
Data Types and Pattern Matching by Function
Application

Jan Martin Jansen?1, Pieter Koopman2, Rinus Plasmeijer2

1 Royal Netherlands Navy and ICIS, Radboud University Nijmegen,
2 Institute for Computing and Information Sciences (ICIS),

Radboud University Nijmegen, the Netherlands.
j.m.jansen@forcevision.nl, {pieter,rinus}@cs.ru.nl

Abstract. It is generally known that algorithms can be expressed using
simple function applications only. In this paper we will show that it is
possible to make a systematic translation of algebraic data types and
pattern-based function definitions, like they are used in most modern
functional programming languages, to function applications. The trans-
lated algebraic data types closely resemble the original type definitions.
We developed an efficient interpreter for the resulting functions. The
interpreter has a simple and elegant structure because there is no need
for special handling of data structures and pattern matching. Despite
the lack of optimisations its performance turns out to be competitive
in a comparison with other interpreters like Hugs, Helium, GHCi and
Amanda.

1 Introduction

It is common knowledge that computable algorithms can be expressed using
function applications only. Examples can be found in every textbook on lambda
calculus (Barendregt [2], Hindley/Seldin [10]). Modern functional programming
languages like Haskell [8], Clean [7] use, besides functions, also algebraic data
types to enrich the readability and the expressiveness of programs. Furthermore,
they use pattern-based function definitions to enrich the readability of function
definitions even more.

Algebraic data types and pattern-based definitions need a special implemen-
tation in compilers and interpreters for functional programming languages (see
e.g. Peyton Jones [13] and Kluge [12]). In this paper we will show that it is
not necessary to add special treatment for the implementation of algebraic data
types and pattern-based function definitions, but that we can translate them
to simple functions with as only operation function application. The way we
represent data types by functions is considered to be part of the lambda cal-
culus/functional programming folklore. Berarducci and Bohm ([4] and [5]) and
Barendregt [3] describe a similar approach, that only differs for recursive data
types. We can handle recursive data types easier since we have named functions
instead of just lambda-terms. New is the use of this transformation to functions
? The first author was partly supported by the Centre for Automation of Mission

critical Systems, Force Vision, Royal Netherlands Navy.

2

to realize an efficient implementation for data structures and pattern match-
ing. It turns out that a small adaptation to a straightforward interpreter for a
pure functional language without data types can handle the resulting functions
efficiently. The performance of this interpreter is comparable to that of other
popular interpreters. The pure functional language that we will introduce can
both be used as a programming language and as an intermediate language for
interpreting higher functional languages like Haskell and Clean. Because of its
simplicity, this interpreter is an ideal object, not only for studying and proto-
typing new language features, but also for teaching implementation issues for
functional programming languages.

Summarizing, the contributions of this paper are:
– The representation of algebraic data types by functions, containing only

function applications, that closely resemble the original type definitions.
– A new elegant pattern compiling algorithm for transforming pattern-based

function definitions to function applications.
– A simple but efficient interpreter for a pure functional language with as only

operation function application that is optimised for handling transformed
data types.

The structure of this paper will be as follows. In section 2 we will introduce a
simple functional programming language with as only operation function appli-
cations. The language has no data types! We will show how we can represent
algebraic data types as functions in this language and give a general translation
scheme for this transformation. The language can be considered as the smallest
usable functional programming language. In section 3 we will introduce a new
pattern compilation algorithm that we will use to transfer pattern-based function
definitions, as they are used in Haskell or Clean, to functions in the language of
section 2. In section 4 we will define a very simple interpreter for this language.
We will show that we can transform this interpreter into an efficient one by a
straightforward optimisation. The performance of the interpreter will be com-
pared with other interpreters in section 5. We will see that, despite its simplicity,
the interpreter is very efficient. In section 6 we will give some conclusions and
discuss further research possibilities.

2 SAPL: A Functional Programming Language with as
only operation Function Application

The functional programming language we use has as only operation rewriting
function applications. We will call it SAPL (Simple Application Programming
Language). It has the following syntax description:

function ::= identifier {identifier}* ‘=’ expr

expr ::= factor {factor}*

factor ::= identifier | ‘(’ expr ‘)’

A function has a name followed by zero or more variable names. In an expression
only variable names and other function names may occur. SAPL is un-typed.
We will see that many functions we will define, cannot be typed using Hindley-
Milner type inference. The language has the usual lazy rewrite semantics (see

3

section 4). In fact, SAPL is equivalent to un-typed lambda calculus with named
expressions and (therefore) explicit recursion. For notational convenience we
extend the formalism with anonymous or in-line functions (lambda expressions).
The syntax description now becomes:

function ::= identifier {identifier}* ‘=’ expr

expr ::= application | identifier ‘->’ expr

application ::= factor {factor}*

factor ::= identifier | ‘(’ expr ‘)’

Using the technique of lambda-lifting we can transfer function definitions with
lambda expressions to function definitions without lambda expressions.

2.1 Representation of Data Types by Functions

It is well known that the formalism described above is powerful enough to de-
scribe any computable algorithm ([2] or [10]). Many descriptions of implementa-
tions of functional programming languages use a similar language as an interme-
diate language or to illustrate implementation issues. But as soon as algebraic
data types and pattern matching are described the formalism is extended with
special constructs to handle these [13]. It is, however, perfectly possible to handle
algebraic data types and pattern-based functions within the formalism of simple
function applications. Consider the following algebraic data type definition in a
language like Haskell or Clean:

typename t1 . . tk : := C1 t1,1 . . t1,n1 | . . | Cm tm,1 . . tm,nm

Here, typename is the name of the type, t1 .. tk are type parameters, C1 .. Cm

are constructor names and all ti,j ’s are type names or type variables. We map
this type definition to m functions (one for every constructor):

C1 v1,1 . . v1,n1 f 1 . . f m = f1 v1,1 . . v1,n1

. .
Cm vm,1 . . vm,nm f 1 . . f m = f m vm,1 . . vm,nm

The constructor names now have become function names. For each i ∈ {1, . . . , m}
vi,j (j ∈ {1, . . . , ni}) are distinct variable names. For each i ∈ {1, . . . , m} fk

(k ∈ {1, . . . , m}) are also distinct variable names, different from all vi,j(j ∈
{1, . . . , ni}). There are as many fk’s in each definition as there are construc-
tors (m). Using these functions a function with as argument one element of this
algebraic data type can be defined as follows:

f tn = tn
(v1,1 −> . . −> v1,n1 −> body1)

. .
(vm,1 −> . . −> vm,nm −> bodym)

Here bodyi depends on vi,1 .. vi,ni for all i ∈ {1, . . . ,m} and calculates the result
of the function for an element of kind Ci vi,1 .. vi,ni . This definition uses the fact
that an element of the algebraic data type is now a function that selects of m
functions exactly that function that corresponds to its constructor and applies
this function to the arguments of the constructor. Therefore, we will call these

4

functions corresponding to constructors selector functions. If a function has more
than one argument of an algebraic data type we have to examine all combinations
of constructors. This makes the definitions less readable. Therefore, we will give
in the next section a generic schema for the transformation of more readable
pattern-based definitions to SAPL.

If we compare our transformation scheme to that of Berarducci and Bohm
[4], we see that in our approach recursive data types are handled in a different,
more simple, way. This can be done because we use explicitly named functions
instead of anonymous lambda expressions.

2.2 Examples

We will now give some examples to illustrate the use of functions as data types.
We first give the Haskell definition of the function and then the definition using
the translation scheme defined above.

Natural Numbers We can define natural numbers using the Peano axioms
and give a recursive definition for the addition operation. In Haskell we have:

data Nat = Zero | Suc Nat

add Zero n = n

add (Suc m) n = Suc (add m n)

In the SAPL the definitions are:

Zero f g = f

Suc n f g = g n

add mz n = mz n (m -> Suc (add m n))

We see that the definition of add has great resemblance to the Haskell defini-
tion. Note that an expression like Suc (Suc Zero) must be considered as both a
function and as a value!

The most often encountered definition for natural numbers in the lambda
calculus are the Church numerals. In Haskell the Church numerals can be defined
as follows:

type Cnum t = (t -> t) -> (t -> t)

Zero :: Cnum t

Zero f = id

Suc :: Cnum t -> Cnum t

Suc cn f = f . cn f

Here id is the identity function and . represents the composition operation. The
function for addition now becomes:

add cn dn f = cn f . dn f

We see that this definition is quite different from the definition above. Advan-
tages of the Church numerals are that they can be given correct Haskell types,
which is not possible for the SAPL definitions above. An important advantage of
the SAPL definition of numbers is that an operation like predecessor can easily
be described in it, while this is very hard and inefficient (O(n)) using Church
numerals.

5

Lists An important and often used algebraic data type in functional program-
ming languages is the list. In most languages the list is a pre-defined data type
with special syntax. A definition not using this syntax in Haskell, together with
the function length could be:

data List t = Nil | Cons t (List t)

length :: List t -> Int

length Nil = 0

length (Cons a as) = 1 + length as

The translation to SAPL results in:

Nil f g = f

Cons x xs f g = g x xs

length xs = xs 0 (x -> xs -> 1 + length xs)

Again the definition of length greatly resembles the Haskell definition. Also length
cannot be typed. Due to their continuation style it is in general not possible to
type recursive functions on data types using simple Hindley-Milner types.

The standard way for defining containers by functions is the use of the pair
function. This function can be defined in Haskell as:

pair :: t1 -> t2 -> (t1 -> t2 -> t3) -> t3

pair x y = \f -> f x y

The list containing the numbers 1,2 and 3 can now be defined as:

pair 1 (pair 2 3)

Booleans As a last example, we consider the Booleans. In Haskell we have:

data Boolean = True | False

In SAPL this becomes:

True x y = x

False x y = y

These definitions correspond exactly to the intuitive meaning of False and True.
Note that switching True and False in the Haskell definition above results in
counter-intuitive SAPL functions for True and False. As a convenient side effect,
representing True and False by functions relieves us from the necessity to define
the if-then-else construction.

3 Compiling Pattern Definitions to Function Applications

One of the intended uses of SAPL is as an intermediate language for com-
piling/interpreting higher functional programming languages like Haskell and
Clean. Therefore we must be able to translate constructs from these languages to
function applications. Constructions like list-comprehensions, where and let(rec)
expressions can be handled with standard techniques like they are described

6

in [13] and [14]. Another important construct in these languages is the use of
pattern-based function definitions. They enable the user to write concise function
definitions. For the translation of these definitions we developed a new pattern
compilation algorithm. New in this algorithm is the use of an intermediate data
structure. This data structure can be used to generate pattern-matching code
for a traditional interpreter or compiler, but also for the translation of pattern
definitions to function applications. Furthermore, the use of this data structure
simplifies the compilation algorithm for patterns considerably in comparison with
the traditional approach (see Augustsson [1] and Peyton Jones [13]), while the
results are comparable. This simplification is caused by the fact that the steps
to be taken during a pattern match are made explicit in the data structure.

For the formal definition of pattern-based functions we have to replace the
function line in the definition of SAPL from section 2 by:

function ::= identifier {patorvar}* ‘=’ expr

patorvar ::= identifier | ‘(’ pattern ‘)’

pattern ::= identifier {patorvar}+

Here an identifier in patorvar must be a variable name or a zero argument
constructor like Nil. The identifier in pattern must be the name of a constructor
with one or more arguments. The number of arguments of a constructor and their
types must correspond to the type definition of the constructor (see section 2).
We will call this version of SAPL extended SAPL.

3.1 Description of the Intermediate Data Structure

In the pattern-based definitions we assume that left comparing is not allowed
and that constant number patterns are not used. These issues are not relevant
for our discussion and they can easily be added.

The essential step in our algorithm is transforming a pattern to be matched
into a data structure representing the steps to be taken for matching a call. In
a pattern only constructor and variable names occur. Constructor names have
to be matched (recognized) and variables have to be bound to values during a
pattern match. The following data structures describe this:

data MatchType = MVar String RowNum RowNum |

MPat String RowNum [(String,Int,RowNum)]

data RowNum = Fail | Row Int

type RowMatch = [MatchType]

type MultiRowMatch = [RowMatch]

RowMatch describes the steps to be taken for a single pattern function match
and MultiRowMatch for a multi pattern function match. The RowMatch’s in
a MultiRowMatch correspond to the different cases in a multi-function pattern
definition in the same order. The String in MVar represents the name of the
variable. The first String in MPat represents the type name. The second String
represents the constructor name. The Int represents the number of arguments

7

of the constructor. The first RowNum in MVar and in [(String,Int,RowNum)]
indicates in which row to proceed after a successful match or binding. The other
RowNum in MVar and MPat indicates in which row to proceed after a (future)
failed match in the same row. If RowNum has the value Fail no match is possible
and if there is no alternative available the entire pattern match will fail.

The transformation to MultiRowMatch of the patterns of a multi-pattern
function proceeds in two steps. In the first step each case is converted to an
element of RowMatch independently. Each RowMatch is capable to match a call
that corresponds exactly to its case. In the second step the RowMatch’s are
merged into a structure that is capable to match an arbitrary call in an efficient
way.

3.2 Converting a Single Case Pattern

This conversion is achieved by applying a simple prefix tree walk algorithm to a
pattern. For example, consider the definition of the following function f :

f (Cons a Nil) (Cons b bs) = a + b

The pattern (Cons a Nil) (Cons b bs) is translated to the sequence:

[MPat "list" Fail [("Nil",0,Fail),("Cons",2,Row 0)],

MVar "a" (Row 0) Fail,

MPat "list" Fail [("Nil",0,Row 0),("Cons",2,Fail)],

MPat "list" Fail [("Nil",0,Fail),("Cons",2,Row 0)],

MVar "b" (Row 0) Fail,

MVar "bs" (Row 0) Fail]

The sequence tells us that, first Cons should be recognized (Nil will fail), then an
arbitrary value is bound to variable a, then Nil must be recognized, then Cons
should be recognized, then b must be bound and at last bs should be bound.
Note that, because this RowMatch is for a single case function, all RowNum’s
have the same row number.

3.3 The Merge Algorithm

The goal of merging is to minimize the number of times an argument in a call
is examined. This minimization is realized by merging the RowMatch’s of the
different cases until a state is found where a choice between cases can be made.
Due to merging a match can continue at another row. When this happens it
will always continue at the beginning of the other row. The extra RowNum in
MPat and MVar indicates in which row to continue if a fail is encountered in the
remainder of the current row. We will call this alternative a fail alternative. Fail
alternatives are used for backtracking to other cases after an initial successful
match in a row. For fail alternatives arguments have to be re-examined.

Merging is done by repeated merging of two sequences starting with the last
two rows and working upwards to the first row. The result of a single merge is
a tuple of two sequences. The first one contains the result of the merge. The
second one is the continuation for the second case from the place where a choice
between the two cases can be made.

8

merge :: RowMatch -> RowMatch -> (RowMatch, RowMatch)

merge (MVar varname firstrow _ : remrow1)

(MVar _ _ failrow : remrow2)

= consfirst (MVar varname firstrow failrow)

(merge remrow1 remrow2)

merge (MPat typename _ pats : remrow1)

(MVar varname varrow failrow : remrow2)

= (MPat typename varrow pats : remrow1,

MVar varname varrow failrow : remrow2)

merge (MVar varname (Row varrow) _ : remrow1)

(MPat typename failrow pats : remrow2)

= (MVar varname (Row varrow) (Row (varrow+1)) : remrow1,

MPat typename failrow pats : remrow2)

merge (MPat typename _ pats1 : remrow1)

(MPat _ failrow pats2 : remrow2)

| disjoint pats1 pats2

= (MPat typename failrow (combine pats1 pats2) : remrow1,

remrow2)

= consfirst (MPat typename failrow (combine pats1 pats2))

(merge remrow1 remrow2)

consfirst :: t1 -> ([t1],[t2]) -> ([t1],[t2])

consfirst a (as,bs) = (a:as,bs)

combine :: [(String,Int,RowNum)]->[(String,Int,RowNum)]->

[(String,Int,RowNum)]

combine pats1 pats2 = mappair combpat pats1 pats2

combpat :: (String,Int,RowNum)->(String,Int,RowNum)->

(String,Int,RowNum)

combpat (patname,nrargs,next1) (_,_,next2)

| next2 == Fail = (patname,nrargs,next1)

| next1 == Fail = (patname,nrargs,next2)

= (patname,nrargs,next1)

Explanation The first elements of both sequences determine how to merge. We
distinguish five cases:

Merging two MVar ’s No choice can be made at this point, so the two vari-
ables are merged into one variable that gets the name of the first one (arbi-
trary choice) and we have to look at the following argument in both rows.
A possible fail alternative from the second row is taken over.

Merging an MPat with an MVar If an actual argument matches the pat-
tern, proceed in the first row, otherwise proceed in the second. But if the
first row is chosen and at a later point a fail occurs we have to backtrack to
the second row (fail alternative)!

9

Merging an MVar with an MPat The variable case should be chosen first
and only a fail in the remainder of the variable case will cause backtracking
to the pattern row (fail alternative).

Merging two MPat ’s with excluding patterns We must continue depend-
ing on the actual argument. Thus, analysing the argument leads directly to
the correct case. The function combine combines (unites) the transitions of
both cases.

Merging two MPat ’s with overlapping patterns We can merge the pat-
terns like in the two variables case and we have to look at the following
argument in both rows.

Remarks From the merge algorithm it follows immediately that fail alterna-
tives only occur when merging a var with a pattern or vice versa. Furthermore, it
is clear that for definitions without fail alternatives the order of the rows is irrel-
evant for the result of the matching process. Definitions without fail alternatives
correspond with so-called uniform pattern definitions [13]. Uniform definitions
lead to the most optimal solutions for pattern matching (each argument is ex-
amined only once).

3.4 Examples

We conclude our discussion about the merge algorithm with two examples. The
same examples were used in Peyton Jones [13] to illustrate a pattern-matching
compiler. The examples are two versions of the famous mappair function.

Nil zs

x xs Nil

y ys

Cons

Cons

f
as

zs

Fig. 1. Result of merge for mappair1

mappair1 f Nil zs = Nil

mappair1 f (Cons x xs) Nil = Nil

mappair1 f (Cons x xs) (Cons y ys) = Cons (f x y) (mappair1 f xs ys)

In this example we see a combination of the pattern/pattern rule with and
without overlap. The result of the transformation is visualised in figure 1 (the
constructor node labels (as, zs) are added to enhance function generation). The
result is optimal; all arguments are examined only once (there are no fail alter-
natives).

10

For the second example we use the ‘inefficient’ version of mappair. The dif-
ference with mappair1 is the use of a variable as instead of the pattern (Cons x
xs) in the second case. The result can be found in figure 2. In this figure dashed
arrows are transitions caused by a fail alternative. Arrows pointing to nothing
correspond with a failed match.

mappair2 f Nil zs = Nil

mappair2 f as Nil = Nil

mappair2 f (Cons x xs) (Cons y ys) = Cons (f x y) (mappair2 f xs ys)

Comparing the results it is clear that mappair1 is much more efficient than

Nil zs

as Nil

Cons x xs Cons y ys

Cons

Cons

Nil Nil

f

as zs

as

Fig. 2. Result of merge for mappair2

mappair2. Note that, a ‘smart’ pattern compiler can optimise mappair2 in such
a way that the results are equivalent to mappair1, because the variable as in
mappair2 can only be bound to a Cons pattern and can therefore be replaced
by the pattern (Cons x xs) without changing the result of the match process!
Note also that the fail arrows in the last row will never be traversed.

3.5 Generation of Functions

The last step is turning the result of pattern compilation into a function defini-
tion. The task of the function is to bind the actual arguments to variables and
to feed the bounded variables to the correct case bodies. As a pre-condition we
assume that all nodes are labelled with a name. Variable nodes with the name
of the variable itself and constructor nodes by a generated name. Furthermore,
we assume that all labels in the different rows are lined-up. This means that
labels in different rows that correspond with the same (sub)argument must be
the same. In the examples above this is already realized.

The arguments of the generated function now correspond to the names of
the top-level arguments. The body of the function can be found by traversing
the decision tree. Variable nodes can be skipped. For a constructor node we
must write down the label of the node and process the descendant nodes in the
order corresponding to the order used in the selector functions (e.g. for lists:
first Nil then Cons). For every descendant we have to write down an anonymous

11

function with the same arity as the constructor and with as variable names the
labels of the constructor arguments. For a fail alternative the variables can be
given arbitrary names (different from all other names) because they are not used.
For a fail arrow we have to write down the fail function. If the last node of a
row is reached the corresponding body must be filled in.

The results for the two versions of mappair are:

mappair1 f as zs

= as Nil (x->xs->zs Nil (y->ys->Cons (f x y) (mappair1 f xs ys)))

mappair2 f as zs

= as Nil (v1->v2->zs Nil (w1->w2->as fail

(x->xs->zs fail (y->ys->Cons (f x y) (mappair2 f xs ys)))))

Note that the resulting functions are very compact but still quite readable.

4 Interpretation

In the preceding sections we have shown how to transform constructs from higher
functional programming languages to SAPL. To test the usefulness and efficiency
of the results we developed a dedicated interpreter for SAPL. Programs in SAPL
style cannot be executed by existing functional programming implementations
since these programs in general do not obey the Hindley-Milner type rules.

We developed two versions of the interpreter. The first one is a straightfor-
ward interpreter for the basic version of SAPL (no lambda expressions) extended
with integers and their basic operations. The second one uses knowledge about
the generated functions to optimise memory overhead and execution speed.

4.1 Non-Optimised Interpretation

The interpreter is kept as simple as possible. It is based on straightforward
graph reduction techniques as described in Peyton Jones [13], Plasmeijer and
van Eekelen [14] and Kluge [12]. We assume that a pre-compiler has eliminated
all algebraic data types and pattern definitions (as described above), all let(rec)-
and where-clauses and all lambda expressions. The interpreter is only capable
of executing function rewriting and the basic operations on integers. For an
efficient implementation of constant letrec expressions we must allow for cyclic
definitions. This is realized by adding the possibility of labelling (sub)expressions
in the body of a function and using these labels as variables at other places in
the body. The most important features of the interpreter are:

– It uses 4 types of cells. A Cell is either an: Integer, (Binary) Application,
Variable or Function Call. To keep memory management simple, all Cells
have the same size. A type byte in the Cell distinguishes between the different
types. A Cell uses 12 bytes of memory.

– The memory heap consists only of Cells. The heap has a fixed, user definable
size (default 1000000 Cells). Memory allocation is therefore very cheap.

12

– It uses mark and (implicit) sweep garbage collection.
– It uses a single argument stack containing only references to Cells. The C

(function) stack is used as the dump for keeping intermediate results when
evaluating strict functions (numeric operations only) and for administration
overhead during the marking phase of garbage collection.

– It reduces an expression to head-normal-form. The printing routine causes
further reduction.

– Is has a socket interface. This makes it is possible to interface with the
interpreter from other programs. It offers a ‘lazy’ protocol for exchanging
information.

– The state of the interpreter consists of the stack, the heap, the dump, an
array of function definitions and a reference to the node to be evaluated next.
In each state the next step to be taken depends on the type of the current
node, an application or a function call node.

We now give a functional (and executable) specification of the interpreter. The
Haskell definition of the main data structure is given by:

data Expr = App Expr Expr| Func Int Int| Var Int | Num Int |

Oper (Int->Int->Int) | RelOp (Int->Int->Bool)

The first Int in Func Int Int denotes the number of arguments of the function,
the second Int the position of the function definition in the list of definitions.
The Int in Var Int indicates the position on the stack. The eval function using
extended SAPL is given by:

eval :: Expr -> [Expr] -> [Expr] -> Expr

eval (App l r) es fs = eval l (push r es) fs

eval (Func na fn) es fs = if (length es >= na)

(eval (instantiate (el fn fs) es)

(drop na es) fs)

(rebuild (Func na fn) es)

eval (Oper op) es fs = apply op (eval (el 0 es) Nil fs)

(eval (el 1 es) Nil fs)

eval (RelOp op) es fs = eval (apprel op (eval (el 0 es) Nil fs)

(eval (el 1 es) Nil fs))

(drop 2 es) fs

eval (Num n) es fs = Num n

instantiate (App l r) es = App (instantiate l es) (instantiate r es)

instantiate (Var n) es = el n es

instantiate x es = x

rebuild e Nil = e

rebuild e (Cons x xs) = rebuild (App e x) xs

apply op (Num n) (Num m) = Num (op n m)

apprel op (Num n) (Num m) = if (op n m) (Func 2 0) (Func 2 1)

Here Func 2 0 and Func 2 1 represent True and False, es the stack and fs the
list of function definitions. In pseudo code eval, without numerals, is given by:

13

Cell eval(Cell top) {

Cell e = top; int nr_args = 0;

repeat {

typeof(e) {

App: push(e->right); e = e -> left; nr_args++;

Function: if (nr_args >= nrArgs(e)) {

e = instantiate(body(e));

updateroot(e);

pop(nrArgs(e)); nr_args -= nrArgs(e); }

else {pop(nr_args);return top;}

}

}

}

The actual eval function fits on less than one A4! Instantiate recursively copies
the body of the function and substitutes references to the arguments on the
stack for the variables in the body. In this way sharing is realized. The result of
instantiate overwrites the top node of the application. A numeric operation sim-
ply evaluates the top two elements on the stack, retracts the results from them,
applies the operation and overwrites the top application node with the result.
In spite of its simplicity, this interpreter has already reasonable performance.
In the next section we will say something about its performance in comparison
with the optimised interpreter.

4.2 Using Selective Instantiation to Optimise the Interpreter

There are many options for optimising the interpreter. Here we are only inter-
ested in optimisations that deal with the way algebraic data types and pattern
definitions are translated. If we take a careful look at the translated functions
we often encounter definitions of the following kind:

fname patarg arg1 ... argn = patarg case1 ... casem

Here patarg is a variable of an algebraic data type (selector function) with m
cases. The actual selector function selects one of the m cases and applies it to its
own arguments. The other m−1 arguments are not used. A large part of the body
of the function fname is therefore copied and not used. This holds especially for
data types with many cases, for example, data types that represent expressions.
Because these functions are generated by the pattern compiler we know exactly
which functions are of this type. We therefore modify the generator in such a
way that it will generate:

fname patarg arg1 ... argn = case patarg case1 ... casem

The extra function case is semantically equal to the identity function but acts
as a compiler directive. When the interpreter encounters a function call to a
function with a body that is tagged with case, it will not copy the entire body of
the function but evaluates only the left most element in the application (patarg
in the example). The interpreter is modified in such a way that when evaluating
a function call to a pattern function as a side effect it also returns its case

14

number (e.g. 0 for Nil and 1 for (Cons x xs)). This case number is used to
select and copy the appropriate part of the function body and applying it to the
constructor arguments. We will call this optimisation Selective Instantiation. In
this way a large reduction in copying overhead is realized. Because copying of
function bodies makes up a significant part of the time the interpreter uses, the
speed-up gained by this optimisation can be large (see next section). We will
call the optimised interpreter also SAPL.

5 Comparison with other interpreters

In this section we present the results of a comparison of SAPL with several other
interpreters for functional programming languages: Amanda V2.03 [6], Helium
1.5 [9], Hugs 20050113 [11] and GHCi V6.4 [8]. We used three programs for the
comparison:

– The prime number sieve program. This is a list intensive program making
heavily use of lazy evaluation during the manipulation of infinite lists.

– A small evaluator/interpreter for a minimal functional programming lan-
guage. This example makes heavily use of pattern matching for a data type
with many cases.

– A symbolic version of the prime number sieve using Peano numbers instead
of integers. In this example pattern matching and function rewriting are the
only operations.

The code for the prime number generator is given by:

sieve (x:xs) = x : sieve (filter (nmz x) xs)

nmz x y = mod y x != 0

primes = sieve (from 2)

The interpreter is an eager version (it evaluates arguments before pushing
them on the stack) of the functional interpreter from section 4. Note that the
resulting interpreter is still lazy, because SAPL itself is lazy. The interpreter is
rather inefficient because function definitions have to be looked up in a list every
time a call for a function has to be instantiated. For the test we coded the prime
number sieve for it using the data types from section 4.

The program for the symbolic prime number sieve is the same as the prime
number sieve above using the Peano numbers and their operations from section
2 instead of integers.

For all tests we did not use the built-in lists, but user-defined lists instead.
The tests were done on a Pentium 4 2.66 GHz machine. We experimented with
different heap sizes during the tests. Only Helium showed significant differences
between the results. The final tests were done with a heap size of about 8Mbyte
(giving optimal results for Helium). The results can be found in figure 3.

For the prime number generator the test we conducted was: Calculate the
4000th prime number. Note that Hugs is a factor 15-20 slower than the other
interpreters. Non-optimised SAPL was about 15% slower than optimised SAPL.

15

Fig. 3. Performance Measures

For the evaluator we coded the generation of the 80th prime number. For this
test Amanda and Hugs had a stack-overflow. Using smaller examples Amanda
had results comparable to Helium, Hugs was 3-5 times slower than the oth-
ers. Non-optimised SAPL was about 8 times slower than optimised SAPL! This
shows that the optimisation due to the case directive is significant and therefore
necessary.

The test for the symbolic prime number generator was: Calculate the 200th
prime number. This is the only example for which Hugs has competitive perfor-
mance. This shows that Hugs has probably very inefficient handling of arithmetic
expressions.

From the comparisons we may conclude that, despite its simplicity, SAPL
has already acceptable performance.

5.1 Further Optimisations

Besides the optimisation due to the case directive SAPL uses no other optimi-
sations. What are the possibilities for further improvements in performance?

First of all, the memory usage (and therefore execution speed) of SAPL can
be reduced by using a more efficient coding of binary operations (like add, sub)
that are used uncurried (using 3 cells instead of 5).

Also SAPL uses a check for the number of elements on the stack for every
function call. In many cases this check can already be done at compile time.

These optimisations are already implemented in most of the above-mentioned
interpreters. Some first experiments showed us that for SAPL a speed-up of at
least 30% is possible.

6 Conclusions and further Research Possibilities

In this paper we have defined a minimal functional programming language SAPL.
This language has function application as only operation and has no data struc-
tures. For SAPL we have achieved the following results:

16

– It is possible to represent data structures as functions in SAPL in a natural
and data structure look alike way. Programs written in SAPL have compara-
ble length to corresponding programs in functional programming languages
like Haskell or Clean with only a small readability penalty.

– SAPL can be used as an intermediate language for interpretation of programs
written in languages like Clean or Haskell. We have shown how to translate
pattern-based function definitions to SAPL with an efficient result.

– We have constructed an efficient interpreter for SAPL using Selective In-
stantiation. Due to the simplicity of the language the interpreter can be
kept small and elegant. After adding integers and their operations the per-
formance of the interpreter is comparable to state-of-the-art interpreters,
while there is room for further performance improvements.

Recursive functions over data types cannot be typed using Hindley-Milner
typing due to the lack of constructors. The Hindley-Milner type system assigns
fixed types to constructors. SAPL has no constructors and hence these types are
not assigned. We plan to develop a type system for SAPL. Such a type system
will also indicate the spots where the optimisation of section 4.2 can be applied.

Finally we want to investigate whether the introduced implementation tech-
niques can be used in a compiler.

References

1. L. Augustsson. Compiling Pattern Matching. Conference on Functional Program-
ming Languages and Computer Architectures, Nancy, Jouannaud (editor), Lecture
Notes in Computer Science 201, pp 368-381, Springer Verlag, 1985.

2. H.P. Barendregt. The Lambda Calculus, Its Syntax and Semantics. North-Holland,
Studies in Logic and the Foundations of Mathematics, 1981.

3. H.P. Barendregt. The impact of the Lambda Calculus in Logic and Computer Sci-
ence. The Bulletin of Symbolic Logic, Volume 3, Number 2, pp 181 - 215, 1997.

4. A. Berarducci and C. Bohm. A self-interpreter of lambda calculus having a normal
form. Lecture Notes in Computer Science 702, Springer Verlag, pp 85-99, 1993.

5. C. Bohm and A. Berarducci. Automatic synthesis of typed Λ–programs on term
algebras. Theoretical Computer Science 39, pp 135-154, 1985.

6. D. Bruin. The Amanda Interpreter.
www.engineering.tech.nhl.nl/engineering/personeel/bruin/data/amanda204.zip.

7. The Clean Home Page. Software Technology Research Group, Radboud University
Nijmegen, the Netherlands, www.cs.ru.nl/˜clean.

8. The Haskell Home Page, www.Haskell.org.
9. The Helium Project. Software Technology group, the Institute of Information and

Computing Sciences, Utrecht University, the Netherlands, www.cs.uu.nl/helium.
10. J.R. Hindley and J.P. Seldin. Introduction to Combinators and λ–Calculus. London

Mathematical Society Student Texts, 1986.
11. Hugs Online, www.Haskell.org/hugs.
12. W. Kluge. Abstract Computing Machines. Springer-Verlag, Texts in Theoretical

Computer Science, 2004.
13. S.L. Peyton Jones. The Implementation of Functional Programming Languages.

Prentice-Hall International Series in Computer Science, 1987.
14. R. Plasmeijer and M. van Eekelen. Functional Programming and Parallel Graph

Rewriting. Addison-Wesley, International Computer Science Series, 1993.

