Porting the Clean Object I/O Library to Haskell

Peter Achten! and Simon Peyton Jones?
(peter88@cs.kun.nl, simonpj@microsoft.com)

! Computing Science Department, University of Nijmegen, 1 Toernooiveld, 6525 ED,
Nijmegen, The Netherlands
2 Microsoft Research Cambridge, St. George House, 1 Guildhall street, Cambridge,
CB2 3 NH, UK

Abstract. Pure, functional programming languages offer several solu-
tions to construct Graphical User Interfaces (GUIs). In this paper we
report on a project in which we port the Clean Object I/O library to
Haskell. The Clean Object I/O library uses an explicit environment pass-
ing scheme, based on the uniqueness type system of Clean. It supports
many standard GUI features such as windows, dialogues, controls, and
menus. Applications can have timing behaviour. In addition, there is sup-
port for interactive processes and message passing. The standard func-
tional programming language Haskell uses a monadic framework for I/0.
We discuss how the Object I/O library can be put in a monadic frame-
work without loosing its essential features. We give an implementation
of an essential fragment of the Object I/O library to demonstrate the
feasibility. We take especial consideration for the relevant design choices.
One particular design choice, how to handle state, results in two versions.

1 Introduction

The pure, lazy, functional programming language Clean [9,17, 21] offers a sophis-
ticated library for programmers to construct Graphical User Interfaces (GUI) on
a high level of abstraction, the Object I/0 library. The uniqueness type system
[24,7] of Clean is the fundamental tool to allow safe and efficient Input/Output.
This has been taken advantage of in the Object I/O library, which employs
an ezplicit multiple environment passing style (a less precise but more concise
term is “world as value”). From the outset on [1, 2] one of the key features of the
Clean I/0 project has been the explicit handling of state, and the specification of
graphical user interfaces at a high level of abstraction. The approach has proven
to be successful and flexible, allowing the model to be extended with interactive
processes (on an interleaving and concurrent basis [3]), message passing (syn-
chronous and asynchronous), and local state resulting in an object oriented style
[4,5]. The library provides a rather complete set of GUI objects for real-world
applications and produces efficient code. This has been demonstrated by writing
a complete integrated development environment, the CleanIDE.

In Clean the uniqueness type system is used to support I/O in an explicit
multiple environment passing style. Two other styles of solutions have been

proposed to handle I/O in a purely-functional setting: stream based and monad
based [27,18]. The standard functional programming language Haskell [15,20]
initially adopted a stream based solution up to version 1.2. From version 1.3 on
monads were firmly integrated in the language. Many interesting experimental
frameworks have been proposed to handle GUI programming in both styles ([10,
16,23, 25] to name a few). For a broad overview see Section 7.

In this paper we report on a project in which we ported a core subset of this
I/O system to Haskell. There are several motives to embark on such a project.

— Monads are considered to be a standard way of handling I/O in pure func-
tional languages. In this project we demonstrate that it is possible to transfer
the concepts of the Object I/O system to a monadic framework.

— Designing a solution to functional GUI programming is one thing, but it is a
truly large effort to maintain, extend and improve such a system. The Clean
Object I/0 library has proven itself in practice. It is efficient and in a fairly
stable state. Porting this library to Haskell is a relatively small effort.

— When comparing programming languages and the applications written in
them, it is crucial to share identical libraries. Especially for the important
application domain of interactive applications, the lack of these libraries
makes it hard to do serious comparative studies.

— The development of the Object I/O system and the Clean language have
mutually influenced each other beneficially. One can expect similar effects
between library and language when porting the system to Haskell.

— The Haskell compiler that we use in this project is the Glasgow Haskell
Compiler 4.08.1. It extends Haskell 98 with several features that are required
by the Object I/O system (ezistential types and a foreign function interface).
In addition to these features it supports a variety of useful extensions such as
rank-2 polymorphism, thread creation, and communication/synchronisation
primitives. In this project we show how we have used these extensions to
simplify the implementation of interactive processes and message passing.

One might wonder if this project is bound to fail in advance, because Clean
and Haskell use different basic techniques to bring pure functional programming
and I/0 into close harmony. The answer is no because even though the Object
I/O system uses the world as value paradigm, it does not essentially rely on it.
The key idea of the system is that GUI objects are described by algebraic data
types. The behaviour of a GUI object is defined by a set of callbacks. A callback is
essentially a piece of code that must be executed in well-defined circumstances
(usually called events). In a world as value paradigm one can simply model
these callbacks as functions of type (state,*World) -> (state,*World).In a
monadic framework these callbacks can be modeled as monadic actions of type
state -> I0 state, or even just I0 ().

A closely related question is whether it is possible to handle local state in
a monadic framework in a way that reflects the philosophy of the Object I/O
library. We show that it is possible to provide a translation to Haskell that
(except for the obvious difference in callbacks) is exactly identical to the Clean

version. However, we also explored an alternative design, in which state is held
in mutable variables, an approach that turns out to give a considerably simpler
type structure. Because the local state version of the Object I/O library has
been discussed at length elsewhere [4, 6], we will discuss the alternative mutable
variable based design in full detail in this paper, and compare it with the local
state version in Section 3.

The Clean Object I/O library is big. Version 1.2.1 consists of 145 modules
that provide an application programmer’s interface (API) of 43 modules giving
access to roughly 500 functions and 125 data types. For a feasibility study this is
obviously a bit to much to port, so we have restricted ourselves to a fragment of
the API that contains the essential features. This subset, the mini Haskell Object
I/0 library, is sufficiently expressive to create as a test case target a concurrent
talk application (see Figure 1(a)). In the mini Haskell Object I/O library you
can open and close arbitrarily many interactive processes (two in the test case).
Each interactive process can open and close arbitrarily many dialogues (one in
each interactive process). Each dialogue can contain arbitrarily many text-, edit-,
and button controls (in the test case the dialogues contain two edit controls, one
for input, one for output). In addition we have ported asynchronous message
passing (text typed in the upper edit control is sent to the receiver of the other
interactive process which displays the text in the lower edit control).

X Object 1/0O API
Text typed here iz sent to
talk B. x| *.dcl, *.icl
Text typed here is sent to 0s independent layer
— |talk A
Text typed h
Lalk &,
0S8 apr *.dcl, *.icl
Text typed here is gent o | _____
talk B. *.h, *.c
OS dependent layer
Fig. 1. (a) Concurrent talk (b) Layered architecture

Another means of reducing the porting effort to Haskell is by making use
of the layered architecture of the Clean Object I/O library (see Figure 1(b)).
The Object I/0 library basically consists of two layers: at the bottom we have a
layer that implements the actual interface with the underlying operating system.
This is the OS dependendent layer. It defines an interface that is used by the top
layer, which is therefore OS independent. The OS independent layer is written
entirely in Clean. The OS dependent layer has been designed in such a way that

it is relatively easy to implement on most kinds of GUI toolkits. For this we
have drawn on our experience of porting earlier versions of Clean I/O libraries
to platforms as Microsoft Windows, Macintosh, and X Windows.

The remainder of this paper is structured as follows. We start with a detailed
discussion of the mutable variable based version of the mini Haskell Object I/O
library API in Section 2. We then compare this new approach with a one-to-one
translation of the Clean Object I/O library to Haskell in Section 3. The imple-
mentation of the OS independent layer (Section 4) and the OS dependent layer
(Section 5) are basically the same for both versions. Porting the Clean Object
I/0 library to Haskell is a good opportunity to compare the two languages, li-
braries, and tools. This is done in Section 6. We present related work in Section
7 and conclude in Section 8.

2 The mini Haskell Object I/O API

As our first step, we present the design of the mini Haskell Object I/O system,
as seen by the programmer. The version presented in this section handles state
by means of mutable variables. The design rationale is basically the same as the
local state version of the Object I/O library, so we will not discuss these. Instead
we content ourselves with a brief overview based on examples.

As has been argued briefly in the introduction, the only true language inde-
pendent difference between the two libraries is the way callbacks are represented.
We give the monadic approach in Section 2.1. Then we illustrate the way local
state is handled in Section 2.2. The remaining essential GUI components that
are required for the concurrent talk test case are handled in Section 2.3.

2.1 A monad for state transitions

The principal concept to grasp about the Object I/O library is that it is a state
transition system. The behaviour of every GUI object that can be defined in
the library is a callback that, when it needs to be evaluated, is applied to the
‘current’ process state and returns a new process state. The new process state
is the next ‘current’ process state. The programmer only needs to define initial
state values and the GUI objects that contain the behaviour functions. The
Object I/0O system takes care of all GUI event handling and ensures that the
proper functions are applied to the proper state.

In the Clean Object I/O library, the process state is handed to the program-
mer explicitly as environment value of abstract type I0St (called the I/0 state).
This environment is managed entirely by the Object I/O system. Every callback
is forced by the uniqueness type system of Clean to return a unique I/O state.
As the I/0 state is an abstract value, and there are no denotations available to
the programmer we can ensure that all GUI operations can be performed safely.

In Haskell, instead of passing the I/O state around explicitly, we encapsulate
it in a monad, in the standard way:

data GUI a = GUI (I0OSt -> I0 (a,I0OSt))}

instance Monad GUI where
(>>=) = bindGUI
return = returnGUI

bindGUI :: GUI a -> (a -> GUI b) -> GUI b
bindGUI (GUI fA) to_ioB ioSt
= GUI (\ioSt -> do { (a,ioStl) <- fA ioSt ;
case to_ioB a of
GUI fB -> fB ioSt })

returnGUI :: a -> GUI a
returnGUI a = GUI (\ioSt -> return (a,ioSt))

Defining the GUI monad to be an enhanced I0 monad allows us to combine
existing Haskell I/O code with the Object I/O code. For this purpose one can
lift any I0 action to a GUI action:

1iftI0 :: I0 a -> GUI a
1iftI0 m = GUI (\ioSt -> m >>= \a -> return (a,ioSt))

2.2 A simple example

Let us write a GUI application that displays an up-down counter: a displayed
number, together with a button to increment it and another to decrement it:

o I

One writes a program with a graphical user interface by defining a value of type
GUI (O and then “running” it by applying startGUI:

main :: I0 Q)
main = startGUI upDownGUI

upDownGUI :: GUI ()
upDownGUI = do { counter <- newCounter
; openDialog (Dialog "Counter" counter []) }

newCounter: : GUI (TupLS TextControl (TupLS ButtonControl ButtonControl))
newCounter = ...to be defined shortly...

Here, newCounter creates one instance of our up-down counter, while open-
Dialog opens a window in which the up-down counter is wrapped:

startGUI 12 GUI O -> 10 O
class Dialogs d where
openDialog :: d -> GUI ()

The function openDialog opens a dialogue window (Dialog ...) whose con-
tents can include all manner of things, which is why it is overloaded. Indeed, as
you can see, the type of newCounter expresses the fact that it returns a compo-
nent composed of three sub-components.

The next thing we must do is to define newCounter. A new feature of the
mini Haskell Object I/O library, when compared with the Clean Object I/O
library is the way local state is handled. We have chosen to use mutable variables
[19] to handle local and public state. In this approach local state can still be
encapsulated in the object, and hidden from the context in which it is used, thus
supporting reusable GUI objects. Here, then, is how we define newCounter:

newCounter: : GUI (TupLS TextControl (TupLS ButtonControl ButtonControl))
newCounter = do { c_state <- newMVar 0
; disp_id <- openId

; let display :: TextControl
display = TextControl "0" [ControlId disp_id]

dec, inc :: ButtonControl
dec = ButtonControl "-" [ControlFunction down]
inc = ButtonControl "+" [ControlFunction up]

up,down :: GUI ()
up = update disp_id c_state (+ 1)
down = update disp_id c_state (- 1)

; return (display :+: dec :+: inc) }

update :: Id -> MVar Int -> (Int->Int) -> GUI ()
-- Update the MVar, and display new value in control identified by Id
update d m £ = do { v <- takeMVar m

; let new_.v = f v

; putMVar m new_v

; setControlText d (show new_v) }

newCounter uses the GUI monad to create (a) a mutable cell, c_state, that
will contain the state of the counter, and (b) a unique identifier, disp-id, used to
name the display. Then it constructs the three sub-components, display, dec,
and inc, composes them together using (:+:), and returns the result.

To achieve all this, we used the following library functions and data types:

newMVar :: a -> GUI (MVar a)

takeMVar :: MVar a -> GUI (MVar a)
putMVar :: MVar a -> a -> GUI ()

openld 11 GUI Id

setControlText :: Id -> String -> GUI ()

infixr 9 :+:
data TupLS a b =a :+: b

data ButtonControl ButtonControl String [ControlAttributel

data TextControl = TextControl String [ControlAttributel

data ControlAttribute = Controlld Id

| ControlFunction (GUI ())

| ControlKeyboard (...) (...)
(KeyboardState -> GUI ())

|

The MVar family allow you to create and modify a mutable cell; these oper-
ations are described in detail in [19].

For every GUI object an algebraic data type is provided that describes what
that object looks like and how it behaves. Every type has a small number of
mandatory arguments and a list of optional attributes — see the definitions for
ButtonControl and TextControl given above. The TupLS type allows you to
compose two controls to make a larger one. Notice, though, that the entire GUI
component is simply a data value describing the construction of the component.

The component can be given a behaviour by embedding callbacks in the
attributes of the component. In particular, the ControlFunction attribute of
the inc and dec controls is a callback that updates the counter. This call-back
is run whenever the button is clicked; simply calls update. The latter updates
the state of the counter, and uses setControlText to update the display.

In order to change GUI components we need to identify them. That is what
disp_id :: Id is doing. It is used by the callbacks up and down to identify the
GUI component (disp) they want to side-effect. Indeed, MVars and Ids play a
very similar role: an MVar identifies a mutable location, while an Id identifies a
mutable GUI component. Fresh, unique Id values are created by openId.

It is very useful to be able to create Id and MVar values at any place in the
program (see Section 2.3). For this reason, it is convenient to overload these
functions so they can be used in either the I0 or GUI monad:

class Ids m where

newMVar :: a -> m (MVar a)
takeMVar :: MVar a -> m (MVar a)
putMVar :: MVar a -> a => m ()

openld :: m Id
. Ids also has other methods ...
instance Ids IO
instance Ids GUI

2.3 Concurrent talk

As a second example we take the concurrent “talk” program, depicted in Fig-
ure 1(a). Text typed into the upper panel of either window should be echoed in
the lower panel of the other window.

Receivers This application involves two concurrent “processes”, and we require
a channel of communication going in each direction. The following functions
manipulate channels:

class Ids m where ...
openRId :: m (RId a)
asyncSend :: RId msg -> msg -> GUI SendReport

class Receivers rdef where
openReceiver :: rdef -> GUI ()
instance Receivers (Receiver msg)

data Receiver msg
= Receiver (RId msg) (msg -> GUI ()) [ReceiverAttribute]

A new channel is created by openRId, which is overloaded like openId, and
returns a typed receiver name of type RId. You can send a message to a receiver
using asyncSend. That triggers a callback in a (non-displayed) component of
type Receiver. The latter contains its identifier together with the callback to
be run when the message is received.

Interactive processes So the main program looks like this:

main :: I0 ()
main = do { a <- openRId
; b <- openRId
; let talkA = talk "A" (a,b)
talkB = talk "B" (b,a)
; startProcesses [talkA,talkB] }

talk :: String -> (RId TalkMsg, RId TalkMsg) -> Process
talk str (me,you) = Process (...) (talkGuts str (me,you))
[ProcessClose (quit you)l]

talkGuts :: String -> (RId TalkMsg, RId TalkMsg) -> GUI ()
talkGuts = ...to be defined...

quit :: RId TalkMsg —> GUI ()
quit = ... to be defined ...

The overloaded function startProcesses takes an interactive process defini-
tion! and evaluates them until all child processes have terminated. The two talk
processes are identical except for their (string) name and receiver identification.
This is expressed conveniently by parameterisation of the talk function.

We consider an interactive process to be a collection of GUI objects that share
some common user interface. A process performs no independent computational
activity other than the callback mechanism. Interactive processes are specified in
the same way as all other GUI objects by means of an algebraic type constructor,
which is defined in the library as follows:

data Process = Process (...) (GUI ()) [ProcessAttribute]
startProcesses :: [Process] -> I0 ()
closeProcess i GUI ()

L or, in the real library, a (nested) list of them

Process has two mandatory arguments (we ignore the first) and a list of
optional attributes. The (GUI ()) argument is the initialisation action of an in-
teractive process: it is the first action of the interactive process, and is run when
the process is started by startProcesses. We will consider only one process
attribute, ProcessClose, which is analogous to the WindowClose attribute dis-
cussed above: the callback associated with this attribute is evaluated whenever
the user dismisses the interactive process.

In this example, the initialisation action is defined by talkGuts:

talkGuts :: String -> (RId TalkMsg, RId TalkMsg) -> GUI ()
talkGuts str (me,you)
= do { outId <- openld
; inId <- openId
; let talkdialog :: Dialog (TupLS EditControl EditControl)
talkdialog = mkTalkDialog you inId outId

receiver :: Receiver Talklisg

receiver = Receiver me (receive outId) []
; openDialog talkdialog
; openReceiver receiver }

mkTalkDialog :: RId TalkMsg -> Id -> Id
-> Dialog (TupLS EditControl EditControl)
mkTalkDialog you inId outId
= Dialog ("Talk "++name) (infield:+:outfield) [WindowClose(quit you)]

where
infield = EditControl "" (ContentWidth "mmmmmmmmmm'") 5
[ControlId inId, ControlKeyboard (...) (...) input]
outfield = EditControl "" (ContentWidth "mmmmmmmmmm") 5

[ControlId outId, ControlPos (Below inId,zero) 1]

input :: KeyboardState -> GUI ()
input = ...to be defined...

This code creates two new Ids to identify the two panels of the window, con-
structs the dialogue and receiver, and then opens them. The receiver is straight-
forward — we defined Receiver in the previous section — and is passed the
callback (receive outId). The dialogue is built in a very similar way that we
built the counter earlier, except that it uses editable-text panels (EditControl)
instead of buttons. The ControlKeyboard attribute of the infield takes a call-
back, input, which tells the control how to respond to user input.

Message passing The remaining pieces of the puzzle are those that send mes-
sages. First we need to define the type of messages that flow between the two
processes. As specified informally in the introduction, keyboard input in the in-
put field of the talk dialogue of one interactive process should be sent to the other
interactive process (and displayed in the output field). In addition, if the user
dismisses either dialogue, the other one should also be notified as terminated.
This is arranged by the following simple message type:

data Message = NewLine String | Quit.

The receiver callback action straightforwardly implements the informal spec-
ification above: the response to a (NewLine text) message should be to change
the content of the output field to text (using the library function setControl-
Text), and the response to a Quit message should be to terminate its parent
process (using the library function closeProcess):

receive :: Message -> GUI ()
receive (NewLine text) = setControlText outId text
receive Quit = closeProcess

The behaviour of the input callback is to read the current content of the
input control and send it to the other interactive process. (The library function
getParentWindow returns an abstract value that represent the current state of
the complete dialogue. The function getControlText retrieves the content of
any text related control. Their types are included below.)

input :: KeyboardState -> GUI ()

input _
= do { Just window <- getParentWindow inId
; let text = fromJust (snd (getControlText inId window))
; error <- asyncSend you (NewLine text)

; return () }
-- Library types:
getParentWindow :: Id -> GUI (Maybe WState)
getControlText :: Id -> WState -> (Bool,Maybe String)

Finally, the quit callback closes its own process, and sends a Quit message
to the other process:

quit :: RId TalkMsg —> GUI ()
quit you = do { asyncSend you Quit; closeProcess }

It should be observed that it is not possible in the Object I/O library for one
interactive process to terminate other interactive processes. The closeProcess
function has no process identification, but always terminates the interactive pro-
cess of the GUI component which callback evaluates this function. This is also
the case for all other actions: one interactive process can not directly create
or close a window in another interactive process. The only interaction between
interactive processes is message passing or via the external world.

3 The pros and cons of MVars

The mini Haskell Object I/O API discussed so far relies on mutable variables
to keep track of the state of an interactive program. This is different from the
way state is handled in the Clean Object I/O library. We will not discuss this
system in detail, because this has been done extensively elsewhere [4, 6]. Briefly,

the Clean Object I/O system keeps track of all state. Type security is obtained
by parameterisation of all GUI type constructors with the types of the local
and public state. Specialised type constructor combinators are required to ob-
tain the proper state encapsulation. Both approaches to handle state have been
implemented in the mini Haskell Object I/O port. In this section we analyse the
features of the two approaches.

Handling state with mutable variables has a number of advantages when
compared with the Clean scheme.

Firstly, the set of type constructors is simpler (no state type variables) and
smaller (local state type constructor combinators are superfluous). In our expe-
rience these elements of the Object I/O library cause a steep learning curve to
novice GUI programmers. Despite the reduction of complexity, GUI definitions
are identical to the local state version (which is identical to the Clean version).
This allows to easily convert code between these versions.

The second advantage is increased flexibility: GUI components can share
state in a more complex way than is possible in the local state version. It is
unclear if it is possible to extend the local state version with more powerful
state combinators, but even so this will increase the complexity of the system.

Thirdly, even though mutable variables are globally accessible, the fact that
one requires its reference gives the programmer fine grained control over the
actual access to the data. This is in fact analogous to the current situation with
identification values: we can use the same lexical scoping techniques to control
access to GUI objects as well as state objects (and get similar ‘preambles’ as
discussed at the end of Section 2.3).

The major disadvantage of handling state with mutable variables is that it
is less declarative. The burden of state management is shifted from the library
implementer to the application programmer. To illustrate this case, here is the
local state version of the up-down counter (Section 2.2):

newCounter
= do { disp_id <- openId
; let ... control definitions are identical ...

up = update disp_id (+ 1)
down = update disp_id (- 1)
; return (NewLS O (display :+: dec :+: inc)) }

update :: Id -> (Int->Int) (Int,ps) -> GUI ps (Int,ps)
update d £ (v,state) = do { let new_.v = f v
; setControlText d (show new_v)
; return (new_v,state) }

Instead of retrieving and storing the current count explicitly from a mutable
variable, update has direct access to the local state, and is required by the type
system to return a new value. The relation between the initial local state value
0 and the counter is determined by the NewLS type constructor combinator.

We need more experience to decide which of the approaches to handle state
is the best choice.

4 The OS independent layer

The only crucial difference between the Clean and Haskell version of the Object
I/0 libary is the way callbacks are handled (functions versus actions). The Clean
Object I/0 library is a sequential implementation that encodes the interactive
process scheduling mechanism and message passing. This implies that it is in
principle sufficient to reimplement only the callback evaluation mechanism, and
simply translate the other parts from Clean to Haskell.

In the introduction we have stated that we were going to use GHC (for issues
related to other Haskell compilers we refer to Section 8). The major motivation
is that the Object I/O library (in fact, some of its predecessor versions [3]) has
been designed with concurrency in mind: it should, in principle, be possible to
implement interactive processes as concurrent evaluation processes, and even to
create distributed interactive applications. These are things that are well sup-
ported by GHC, and the combination with other required features fixed the
choice for this particular compiler technology.

We are not going to discuss every detail of the implementation of the OS
independent layer. Instead we focus on the following aspects of its implemen-
tation: in Section 4.1 we discuss how monadic callbacks with local state can
be evaluated, in Section 4.2 we show how interactive processes are mapped to
concurrent threads, and in Section 4.3 how message passing is handled.

4.1 Evaluation of monads with local state

Computing state transitions is straightforward in the mini Haskell Object I/0
system based on mutable variables: whenever a callback action must be evalu-
ated, the run-time system only needs to locate the proper action and apply it.
All state handling is done by the callback action. In the local state version things
are more complicated: the run-time system not only needs to locate the proper
action, but also construct the proper state argument to apply the action to. The
thus computed new state must then be restored in the administration.

The Clean Object I/O implementation uses an elegant solution to compute
and store local state [5]. It relies on lazy evaluation to create references to local
state values that will eventually be computed by callback functions (ensured by
the type system). These references are stored in the internal administration (the
I0St environment) which is passed as the argument to the callback function.
Because the involved environments are explicitly available in the Clean Object
I/O library, it is rather intuitive to ‘connect’ these forward references. In the
local state version of the mini Haskell Object I/O library we have been able to
copy this strategy, using the monadic extension £ixI0. Due to lack of space we
omit a detailed presentation. Here the key idea is that £ixI0 also allows us to
manipulate results that are not yet computed, but lazily available.

4.2 Interactive processes

The concurrent talk test case spawns two interactive processes. Interactive pro-
cesses have been designed with concurrent evaluation in mind. They should

behave as if they were independent applications running in a pre-emptive OS.
We have implemented interactive processes using the Concurrent Haskell primi-
tives [19] forkIO (for thread creation), MVars (for sharing context information),
and Channels (for abstract event dispatching). Because the Microsoft Windows
OS expects a single event loop driven application, we can’t implement each of
these processes as independent loops fetching and dispatching OS events. The
architecture of the concurrent implementation is sketched in Figure 2.

abstract event
dispatcher

Haskell co-thread !

OS event
dispatcher

OS co-thread
Object 1/0 application

Fig. 2. Concurrent implementation of interactive processes

The co-thread architecture is a legacy from the Clean implementation. We
can’t call Clean from C. This is necessary on the Microsoft Windows platform,
because some OS calls require further callbacks to be evaluated before the call
is finished (for instance, when creating a window several dozens of callbacks are
triggered). Instead of calling Clean from C directly, this communication is done
indirectly via two OS threads that run as co-routines. Information is passed via
a small globally accessible buffer. It should be noted that in Haskell one can call
Haskell from C [12], so we should be able to eliminate these co-threads. Because
of the preliminary nature of this project, we have not changed the code of the
OS co-thread nor the architecture.

The Haskell co-thread is basically a reorder of existing pieces of functional
code in the scheduling module of the Clean implementation. Because we use
the forkI0 primitive, the scheduling code disappears. Each interactive process
(I/O process) runs in a Haskell thread. They are driven by an event loop that
handles only abstract events. The closeProcess function terminates the loop,
and the I/O process gets garbage collected. Abstract events are generated by an
additional Haskell thread, the abstract event dispatcher, that maps OS events
to abstract events and dispatches them to the proper I/O processes. Recall that
interactive programs are created with the startProcesseslibrary function. This
function creates the initial Haskell threads.

The only information required by the abstract event dispatcher is which I/0
processes are currently present in order to dispatch the proper abstract events.
This is stored in the globally accessible Context, stored conveniently in a MVar.
Every I/O process maintains an OS event filter function in this Context. After
every callback evaluation, it updates this entry, and in the act of termination
it removes it from the administration. The abstract event dispatcher terminates
when this list is empty, resulting in the required behaviour of startProcesses.

The major advantage of this architecture is that it is scaleable: it is easy to
create and destroy interactive processes. It is also very suitable for a distributed
environment: if ever Object I/O applications distribute themselves over a net-
work almost everything we need to do is to create a new remote initial context,
an event dispatcher, and an initial I/O process thread.

4.3 Message passing

In the concurrent implementation as described above Channels are the obvious
Concurrent Haskell medium to implement message passing. Recall that a receiver
that handles messages of some type msg is unambiguously identified by a receiver
identification value of type (RId msg) (Section 2.3). Its implementation is

data RId msg = RId { rid::Int, ridIn::(Chan msg) }

The rid field is a fresh value to uniquely identify the receiver (inherited
from the original implementation). The ridIn field is new. It is a Channel that
implements the message queue.

Messages are sent with the function asyncSend :: RId msg -> msg -> GUI
SendReport. After the usual correctness checks it places the message in the mes-
sage queue using writeChan. The receiver is notified that a message is available in
the message queue by inserting a pseudo OS event in the abstract event stream
environment (which is part of the shared Context). This pseudo OS event is
mapped to an abstract event which is dispatched to the parent I/O process of
the receiver. The receiver will eventually remove the message from its message
queue (using readChan) and handle the appropriate callback action.

5 The OS dependent layer

In this project we have reused the existing C code completely. So we have inte-
grated these C modules into the Haskell implementation. For Haskell 98 the For-
eign Function Interface [11] has been proposed to be able to write down Haskell
code that calls upon foreign functionality. We illustrate how this has been done
by means of the following C procedure, defined in the module cpicture.c:

extern void WinGetStringWidth
(CLEAN_STRING,CLEAN_STRING,int,int,int,HDC,0S,int*,08%)

CLEAN_STRINGs point to structs of a length field (int) and a buffer of chars
of the given length. The types HDC and 0S are also integers. If a Clean function

returns a tuple of results, then these are passed by the C procedure by means of
pointer values (int* and 0S* respectively). The C procedure returns void. If a
Clean function returns one value then the C procedure also returns that value.
The Clean code looks as follows (module pictCCall_12.icl):

WinGetStringWidth :: !{#Char} !Fnt !Int !HDC !*0S -> (!Int,!*0S)
WinGetStringWidth _ _ _ _ _
= code { .inline WinGetStringWidth
ccall WinGetStringWidth "SSIIIII-II"
.end

}

In the Haskell implementation we need to add marshalling code to convert
the Haskell arguments to the arguments as required by the C procedures. For
all functions we follow the same scheme. Here is the Haskell code:

winGetStringWidth :: String -> Fnt -> Int -> HDC -> IO Int
winGetStringWidth al (a2,a3,a4) ab a6
= do sl <- createCLEAN_STRING al
s2 <- createCLEAN_STRING a2
ol <- malloc 4
02 <- malloc 4
cWinGetStringWidth s1 s2 a3 a4 ab a6 osNewToolbox ol 02
mapM_ freeCLEAN_STRING [s1,s2]
rl <- fpeek ol
r2 <- free o2
return ri
foreign import stdcall "cpicture" "WinGetStringWidth"
cWinGetStringWidth :: Addr -> Addr -> Int -> Int -> Int -> HDC -> Int
-> Addr -> Addr -> I0 O

Haskell Strings are lists of characters. These are converted to CLEAN_STRINGs
using the function createCLEAN_STRING. This function has been implemented in
Haskell, using the GHC language extensions modules Addr, Bits, and Storable.
For all output arguments memory is allocated, using malloc. This is probably
extremely inefficient but at the time of writing our prior interest was correctness.

When all arguments have been created the C procedure can be called. The
connection is made with the foreign import statement which identifies the C
module and procedure name. As you can see, the type of the function closely
follows that of the C procedure given above. After evaluation, the necessary
results need to be freed. This is done by freeCLEAN_STRING for strings, and
fpeek which before freeing its argument peeks it and returns the value.

6 Experience

This project was carried out by an experienced Clean programmer and an ex-
perienced Haskell programmer. This was a good occasion to compare the two

languages. Clean and Haskell are clearly cousins. Proficient Clean (Haskell) pro-
grammers can master Haskell (Clean) easily. Still, the two languages have their
advantages when compared with each other. Clean languages advantages are:

Records: Haskell field labels are fairly equivalent to Clean records. Haskell field
labels automatically convert to field selector functions. Therefore one can’t
existentially quantify these fields because the field selector functions become
ill-typed. In Clean, a record is basically an algebraic data type with one data
constructor. The fields identify the arguments of the constructor. The normal
type rules apply, including those for existential types. Finally, Clean allows
the same record field name to occur in several record types. These expressions
can always be disambiguated by either a unique combination of field names
or by adding the type constructor name inside the record notation. As an
illustration, the following definitions are valid Clean (in Haskell syntax —
note the absence of a data constructor):

data R1 {a::Int, b::Bool}
data R2 = {a::Bool,c::Real}
-- Inferred types:

f1 {a,b} = (a,b) --f1 :: R1 -> (Int,Bool)
£f2 {a,c} = (a,c) -- f2 :: R2 -> (Bool,Real)
f3 {R1 | a} = a -- f3 :: Rl -> Int
f4 {R2 | a} = a -- f4 :: R2 -> Bool

Macros: although in GHC one can use the C preprocessor, one can not export
macros which limits their use. Constant functions don’t help because you
can’t use them in pattern-matches.

Strictness annotations. Strictness is a well-established concept in Clean. One
annotates data types, function argument types, and local definitions strictly.
This gives Clean programmers fine grained control over evaluation order.

Type constructor operators. In Clean and Haskell type and data construc-
tors have separate name spaces. In Clean these spaces contain the same
range of symbols. This allows us to give all Clean Object I/O library GUI
type definitions (including :+:) to have identical type and data constructor
names everywhere.

Module structure. The Clean module system distinguishes implementation
and definition modules. This basically means that Clean programmers write
their .hi files. Definition modules are not allowed to be cyclicly dependent,
but implementation modules are. Compiling a project therefore involves com-
piling a tree of modules.

Haskell language advantages are:

Field labels are also selector functions. As a programmer you do not have to
write your own access functions. This results in elegant code.

Derived instances help programmers avoid writing code that can be derived
by the compiler.

Rank 2 polymorphism. Clean and GHC Haskell support existential types.
However, the GHC makes this language feature complete by extending the
type system with rank-2 polymorphism. This extension allows one to write
higher order functions on existentially quantified data structures.

Cyclic modules. Because Haskell modules consist of one file with an interface
header (the export list), modules must be allowed to be cyclicly dependent.
This increases expressiveness when compared with Clean. It has allowed us
to parameterise all GUI types uniformly with respect to the state arguments.
(Unfortunately, the GHC can’t deal with cyclic Haskell modules without help
from the programmer who is forced to write .hi-boot files.)

Monads and do-notation handle the environment passing part of interactive
programs. The resulting code is less cluttered with environments when com-
pared to equivalent Clean code.

The mini Haskell Object I/O library implements only a part of the Clean
Object I/0 library, see the left table below. The table to its right shows this for
the Haskell mini Object I/O library with local state (LS) and mutable variables
(MVAR). Note that because we have used a straightforward translation from
Clean to Haskell this results in virtually identical sizes of the OS independent
layers. Clean does not support rank 2 polymorphism which leads to significant
duplication of code that handles existentially quantified data structures. The
Haskell version could take advantage of this. The Haskell OS dependent layer is
about twice the size of the Clean version due to marshalling (Section 5). The
shared C implementation consists of 39 *.c, *.h modules, and 13132 loc.

Clean #mod. (%total)|#loc (%total) Haskell |#mod.|#loc LS|#loc MVAR
OS indep. 50 (45.9%)| 8956 (30.5%)| |OS indep.| 54| 8583 8202
0OS dep. 20 (54.0%)| 3961 (53.9%)| |OS dep. 21| 6393 6393

When writing large applications or libraries it becomes increasingly impor-
tant to have dedicated development tools. From the very start Clean versions
have been released together with integrated compiler/editor environments. In
contrast, the GHC is a command-line based, Unix oriented system. It does not
come with any development environment. Instead, one is supposed to use make
files. For programmers being used to GUI based IDEs this is a rude awakening.

A final important factor with increased application sizes is the quality of
the compiler. GHC’s error messages are more informative than Clean’s, espe-
cially when concerned with the type system. The Clean compiler is significantly
faster than GHC. Compilation time measurements conducted on the Object I/O
libraries indicate that Clean compiles 10 to 20 times as fast as GHC.

7 Related work

The main purpose of this project was to study the relationship between the Clean
Object I/0 library and Haskell, and to see if and how it can be implemented in a
monadic framework. Except for the new approach (from a Clean point of view)

to handle (local) state using MVars, the Object I/O library has not changed. This
is the reason why we give only a very brief comparison with related work. ([5]
discusses related work with respect to the ‘original’ Object I/O library.)

We have shown how the Object I/O library can be simplified using mu-
table variables. Mutable variables are used in several functional GUI systems
(TkGofer, pidgets, tclHaskell — [26,23, 22] respectively —). FUDGETS and gadgets
([10,16]) use stream communication to model global state, and recursive func-
tions for local state. The latter technique is used in Opal[13] to model global
state. Even if (local) state is handled by means of mutable variables, the Object
I/0 library differs because of its emphasis on defining GUI objects by means of
algebraic data structures. This allows one to define functions that pass around
GUI specifications that can be manipulated and changed before they are actually
created. In all other systems GUI objects can only be created, using actions.

We have demonstrated that it is possible to have a concurrent implementa-
tion of a functional GUI system without sacrificing the deterministic semantics
of interactive processes. The use of Concurrent Haskell primitives results in a
simpler and shorter implementation of the library, without changing its semantic
properties. This contrasts strongly with the general opinion that one has to use
a concurrent functional language to construct GUI programs flexibly [23,13].

8 Conclusions and future work

In this project we have successfully ported an essential subset? of the Clean
Object I/0O libary to Haskell. We have argued that the Object I/O library is
really independent of the underlying paradigm to integrate side effects in pure
functional languages. Callbacks are modeled in Clean using explicit environment
passing functions, while they are represented as monads in Haskell. In this way
we preserve the best properties in both languages.

The mini Object I/O library covers 42% of the whole Object I/O library. We
have focussed on the ‘hard bits’. All crucial design and implementation issues
have been solved. Due to lack of resources we have not been able to check uni-
and bi-direction synchronous message passing and the construction of a drawing
monad (which should encapsulate a Picture environment). Except for these
parts, porting the rest of the code should not prove to be difficult.

We have used the GHC 4.08.1. It implements Haskell 98 and extends it with
several language and library features. This raises the question if this project
has become a GHC project rather than a Haskell 98 project. The Object I/O
library can not be implemented straight away in Haskell 98. To implement the
‘pure’ Object I/O library one needs to extend Haskell 98 with existential types.
The rest of the library can be obtained by translation from Clean to Haskell. To
implement the MVar state version existential types are not required. The only
extensions needed are MVars. These can be added to any Haskell compiler as a
separate library, though they also require significant runtime support.

2 Available in the GHC CVS repository at fptools/hslibs/object-io

We think that it is worthwhile for the Haskell and Clean community to
complete this project for several reasons: (a) the Haskell community will obtain
a GUI library that has proven itself in practice, (b) the library can, because of
its internal architecture, be easily ported to more traditional Haskell platforms,
(c) it will encourage code sharing between Haskell and Clean. The existence
of a GUI library that is both easily portable and language independent will
strengthen the position of functional languages on the long term.

Acknowledgements

Peter would like to thank Simon Marlow, Julian Seward, and Reuben Thomas
for their advice and help on Haskell and the GHC compiler, Andrei Serjantov
for showing him around in Cambridge, and the people at Microsoft Research
Cambridge for providing a stimulating working environment.

References

[1] Achten, P.M., van Groningen, J.H.G., and Plasmeijer, M.J. High Level Specifica-
tion of I/O in Functional Languages. In Launchbury, J., Sansom, P. eds., Proceed-
ings Glasgow Workshop on Functional Programming, Ayr, Scotland, 6-8 July 1992.
Workshops in Computing, Springer-Verlag, Berlin, 1993, pp. 1-17.

[2] Achten, P.M. and Plasmeijer, M.J. The ins and outs of Clean I/O. In Journal
of Functional Programming 5(1) - January 1995, Cambridge University Press, pp.
81-110.

[3] Achten, P.M. and Plasmeijer, M.J. Concurrent Interactive Processes in a Pure
Functional Language. In Vliet, J.C. van, ed., Proceedings Computing Science in
the Netherlands, CSN’95, Jaarbeurs Utrecht, The Netherlands, November 27-28,
Stichting Mathematisch Centrum, Amsterdam, 1995, pp. 10-21.

[4] Achten, P.M. and Plasmeijer, M.J. Interactive Functional Objects in Clean. In
Clack, C., Hammond, K. and Davie, T. eds., Proceedings 9th International Work-
shop Implementation of Functional Languages, IFL’97, St. Andrews, Scotland, UK,
September 1997, selected papers, LNCS 1467, Springer, pp. 304-321.

[5] Achten, P.M. and Plasmeijer, M.J. The implementation of interactive local state
transition systems in Clean. In Koopman, P., Clack, C. eds., Proceedings 11th Inter-
national Workshop Implementation of Functional Languages, IFL’99, Lochem, The
Netherlands, September 1999, selected papers, LNCS 1868, Springer, pp. 115-130.

[6] Achten, P.M. and Wierich, M. A Tutorial to the Clean Object I/O Library - version
1.2. Technical Report CSI-R0003, February 2, 2000, Computing Science Institute,
Faculty of Mathematics and Informatics, University of Nijmegen, The Netherlands.

[7] Barendsen, E. and Smetsers, J.E.W. Uniqueness Type Inference. In [14], 189-206.

[8] Bjgrner, D., Broy, M., Pottosin, I.V. eds. Perspectives of System Informatics, Sec-
ond International Andrei Ershov Memorial Conference Akademgorodok, Novosi-
birsk, Russia, June 25-28, 1996, Proceedings, LNCS 1181, Springer.

[9] Brus, T., Eekelen, M.C.J.D. van, Leer, M.O. van, and Plasmeijer, M.J. Clean: A
Language for Functional Graph Rewriting. In Kahn. G. ed. Proceedings of the Third
International Conference on Functional Programming Languages and Computer Ar-
chitecture, Portland, Oregon, USA, LNCS 274, Springer-Verlag, pp. 364-384.

[10] Carlsson, M. and Hallgren, Th. FUDGETS - A Graphical User Interface in a Lazy
Functional Language. In Proceedings of Conference on Functional Programming
Languages and Computer Architecture, Copenhagen, Denmark, 9-11 June 1993,
ACM Press, pp. 321-330.

[11] Finne, S. A Haskell foreign function interface. Available as GHC extension, see:
http://www.haskell.org/ghc/docs/latest/set/sec-foreign.html.

[12] Finne, S., Leijen, D., Meijer, E., and Peyton Jones, S. Calling hell from heaven
and heaven from hell. In ACM SIGPLAN International Conference on Functional
Programming (ICFP’99), Paris, ACM Press, pp. 114-125.

[13] Frauenstein, Th., Grieskamp, W., Pepper, P., and Siidholt. Communicating Func-
tional Agents and Their Application to Graphical User Interfaces. In [8], pp. 386-397.

[14] Hermenegildo, M. and Swierstra, S.D. eds. Proceedings of Seventh International
Symposium on Programming Languages: Implementations, Logics and Programs,
Utrecht, The Netherlands, 20-22 September 1995, LNCS 982, Springer-Verlag.

[15] Hudak, P., Peyton Jones, S., Wadler, Ph., Boutel, B., Fairbairn, J., Fasel, J.,
Hammond, K., Hughes, J., Johnsson, Th., Kieburtz, D., Nikhil, R., Partain, W.,
Peterson, J. Report on the programming language Haskell, In ACM SigPlan Notices,
27 (5): 1-164.

[16] Noble, R. and Runciman, C. Gadgets: Lazy Functional Components for Graphical
User Interfaces. In [14], pp. 321-340.

[17] Nocker, E.G.J.M.H., Smetsers, J.E.W., Eekelen, M.C.J.D. van, and Plasmeijer,
M.J. Concurrent Clean. In Aarts, E.H.L., Leeuwen, J. van, Rem, M., eds., Proceed-
ings of Parallel Architectures and Languages Europe, June, Eindhoven, The Nether-
lands. LNCS 506, Springer-Verlag, pp. 202-219.

[18] Peyton Jones, S.L. and Wadler, Ph. Imperative Functional Programming. In Pro-
ceedings of the 20th Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, Charleston, South Carolina, January 10-13, 1993, 71-84.

[19] Peyton Jones, S., Gordon, A., Finne, S. Concurrent Haskell. In 28rd ACM
Symposium on Principles of Programming Languages (POPL’96), January 1996,
St.Petersburg Beach, Florida, ACM, pp. 295-308.

[20] Peyton Jones, S. and Hughes, J. eds. Report on the Programming Language Haskell
98 — A Non-strict, Purely Functional Language, 1 February 1999.

[21] Plasmeijer, M.J. and van Eekelen, M.C.J.D. Functional Programming and Parallel
Graph Rewriting. Addison-Wesley Publishing Company 1993.

[22] Sage, M. TclHaskell. http://www.dcs.gla.ac.uk/ “meurig/TclHaskell/.

[23] Scholz, E. PIDGETS - Unifying Pictures and Widgets in a Constraint-Based Frame-
work for Concurrent GUI Programming. In Kuchen, H., Swierstra, S.D. eds. Pro-
ceedings of eighth International Symposium on Programming Languages: Implemen-
tations, Logics, and Programs, Aachen, Germany, September 1996, LNCS 1140,
Springer, pp. 363-377.

[24] Smetsers, J.E.W., Barendsen, E., Eekelen, M.C.J.D. van, and Plasmeijer, M.J.
Guaranteeing Safe Destructive Updates through a Type System with Uniqueness
Information for Graphs. In Schneider, H.J., Ehrig, H. eds. Proceedings Workshop
Graph Transformations in Computer Science, Dagstuhl Castle, Germany, January
4-8, 1993, LNCS 776, Springer-Verlag, Berlin, pp. 358-379.

[25] Vullinghs, T., Schulte, W., and Schwinn, Th. The Design of a Functional GUI
Library Using Constructor Classes. In [8], pp. 398-408.

[26] Vullinghs, T., Tuijnman, D., and Schulte, W. Lightweight GUIs for Functional
Programming. In [14], pp. 341-356.

[27] Wadler, Ph. Comprehending monads. In Proceedings of the ACM Conference on
Lisp and Functional Programming, Nice, 1990, ACM Press, pp. 61-78.

