There and Back Again*

Arrows for Invertible Programming

Artem Alimarine
Marko van Eekelen

Sjaak Smetsers

Arjen van Weelden
Rinus Plasmeijer

Institute for Computing and Information Sciences,
Radboud University Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.

A.Alimarine@cs.ru.nl
M.vanEekelen@cs.ru.nl

Abstract

Invertible programming occurs in the area of data conversion where
it is required that the conversion in one direction is the inverse of
the other. For that purpose, we introduce bidirectional arrdois (
arrows). The bi-arrow class is an extension of Haskell's arrow class
with an extra combinator that changes the direction of computation.

The advantage of the use of bi-arrows for invertible program-
ming is the preservation of invertibility properties using the bi-
arrow combinators. Programming with bi-arrows in a polytypic or
generic way exploits this the most. Besides bidirectional polytypic
examples, including invertible serialization, we give the definition
of a monadic bi-arrow transformer, which we use to construct a
bidirectional parser/pretty printer.

Categories and Subject DescriptorsD.1.1 [Programming Tech-
nigueg: Applicative (Functional) Programming

General Terms Algorithms

Keywords Haskell, Arrows, Invertible program construction,
Polytypic programming.

1. Introduction

Arrows [11] are a generalization of monads [21]. Just as mon-
ads, arrows provide a set of combinators. They make it possible
to combine functions in a very general way. In principle, the com-

binators assume very little about the functions to combine. In fact,
these functions may even comprise side-effects. The main appli-
cation areas of arrows are in the field of interactive programming

and data conversion. More specifically, extensive applications have
been made in the areas of user interfaces [3], reactive programming

[9], and parser combinators [13].
For the general area of data conversion, it may be important
to prove invertibility of a specified algorithm. This is, for instance,

* Shamelessly stolen from the Lord of the Rings (the book, not the movie).

Permission to make digital or hard copies of all or part of this work for personal or

S.Smetsers@cs.ru.nl

A.vanWeelden@cs.ru.nl
R.Plasmeijer@cs.ru.nl

directly the case in encryption, serialization, marshalling, compres-
sion, and parsing but also more indirectly in the area of data base
transactions where roll-backs may have to be performed.

The goal of our work is to set up an arrow-based framework for
the specification of invertible algorithms. We start with extending
the monotypic unidirectional framework of arrows to a monotypic
bidirectional framework of bidirectional arrowsi-arrows

In particular, we represent a pair of conversion functions as a
single arrow, such that we can specify both conversion functions
by one definition. The advantage of such a single definition is that
it reduces the amount of code needed for each conversion pair,
because more code can be reused from the arrow library. Basically,
one specifies the conversion in one direction (usually the more
involved case) and one gets the inverse conversion almost for free.
For instance, by specifying a parser one also specifies the pretty
printer. The price to pay is that specifying the parser becomes a bit
more complicated.

The advantages of programming with arrows and inversion are
exploited best in a polytypic or generic framework. Therefore, we
extend our monotypic bidirectional framework to the polytypic
context. In this context we show how to define several essential
combinators and bi-arrow transformers. We give several smaller
polytypic examples including invertible (de)serialization. We also
discuss how this can be done for the larger example of parsers and
pretty-printers.

More specifically, the contributions of this paper are the follow-
ing.

e We extend the framework of arrows to suppbitlirectional
arrows.

e Our approach explicitly usemmbedding-projection arrows

e Our approach is suitable fanonotypic and polytypiconver-
sion functions.

¢ We show how to define pairs of conversion functions together in
one single definition. We show that specifying one direction of
conversion also specifies the other direction. We present several
monotypic and polytypiexample®f such definitions.

We use the pure lazy functional language Haskell [17] in our ex-
amples. Polytypic examples use Generic Haskell [14], the generic

classroom use is granted without fee provided that copies are not made or distributed programming extension for Haskell. The code can be downloaded

for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Haskell'05 September 30, 2005, Tallinn, Estonia.

Copyright© 2005 ACM 1-59593-071-X/05/0009. . . $5.00.

fromhttp://www.cs.ru.nl/A.vanWeelden/bi-arrows/. The
work can just as easily be expressed in Clean [18] using its built-in
generics [1]. We assume general knowledge of arrows and poly-
typic programming, and we will only briefly recall relevant defini-
tions and techniques.

The next section (section 2) introduces bidirectional arrow com-
binators. A smalimonotypicinvertible program example is given
in section 3. This is done by usirgmbedding-projection arrows
which are also introduced in that section.

In section 4 the framework is used in a polytypic context and
we introduce invertible arrows with state. We prespotytypic
traversals(mappings) on bi-arrows anstate arrows These state

arrows are used in section 5 to create a somewhat larger example
performing (de)serialization of data, based on the structure of a

type.

Section 6 introduces monadic programming with bi-arrows.
Ways to deal with failure in bi-arrows are introduced and a method
to lift monads to bi-arrows is given. An application of bi-arrows,
consisting of a parser and a pretty-printer, is created in section

projection arrows.

Finally, section 8 discusses related work and section 9 concludes

and mentions prospects for future work.

2. From arrows to bidirectional arrows

This section introduces a bidirectional framework that consists of a
set of reversible arrow combinators. These combinators are base
on the arrow combinators defined by Hughes [11].

First, we will recall shortly the standard arrow framework (sec-

7.
The example uses a combination of state, monadic, and embedding-

By instantiating the arrow class for» we can use ordinary
functions as arrows.

instance Arrow (—) where
arr f =1f£
> g=g.f
first £ =f < id

instance ArrowChoice (—) where
left £ =f <+ id

Here<*> and<#> are the usual product and sum operations for
functions:

(<) :: (& 2 b) = (¢ > d) — (a, ¢c) — (b, d)
f <> g=(f . fst) ‘split’ (g . snd)

(<) :: (a—Db) = (¢c - d) —
Either a ¢ — Either b d

f <> g= (Left . f) ‘either' (Right . g)

In literature [11, 15, 16], one can find several other combinators
and also some derived combinators that make programming with

Garrows easier, such as:

Arrow arr =
arr c b — arr ba — arr c a

() ::
—infixl 1

tion 2.1). Then we show how these laws have to be adapted forourf <« g=g > f

dyadic bi-arrows framework (section 2.2). Finally, we give specific
inversion laws for bi-arrows (section 2.4). In section 3 we show
how bidirectional arrows are constructed using a small motivating
example.

2.1 Arrows

We briefly recall Hughes's definitions expressed in Haskell as a
type constructor class.

class Arrow arr where

arr (a— b) — arr a b —pure
(>) ::arrab — arr b c — arr a ¢ —infixrl
first :: arr a b — arr (a, c) (b, ¢)

second :: arr a b — arr (c, a) (c, b)

(%) :: arrac — arr bd —

arr (a, c) (b, d) —infixr3

As usual, the definition of« and second can be expressed in
terms offirst (corresponding to Haskell’s default definition of
sk« andsecond):

f oo g =
second f

first £ >> second g
arr swap 3> first £ 3> arr swap

swap = snd ‘split’ fst
split f g=Xt — (ft, g t)

To allow case distinction Hughes shows that a new combinator
is needed. He, therefore, introduces theice arrow

class Arrow arr = ArrowChoice arr where

left :: arr a b — arr (Either a c) (Either b c)
right :: arr b ¢ — arr (Either d b) (Either d c)
(++) :: arrac — arr bd —

arr (Either a c) (Either b d) —infixr 2

As with s andsecond, +4 andright can be expressed in terms
of left, and Haskell's prelude functiosither:

f HH g=1left £ > right g
right f = arr mirror >> left f >> arr mirror

mirror = Right ‘either' Left

Here, we refrain from giving an exhaustive overview.

2.2 Bidirectional arrows

To support invertibility, we extend the arrows with two new combi-
nators:« (biarr/bipure) andinv (inversg.

The first one,«<, is similar to the standardrr but instead
of a single function it takeswo functions and lifts them into a
bidirectional arrow (bi-arrow) creating a structure that contains
them both. The intention is that these functions are each others
inverse. The second onv, reverses the direction of computation,
yielding the inverse of a bi-arrow, which will boil down to swapping
the two comprised functions.

class Arrow arr = BiArrow arr where
(<) :: (& = b) - (b - a) - arr ab —infix8
inv :: arxr ab — arr b a

We defineBiArrow on top of theArrow class because concep-
tually bi-arrows form an extension of the arrow class. Moreover,
it allows us to use bi-arrows as normal arrows. Since the derived
combinatorssecond andright use thearr constructor to build
the adapterswapA andmirrorA we have to redefine them usirg
to make these combinators invertible. Therefore, we introduce:

secondA f = swapA >> first £ >> swapA

where swapA = swap <> swap
rightA £ = mirrorA >> left f >> mirrorA

where mirrorA = mirror < mirror
arrA f =f < const (error "arr has no inverse”)

whereswap andmirror are defined as above.

2.3 Arrow laws for bi-arrows

To reason about programs containing arrow combinators we can

use properties that are specific to arrows, the so-caliexv laws

The collection of arrow laws is not uniquely defined. The laws we

have taken are a subset of the ones postulated by Hughes [11].
We need some adaptation of the laws for our framework. The

occurrences oarr f are replaced with the corresponding dyadic

operator for bi-arrowst < g whereg is intended to be the inverse

of f.

Definition 1 (Composition Laws)

> (g>h)
fiege > g < fo
idA>> f

= (f>g>h

= (i g) e (2> 9)
=f= f>IidA
where

idA = id « id

Definition 2 (Pair Laws)

first (f >> g) first f >> firstg

first (f < g) (f xid) < (g«id)
firsth>>(idx f)—(dd*xg) = (idx f)<(id* g)>>firsth
first (first f) >> assocPA = assocPAss> first f
where
assocPA assoc— cossa

(z, (y,2))
((z,9),2)

assoc((z,y), z)
cossa(z, (y, z))

In categorial terms, the product type is the dual of the sum type.
In general, if a property holds for products, the dual property is
valid for sums. The dual is obtained by systematically replacing
split by either, LeftRight by fst/snd first by left, >> by <, and
fog by go f. For example, taking the dual of the last product law
leads to the following sum law

left (left f) <« assocSA= assocSAK left f

To obtain the duahssocSAf assocPAwe first expresassocand
cossan terms ofsplit, fst andsnd.

(fstofst) 'split’ ((sndofst) 'split’ snd)

(fst 'split’ (fstosnd) 'split’ (sndosnd)

Now the transformation leads @sS0CSA= assocS« cossa$
where

assocS= (Left oLeft) 'either’ ((Left oRight) ’either’ Right)
cossaS- (Left 'either (RightoLeft)) 'either’ (RightoRight)

Note thatright is also the dual o$econd sincemirror is the dual
of swap

assoc
cossa

Using the laws above several properties can be proven easily.

For examplefirstidA = idA = second idAis proven by substi-
tuting the definitions fofirst andsecond taken from section 2.1
and applying the appropriate laws finst and>>>>.

2.4

Most importantly, implementations of bi-arrows are proper if they
satisfy some additional inversion laws.

Inversion Laws

Definition 3 (Inversion Laws)

inv(invf) = f
inv(f>>g) = invg>>invf
inv (f<—> g) = g« f

inv (first f) = first(inv f)

inv(leftf) = left(invf)

The last two rules are only appropriate for arrows that are pure

functions. In a more general case, where arrows can have side-

effects (e.g., when monads with internal side effects are lifted to
bi-arrows), it is required that, instead fifst and left, cofirst and

coleft respectively are used. These ‘inverse combinators’ are the reverseA

categorical duals dfrst andleft. They are needed to revert possible
side-effects offirst andleft. Throughout the rest of this paper all
arrows will be pure. Hence, we will use the rules above since

they are sufficient for this paper. Nevertheless, for the rest of the

framework no assumptions will be made on the absence of side-
effects.

Of course, when introducing a new instance for one of the arrow
classes defined above we have to guarantee that all the correspond-
ing laws hold. We say thaf is abi-arrow if the composition, pair
and inverse laws hold. Lgt be an bi-arrow. Thelf is invertibleif

invf>> f=idA=f>invf

The essence of our framework is that invertibility is preserved
by our (bi-)arrow combinators. We are working on finishing the
details of the formal proof of this property, using the various bi-
arrow laws. It will be presented in a separate paper. The emphasis
of this paper will be on introducing the framework and on its
applications.

3. Monotypic programming with bi-arrows

The idea of using bi-arrows is that after specifying an operation in
one direction one gets the inverse of this operation (in the opposite
direction).

In this section we first discuss how to create an invertible defini-
tion using the bi-arrow definitions (section 3.1). Then, we discuss
the inherent differences between functions and bi-arrows (section
3.2). This motivates why we introduce a structure that contains both
functions (section 3.3). Finally, we discuss some problems with the
use of Paterson notation for bi-arrows (section 3.4).

3.1 A motivating example

How easy or difficult is it to define functions by means of the
arrow constructors? In this section we will give an example. Of
course, one has to keep in mind that some functions are not easily
invertible. Take, for instance, a simple function like (append),
which concatenates two lists. It is clear that the inverse cannot be a
function with the same type, since in general there are many ways
to split a list into two parts.

An example of a function that does have an (obvious) inverse
is reverse. We take the standard definition as starting point to
get an arrow based version. We could have liftederse to a bi-
arrow usingreverse < reverse, but this does not illustrate the
concerns of bidirectional programming.

reverse :: [a] — [a]
reverse || =]
reverse (x:xs) — reverse xs H [x]

Case distinction, using arrows, is done by usingft and
right, which means that we first have to tag the input viitit or
Right, indicating the empty and non-empty list respectively. Tag-
ging and untagging are done by applying the following bi-arrow,
which forms an isomorphic mapping from listsRdthers.

list2EitherA :: BiArrow arr =
arr [a] (Either () (a, [a]))

list2EitherA = list_either <« either_list

where
[] =left ()

list_either
list_either (x:xs) = Right (x, xs)
(Left ()) []

(Right (x, xs)) = x:xs

either_list
either_list

Now we can give the arrow version péverse: reverseA.

:: (ArrowChoice arr, BiArrow arr) =
arr [a] [a]

reverseA = list2EitherA

>> right (second reverseA > appElemA)

>> inv list2EitherA

HereappElemA is an adjusted version append that takes one

element and attaches it to the end of a list. If one specifies invertible
arrows it appears to convenient to use ‘symmetrical versions, i.e.,
arrows that handle the argument and the result symmetrically. This

leads to the following definition ofppElemA. We will give an
example of its usage later in this section.

:: (ArrowChoice arr, BiArrow arr) =
arr (a, [a]) (a, [a])
appElemA = second list2EitherA >> 1iftRSA
>> right (swapXYA > second appElemA)
>> inv (second list2EitherA >> 1iftRSA)

appElemA

The auxiliary arrowliftRSA converts a product—of-sum into a
sum-of—product, andwapXYA exchanges the andy field of a
nested pair. The last one is defined in termasfocPA andswapA
introduced in section 2.

1iftRSA :: BiArrow arr =
arr (a, Either b c) (Either (a, b) (a, c))
1iftRSA = 1liftr < rtfil
where
liftr

liftr

(x, Left y) = Left (x, y)
(x, Right y) = Right (x, y)

rtfil
rtfil

(Left (x, y)) = (x, Left y)
(Right (x, y)) = (x, Right y)

swapXYA :: BiArrow arr = arr (a, (b, c)) (b, (a, c))
swapXYA = inv assocPA 3> first swapA 3> assocPA

3.2 Functions are not bi-arrows

AlthoughReverseA is constructed to be invertible, we cannot use
the inverse of reverse using the instance for arrows. This means
that the following will not work:

(inv reversed) [1, 2, 3] —thisis a compile time error

This is caused by an absence of an instancBidkrow for —.
Since ReverseA itself depends on th&iArrow class, we even

cannot write
reverseA [1, 2, 3] —this is also a compile time error

There is no sensible way to define an instanceBofrrow
for —. Of course, oneould define— for functions by dropping

f > g=Ep (toEp £ >> toEp g)

(fromEp g >> fromEp f)
first f = Ep (first (toEp f)) (first (fromEp f))
second = secondA

instance ArrowChoice arr =
ArrowChoice (EpT arr) where
left £ = Ep (left (toEp f)) (left (fromEp f))
right = rightA

instance Arrow arr = BiArrow (EpT arr) where
f < g=-Ep (arr) (arr g)
inv f = Ep (fromEp f) (toEp f)

To ensure the invertibility preserving property of tBgT bi-
arrow transformer, one should not use the: because an arrow
constructed wittarr has no inverse. We still define ther func-
tion for EpT, in terms of the— anderror (usingarrA from the
previous section) to give a more informative run-time error and to
support normal arrow operations.

By addingtoEp to the example, we can force the use of the
instance for theEpT —) arrow:

toEp reverseA [1, 2, 3] —vyields[3, 2, 1]
toEp (inv reverseA) [1, 2, 3] —yields[3, 2, 1]

In the same way, we can show an examplemfElemA.
toEp appElemA (4, [1, 2, 3]) —yvyields(1, [2, 3, 4])

3.4 Paterson notation

The example from the previous section clearly shows that, without
any support, programming with arrow combinators can be quite
complicated.

The notation for arrows as proposed by Paterson [15] can be
helpful because it relieves the programmer from defining a lot of
small adaptor arrows. For example, the definitionappElemA
using this arrow notion becomes:

appElemA = proc (e, xs) — casexs of
— returnA — (x, e)
(x:xs) — do
(h, t) < appElemA — (e, xs)
returnA — (x, h:t)
where returnA = arr id

the second argument, however, this instance only works in one Unfortunately, this syntactic sugar for arrows does not support
direction. For the last two examples this would mean that we would invertibility. The translation scheme, as described in [15], uses uni-
not get a compile-time error anymore. Instead we would get the directional adaptors that cannot easily be made bidirectional. The
correct result for the latter expression, but evaluation of the first (internal) adaptors are unidirectional, since they are defined using
one would resultin a run-time error. arr instead of—. This is similar to the problem we encountered

. L) defining bi-arrows as an extension of the original arrow class (the
3.3 The embedding-projection bi-arrow transformer defaultsecond also usesirr, hence the introduction afecondA
We can circumvent this problem by handling inversion explicitly and the like).
via embedding-projectiofEP) pairs. See, for instance, [8]. We
generalize the embedding-projections from pairs of functions to 4, Polytypic programming with bi-arrows
be pairs of arrows. This mak&»T an arrow transformer i.e., it
enables us to construct bi-arrows on top of existing arrows (partic-
ularly functions). Therefore, our type for embedding projections is
parameterized with an arrow:

In the following sections our framework is used in a polytypic con-
text. First, in section 4.1 we presgmblytypic traversal{general-
ized mappings). We show how to define the right—-to—left traversals
in terms of the left—to-right using duality. Secondly (section 4.2),
we introduce astate arrow transformei.e., an arrow implementa-
tion with which arbitrary arrows can be lifted to an arrow support-
ing invertible computations on states.

data EpT arr a b = Ep {toEp :: arr a b,
fromEp :: arr b a}

The instances of the (bi-)arrow classes can be defined straight-

forwardly. 4.1 Polytypic traversals

instance Arrow arr = Arrow (EpT arr) where
arr = arrA

Polytypic traversals are generalizations of polytypic mappings.
They are introduced in Jansson and Jeuring [13]. Polytypic map-

pings operate on functions, whereas polytypic traversals operate onclass Gmapl t where

abstract arrows. Thus, mapping is just a special case of traversal.

However, unlike for mapping, the order of traversal of a data
structure now becomes important, due to possible side effects
within the arrow.

We specify the traversal operation using the polytypic program-
ming extension of Haskell: Generic Haskell [14]. Every type, ex-
cept certain predefined/basic typedas, has a generic representa-
tion using only sums, products, and units. The Generic Haskell pre-
processor can derivéhe code for a polytypic function, as long as
we define the polytypic function for the base instan&asy, Prod,
andUnit.

mapl{ja, blarr} :: (ArrowChoice arr, BiArrow arr,
mapl{ja, blarr[}) = arr a b

idA

inv prodA

> maplfal} =+ mapl{b]
>> prodA

inv sumA

>> mapl{ial} + mapl{jb}
>> sumA

mapl{{Unit[}
mapl{Prod a bf}

mapl{|Sum a b[}

prodA :: BiArrow arr = arr (a, b) (Prod a b)
prodA = fst ‘splt’ snd < exl ‘split' exr

sumA :: BiArrow arr = arr (Either a b) (Sum a b)
sumA = Inl ‘either' Inr <> Left ‘junc' Right

Some remarks aboutpl:

e There is a context restriction on the monotypic type variable
arr. Generic Haskell expects such type variables to be declared
after the polytypic type variables, separated by a

¢ Besides the usual context restrictions axr there is also a
context restriction ovetapl itself. This is due to the fact that
themapl is polytypic. Usually, these are derived automatically
by Generic Haskelland can be omitted.

e The adaptorprodA andsumA would be superfluous if the defi-
nitions ofProd andSum would coincide with (,) an@&ither.
Thesplt andjunc functions are therod andSum counterparts
of split andeither for tuples andEithers, respectively.

¢ For clarity reasons we have omitted the cases for constructor
information (i.e., instances falon andLabel) as they are not
essential for the examples in this paper.

Generic Haskell can derive a specific traversal function for any

:: (ArrowChoice arr, BiArrow arr) =
arr a b — arr (t a) (t b)

gmapl

For instance, we can use polytypic traversal to map the incre-
ment function to a tree of integers, using the following data type
definition forTree, and instance definition @napl

data Tree a = Leaf a | Node (Tree a) (Tree a)

instance Gmapl Tree where
gmapl = mapl{Treel}

Now we can write, again forcing the use of thept —) bi-
arrow:

toEp (gmapl ((Ax — x + 1) = (&x — x - 1)))
(Leaf 1 ‘Node' Leaf 2 ‘Node' Leaf 3)
—vyieldsLeaf 2 ‘Node‘ Leaf 3 ‘Node‘ Leaf 4

The way thes« and-++ are defined determines the traversal
order. Basically, the order is left—to—right because and ++
give preference tdirst endleft respectively. Analogously, one
can define the traversals using right—to—left variants of our basic
combinators.

Jansson and Jeuring [13] show that such left—to—right and right—
to—left traversals (e.gmapl andmapr) form a pair of data conver-
sion functions, which are each others inverse. We want to show
here that instead of defining both traversals separately, we can de-
fine one of them as the inverse of the other, using bi-arrows. We
define themnapr (the right—to—left traversal) as the dual of the left—
to—right traversal.

:: (Gmapl t, ArrowChoice arr, BiArrow arr) =
arr a b — arr (t a) (t b)
mapr f = inv (gmapl (inv f))

mapr

toEp (gmapr ((Mx — x + 1) « (A&x — x - 1)))

(Leaf 1 ‘Node' Leaf 2 ‘Node‘ Leaf 3)
—alsoyieldsLeaf 2 ‘Node‘ Leaf 3 ‘Node‘ Leaf 4,
—because the order does not matter in this example

4.2 The state bi-arrow transformer

Like monads, arrows can be used to specify computations with side
effects on a state. We will show how to define a state arrow in
our bi-arrow framework. This state arrow will be used later in an
example to define an invertible pair of conversion functions that:
separatea functor into its shape and its contents aoenbinethe

data type using the schematic representation of that type. In theshape and the contents back.

present paper we will not need derived instances other than for
types of kindx — *. Unfortunately, Generic Haskell does not

yet support the use of generic functions in the context restrictions
of type classes and instances. We simulate this by introducing

a dummy class, for which define the necessary instances in the

obvious way. For types of kind — * this leads to the clagimapl.

1There is a bug in Generic Haskell 1.42, which makes the preprocessor
generate ill-typed code when deriving generic function instances for arrows
(or other types of kink — x — x). As a work around, our source contains

generic function instances for all the types that we use. The Clean version
of the source does derive generic function instances correctly. However,

the Clean compiler 2.1 gives false uniqueness errors when using arrows

with generics. As a work around, we provide a copy of StdGeneric without
uniqueness attributes.

2There is a bug in Generic Haskell 1.42, which makes it generate an
infinite amount of code when omitting these context restrictions on the
polytypic function itself. The Clean compiler does not require such context
restrictions.

Consider the followingarrow transformer which adds a state
to a given arrow:

newtype StT s arr a b = St {unSt :: arr (a,s) (b,s)}

The corresponding instancesfafrow andBiArrow are defined be-
low. This arrow transformer also occurs in [11]. The instances be-
low can be obtained directly from [11] by replacing the unidirec-
tional adapters (defined by meansaof) by bidirectional adapters

using«.

instance BiArrow arr = Arrow (StT s arr) where
arr = arrA
f >> g =5t (uSt £ >> unSt g)

first £ = St (swapYZA >>
first (unSt f)
>> swapYZA)
second = secondA

instance (ArrowChoice arr, BiArrow arr) =
ArrowChoice (StT s arr) where
left £ = St (1iftLSA >>
left (unSt f)
>> inv 1iftLSA)
right = rightA
instance BiArrow arr = BiArrow (StT s arr) where
f < g=25t (first (f < g))
inv £ = St (inv (unSt f))
1iftLSA :: (ArrowChoice arr, BilArrow arr) =
arr (Either a b, c) (Either (a, c) (b, c))
1iftLSA = swapA >> 1iftRSA >> swapA ++ swapA

swapYZA :: BiArrow arr = arr ((a, b), c) ((a, c), b)
swapYZA = assocPA >> second swapA >> inv assocPA

The method— of the state arrow is implemented usifgrst
and < of the underlying arrow. The composition of state arrows
just composes the underlying arrows.

The instance o$tT for the choice arrow is defined with help of
distributivity of the product type over the sum type. As usual, such
a property is specified by constructing an appropriate bi-arrow, in
this caseliftLSA, a transformation ofiftRSA from section 3.
Again, only minor modifications of the instance declarations given
in [11] were necessary.

4.3 Polytypic shape

We use the state arrow of the previous section to define polytypi-
cally an invertible pair of conversion functions that separate a func-

tor into its shape and its contents and combine the shape and the
contents back. Expressed as ordinary functions the type signatures

of these two functions are:

separate :: Functor f = f a — [a] — (f (), [a])
combine :: Functor f = f () — [a] — (f a, [a])

Instead of defining these functions as primitives, we will use the
invertible state arrow. The data stored in/retrieved from the functor
is passed as a state. For list states, we introducgettgtA arrow.

ThegetputA arrow operates on this state and is used to get an input

element from or to add an element to the state.

getputA :: BiArrow arr = StT [a] arr () a
getputA = St (get < put)
where
get ((), x:xs) = (x, xs)
put (x, xs) = ((), x:xs)

Since our shape operations are each others inverse, we only have

to specify one of them explicitly. We choose to define ¢h@bine
function by using the polytypic traversals introduced in section 4.1.

:: (Gmapl t, ArrowChoice arr, BiArrow arr) =
StT [a] arr (t () (t a)
combine = gmapl getputA

combine

:: (Gmapl t, ArrowChoice arr, BiArrow arr)=-
StT [a] arr (t a) (t ()
separate = inv combine

separate

The following example illustrates how we can useébine to
fill an empty tree structure with integers.

(toEp . unSt) combine
(Leaf () ‘Node' Leaf () ‘Node' Leaf (), [3, 4, 5])
—vyieldsLeaf 3 ‘Node‘ Leaf 4 ‘Node‘ Leaf 5

(toEp . unSt) separate
(Leaf 3 ‘Node' Leaf 4 ‘Node' Leaf 5)
—vyields(Leaf () ‘Node‘ Leaf () ‘Node‘ Leaf (),

—[3, 4, 51)

5. Polytypic (de)serialization

In this section we present an example of encode-decode pair of
functions that implement structure-based encoding and decoding
of data.

The packing function takes data and converts it into a list of bits
(Booleans), whereas the unpacking function recovers data from a
list of bits. The bit representation directly represents the structure
of data using onlystatic information (the type of the data), not
dynamicinformation (the value stored in a data structure), like
some other compression methods do.

The choice which conversion should be specified is again arbi-
trary. We pick the decoder, which reads the bits from the input, and
produces the original data structure. To obtain such a decoder for
any data type, we will give a polytypic specification.

Basic types, lik&€har andInt, are encoded with a fixed number
of bits. Although we could specify this primitive operation by
means of arrow combinators, it appears to be easier to define it
as a pure function, and to lift it to an arrow.

int2KBitsA :: BiArrow arr = Int — arr Int [Bool]
int2KBitsA k = int2bits k «+ bits2int k
where
int2bits O n =[]
int2bits k n = odd n:int2bits (k-1)
(n ‘div’ 2)
bits2int O bs =0
bits2int k (True:bs) = l+bits2int (k-1) bs*2
bits2int k (False:bs) = bits2int (k-1) bs*2

Now, the decoder for integers can be defined. It expects a list
of bits, which has to be taken from the state. This is done by first
producing the shape of the list and then by filling this list using the
combine arrow of the previous section.

decodelInt :: (ArrowChoice arr, BiArrow arr) =
Int — StT [Bool] arr () Int
decodeInt k = createShapeA k 3> combine

>> inv (int2KBitsA k)

createShapeA :: BiArrow arr = Int — arr () [()]
createShapeA size = create « etaerc
where

create () = replicate size ()

etaerc 1 | length 1 — size = ()

The encoder for integers is the dual of the decoder for integers:

:: (ArrowChoice arr, BiArrow arr) =
Int — StT [Bool] arr Int ()
encodeInt k = inv (decodeInt k)

encodelnt

The decoder defined as a polytypic function is:

decode{ft |arz]} :: (ArrowChoice arr, BiArrow arr,
decode{lt |arr[}) = StT [Bool] arr () t

decode{Unit[} = voidUnitA

decode{Int[} = decodeInt 32

decode{|Charl} = decodeInt 8 >> toEnum < fromEnum
decode{Booll} = getputA

decode{Prod a b} = dupVoidA
>> decode{ja]} s decode{b]}

>> prodA

decode{|Sum a b} = getputA >> bool2EitherA
>> decode{la]} H+ decode{b]}
>> sumhA

voidUnitA is the conversion between () afdit, dupVoidA du-
plicates the input (), andool2eitherA is the isomorphism be-
tween the boolean type and the co-product of voids.

voidUnitA :: BiArrow arr = arr () Unit
voidUnitA = (A() — Unit) < (AUnit — ())

dupVoidA :: BiArrow arr = arr () ((),
dupVoidA = (A() — ((), ())) < (MO,

bool2EitherA ::

)
0) — 0)
BiArrow arr =
arr Bool (Either () ())
bool2EitherA = bool2either «— either2bool

where

bool2either b = if b then Right ()
else Left ()

either2bool (Left ()) = False
either2bool (Right ()) = True

The polytypic decoder is programmed as follows.

e Sincelnit can be encoded with zero bits; the caseltairt just
returnslnit.

e The case for Booleans just reads one bit.

e The case for integers reads a 32-bit integer with help of the
integer decoder defined before.

in certain cases it can be used for the zipping example. To obtain a
useful implementation of this new class, section 6.3 adds a monadic
arrow transformer to our arsenal. As a short example, this monadic
bi-arrow is applied to theélaybe monad, which adds support of
graceful failure to the polytypic zip function. In section 7 we will
extend our collection of arrow classes further with a combinator
that, when applied to two arrows, will choose the second one if the
first one fails.

6.1 Partial polytypic zipping

First, we introduce a polytypic function that is closely related to the
polytypic traversals of section 4.1: polytypic zipping/unzipping. It
cannot deal with failure, which we will fix later on.

A binary zipping takes two structures of the same shape and
combines them into a single structure. Unzipping does the opposite.
In our bidirectional framework, we get unzipping for free if we
define zipping as a bi-arrow. This can be done as follows:

zip{a, b, clarr|} :: (ArrowChoice arr, BiArrow arr,
zip{la, b, clarrf}) = arr (a, b) ¢

zip{{Unit]} = inv dupUnitA
zip{Prod a bf}= unprod2A >> zip{laf}#=zip{b]} >> prodA
zip{Sum a b} = unsum2A >> zip{la[}-+Hzip{b[} >> sumA

dupUnitA :: BiArrow arr = arr Unit (Unit, Unit)
dupUnitA = (MWUnit — (Unit, Unit))
< (A(Unit, Unit) — Unit)

BiArrow arr =
arr (Prod a b, Prod ¢ d) ((a, c), (b, 4))

unprod2A ::

* The case for characters reads an 8-bit integer and converts intoynprod2a = dorp <> prod

a character.

e The case for pairs first makes two units out of one. Then it
applies the decoding componentwise.

¢ Finally, the case for the sum type first reads one bit to determine

whether the left of the right branch should be decoded next.

Using duality we get the encoder for free from the definition of
the decoder.

encode{lt |arr|} :: (ArrowChoice arr, BiArrow arr,
decode{Jt |arz[}) = StT [Bool] arr t ()
encode{[t]} = inv decode{t[}

For example, to encode a tree containing the integers 1, 2, and 3 we

simply write:

(toEp . unSt) encode{Tree Int[}

(Leaf 1 ‘Node' Leaf 2 ‘Node' Leaf 3, [])

The output consists of 101 bits: 96 for the integers and 5 bits for
the nodes and leaves of the tree structure.

6. Monadic programming with bi-arrows

Up to now, our examples did not have to deal with failure. Of
course, the decoding algorithm will not terminate properly if the

where
dorp (x1:x:x2, ylsky2) = ((x1, y1), (x2, y2))
prod ((x1, y1), (x2, y2)) = (xlx:x2, ylixy2)

BiArrow arr =
arr (Sum a b,Sum c d) (Either (a,c) (b,d))
unsum2A = mus < sum

unsum?2A ::

where
mus (Inl 11, Inl 12) = Left (11, 12)
mus (Inr rl, Inr r2) = Right (rl, r2)
sunm (Left (11, 12)) = (Inl 11, Inl 12)
sum (Right (r1, r2)) = (Inr rl, Inr r2)

Just asncode is the inverse ofiecode, we defineunzip as the
inverse ofzip.

unzip{t|arrf}:: (ArrowChoice arr, BiArrow arr, zip{[t[]})
= arr ¢ (a, b) — arr (t c) (t a, t b)
unzip{lt} £ = inv (zip{it} (inv £))

Note that this definition foeip is partial: when two structures
do not have the same shape the result of zipping these structures is
undefined. Obviously, the inverse of zipping is a total function.

input data does not correspond to a value, e.g., if some of the bitSyog, (unzip{|Tree]} ida)

are missing. For expressing the algorithm this was not essential, but

(Leaf (1, ’a’) ‘Node' Leaf (2, ’b’))

in a real application such an decoding function is not acceptable __yje|gs
because it might lead to uncontrolled termination. On the other __1q.f 1 ‘Node Leaf 2, Leaf ’a’ ‘Node‘ Leaf ’b’

hand, it is much harder to preserve invertibility if functions are able
to fail.

Sometimes it is necessary that zipping itself is total, i.e., it

In this section we present appropriate techniques to handle should check whether the input structures match and handle it

failure without losing invertibility completely. We first introduce
bi-arrow definitions for polytypic zipping/unzipping (section 6.1).
Then, we define the clagsrowZero (section 6.2) and show how

gracefully if not. This is usually done by returningiaybe value
in whichNothing indicates that the structures were not of the same
shape/size.

However, in this case the inverse, unzipping, becomes partial: if 6.3 Lifting monads to bi-arrows

zipping returnYNothing it is in general impossible to reconstruct
the non-matching argument structures.

6.2 Bi-arrows with zero
To deal with operations that can fail we use MeowZero class.

class Arrow arr = ArrowZero arr where
zeroArrow :: arr a b

The arrowzeroArrow is the multiplicative zero for composition
with pure (bi-)arrows, i.e.,

f>> zeroArrow= zeroArrow= zeroArrow>s> f

Clearly, this law excludes thatroArrow has an inverse. How-
ever, this does not imply that we completely lose invertibility when
zeroArrow iS used: in many cases tteft inverse of a failing op-
eration still exists. More formally, an arroy if left-invertible if
invf> f=1idA

The following derived combinatdf> (left-fanin), which is a
bidirectional variant of thd | | (fanin) arrow combinator, appears
to be convenient in combination witteroA.

(I>) :: (ArrowChoice arr, BiArrow arr) = —infixr4
arr a ¢ — arr b ¢ — arr (Either a b) c
fl>g=1f ++ g >> untagRA

untagRA :: BiArrow arr = arr (Either a a) a
untagRA = id ‘either' id < Right

From this definition we cannot conclude directly that it is in-
vertible, becaused ‘either' idis notthe inverse diight and,
therefore, the occurrence ef in untagRA is not invertible. We call
this combinatorright-biassedbecause, in the reverse direction, it
always yieldRight. Nevertheless, we can show that fbecombi-
nator preserves left-invertibility. More specifically, it can be shown
that the arrowf ||> g is left-invertible if g is left-invertible. Anal-
ogously, it follows that left-biassed combinators preserve right-
invertibility.

We can use the new combinatfj> with zeroA to extend
zip with explicit failure. In fact, the only polytypic instance that
changes is the one f@um, see below. Additionally, we must add
theArrowZero class as a context restriction to the typezop.

zip{la, b, clarr]} :: (ArrowZero arr, ArrowChoice arr,
BiArrow arr, zip{la, b, clarrf}) =
arr (a,b) c

zip{|Sum a bl} = unsum2FA
>> zeroArrow ||> (zip{la]} H+ zip{bf})

>> sumA

unsum2FA = mus < sum

where
mus (Inl 11, Inl 12) = Right (Left (11, 12))
mus (Inr r1, Inr r2) = Right (Right (rl, r2))
mus (s1, s2) = Left (s1, s2)
sum (Right (Left (11, 12))) = (Inl 11, Inl 12)
sum (Right (Right (r1, r2))) = (Inr rl, Inr r2)
sum (Left (s1, s2)) = (s1, s2)

Now the adaptonnsum2FA tags the result with an additional

sum constructor to indicate whether the constructors matched. In

particular, it use®ight in case both constructors were identical,
andLeft if they were different. In the latter case theroArrow
branch of||> is chosen, whereas in the first case the ‘normal’
zip{lal} H+ zip{lbf} is performed.

To be able to applgip to concrete data structures we need appro-
priate instances for our arrow classes, includirgowZero.

A convenient and flexible way to manage failures, but also
to implement other concepts such as non-determinism and states,
is obtained by using monads. Monadic arrows are arrows that
represent monadic computations.

The goal of this section is twofold: to show how we deal with
monadic arrows in the bidirectional arrow framework and to pro-
vide the basis for handling failures.

We use the same classes for monads that can be found in Haskell
[10]. The basic monad is defined with theturn andbind opera-
tions:

class Monad m

where
return :: a — m a
(>>) ::ma—(a—>mb) >mb

The plus monad will be used to support failures of monadic
arrows, and also to implemedhoices

class Monad m = MonadPlus m where
mzero :: m a
mplus :: ma —wma —ma

Usually, the Kleisli arrow transformer is used to represent
monadic computations [11, 13], which is defined on a monad
as follows:

newtype K m arr a b=X {unK :: arr a (m b)}

However, this arrow is not suitable for our purposes, because
it is not possible to define an instanceioefr on it: it handles the
argument and result asymmetrically. As symmetrical version of the
Kleisli transformer can be obtained by adjusting the argument type
in the definition ofk as follows:

newtype MoT m arr a b =Mo {unMo :: arr (m a) (m b)}

The instances ofirrow, BiArrow and ArrowChoice on MoT
require that we are able to traverse the underlying monad. This will
be done by using the polytypic mappiagapl from section 4.1.

However, this limits the choice far to data types, because it is
impossible to instantiatémapl for function types. In the instance
definitions we use the auxiliary arro$rstMA andleftMA based
on the monadigoin andreturn operations.

instance (Gmapl m, Monad m, ArrowChoice arr,
BiArrow arr) = Arrow (MoT m arr) where
arr = arrA
f > g=0Mo (unMo f >> unlMo g)
first £ = Mo (inv firstMA >>
gmapl (first (unMo f))
>> firstMA)
second = secondA
instance (Monad m, ArrowChoice arr, BiArrow arr,
Gmapl m) = ArrowChoice (MoT m arr) where
left £ = Mo (inv leftMA >>
gmapl (left (unMo f))
S leftMA)
right = rightA
instance (Gmapl m, Monad m, ArrowChoice arr,
BiArrow arr) = BilArrow (MoT m arr) where
f > g=Mo (1iftM f < 1iftM g)
inv £ = Mo (inv (unMo f))

with

firstMA :: (Monad m, BiArrow arr) = Another difference is that the parser is not completely deter-

arr (m (m a, b)) (m (a, b)) mined by the type of the term it parses. It is because it needs to
firstMA = joinP «» splitP parse extra spaces, parentheses etc. Consequently, we cannot ex-
where pect that the resulting parser is (lefitd right) invertible, because
joinP = (=<) (A(mx, y) — mx >= &x — different input sentences, may lead to the same result.
return (x, y)) Analogously to encode-decode, we define the parser and derive
splitP = (=) (A(x, y) — return the corresponding pretty-printer. So, the programmer does not need
(return x, y)) to write the complete pretty-printer code.
leftMA :: (Monad m, BiArrow arr) = 7.1 The plus arrow
arr (m (Either (m a) b)) (m (Either a b)) Failure of parsers is handled by therouZero. What we still need
leftMA = joinS « splitS is a combinator that, when applied to two parsers, will choose the
where second in case the first one fails.
joinS = (<) ((=X) (return . Left) We therefore introduce one further arrow class, comparable to
‘either' (return . Right)) theMonadP1us class of monadic parser combinators.
splitS = (=<) ((return . Left . return)
‘either' (return . Right)) class ArrowZero arr = ArrowPlus arr where
(<») :: atrr a b — arr a ¢ — arr a (Either b c)

1iftM :: Monadm = (a - b) ma —-mbd

In contrast to the Haskell's arrow plus combinater>, our
1iftM f m = m >= Ax — return (f x) p '

combinator tags its result so we can still see which parser has been

Here we should mention that invertibility ofirstMA and chosen.
leftMA depends on the underlying monad. E.g. for thgbe As said before, if possible the|> chooses a non-failing com-
monad it can be shown that bothrstMA andleftMA are invert- putation. This is expressed by the law

ible; for the list monad this does not hold.

One of the purposes of the monadic arrows is to handle failures.
The zero monadic arrow is defined with helpmagro. The implementation ofrrowZero andArrowPlus for the state
arrow is straightforwardli£tLSA has been defined in section 4.2).

zeroArrow<]> f = f = f <|> zeroArrow

instance (Gmapl m, MonadPlus m, ArrowChoice arr,
BiArrow arr) = ArrowZero (MoT m arr) where instance (ArrowZero arr, BiArrow arr) =
zeroArrow = Mo (const mzero « const mzero) ArrowZero (StT s arr) where

. . zeroArrow = St (first zeroArrow
To illustrate the use of the monadic arrow we return to our ()

generic zipping function. For example, combining the information

. instance (ArrowPlus arr, ArrowChoice arr,
of two trees is successful:

BiArrow arr) = ArrowPlus (StT s arr) where
(toEp . unM) (zip{Tree[} idA) f <[> g==St (unSt £ <[> unSt g >> inv 1iftLSA)
(Just (Leaf 1 ‘Node' Leaf 3, Leaf 2 ‘Node‘' Leaf 4))

_VieldsJust (Leaf (1,2) ‘Node® Leaf (3,4)) InstantiatingArrowPlus for the monadic arrow is much more

complex. We defer its definition until the end of this section.
And if we try to combine two trees with different shape, it yields

themzero: 7.2 A concrete parser
(toEp . unMo) (zip{[Tree} idA) As in the previous sections, we will use a combination of the

' (Just (Leaf 1 ‘Node' Leaf 3, Leaf 2)) state and monadic arrows to build a concrete example parser. The
—yieldsNothing ' resulting syntax tree is represented by the data structure.

data Expression = App Expression Expression
. T | Nested Expression
7. Parsing and pretty-printing | Lambda String Expression
In this section we show how to define a parser based on our re- | Variable String
versible arrow combinators. Again, we will get the inverse, a pretty- | Constructor String
printer, for free. - .
We give an example of a parser for a very simple functional Observe that the syntax tree explicitly stores whether an expression

language, specified by the following grammaBiNF notation. was enclosed by brackets. This is done to ensure that, when printing
a parsed expression, brackets are displayed correctly.

<Expression> ::= <Expression> <Expression> To abstract from the parsing issues at the lexical level, we

| (" <Expressionm> ")” assume a separated scanner/lexer and that the parser will work on a

| "A" <Variable> "—" <Expression> list of tokens. This leads to:

| <Variable>

| <Constructor> data Token = Id_T String | Lambda_T | Open_T

| Close_T | Arrow_T | EOF_T deriving Eq

<Variable> 1= <String>
<Constructor> : := <String> type Parser arr t = StT [Token] arr () t

o] type Printer arr t = StT [Token] arr t ()
The main difference between the decoder of section 5 and a

parser is that the decoder does not have to choose between alterna7-
tives, since its action for the sum type is solely depends on the next
input bit. The parser presented in this section will try alternatives Before defining a parser for expressions, we introduce two auxiliary
to see, which of them succeeds. parsers to examine the input tokens.

.3 Parsing keywords

The first oneparseKeyword, tries to read a given token from
the input stream. If it succeeds, this token is delivered as result; if
not, the parser fails. As with the zip example of section 6.3 we use

|[> in combination withzeroArrow to handle failure.

parseKeyword token = getputA >> tagTokenA
>> zeroArrow > idA
where
tagTokenA = test < id ‘either' id
test t = if t =— token then Right t
else Left t

toLambda (((-, v), -), e) = (v, e)
fromLambda = const Lambda_T ‘split’ fst
‘split’ const Arrow_T ‘split‘ snd

parseNested = parseKeyword Open_T
<&> parseExpression
<&> parseKeyword Close_T
>> toExp < fromExp
where
toExp ((-, e), -) =e
fromExp e = ((Open_T, e), Close_T)

The second one examines the input list to see whether the next

token is an identifier. Moreover, to distinguish variables (starting parseVariable
with a lower casechar) from constructors (starting with a upper

casechar) this parser is parameterized with a predicate. The parser
succeeds in case of an identifier token fulfilling the predicate. Then

the identifier itself is returned, otherwise the parser fails.

parseldentifier p = getputA >> tagIDA p
>> zeroArrow |> idA
where
tagIDA p = taglD p <« id ‘either' Id_T

tagID p (Id_T name) | p name = Right name
tagID _ token = Left token

7.4 Parsing expressions

The grammar of our input language is left-recursive, and hence can-
not be directly translated into a parser. We introduce an intermedi-
ate function for parsing expressions (caledmg which are no

applications.

parseTerm = parseNested

<[> parseLambda

<[> parseVariable

<[> parseConstructor

>> toExp < fromExp

where
toExp = Nested ‘either' (uncurry Lambda
‘either' (Variable ‘either' Constructor))

fromExp (Lambda var exp) =

Right (Left (var, exp))
fromExp (Variable var) =

Right (Right (Left var))
fromExp (Constructor c) =

Right (Right (Right c))
fromExp (Nested nested) = Left nested

= parseldentifier (isLower . head)
parseConstructor = parseldentifier (isUpper . head)

The parser for applications takes some more doing. It first reads
a list of terms and converts this into a tree of binary applications.

We introduce a functiorparseOneOrMore to parse a list of
elements that, when applied to a parsgries to parse one or more
p-elements.

parseOneOrMore p = p <&> parseOneOrMore p <[> p
>> untag <« tag

where
untag (Left (x, (y, 1))) = (x, y:1)
untag (Right x) =(x, [])

tag (x, y:1) = Left (%, (y, 1))
tag (x, []) =Right x

Note that thiparseOneOrMore Will try to find the longest list.
The parser for expressions can now be expressed easily.

parseExpression = parseOneOrMore parseTerm
>> uncurry to_apply <« from_apply |]
where
to_apply app [] = app
to_apply app (x:xs) = to_apply (App app x) xs

from_apply 1 (App f a) = from_apply (a:1) £
from_apply 1 t =(t, 1

Finally, the pretty-printer for expressions is obtained by taking
the inverse of the parser.

parse :: (ArrowPlus arr, ArrowChoice arr,
BiArrow arr) = Parser arr Expression
parse = parseExpression <&> parseKeyword EOF_T>>>eofA
where
eofA = fst « (A&x — (x, EOF_T))

parseTerm combines parsers for all expression kinds by using print :: (ArrowPlus arr, ArrowChoice arr,

the arrow plus combinator. The result, tagged with varibests
andRights, is converted by the adaptes_expr « from_expr

into the corresponding part of the syntax tree.

For parsing consecutive elements, we use an helper combinato

based on«+ and thedupvoidA arrow defined in section 5.

(<&>) :: BiArrow arr = —infixI 6
arr () a —» arr () b — arr () (a, b)
f <&> g = dupVoidA >> f e g

parseLambda = parseKeyword Lambda_T
<&> parseVariable
<&> parseKeyword Arrow_T
<&> parseExpression
>> tolambda <« fromLambda
where

BiArrow arr) = Printer arr Expression
print = inv parse

r7.5 A monadic plus arrow

Before we can really use our parser we have to provide an appro-
priate implementation of the plus arrow.
More specifically, we need an instance definitiomafowPlus
for the monadic arrow transform#r Of course, this instance will
be based on theplus of the underlying monad.

instance (Gmapl m, MonadPlus m, ArrowChoice arr,
BiArrow arr) = ArrowPlus (MoT m arr) where
1 <[> r=Mo (dupMA >
(unMo 1 >> inlMA) sk (unMo r > inrMA)
>> inv dupMA)

The adapter arrowduplMA, in1MA and inrMA are defined as
follows.

dupMA :: (MonadPlus m, BiArrow arr) =
arr (m a) (m a, m a)
dupMA = (Ax — (x, x)) < uncurry mplus
inlMA :: (MonadPlus m, BiArrow arr) =
arr (m a) (m (Either a b))
inlMA = inlM <« uninlM
where
inlM = (=) (return . Left)
uninlM = (=X) (return ‘either’ const mzero)
inrMA :: (MonadPlus m, BiArrow arr) =
arr (m a) (m (Either b a))
inrMA = inrM < uninrM
where
inrM = (=X) (return . Right)
uninrM = (=X) (const mzero ‘either’' return)

The adapterdupMA is in generalnot invertible, because the
arguments of— are obviously not each others inverse. This means
that the instance of|> is also not invertible, because it defined in
terms ofdupMA andinv duplA.

Consequently, when defining an operation using this instance
of <> one does not get invertibility for free, i.e. it is no longer
sufficient to prove that all pairs of pure functions lifted with

the list monad instead of the maybe monad. This list monad is a
standard implementation of the monad class. So, the only thing we
have to change for our example is the type!

(toEp . unMo . unSt) parse (return ((), tokens))

:: [(Expression, [Token])]
Running this expression with the following list of tokens

tokens = [Lambda_T, Id_T "X”, Arrow_T, Id_T "X”,
Lambda_T, Id_T "y”, Arrow_T, Id_T "y”,
EOF_T]

will now yield two expressions:

App (Lambda "X” (Variable "X"))
(Lambda "y” (Variable "y"))

and

Lambda "X” (App (Variable "X")
(Lambda "y" (Variable "y")))

8. Related Work

This work is inspired by Jansson and Jeuring [13, 12] who define
polytypic functions for parsing and pretty-printing and then prove
invertibility. They maintain invertibility using pairs of separate def-
initions, leading to many proof obligation for the programmer. In
contrast, we use one single definition for both conversion directions
using invertibility preserving combinators. As a result we only have

are each others inverse. To show correctness, global reasoning i40 Prove invertibility for the primitives that are used. Furthermore,

required.
In practice, this may imply that the inverse of the operation

needs to be fine-tuned in order to produce the expected result. In

particular this holds for our parser example. Tleted construc-

our approach is not limited to the example of parsing nor to the use
of polytypic functions.

Invertibility is an important practical property used in many
algorithms. For instance, it plays an important role in the database

tor was added to the syntax tree to be able to reconstruct the brack-world where one has to ensure that any change in a view domain

ets that were used to disambiguate expressions.

7.6 Parser/printer examples
Suppose we have the following list of input tokens:

tokens = [Open_T, Lambda_T, Id_T "X", Arrow_T,
I4_T "X", Close_T, Lambda_T, Id_T "y”,
Arrow_T, Id_T "y", EOF_T]

To parse this and convert it into an expression, we write:

(toEp . unMo . unSt) parse (return ((), tokens))

: Maybe (Expression, [Token])
And if we want to print the expression:

expr = App (Nested (Lambda "X” (Variable "X")))
(Lambda "y" (Variable "y"))

we simply write:

(toEp . unMo . unSt) print (return (expr, []))

:: Maybe ((), [Token])

The Maybe-monad does not reveal that the expression parser is
ambiguous.

Suppose we leave out tNested constructor in the last example
expression. Printing this expression will lead to a list of tokens
not containing the open and close brackets anymore. Our parse
will still be able to parse this list but it will not produce the same
expression we have started with: thgp will occur inside the first

lambda expression. The reason is that our parser only delivers one9

successful parse.
However, in our framework it is very easy to change the parser

r

leads to a corresponding change in the underlying data domain.

To ensure this property, Foster et. al. [5] present a domain-
specific programming language in which all expressions denote
bi-directional transformations on trees. They use two functions, a
get function for extracting an abstract view from a concrete one,
and a put function that creates an updated concrete view given the
original concrete view and the updated abstract view. Using the
proper get and put functions, invertibility is guaranteed.

For similar purposes Mu et al. [20] define a programming lan-
guage in which only injective functions can be defined, thus guar-
anteeing invertibility. Again put and get functions are defined, but
the crux here is to do some bookkeeping when doing a get such that
a put can always be made invertible.

A different approach is taken by Roberti@®k and Masahiko
Kawabe [6, 7]. They try to construct the inverse function from the
original one automatically. They use a symmetrical representation
for functions such that the inverse function can be constructed by
interpreting the original function backwards. Our arrow combina-
tors have a representation with this same property. The main dif-
ference with our work is we obtain the inverse function by con-
struction while they try to automatically generate an inverse func-
tion from the original one. They use LR-parsing techniques and
administrative bookkeeping to invert choices made by conditional
branches in the original function.

There is a lot of work about invertingxistingprograms, both
functional and imperative, see for example: Dijkstra [4], Chen [2],
and Ross [19]. Our approach is more hands-on and focusses on
constructing (parts of) programs in an invertible way.

Conclusions and Future Work
We feel that we have provided an interesting framework in the area

in such a way that it delvers all successful parses, namely, by usingof invertible programming.

We have extended arrows to bidirectional arrows, bi-arrows, that [16] R. Paterson. Arrows and Computation. In J. Gibbons and O. de Moo,

preserve invertibility properties. We have presented several invert- editors, The Fun of Programming, A symposium in honour of
ible bi-arrow transformers. Bi-arrows were used in a monotypic and Professor Richard Bird's 60th birthdaypages 201-222, Oxford,
in a polytypic context. We introduced ways to deal with state and 2003. Palgrave.

with monads. A concrete parser/pretty printer example was pre- [17] S. Peyton Jones and Hughes J. et aReport on the pro-
sented with a discussion of its properties. gramming language Haskell 98 University of Yale, 1999.

For future work we want to provide full formal proof that the hitp:/iwww.haskell.org/definition/.
framework preserves invertibility properly. Furthermore, we will ~ [18] R. Plasmeijer and M. van Eekeleoncurrent CLEAN Language
investigate whether the approach scales up to real world practical Report (version 2.0December 2001. http:/www.cs.rumlean/.
examples where invertibility properties are a requirement. Among [19] B. Ross. Running programs backwards: the logical inversion of
other things this will require creating a translation scheme similar g]??f’;{fg“’l% clcggp;utanon.Formal Aspects of Computing Journal
to Paterson notation in such a way that the required properties are : ' ’

; : [20] Z. H. S-C. Mu and M. Takeichi. An algebraic approach to
preserved, and that programs are easier to read and write. bidirectional updating. InThe Second Asian Symposium on

Programming Language and Systemslume 3302 oLNCS pages
Acknowledgments 2-18. Springer, 2004.

We would like to thank the anonymous referees of an earlier version [21]1 P- Wadler. Monads for functional programming. In M. Broy, editor,
of this paper for their helpful comments. Program Design Calculi: Proceedings of the 1992 Marktoberdorf

International Summer Scho@pringer-Verlag, 1993.

References

[1] A. Alimarine and R. Plasmeijer. A Generic programming extension
for Clean. In T. Arts and M. Mohnen, editofBhe 13th International
workshop on the Implementation of Functional Languages, IFL'01,
Selected Paperpages 168-18@&\lvsjo, Sweden, Sept. 2002.

[2] W. Chen and J. T. Udding. Program inversion: more than f8aoi.
Comput. Program.15(1):1-13, 1990.

[3] A. Courtney and C. Elliott. Genuinely Functional User Interfaces. In
Proceedings of the 2001 Haskell Worksh8pptember 2001.

[4] E. W. Dijkstra. Program inversion. IRrogram Constructionpages
54-57,1978.

[5] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bi-directional tree transformations: A
linguistic approach to the view update problem.AGM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(POPL), Long Beach, Californj&2005. Extended version available
as University of Pennsylvania technical report MS-CIS-03-08. Earlier
version presented at théorkshop on Programming Language
Technologies for XML (PLAN-X2004.

[6] R. Gluck and M. Kawabe. Derivation of deterministic inverse
programs based on Ir parsing. 2998:291-306, 2004.

[7] R. Gluck and M. Kawabe. Revisiting an automatic program inverter
for lisp. volume 40, pages 8-17, New York, 2005. ACM Press.

[8] R. Hinze and S. Peyton Jones. Derivable type classes. In G. Hutton,
editor, Proceedings of the 2000 ACM SIGPLAN Haskell Workshop
volume 41.1 of Electronic Notes in Theoretical Computer Science.
Elsevier Science, Aug. 2001. The preliminary proceedings appeared
as a University of Nottingham technical report.

[9] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows,
Robots, and Functional Reactive Programming. In J. Jeuring and
S. Peyton Jones, editor8dvanced Functional Programming, 4th
International Schoglvolume 2638 o£ NCS Oxford, 2003. Springer.

[10] P. Hudak, J. Peterson, and J. Fasel. A gentle introduction to Haskell
98. http://lwww.haskell.org/tutorial/, 1999.

[11] J. Hughes. Generalising monads to arrov@&ience of Computer
Programming 37(1-3):67-111, 2000.

[12] P. Jansson and J. Jeuring. Polytypic compact printing and parsing.
In S. D. Swierstra, editoRroceedings 8th European Symposium on
Programming, ESOP’99, Amsterdam, The Netherlands, 22—-28 March
1999 volume 1576, pages 273-287. Springer-Verlag, Berlin, 1999.

[13] P. Jansson and J. Jeuring. Polytypic data conversion programs.
Science of Computer Programmim(1):35—75, 2002.

[14] A. Loh, D. Clarke, and J. Jeuring. Dependency-style Generic
Haskell. InProceedings of the eighth ACM SIGPLAN International
Conference on Functional Programming (ICFP’0Pages 141-152.
ACM Press, 2003.

[15] R. Paterson. A new notation for arrows. Iernational Conference
on Functional Programmingpages 229-240. ACM Press, Sept. 2001.

