [1 ,1] ,[−1] ,[−2147483648 ,1]
, [1,−1] , [0] ,[−1 ,1] ,[−2147483648 ,−1] ,
, [1 ,1 ,2147483647 ,−1 ,0] , [1,−1] , [0] ,[−1 ,1] , · · ·

[Rec] [(Rec Red False 2147483647)
, (Rec Yellow False 2147483647)
, (Rec Red True 2147483647)
, (Rec Blue False 2147483647) , · · ·

[Tree Color] [Leaf

, (Node (Node Leaf Red (Node (Node Leaf Yellow

(Node Leaf Red Leaf)) Red Leaf)) Yellow (Node

Leaf Red (Node (Node Leaf Red Leaf) Red Leaf)))
, (Node Leaf Yellow (Node Leaf Red

(Node (Node Leaf Red Leaf) Red Leaf))) , · · ·

TABLE 2. Examples of lists of values generated byggen

these restrictions, it cannot cope with them. The generic algorithm will generate
instance that are type correct, but may or may not obey the additional constraints.

The interface of such a restricted type will contain functions to create an initial
instance of the type, e.g. an empty tree, and to add elements to a valid instance of
the restricted type. Using these constructor functions and the generic generation of
elements to be included in the instance of the restricted type, we can easily generate
instances of the generic type.

As example we will consider a search tree of integers. A typical interface to
this abstract data type is:

: : SearchTree

empty : : SearchTree
ins : : Int SearchTree → SearchTree
delete : : Int SearchTree → SearchTree
occurs : : Int SearchTree → Bool

Using the functionsins andempty appropriate trees can be constructed. This can

be used in the instance ofgen or ggen by inserting lists of integers in the empty
tree. These lists of integers are generated by the ordinary generic algorithm.

gen {|SearchTree |} = map (foldr ins empty) gen{|?|}

The initial part of the list of values is (usingE for the empty tree andNas constructor
for binary nodes):

[E, N E 0 E, N E 1 E, N E 0 E, N E−1 E, N E 0 (N E 1 E) ,N (N E 0 E) 1 E
,N E 2 E, N (N E−1 E) 0 E, N E 1 E, N E 0 E, N E−2 E, N E 0 (N E 2 E) ,
,N (N E−1 E) 1 E, N E 0 (N E 1 E) , N E−1 (N E 0 E) , N E 3 E, · · ·

For the algorithm with pseudo random changes in the order, only the additional
arguments of the functionggen have to be passed around.

This approach is applicable to every ordinary restricted data type, since they all
have an initial value and an insert operator. Depending on the restricted type it is
possible that duplicated values are generated by a naive implementation following
this scheme.

6 RELATED WORK

Any test tool that wants to do more than only executing predefined test scripts,
needs to generate these scripts. For any specification that contains variables, it is
necessary to generate values for these variables. To the best of our knowledge this
is the first approach to generate these values based on the type definition only.

The other tool that is able to test properties over types in a functional program-
ming language is QuickCheck [3]. Its data generation is based on an ordinary class
instead of on generic programming. This implies that the user has to define an in-
stance of the generation class for each type used as in an universal quantification.
Moreover, the generation algorithm uses pseudo random data generation without
omitting duplicated elements. As a consequence Quickcheck is not able determine
that all elements of a type are used in a test. Hence, Quickcheck cannot stop at that
point, nor conclude that it has achieved a proof by exhaustive testing.

In [9] we show how functions can be generated based on the grammar of the
body of the functions. This grammar is a recursive algebraic data type. Hence the
grammars used to describe the instances of the functions can be generated by the
algorithm described in this paper.

7 DISCUSSION

This paper introduces an efficient and elegant generic algorithm to generate the
members of arbitrary data types. The elements are generated from small to large
as required for effective testing based on boundary values. We show also a vari-
ant of this algorithm that imposes a pseudo random perturbation of the order, but
maintains the basic small to large order and avoids omissions or duplicates. This is
believed to make finding counterexamples on average faster.

This algorithm is an essential component of the test tool GAST. The property
that test data are not duplicated makes testing more efficient, evaluating a property
two times for the same value will always yield an identical result in a functional
context. The avoidance of omissions and duplicates makes it possible to proof
properties for finite types by exhaustive testing.

The presented algorithms are efficient. Each of the algorithms is able to gen-
erate hundreds of thousands elements of a type within one second on a fairly basic
Windows PC.

Apart from a very useful algorithm in the context of an automatic test sys-
tem, it is also an elegant application of generic programming. The test system
GAST follows the trend towards constructing general usable algorithms by generic
programming techniques also for more traditional applications as comparing and
printing values.

REFERENCES

[1] Peter Achten, Marko van Eekelen, Rinus Plasmeijer. Compositional Model-Views
with Generic Graphical User Interfaces. In Jayaraman, ed. Proceedings Practical
Aspects of Declarative Programming, PADL04, 2004. LNCS 3057.

[2] Artem Alimarine and Rinus Plasmeijer. A Generic Programming Extension for
Clean. In: Arts, Th., Mohnen M.: IFL 2001, LNCS 2312, pp 168–185, 2002.

[3] Koen Claessen, John Hughes. QuickCheck: A lightweight Tool for Ran-
dom Testing of Haskell Programs. ICFP, ACM, pp 268–279, 2000. See also
www.cs.chalmers.se/˜rjmh/QuickCheck .

[4] Ralf Hinze and Johan Jeuring.Generic Haskell: Practice and The-
ory, Summer School on Generic Programming, 2002. See also
http://www.generic-haskell.org/ .

[5] R. Hinze, and S. Peyton JonesDerivable Type Classes, Proceedings of the Fourth
Haskell Workshop, Montreal Canada, 2000.

[6] Ralf Hinze.Polytypic values possess polykinded types, Fifth International Conference
on Mathematics of Program Construction, LNCS 1837, pp 2–27, 2000.

[7] Piete Koopman, Artem Alimarine, Jan Tretmans and Rinus Plasmeijer. GAST:
Generic Automated Software Testing. In R. Peña, IFL 2002, LNCS 2670, pp 84–
100, 2002.

[8] Pieter Koopman and Rinus Plasmeijer.Testing reactive systems withGAST. In
S. Gilmore,Trends in Functional Programming 4, pp 111–129, 2004.

[9] Pieter Koopman and Rinus Plasmeijer.Testing Higher Order Functions. Draft pro-
ceedings 17th International Workshop on Implementation and Application of Func-
tional Languages, IFL05, 2005. See alsohttps://www.cs.tcd.ie/ifl05/ .

[10] Ralf Lämmel and Simon Peyton JonesScrap your boilerplate: a practical design
pattern for generic programming, ACM SIGPLAN Notices,38, 3, pp 26–37, mar,
2003, Proceedings of the ACM SIGPLAN Workshop on Types in Language Design
and Implementation (TLDI 2003).

[11] Ralf Lämmel and Simon Peyton Jones,Scrap more boilerplate: reflection, zips, and
generalised casts, Proceedings of the ACM SIGPLAN International Conference on
Functional Programming (ICFP 2004), ACM Press, 2004, pp 244–25.

[12] Rinus Plasmeijer, Marko van Eekelen.Clean language report version 2.1.
www.cs.ru.nl/˜clean , 2005.

[13] Jan Tretmans.Testing Concurrent Systems: A Formal Approach. In J. Baeten and
S. Mauw, editors,CONCUR’99 –10th, LNCS 1664, pp 46–65, 1999.

[14] M. Matsumoto and T. Nishimura,Mersenne Twister: A 623-dimensionally equidis-
tributed uniform pseudorandom number generator, ACM Trans. on Modeling and
Computer Simulation, Vol. 8, No. 1, January pp 3–30 , 1998.

[15] Miranda is a trademark of Research Software Limited of Europe. David Turner
Miranda: a non-strict functional language with polymorphic types, Proceedings
FPLCA, LNCS 201, pp 1–16, 1985.

[16] Arjen van Weelden, Martijn Oostdijk, Lars Frantzen, Pieter Koopman, Jan
Tretmans: On-the-Fly Formal Testing of a Smart Card Applet, In Ryoichi
Sasaki and Sihan Qing and Eiji Okamoto and Hiroshi Yoshiura:Proceedings
of the 20th IFIP TC11 International Information Security ConferenceSEC 2005
http://www.sec2005.org/ , pp 564–576, Springer 0-387-25658-X, 2005.

