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Abstract. It is important to be able to program GUI applications in a
fast and easy manner. Current GUI tools for creating visually attractive
applications offer limited functionality. In this paper we introduce a new,
easy to use method to program GUI applications in a pure functional
language such as Clean or Generic Haskell. The method we use is a refined
version of the model-view paradigm.
The basic component in our approach is the Graphical Editor Component
(GECτ ) that can contain any value of any flat data type τ and that can
be freely used to display and edit its value. GECτ s can depend on others,
but also on themselves. They can even be mutually dependent. With
these components we can construct a flexible, reusable and customizable
editor. For the realization of the components we had to invent a new
generic implementation technique for interactive applications.

1 Introduction

Making an attractive Graphical User Interface (GUI) for an application is not
an easy task. One can of course use the GUI library offered by the operating
system (Windows, Mac, Linux). These GUI libraries are powerful (they determine
what is possible on a particular OS), but the offered level of abstraction is in
general rather low. Therefore, most people will prefer to use a visual editor as
offered by many commercial programming environments. Such tools are very
user friendly at the expense of offering limited functionality. One still has to
combine the graphical elements made with the visual editor with the program
code for handling the actual GUI events. Inherently, graphical representations
that depend on run-time data cannot be drawn in advance. Summarizing, a
visual editor is a good tool for certain simple GUI applications, but for more
complicated ones one still has to struggle with low level programming code.

For dealing with more complicated applications in a simpler way, we want to
define GUIs on a higher level of abstraction. Modern, pure functional program-
ming languages enable the definition and construction of high abstraction levels.
The Object I/O library [1] is probably the largest GUI library available for pure
functional languages. GUI applications can be defined in Object I/O in a plat-
form independent way. The Object I/O library has been defined in Clean and is
currently available for Windows and MacOSX. A subset has been ported to Linux
[11]. Object I/O has been ported to Haskell by Peter Achten and Simon Peyton
Jones [2] and Krasimir Angelov [4]. Recently, it has become possible to combine



Haskell programs with Clean programs [12, 10]. Hence, in various ways Object I/O
is nowadays available for a large community of pure functional programmers.

In Clean, impressive GUI applications have been made using Object I/O: e.g.
the Clean IDE (including a text editor and a project manager), 2D-platform
games, and the proof assistant Sparkle. The latter application in particular
demonstrates the expressive power of Object I/O.

We have experienced that GUI elements such as dialogs, menus, and simple
windows are relatively easy to define on a high level of abstraction. An applica-
tion like the proof assistant Sparkle requires much more knowledge of the Object
I/O primitives. In Sparkle [9], an action in one window (e.g. the completion of
the proof of a theorem) has many consequences for the information displayed in
the other windows (e.g. the list of completed theorems). Sparkle in this respect
resembles the behavior of applications that are made with the well-known model-
view paradigm [18]. The message passing primitives of Object I/O can handle
such a complicated information flow. However, the learning curve to program
such complicated mutual influences is rather steep.

Clearly, we need better tools to construct GUI applications on a high level of
abstraction. However, we require that these tools are not as restrictive as stan-
dard GUI builders. Furthermore, we want to be able to create GUI applications
in a versatile way. On the one hand it must be easy to combine standard com-
ponents and on the other hand these components should be easily customized
to adapt to our wishes.

In this paper we fulfill this need by introducing a new way for constructing
GUI elements that respond to the change of other GUI elements. Proper cus-
tomization requires a rigid separation of value versus visualization, and has lead
to a refined version of the model-view paradigm (but note that at this moment
only one view is supported). The basic idea is the concept of a Graphical Editor
Component (a GECτ ) with which one can display and edit values of any flat1

type τ . Any change in a value is directly passed to all other GECs that depend
on the changed value. Using generic programming techniques, a GECτ for a con-
crete (user defined) type τ can be generated automatically. Apart from defining
the data type and customization definitions almost no additional programming
effort is needed. For applications in which the particular look is less of an issue, it
is even sufficient to provide only the data type. This makes it an excellent tool for
rapid prototyping. All low level communication that is required to accomplish the
information flow between the graphical elements, is taken care of by the system.
The proposed technique is universal, customizable and compositional. Moreover,
it is a novel application of generic programming [13, 8].

In Sect. 2 we present the basic idea of a GECτ . Sect. 3 shows how these
GECτ s can be combined to construct more complicated GUIs. In Sect. 4 we re-
veal how a GECτ is implemented using generic programming techniques. Sect. 5
explains how a GECτ can be customized to display its components in an alterna-
tive way. Thereafter, we will discuss related work. Finally, we draw conclusions
and point out future work.

1 A flat type is a type that does not contain any function types.



2 The concept of a Graphical Editor Component

We want to be able to make complicated GUI applications with minimal program-
ming effort. The basic building block of our method is a customizable Graphical
Editor Component (GECτ ), which we can generate automatically for any flat
type τ . More precisely, a GECτ is a generated function that contains a value of
type τ and creates a visual component that:

1. can be used by a programmer to automatically display any value of type τ ;
2. can be used by the application user to view and edit a value of type τ ;
3. can be customized by a programmer such that its elements can be displayed

in an alternative way;
4. can communicate any value change made by the user or by the program to

any other component that depends on that change.

It is important to note that a GECτ is a very general component: in languages
such as Clean and Haskell, every expression represents a value of a certain type.
Since a GECτ can display any value of type τ , it can also be used to display any
object (expression) of that type. Each GECτ is completely tailored to its type
τ . It guarantees that each value edited is well-typed.

2.1 Interactive functional programming

Before continuing, we have to make a few remarks for people unfamiliar with
functions that perform I/O in Clean. (Generic programming in Clean is explained
in Sect. 4.1.) Object I/O uses an explicit environment passing style [1] supported
by the uniqueness type system [5] of Clean. Consequently, any function that
does something with I/O (like mkGEC in Sect. 2.2) is an explicit state transition
function working on a program state (PSt st) returning at least a new pro-
gram state. (In this paper the identifier env will be a value of this type.) The
uniqueness type system of Clean will ensure single threaded use of such a state.
In the Haskell variant of Object I/O, a state monad is used instead. Uniqueness
type attributes that actually appear in the type signatures are not shown in this
paper, in order to simplify the presentation.

2.2 Creating GECτ s

In this section we explain in general terms what the generic function to create
GECτ s, mkGEC, does. In the next section we will show how mkGEC can be used
to connect different GECτ s.

In order to create a GECτ one only has to apply the generic function mkGEC
which has the following type:

generic mkGEC t :: [GECAttribute] t (CallBackFunction t (PSt ps)) (PSt ps)

->2 (GEC t (PSt ps), PSt ps)

2 The Clean type a b -> c is equivalent to the Haskell type a -> b -> c.



:: CallBackFunction t env :== t -> env -> env

Hence, in order to call mkGEC the following arguments have to be provided:

– a GECAttribute list controlling behavioral aspects. In this paper we restrict
it to two data constructors: OutputOnly and BelowPrev,

– an initial value of type t,
– a call-back function defined by the programmer that will be called automat-

ically each time the value of type t is edited by the user or by the program,
– the current unique state of the program.

The function mkGEC returns

– a record (GEC) containing methods that can be used to handle the newly
created GECt component for type t, and

– the new unique program state (as usual for I/O handling functions in Clean).

:: GEC t env = { gecGetValue :: env -> (t,env)

, gecSetValue :: t -> env -> env

}

The GEC record that is returned contains several other useful methods for a
program that are not shown above. These are methods to open and close the cre-
ated GECτ or to show or hide its appearance. For application programmers the
methods gecGetValue and gecSetValue are the most interesting. The method
gecGetValue can be used to obtain from the GECτ component the currently
stored value of type τ . The method gecSetValue can be used to set a new value
in the corresponding GECτ .

When the user of the application changes the content of a GECτ , the cor-
responding call-back function will be automatically called with the new value.
This call-back function can be used to store new values in other GECτ s using
the gecSetValue method of these GECτ s as will be demonstrated in Sect. 3.

The appearance of a standard GECτ is illustrated by the following example.
Assume that the programmer has defined the type Tree a as shown below and
consider the following application of mkGEC:

:: Tree a = Node (Tree a) a (Tree a) | Leaf

mkGEC [] (Node Leaf 1 Leaf) identity3 env

This defines a window containing the GECTree Int displaying the indicated
initial value (see Fig. 1). The application user can edit this initial value in any
desired order thus producing new values of type Tree Int. Each time a new
value is created, the call-back function identity is called automatically. In this
example this has no effect (but see Sect. 3). The shape and lay-out of the tree



Fig. 1. The initial Graphical Editor Component for a tree of integers (Left) and a
changed one (Right: with the pull-down menu the upper Leaf is changed into a Node).

being displayed adjusts itself automatically. Default values are made up by the
editor when needed.

Notice that a GECτ is strongly typed. Only well-typed values of type τ can
be created with a GECτ . Therefore, with a GECTree Int the user can only create
values of type Tree Int. If the user makes a mistake, for instance by typing
an arbitrary string into the integer box, the previous displayed integer value
is restored. Any created editor also includes many other features for free, such
as: automatic scroll facilities, an automatic hint box showing the type of any
displayed item, and the option to hide and show any part of a data structure.
All of this is generated completely given a type τ .

3 Combining Graphical Editor Components

In this section we will give some small examples how GECτ s can be combined. A
simple combination scheme is the following. If one GECτ B depends on a change
made in a GECσ A, then one can pass GECτ B to the call-back function of A.
Each time A is changed, its call-back function is called automatically and as a
reaction it can set a new value in B by applying a function of type σ → τ . Below,
conform this scheme, two such GECτ s are created in the function apply2GECs
such that the call-back function of GEC A employs GEC B.

apply2GECs :: (a -> b) a (PSt ps) -> (PSt ps)

apply2GECs f va env

#4 (GEC_B, env) = mkGEC [] (f va) identity env

# (GEC_A, env) = mkGEC [OutputOnly,BelowPrev] va (set GEC_B f) env

= env

set5 :: (GEC b (PSt ps)) (a -> b) a (PSt ps) -> (PSt ps)

set gec f nva env = gec.gecSetValue (f nva) env

3 In several examples identity will be used as a synonym for const id.
4 The #-notation of Clean has a special scope rule such that the same vari-

able name can be used for subsequent non-recursive #-definitions.
5 This function set will also be used in other examples.



With these definitions, apply2GECs toBalancedTree [1,5,2,8,3,9] env,
results in two GECτ s. One for a [Int], and one for a Tree Int. Assuming
that toBalancedTree is a function that transforms a list into a balanced tree,
any change made by the user to the displayed list6 will automatically result
into a corresponding re-balanced tree being displayed (see Fig. 2). In order to
emphasize the functional dependency of the tree editor, it can not be edited by
the user (controlled by the GECAttribute OutputOnly.)

Fig. 2. A window that contains a non-editable GECTree Int which shows the effect of
applying the function toBalancedTree after any user editing performed on GEC[Int].

As this example demonstrates, combining GECτ s is very easy. One GECτ

can have an effect on arbitrary many GECτ s including itself! Consider:

selfGEC :: (a -> a) a (PSt ps) -> (PSt ps)

selfGEC f va env = new_env

where7 (thisGEC,new_env) = mkGEC [] (f va) (set thisGEC f) env

Initially, this function displays the effect of applying a given function f to a
given value va of type a. Any change a user makes using the editor automatically
causes a re-evaluation of f to the new value thus created. Consequently, f has to
be a function of type a → a. For example, one can use selfGEC to display and
edit a balanced tree. Now, each time the tree is edited, it will re-balance itself.
6 A Clean list is internally represented with the constructors Nil and Cons.
7 The #-notation can not be used here since the definition of selfGEC is recursive.



Notice that, due to the explicit environment passing style, it is trivial in Clean
to connect a GECτ to itself. In Haskell’s monadic I/O one needs to tie the knot
with fixIO.

In a similar way one can define mutually dependent GECτ s. Take the fol-
lowing definition of mutualGEC.

mutualGEC :: a (a -> b) (b -> a) (PSt ps) -> (PSt ps)

mutualGEC va a2b b2a env = env2

where (GEC_B,env1) = mkGEC [] (a2b va) (set GEC_A b2a) env

(GEC_A,env2) = mkGEC [BelowPrev] va (set GEC_B a2b) env1

This function displays two GECτ s. It is given an initial value va of type
a, a function a2b :: a → b, and a function b2a :: b → a. The GEC A ini-
tially displays va, while GEC B initially displays a2b va. Each time one of the
GECτ s is changed, the other will be updated automatically. The order in which
changes are made is irrelevant. For example, the application mutualGEC {euros
= 3.5} toPounds toEuros will result in an editor that calculates the exchange
between pounds and euros (see Fig. 3) and vice versa.

exchangerate = 1.4

:: Pounds = {pounds :: Real}

:: Euros = {euros :: Real}

toPounds :: Euros -> Pounds

toPounds {euros} = {pounds = euros / exchangerate}

toEuros :: Pounds -> Euros

toEuros {pounds} = {euros = pounds * exchangerate}

Fig. 3. Mutually dependent GECPounds and GECEuros in one window.

The example of Fig. 3 may look a bit like a tiny spreadsheet, but it is es-
sentially different since standard spreadsheets don’t allow mutual dependencies
between cells. Notice also the separation of concerns: the way GECτ s are coupled
is defined completely separate from the actual functionality.

4 Implementation Design of GEC�s

Although the implementation of the system is not very big (1800 loc for the
implementation modules, including comments and tracing statements) it is not
possible to describe all relevant implementation aspects in this paper. We restrict
ourselves to the key aspects of the design.



4.1 Generic Functions

Recently, generic functions have been added to Clean [3]. A generic function is
an ultimate reusable function that allows reflection on the structure of any data
in a type safe way. It is not a single function, but actually a special kind of
overloaded function. One might be tempted by the idea to design some suitable
universal type, and define generic functions on values of this type, and convert
the changed value back to the actual type. However, it is a fundamental property
of the language that (without some kind of reflection) there cannot exist a single
universal type with which values of any type can be represented.

Instead, the types used by generic function definitions approximate the uni-
versal type idea. They do not constitute a single type but a family of types. Each
concrete user defined type is represented by a different combination of members
of this generic type family. Such a particular representation by itself has a type
that depends on the combination of values of the generic types that is used.

Hence, to define a generic function, instances have to be defined for a finite
number of types, the generic types, out of which any value of any type in the
language can be constructed.

:: Unit = Unit

:: Either a b = Left a | Right b

:: Pair a b = Pair a b

:: TypeCons a = TypeCons InfoT a

:: DataCons a = DataCons InfoC a

The generic types consist of the basic types (Bool, Int, Real, . . . , which
are used to represent themselves), Unit (to represent a zero arity data con-
structor), Pair (product type, used to combine arguments of data construc-
tors), and Either (the sum type to indicate which data constructor of a certain
type is used). Furthermore, there are two special additional types TypeCons and
DataCons. They contain additional information (in InfoT and InfoC) about the
name and arity of the original type and data constructors. This is useful for
making generic functions that can parse or print. We will need them to display
the values in our graphical editor.

With a collection of generic types, values of any user-defined type can be rep-
resented, e.g. [1]::[Int] is represented by TypeCons List (Left (DataCons
Cons (Pair 1 (TypeCons List Right (DataCons Nil Unit))))), see also
Fig. 4 on page 10.

Once defined by the programmer, a generic function can be applied to values
of any concrete (user defined) type. The compiler will automatically add con-
version functions (bimaps) that will transform the concrete type to the corre-
sponding combination of generic types. Furthermore, the generic types returned
by the generic function are converted back again to the actual type demanded.

In order to be able to deal with (mutual) recursive types, it is vital that these
transformations are done in a lazy way (see [14] and [3]).

Generic functions are very useful for defining work of a general nature. Be-
cause generic functions can be specialized for any specific concrete type as well,



they can also be customized easily. So far, the technique has been successfully
used to define functions like equality, map, foldr, as well as for the construction of
various parsers and pretty printers. Also, generic programming techniques play
an important role in the implementation of automatic test systems [17]. The use
of generic programming techniques for the creation of GUI applications has to
our knowledge never been done before.

4.2 Creating a GECτ with generic functions

A GECτ component basically is an interactive editor for data of type τ , which
can be edited in any order. A special property of such an editor is that all data
elements have to be visualized and still have to be modifiable as well.

For our kind of interactive programs generic functions cannot be used in the
standard way (in which a user type is converted lazily to the generic representa-
tion after which the generic function is applied and the result is converted back
again). We need a variant in which the generic representation is not discarded
but persists somehow, such that interactions (and corresponding conversions to
the user types) can take place.

Consequently, we have to create a family of objects of different types to ac-
commodate the generic representation. One solution might be to create a family
of functional heaps (like Haskell MVars [19]). This family of heaps should then be
used to create the required communication infrastructure. Instead we have used
receiver objects [1], a facility of Object I/O. A receiver object (or, in short, re-
ceiver) has an internal state in the same way as functional heaps do, but they are
more flexible because one can attach an arbitrary number of methods to them
that also have access to the world environment. In this way, receivers enable an
object-oriented style of programming. With these methods we have implemented
the communication infrastructure.

The methods of a receiver that ‘manages’ a t value are invoked via Ob-
ject I/O message passing functions. These require an identification value of ab-
stract type (GECId t). These are generated with the function openGECId ::
(PSt ps) → (GECId t,PSt ps). For the earlier mentioned gecGetValue and
gecSetValue methods of the GEC record corresponding functions have been
defined that handle the details of message passing. These are gecGetValue‘
:: (GECId t) (PSt ps) → (t,PSt ps) and gecSetValue‘ :: (GECId t) t
(PSt ps) → (PSt ps) respectively. The GEC record methods are simply curried
applications of these message passing functions.

Using receivers, we can create a family of objects that store the corresponding
values of the generic type family, that communicate with their children using
their typed identifiers, and that communicate with their parent using the call-
back interface. The topology of the receiver objects is similar to the generic
representation.

In Fig. 4 we show the objects that are created to represent the value [1]
generically. Notice the similarity between the generic representation and the
topology of the receiver objects created. For this particular value, 11 receiver
objects are initially created. The figure reveals that, compared to the generic



Fig. 4. The representation of [1] using generic types (Left), and the topology of the
created receiver objects (see page 9) representing the same expression (Right).

representation, two additional (inactive) receivers (indicated by dark grey boxes,
one marked Nil :: and one marked Cons ::) have been created. The reason
is that in order to allow a user to change a constructor to another one, the
infrastructure to handle that other constructor must already be available.

In general, a lot of communication takes place when the application user
operates the editor. For instance, when a leaf value in the tree of receivers is
changed, all spine receiver objects that depend on it will be informed. The re-
quired underlying communication infrastructure is far from trivial, but we only
have to define it once. Each receiver object of a certain (generic) type further-
more requires a view to display and edit a value of that type. How this view can
be adapted, is explained in Sect. 5.

Once the editor is created for a certain type and the corresponding views
have been created, the application user can use the views to edit the value. For
the implementation this means that receivers have to be created dynamically
as well. If the application user makes a larger structure (e.g. [1,2]) out of a
smaller one (e.g. [1]), we have to increase the number of receivers accordingly.
It is possible that a receiver is not needed anymore because the user has chosen
some other value. Receivers are only deleted when the whole editor is closed.
Until then we mark unused receivers as inactive but remember their values. We
simply close the views of these inactive receivers and reopen them when the user
regrets his decision. In this way the application user can quickly switch from one
value to another and backwards without being forced to retype information.

When a user switches from one data constructor to another, we have to create
default values. For instance, if a Nil is changed into a Cons using an editor for
a list of integers, we will generate a default integer (0) and a default list of
integers (Nil). We use a generic function to make up such a default value. A
programmer can easily change this by specializing this generic default function
for a particular type.



5 Customizing Graphical Editor Components

5.1 The counter example

No paper about GUIs is complete without the counter example. To make such
a counter we need an integer value and an up-down button. The counter has to
be increased or decreased each time the corresponding button is pressed. Notice
that our editors only react to changes made in the displayed data structure.
Consequently, if the application user chooses Up two times in a row, the second
Up will only be noticed if its value was not Up before. Therefore, we need a
three state button with a neutral position (Neutral) that can be changed to
either Up or Down. After being pressed it has to be reset to the neutral position
again. The counter can be created automatically by applying selfGEC updCntr
(0,Neutral), using the concise definitions in Fig. 5.

:: UpDown = Up | Down | Neutral

:: Counter :== (Int,UpDown)

updCntr :: Counter -> Counter

updCntr (n,Up) = (n+1,Neutral)

updCntr (n,Down) = (n-1,Neutral)

updCntr any = any

Fig. 5. Two GECCounters. The standard one (on top) and a customized one.

The definition of the counter, the model, is intuitive and straightforward. The
generated GECCounter works as intended, and we get it for free. Unfortunately,
its view is a counterexample of a good-looking counter (bottom window in Fig.
5). In this case we want to hide the tuple data constructor editor, and place the
integer box next to the button editor. And finally we prefer to display instead
of that we generate as default editor for values of the type UpDown.

5.2 Full customization

One of the goals in this project was to obtain fully customizable GUI editors.
Here, we explain how this can be done.

Each receiver object that is generically created by the instances of mkGEC
requires a graphical editor definition that will tell how a value of that type can
be displayed and edited. This is done by a set of ‘mirror’ functions that takes
two additional parameters. These are a fresh receiver identification value, and a
view definition function. Below this is shown for the generic Pair case, the other
generic cases proceed analogously:



generic mkGEC t :: [GECAttribute] t (CallBackFunction t (PSt ps)) (PSt ps)

-> (GEC t (PSt ps), PSt ps)

mkGEC{|Pair|} gx gy as v f env

# (pairId,env) = openGECId env

= pairGEC pairId (pairGUI pairId) gx gy as v f env

The view definition function is of type (PSt ps) → (GECGUI t (PSt ps),
PSt ps): an environment based function in order to allow it to allocate the
necessary resources. Hence, the view of a GECt is defined by a GECGUIt. A
GECGUIt on an environment env is a record with the following functions:

1. guiLocs reserves GUI screen space for the subcomponents of t. It is a func-
tion that returns a list of GUI locations8, given its own location. For this
reason it has type Location → [Location].

2. guiOpen creates the view and the reserved GUI screen estate, given its own
location. Hence, it must be an action. It has type Location → env → env.

3. guiUpdate defines how a new value set from the outside9 has to be displayed.
It has the obvious type t → env → env.

4. guiClose closes the view (usually a trivial Object I/O close action, which is
the inverse operation of 2 above). It has the action type env → env.

For each instance of the generic family one such ‘mirror’ function and cor-
responding view definition has been predefined. For any (user defined) type, an
editor is constructed automatically by combining these generic editors. The spe-
cialization mechanism of Clean can be used to change any part of a GECτ since
a specialized definition for a certain type overrules the default editor for that
type. Therefore, to create a good-looking counter one only has to redefine the
editor for (,) and UpDown. Because the UpDown editor behaves as a basic value
editor, its definition uses the mirror function for basic types, which is basicGEC:

mkGEC{|UpDown|} as v f env

# (updownId,env) = openGECId env

= basicGEC updownId (updownGUI (gecSetValue‘ updownId)) as v f env

The actual definition of updownGUI is 50 loc. Half of the code is ‘ordinary’
Object I/O code to implement the guiOpen function. The other functions are
one-liners (this is typical).

To show the effect of the customized representation, we construct a slightly
more complicated example. Below, in the record structure DoubleCounter we
store two counters and an integer value, which will always display the sum of the
two counters. Notice that the programmer can specify the wanted behavior just
by applying updCntr on each of the counters. The sum is calculated by taking
the sum of the resulting counter values. One obtains a very clear specification
without any worry about the graphical representation or edit functionality. All
8 The number of elements is actually dependent on the kind: zero for ?, one for ? → ?,

two for ? → ? → ? etc.
9 Note that the other direction is simply a parameter of the editor component.



one has to do is to apply selfGEC updDoubleCntr to the initial value {counter1
= (0,Neutral), counter2 = (0,Neutral), sum = 0}.

:: DoubleCounter = { counter1 :: Counter

, counter2 :: Counter

, sum :: Int

}

updDoubleCntr::DoubleCounter -> DoubleCounter

updDoubleCntr cntr

= { counter1 = newcounter1

, counter2 = newcounter2

, sum = fst newcounter1 + fst newcounter2

}

where newcounter1 = updCntr cntr.counter1

newcounter2 = updCntr cntr.counter2

Fig. 6. An editor with two counters and a resulting sum.

For large data structures it may be infeasible to display the complete data
structure. Customization can be used to define a GECτ that creates a view on a
finite subset of such a large data structure with buttons to browse through the
rest of the data structure. This same technique can also be used to create GECτ s
for lazy infinite data structures. For these infinite data structures customization
is a must since clearly they can never be fully displayed.

6 Related Work

The system described in this paper is a refined version of the well-known model-
view paradigm [18], introduced by Trygve Reenskaug in the language Smalltalk
(then named as the model-view-controller paradigm).

In our approach the data type plays the model role, and the views are de-
rived automatically from the generic decomposition of values of that type. The
controller role is dealt with by both the automatically derived communication
infrastructure and the views (as they need to handle user actions). Because
views are derived automatically, a programmer in our system does not need to
explicitly ‘register’ nor program views. Views can be customized via overruling
instance declarations of arbitrary types.

A distinguishing feature of our approach is the distributed nature of both the
model and the views. The model is distributed using the generic decomposition
of the model value. The subvalues are stored in the receivers. This implies that
it should be relatively easy to distribute this framework over a collection of
distributed interactive processes. The view is distributed as well, as each view of
a generic component is responsible for showing that particular generic instance
only. Its further responsibility is to define GUI space for the subcomponents.



Frameworks for the model-view paradigm in a functional language use a sim-
ilar value-based approach as we do (Claessen et al [7]), or an event-based version
[15]. In both cases, the programmer needs to explicitly handle view registration
and manipulation. In our framework, the information-flow follows the structure
that is derived by the generic decomposition of the model value. This suggests
that we could have used a stream-based solution such as Fudgets [6]. However,
stream based approaches are known to impose a much to rigid coupling between
the stream based communication and the GUI structure resulting in a severe
loss of flexibility and maintainability. For this reason, we have chosen to use a
call-back mechanism as the interface of our GECτ components.

The Vital project [16] has similar goals as our project. Vital is an interac-
tive graphical environment for direct manipulation of Haskell-like scripts. Shared
goals are: direct manipulation of functional expressions (Haskell expressions vs.
flat values), manipulation of custom types, views that depend on the data type
(data type styles), guarded data types (we use selfGEC), and the ability to work
with infinite data structures. Differences are that our system is completely im-
plemented in Clean, while the Vital system has been implemented in Java. This
implies that our system can handle, by construction, all flat Clean values, and
all values are obviously well-typed. In addition, the purpose of a GECτ is to edit
values of type τ , while the purpose of a Vital session is to edit Haskell scripts.

7 Conclusions and Future Work

Graphical Editor Components are built on top of the Object I/O GUI library. The
Object I/O library offers a lot of functionality (e.g. one can define menus, draw
objects, make timers, etcetera) and it is also very flexible, but at the expense
of a steep learning curve. Graphical Editor Components offer a more limited
functionality: a customizable view and editor for any type. The customization
abilities make it possible to incorporate the functionality of Object I/O. It does
not exclude Object I/O; it is fully integrated with it. One can still use windows,
dialogs, menus, timers, and so on. The abstraction layer offered by the Graphical
Editor Components is much higher. The learning curve is short and flat because
one basically has to learn only the mkGEC function instead of approximately 500
Object I/O functions. The arguments of mkGEC are similar to most Object I/O
functions. The most important advantages are:

– for any value of any flat type one gets an editor for free;
– the editor can be used to give type safe input to the application;
– any output or intermediate result can be displayed;
– visualization is separated from the value infrastructure and is customizable

by redefining the components that need to be displayed differently;
– editors can be combined including mutually dependent editors.

The presented method offers a good separation of concerns. The specifica-
tion of the wanted functionality of a component is completely separated from the



specification of its graphical representation. One even obtains a default graphi-
cal representation for free. This makes it an excellent tool for rapid prototyping.
Also one can abstract from the way components are connected. As a result, com-
plicated interactive applications can be created without a lot of understanding
of graphical I/O handling.

Editors can be used for programming GUI objects, from simple dialogs to
complicated spreadsheets. They can also be used for tracing and debugging.

The automatic generation of components was only possible thanks to the
generic programming facilities of Clean. The interactive nature of the compo-
nents caused some interesting implementation problems. We had to store the
generic representation in special objects (Object I/O receivers). We also hit on a
disturbing limitation of the current implementation in Clean: one cannot over-
load generic functions in their generic type. For this reason we introduced the
‘mirror’ functions in Sect. 5. We intend to solve this.

We plan to extend the system with support for non-flat types. This will
require the ability to deal with function types. An interesting direction of re-
search seems to be to use the Esther shell of the experimental operating system
Famke, which deals with creating and composing functions in an interactive and
dynamically typed way. This shell is written in Clean as well [20].

Furthermore, we will investigate the expressive power of our graphical editor
components by conducting experiments and case studies.
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