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Chapter 1

Introduction

1.1 The Quality of Computer Systems

We are surrounded by computation devices. Our CD players, mobile phones, and
cars all contain some kind of computation unit that controls (part of) the device and
provides some highly specific functionality. Typically, such computation units are
reactive and are embedded in a complex environment. The design of these embed-
ded systems is not a trivial task, since (i) they perform complex interactions with the
continuous environment, and (ii) they must meet high dependability requirements.
The difficulty of this task has recently (once again) been demonstrated by a soft-
ware problem that caused some Toyota Prius gas-electric hybrid cars to stall or shut
down while driving at highway speedﬂ Consequently, many techniques have been
developed for the design of these systems that must ensure that they will satisfy
their requirements. For instance, quality management (such as defined by the ISO
9000 standard; see http://www.iso.orqg/) and process assessment and im-
provement (such as provided by the Carnegie-Mellon Software Engineering Insti-
tutes Capability Maturity Model (CMM); see http://www.sel.cmu.edu/)
are techniques that exist on a corporate level. These two topics are not discussed
here since they fall outside the scope of this thesis. On the project level there ex-
ist techniques such as model-based development, formal analysis and testing to
guarantee that systems satisfy their requirements. These are discussed below.

It is essential to handle the complexity of the construction of embedded sys-
tems. This can be done by using both different views on the system and different
levels of detail (abstractions). Model-based development aims to be an incremen-
tal process which integrates different models on different levels of abstraction in
a consistent way in order to improve the quality and efficiency of the develop-
ment process (see, e.g., [95]]). The methodology uses formal modeling languages
(i.e., possibly graphical languages with a precisely defined syntax and semantics)
to specify (parts of) systern An intrinsic merit of a formal language is that it
forces one to specify the system in a precise and unambiguous way, which may re-
veal inconsistencies and gaps in the original informal description. For instance, it
may reveal non-determinism within a component, which could be an error since it
cannot be implemented, but which also could be a postponed design decision. Fur-
thermore, a formal language can be used for analysis since it has mathematically
defined semantics.

"http://money.cnn.com/2005/05/16/Autos/prius_computer/index.htm
*There are too many formal languages to enumerate here. For an overview, see the world wide
web library on formal methods athhttp://www.afm.sbu.ac.uk/,
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Two important formal analysis techniques, which may be applied stand-alone
or during model-based development, are theorem proving and model checking. A
theorem prover, such as ISABELLE [88]] or Pvs [89]], supports the manual con-
struction of proofs by checking the correctness of the proof steps, and provides
some automation to the proof process. In general, theorem provers require a lot of
human interaction to complete a proof. Model checking, on the other hand, is a
methodology to automatically analyze problems that have been expressed in terms
of transition systems [37]]. This thesis concerns model checking, and the next sec-
tions offer a more detailed explanation of this topic. Both model checking and
theorem proving generally analyze abstract models rather than the executable code
that implements those models. Furthermore, the hardware on which the executable
code runs could also contain errors. This is only one reason why an implementa-
tion of a formally verified abstract design still needs to be tested. Note that research
is emerging that aims to model check real code; see for instance the TAXYS tool
[96], the SLAM tool [11], the BLAST tool [63]] and the BOGOR tool [46].

Testing is widely used to assess the requirements of realized (sub)systems and
typically requires a lot of effort: sometimes up to 50% of the project resources is
spent on it. In contrast to model checking and theorem proving, which are com-
plete with respect to the model, testing is in general incomplete. It can thus only be
used to find errors, and not to prove their absence. Another, albeit less fundamen-
tal, problem with testing is that the conventional testing methodology is not really
suitable for concurrent systems, since it provides no real control of the interleaving
of concurrent processes. Recently, model-based testing has received much inter-
est [32]]. This approach seems to fit seamlessly into the model-based development
approach.

Testing and formal analysis techniques are complementary. Usually, formal
analysis is applied to assess requirements that are relatively easy to define on high-
level designs. One of the strengths of formal analysis is that it can deal systemat-
ically with concurrency. A verified design, however, does not guarantee a correct
implementation. Therefore, testing still is needed to validate that the implementa-
tion satisfies the requirements.

1.2 Model Checking

As the name implies, model checking requires the construction of a model of the
system under consideration. In general, a model is a (possibly) infinite discrete
event dynamical system consisting of states and labeled transitions. A model usu-
ally is given implicitly by describing the system in some higher-level modeling
language. Model checking also requires the definition of the specification of the
system, which usually is a temporal logic formula such as “no bad situation is ever
reachable”. A model checking tool can then compute whether the model satisfies
its specification. Nowadays, model checking tools are available for many appli-
cation areas, e.g., hardware systems [45] [83], finite-state distributed systems [65],
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timed and hybrid systems [16, 162,102, |[107], and software [[11} 46,163} 96, [101].

The model checking methodology can be illustrated with help from the pop-
ular Sudoku puzzle (http://en.wikipedia.org/wiki/Sudoku). This
Japanese puzzle consists of a grid of 9 by 9 cells that is sectioned into 9 blocks
of 3 by 3 cells, and which is partially filled with seemingly random digits from 1
through 9. A valid Sudoku grid does not contain equal numbers (e.g., two times
the number three) in a row, column or block. The goal is to complete all cells such
that every row, every column and every block contains every digit from 1 through
9. A model of a Sudoku puzzle consists of the definition of the initial state of the
puzzle and of the definition of the rules that are allowed to change the state of the
puzzle. Clearly, the initial state is the partially filled grid. The transition relation
can then be defined as follows: an empty cell can be filled with a digit, only if the
result still is a valid Sudoku grid. Figure [I.1] shows a part of the dynamics of a
given puzzle.

5 3 7
6 1] s
98 6
8 6 3
4 8| |3 1
7 2 6
6 28
419 5
8 7 ]9
2 4v 7
53 7 53 7 53 7
6l2] [1]a]5 6la| [1]o]5 6|7] [1]e]5
9|8 6 9|8 6 9|8 6
8 6 3 8 6 3 8 6 3
4 8| |3 1 4 8| |3 1 4 8| |3 1
7 2 6 7 2 6 7 2 6
6 28 6 28 6 28
410 5 410 5 ARE 5
8 7 ]9 8 7 ]9 8 7|9
1" 1) 2 1, ‘2
/ \ / \
B 7 y | y |
62| [1]o]5
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8 6 3
4 8| |3 1
7 2 6
6 28
419 5
8 7 ]9
T
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Figure 1.1: A very small part of the transition system that defines the dynamics of
a given Sudoku puzzle. The uppermost state is the initial state. Note that only the
transitions involving the marked cells are shown.

In order to find the solution to the puzzle, the model checker can be asked
whether a state where each cell is filled by a digit can be reached. This is a typical
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verification question. A typical optimization question is to ask the model checker
for the shortest sequence of moves to the solution. The tool tries to answer these
questions by a possibly exhaustive exploration of all reachable states and, if appro-
priate, it can supply a path in the transition system that explains the given answer.

Despite the fact that model checkers are relatively easy to use as compared to
theorem proving, they are not applied on a large scale. Some reasons for this are
mentioned below. Note that these reasons apply to general model checkers such as
UPPAAL and SPIN, but not to specialized in-house industrial tools that incorporate
model checking techniques.

1. Scalability. Model checkers must cope with the state space explosion prob-
lem, which is the problem of the exponential growth of the state space as
models become larger. This growth often renders the mechanical verifi-
cation of realistic systems practically impossible: there just is not enough
time or memory available. For instance, the number of valid Sudoku so-
lution grids for the standard 9 by 9 grid was calculated by Bertram Fel-
genhauer in 2005 to be 6,670,903,752,021,072,936,960, which is roughly
the number of micrometers to the nearest star. The possible search space
for a given Sudoku puzzle may thus be huge. Heuristics are often used to
prune such huge search spaces. A very simple heuristic is good enough to
solve man Sudoku puzzles with the UPPAAL model checker (see http:
//www.cs.ru.nl/M.Hendriks/sudoku. zip|for the model).

2. Accessibility. Building a good model is difficult because model checkers
are mostly academic tools that lack extensive documentation and require a
thorough knowledge of the underlying principles to build models that are
suitable for analysis. Thus, in practice model checking tools are inaccessible
to people with little or no background in formal verification.

3. Convenience. Model checkers usually are not a part of the development
tool-chain with the result that there is little or no automation. Furthermore,
many current tools and their input formalisms lack important features for
convenient specifications in an industrial setting. As a result, modeling and
analysis require a significant amount of time.

4. Realizability. It very often is unclear what the relation between the model
and the reality is. One can verify a high-level design, but what does that say
about the realization of that design?

At this point one might think that model checking tools are only suitable to
solve small puzzles and to verify toy examples. This is definitely untrue. Many
examples exist of non-trivial case studies in which model checking tools played an
essential role. Because of the number and the variety of the available examples,

3 All puzzles that were tried were solved within a few seconds, including some 17-hint Sudokus
which are the most difficult Sudoku puzzles known.
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it is not possible to give a short list of those that have had the greatest impact.
Instead, the reader is referred to conferences where these case studies are regularly
published, such as the conference series on Computer Aided Verification (CAV),
and Tools and Algorithms for the Construction and Analysis of Systems (TACAS).

1.3 Overview of this Thesis

As indicated in the title, this thesis concerns the model checking of timed automata.
The timed automaton framework is an automata based formalism that can capture
quantitative timing aspects [7, |8]. Its modeling language extends finite state au-
tomata with real-valued clocks. For instance, a timer which generates a “tick”
every 9 to 10 time units and which may fail at any moment can be modeled very
naturally as a timed automaton: see Figure[I.2]

x>9
tick
x:=0

error
L0 fail
x<10

Figure 1.2: A timed automaton that models a timer which generates a tick every 9
to 10 time units, and which may fail at any moment.

This automaton has two locations namely L0, which is the initial location, and
error. It also has one clock, namely z. Location LO is labeled with the invariant
“x < 10” which specifies that the value of clock = must be smaller than 10 when-
ever location L0 is active. The self-loop is labeled with the clock guard “x > 97,
which is the enabling condition for the edge. Furthermore, it is labeled with an
action tick, and with the clock reset “x := 0”. The semantics of a timed automaton
is defined by an infinite labeled transition system. The states in this system are
tuples (I, v), where [ is the current location of the automaton, and v is a function
that maps the clock of the automaton to a non-negative real number. There are two
types of transitions: (i) delay transitions that model the elapse of time, and (ii) ac-
tion transitions that execute an edge of the automaton. For instance, the following
is a possible path of the automaton shown in Figure

(L0, = 0) —*3 (L0, z = 4.3) =51 (L0, x = 9.4) -1k (19 2 = 0) —27
(L0, = 2.7) —°2 (L0, z = 2.9) =9 (error, z = 2.9) =81 (error,z = 11)

Although the model of a timed automaton has an infinite state space, techniques
have been developed to analyze it algorithmically. The basis for this analysis is
the so-called region automaton, which is a finite abstraction that preserves Timed
Computation Tree Logic (TCTL) [l6]. Unfortunately, the clocks impose a signifi-
cant burden: typically the region automaton is just too big to fit in the memory of
a regular desktop computer. This problem is addressed in [64].
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The zone automaton, which preserves only a subset of TCTL (most notably
reachability) and is often usable in practice, is mostly implemented by model
checking tools for timed automata such as UPPAAL [16]].

Timed automata have proven to be a natural formalism for the specification
and verification of real-time systems. During the last years it has been recognized
that timed automata are also very suitable for the specification, verification and
optimization of all kinds of resource allocation problems in which time plays an
essential role, such as job-shop and task-graph scheduling problems [3| 2] and
industrial scheduling problems [49] (also see Chapters E] and @).

1.3.1 Aim of this Thesis

All work described within this thesis has been carried out in the context of the EU
project IST-2001-35304 AMETIST [9]]. The following excerpt from the final project
report defines the aim of AMETIST: “Whereas timed automata and the tools for
their analysis are widely accepted in academia and are being used at hundreds of
universities and research laboratories around the world, they have yet to find their
way into industry. The aim of AMETIST has been to advance and mature the related
models, tools, and methods to allow this situation to change.” The four drawbacks
of model checking technology that have been mentioned above impair the use of
timed automata technology in industry, and AMETIST aimed to (at least partially)
eliminate them.

The aim of this thesis is to develop and implement new techniques to
alleviate the state space explosion problem for timed automata, and to
demonstrate and evaluate the practical applicability of timed automata
model checking tools.

The first goal coincides perfectly with the scalability issue that AMETIST aimed
at, whereas the second goal contributes to research of the accessibility and conve-
nience issues. The research methodology that has been applied in this thesis to
reach these goals is practice-driven and centered around the UPPAAL tool. The
basis consists of case-studies which have contributed to the existing body of ex-
perience and have shown the current capabilities and shortcomings of UPPAAL
with respect to modeling and analysis issues. The attempts to analyze the case-
studies with UPPAAL have suggested ways to improve (i) the tool and (ii) analysis
techniques for timed automata in general. Consequently, implementation of these
suggestions has resulted in a more mature tool, which closes the cycle.

1.3.2 Content of this Thesis

This thesis consists of six research papers, namely [59, 55,157, 160, (15} 56], that are
summarized below.
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e Chapter 2} Exact Acceleration of Real-Time Model Checking. This chapter
deals with the state space explosion that results when various system com-
ponents have different time scales (for instance, a controller that is based
on microseconds and its environment that is based on seconds). The main
contribution is a theorem that alleviates this problem for a subclass of timed
automata.

e Chapter[3} Enhancing Uppaal by Exploiting Symmetry. Symmetry reduction
is a well-known technique to reduce the state space when multiple compo-
nents that “behave the same” are present in the system. The contribution of
this work is a soundness proof that transfers symmetry reduction from an
untimed setting to a timed setting.

o Chapter 4 Adding Symmetry Reduction to Uppaal. In this chapter it is
shown that the symbolic representation of the clocks does not complicate
the symmetry reduction technique that has been proposed in Chapter 3| The
technique has been implemented in a prototype of UPPAAL, and experiments
show a exponential improvement in both time and space for some models.

e Chapter 5} Model Checker Aided Design of a Controller for a Wafer Scan-
ner. This case study shows that model checking techniques can be used to
solve a verification and optimization problem on different levels of abstrac-
tion within a single framework. This work is referred to in patent application
ASML ref. P-1784.010, which shows its relevance for industry.

e Chapter [6 Production Scheduling by Reachability Analysis. Timed au-
tomata that are extended with cost functions are used in this case study to
find schedules for lacquer production. It is shown that the model checker
based approach can compete with a commercial value chain optimization
tool for this particular case study.

o Chapter [/} Model Checking the Time to Reach Agreement. This chapter
presents a typical verification problem that is very difficult for model check-
ers for various reasons and was considered far out of reach only three years
ago.

The research for the exact acceleration technique (Chapter |2) was triggered
by failed attempts to analyze the behavior of executable byte code for the LEGO
RCX brick [54]). Similarly, the research for symmetry reduction (Chapters [3|and [4)
was triggered by failed attempts to analyze interesting instances of the agreement
algorithm that is presented and analyzed in Chapter[7} The fact that such instances
could be verified three years later without the use of symmetry reduction shows the
steady progress of the efficiency of UPPAAL. Furthermore, the AXXOM case study
(Chapter[6) triggered a number of small but helpful enhancements of UPPAAL.
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1.4 Conclusions

It has been known for many years that model checking techniques can contribute to
the design and analysis of real systems. A lot of research concerning model check-
ing has been, and still is, directed at the fundamental scalability problem. This has
resulted in very powerful tools that enable experts in the field of formal verifica-
tion to solve many interesting real-life case-studies fast and in a routine manner.
The ASML case study (Chapter [5) and the agreement case study (Chapter [7) are
relevant examples in this respect.

The fact that many techniques to scale model checking are often applied si-
multaneously raises a practical question of correctness. Apart from the issue that
the actual implementation of the model checking algorithm should be correct, it
must also be ascertained that all applied techniques are pairwise compatible. Fur-
thermore, the fact that modeling languages evolve poses another problem. For
instance, the symmetry reduction technique for timed automata that is presented in
Chapters [3]and 4] has been based on a version of UPPAAL which did not yet contain
the C-like language that the current development version contains and which the
next major release will contain. How is symmetry reduction handled in this new
language? Must all theoretical work be done again to ensure soundness?

Although at least two of the three case studies that are presented in this thesis
have been solved quickly in a routine manner, the case studies also have shown that
model checking is not yet push-button technology. Three prominent problems that
remain (apart from the always existing scalability problem) are the following:

e Modeling the problem in a logical and straightforward manner may result in
a model that is too detailed to analyze.

e It is often difficult and inconvenient to model search heuristics.

o It may be very difficult to model a specific part of the problem domain.

The first of the above problems is closely related with the scalability problem,
and will, just like the scalability problem, always be present. An effective way to
circumvent this problem is to construct abstractions that are just detailed enough to
be useful. This, however, can be a highly non-trivial task, as is demonstrated by the
agreement case study. The ASML case study provides a nice example of the use
of different levels of abstraction: the verification problem is solved on an abstract
model, and the optimization problem is solved on a concrete model. Furthermore,
it is manually proven that the abstraction is sound. Ideally, of course, the process
of making abstractions or refinements and proving them sound needs no (or just a
little) human interaction.

The second problem typically applies to scheduling problems. Usually, the
state space of these models is far too large to handle and heuristics are applied
to guide the search for good schedules. The modeling of heuristics often is non-
trivial, such as the non-laziness heuristic in the AXXOM case study (Chapter|[6]) and



1.4. CONCLUSIONS 9

the start-up heuristic in the ASML case study. This clearly poses an accessibility
problem for the model checker based approach. Furthermore, modeling heuristics
is not convenient since separating them cleanly from the core of the model often
is not possible. This quickly results in many versions of a model, resulting in the
obvious problems.

The third problem is is illustrated by the working hours of the personnel in the
AXXOM case study. Modeling this constraint with timed automata does not feel
natural and is very laborious. This is a typical accessibility problem: modeling
the constraint is difficult and extra care has to be taken to avoid that a very inef-
ficient model results. The conclusion therefore is that raw timed automata, just
like any other low-level formalism, may just not be very suitable for these kind of
constraints.

The second and third problem can be circumvented by high-level domain-
specific languages that form a front-end for timed automata models. Current re-
search investigates this approach for architectural design-space exploration [61].
An alternative is to provide a library of problem templates for specific application
domains. A user can select a problem template that models a problem that is most
similar to its own problem (including useful heuristics). Ideally, only small and
easy to understand changes in the model are needed to transform it to a suitable
model for the new problem. This approach may work for many cases. When it
does not work, however, the need for detailed knowledge of timed automata rises
again.

The AMETIST project has made huge progress in dealing with the fundamen-
tal scalability problem: the performance of UPPAAL has improved several orders
of magnitude during this three-year project. Still, there are many existing tech-
niques that could be added to UPPAAL to improve its performance even more, such
as dead-variable reduction for integer variables [[106] and clock optimization [40],
slicing based on the verification property [29], the sweep-line methocﬂ [36], and
alternative symbolic techniques such as presented in [[L03]. Furthermore, the prob-
lems of convenience and accessibility seem to become more prominent with the
increase of the efficiency of model checking tools. One way to solve these is to
provide high-level languages for specific application domains that translate to ef-
ficient low-level models that can be handled by existing tools. Another way is to
build a “case study library” from which problems that have already been solved
can be taken and adjusted to the existing problem.

“Work on an implementation of the sweep-line method in UPPAAL has recently been initiated.
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Chapter 2

Exact Acceleration of Real-Time Model
Checking

MARTIJN HENDRIKS
KiM LARSEN

Abstract. Different time scales do often occur in real-time systems, e.g., a polling real-
time system samples the environment many times per second, whereas the environment
may only change a few times per second. When these systems are modeled as (networks
of) timed automata, the verification using symbolic model checking techniques can signif-
icantly be slowed down by unnecessary fragmentation of the symbolic state space. This
paper introduces a syntactical adjustment to a subset of timed automata that addresses this
fragmentation problem and that can speed-up forward symbolic reachability analysis in a
significant way. We prove that this syntactical adjustment is exact w.r.t. reachability prop-
erties and that it indeed is effective. We illustrate our exact acceleration technique with
run-time data obtained with the UPPAAL model checker. Moreover, we demonstrate that
automated application of our exact acceleration technique can significantly speed-up the
verification of the run-time behavior of LEGO Mindstorms programs.

2.1 Introduction

Model checking systems in which various components use very different time
scales suffers from the fragmentation problem. This, for example, is often the case
for models of reactive programs with their environment. This difference can give
rise to an unnecessary fragmentation of the symbolic state space: busy waiting of
one of the components in the model slices the time even when nothing interesting is
happening. As a result, the time and memory consumption of the model checking
process increases.

The fragmentation problem has first been encountered and described by Hune
and Iversen et al during the verification of LEGO MINDSTORMS programs using
UPPAAL [67, [70]. The symbolic state space is severely fragmented by the busy
waiting behavior of the control program components. Other examples that may suf-
fer from fragmentation include the aforementioned reactive programs, and polling
real-time systems, e.g., programmable logic controllers [41]. We propose an accel-
eration technique that addresses the fragmentation problem for a subset of timed
automata that contain special busy waiting cycles. Our technique consists of a syn-
tactical adjustment that can easily be computed from the timed automaton itself.

This chapter is an improved version of [59].
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We prove that the application of this syntactical adjustment is exact with respect to
reachability properties and that it can effectively speed-up forward symbolic reach-
ability analysis. As a result, our approach is readily applicable using the existing
model checkers.

Related work. Our approach has been heavily inspired by Moller’s “parking”
approach to the sketched fragmentation problem, which is based on a syntactical
adjustment that gives — in general — an over approximation of the state space [85]].
In fact, we have taken a special case of “parking” and we have proved its exact-
ness w.r.t. reachability. We think that both methods show promises for handling
the fragmentation problem. Closely related work has been done in the field of
symbolic verification of systems that are modeled by a discrete control graph with
unbounded integer variables [25[]. Static analysis of the control graph is used to
detect interesting cycles, of which the result of iterated execution can be computed
by a single meta transition. These meta transitions are then added to the system
and favored by the state space exploration algorithm, resulting in faster exploration
of the state space. Symbolic techniques using gueue-content decision diagrams, or
QDDs, for the analysis of communication protocols that are modeled by finite-state
machines that communicate through unbounded FIFO-queues, also use meta tran-
sitions to accelerate the exploration of the state space [2324]]. Special cycles in the
control-graph, e.g., the repeated receiving of messages from a channel, are associ-
ated with meta transitions that compute all states that are reachable by the iterated
execution of the cycle. In these approaches only a limited class of cycles in the
control graph can be accelerated due to the expressibility of QDDs. To overcome
this problem, constrained QDDs have been introduced, that allow the acceleration
of any cycle in a control graph [27]. Recently, acceleration techniques have been
proposed in the setting of parameterized model checking [4}93]. Again, the idea is
to compute the effect of an unbounded number of actions to accelerate the forward
exploration process.

Outline. In Section[2.2] we briefly summarize the syntax and semantics of timed
automata. Section[2.3]explains the basic definitions and lemmas and in Section 2.4
the main theorems are presented. Finally, Section [2.5] gives an application of exact
acceleration, and Section [2.6|draws some conclusions.

2.2 Timed Automata

The timed automata framework which has been introduced by Alur and Dill [5} 18] is
a formalism for specifying dense real-time systems. The basic definitions concern-
ing timed automata from [J5] are reused here. In order to define finite automata that
use real valued clocks, first the set of clock constraints over a set of clock variables
is defined. Let X be a set of clock variables, then the set ®(X) of clock constraints
is inductively defined by the rules (1) x ~ ¢ € ®(X) and (2) if ¢1, P2 € P(X),
then ¢1 A g € ®(X), where z € X, c € NU{oo}and ~ € {<,<,=,>,>}. The
symbol oo is allowed in clock constraints because it makes the definitions below
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more elegantly. We define ¢ < oo and ¢ + 0o = oo forall c € RU {oco}. A
clock interpretation v for a set of clocks X is a mapping from X to RT, where
R* denotes the set of positive real numbers including zero. A clock interpretation
v for X satisfies a clock constraint ¢ over X, denoted by v |= ¢, if and only if ¢
evaluates to true with the values for the clocks given by v. Thus, the constant true
can be defined by the constraints z > 0 and z < oo where x € X. The notation
v+ J, where § € R, is used for the clock interpretation which maps every clock
x to the value v(z) + 6. The notation v[Y := 0] , where Y C X, is used for the
clock interpretation which assigns 0 to each z € Y and leaves the other clocks
unchanged w.r.t. v. We let I'(X') denote the set of all clock interpretations for X .

Definition 2.1 (Timed Automaton) A timed automaton is a tuple (L,1°, 3, X, I,
E), where L is a finite set of locations, 19 € L is the initial location, Y. is a finite
set of labels, X is a finite set of clocks, I : L — ®(X) labels each location with
some clock constraint, and E C L x ¥ x ®(X) x 2% x L is a finite set of edges.

Anedge e = (I, a, ¢, \, ') represents a transition from location [ to location !’
on the symbol a. The clock constraint ¢ specifies when the edge is enabled and the
set A C X gives the clocks to be reset with this edge. The source of e is [, and is
denoted by src(e). The destination of e is I/, and is denoted by dst(e).

The semantics of a timed automaton (L, 1%, %, X, I, E) is defined by associat-
ing a transition system (5, s%, —) with it. The set of states S consists of all pairs
(I,v), where | € L and v € T'(X) such that v satisfies I(l). The initial state
sV is the state (19, Vi), where vinis(z) = 0 for all z € X. We assume that
Vinit = I(lp). There are two types of transitions in the transition system:

1. Let(l,v), (') € Sandletd € RY. If v/ = v+4,I' =1, andv+0' | I(])
forall 0 < ¢ <4, then ((I,v), (I',V)) € —.

2. Let (l,v), (') € Sand lete = (l,a,6,\,l') € E. Ifv = ¢ and v/ =
v[A:=0], then ((I,v), (l",V))) € —.

o

e

The first transition is a d-delay transition and is abbreviated by (I,v) —
(I;v"). The second transition is an e-action transition, abbreviated by (I,v) —
(I’,v"). Due to the fact the clock constraints are conjunctions of lower and upper
bounds on clocks, the following lemma can be proved.

Lemma 2.2 (Convexity) If (I,v),(l,v') € S and v' = v + ¢ for some § € RY,
then (1,v) —° (1,1/)).

PROOF. We must prove that v + ¢’ |= I(l) for all 0 < ¢’ < 4. This can be done
by proving that for all ¢ € ®(X) holds thatif v/ = v+ 0, v = ¢ and V' = ¢,
then v + &' = ¢ forall 0 < § < § by induction on the syntax of ¢, which is
straightforward. |
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Note that this lemma cannot be proved if disjunctions are allowed in clock
constraints; a constraint like z < 5V x > 7 can easily be used for a counter
example.

Definition 2.3 (Path) Let M = (L,1°, %, X, I, E) be a timed automaton. A finite
or infinite sequence (ly, o), (I1,11), ... is an (I, v)-path of M if and only if ly =1
and vy = v, and for all i > 0 holds ((l;—1,vi—1), (l;,v;)) is an e-action transition
for some e € E or a 6-delay transition for some 6 € RT.

Any state on a (lo, Vinit)-path is a reachable state. In order to characterize
reachable sets of states we define state properties as sets of states of a timed au-
tomaton.

Definition 2.4 (Reachability and Invariance) Let M be a timed automaton, let
s be a state of M, and let ¢ be a state property of M. A state that satisfies ¢
is reachable from s in M, denoted by (M, s) = EF(¢) if and only if an s-path
80,81, - - -, Sn Of M exists such that s, € ¢. A state that satisfies ¢ is invariant
from s in M, denoted by (M, s) = AG(9) if and only if for every finite or infinite
s-path sg, $1, . .. of M holds that s; € ¢ for all i > 0.

Let M be a timed automaton and let m be an s-path of M. We say that 7 is
compressed if and only if it starts with a delay transition, any delay transition is
either followed by an action transition or it is the last transition, and any action
transition is either followed by a delay transition or it is the last transition. Ev-
ery finite path can be converted to a compressed path as follows: First, insert a
0-delay transition before every action transition, and second, replace n consecu-
tive delay transitions with delays d1,...,d, by a > ; d;-delay transition. We let
compress(m) denote the compressed version of a path .

2.3 Predictable Delays of Edge Sequences

Consider some timed automaton M and let ¢ = ey, es,..., e, be a sequence of
edges of M. We define src(o) = src(eq). We say that o is consecutive if and only
if dst(e;) = src(e;41) forall 1 < i < n. Furthermore, o is cyclic if and only if it is
consecutive and dst(e,,) = src(e1). An execution of o is a path, say 7, that starts in
src(o) and that exactly takes the edges in o and ends with a e,-action transition,
i.e., compress(m) has the form

02

(1, v1) = (I, ) = (lo,va) =% ... = (Ly, ) =" (lns1, Vnt1)

The accumulated delay of 7 equals )", d;, and is denoted by delay(r). Finally,
n repetitions of a sequence o, denoted by ¢, is defined as the sequence o1, ..., 0,
where o, = o forall 1 < <n.

The next definition associates a delay interval with a sequence of edges if every
execution of that sequence has a delay in that interval, and for every number § in
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the interval it is always possible to execute the sequence from a special set of states
such that the delay equals §. The main idea behind this definition is that it enables
the exact computation of the result of the iterated execution of a cycle with a delay
interval. This result can then be used for the exploration of the state space.

Definition 2.5 (Delay Interval) Let o be a consecutive edge sequence, and let y
be a clock. An interval [a, b, where a € Nand b € NU {oo}[] is a y-delay interval
of o, if and only if

1. for any execution T of o starting in a state (1,v) such that v(y) = 0 holds
that delay(r) € [a,b], and

2. forall § € [a,b] holds that in any state (src(ey),v) such that v(y) = 0 starts
an execution T of o such that delay(mw) = 0.

Since a delay interval is unique, we speak of the delay interval of an edge
sequence. The next definition is a syntactic property of an edge sequence that
implies the previous semantic property.

Definition 2.6 (Predictable Delay) Let 0 = ey, ..., e, be a consecutive edge se-
quence of a timed automaton (L,1°,%, X, I, E), and let e; = (I;, a;, i, \i, liv1).
Then o has a predictable delay for clock y, if and only if|

1. forall1 <i<n+ 1somed; € NU{oo} exists such that I(l;) =y < d;,
2. forall1 < i < neither ¢; =y > ¢; or ¢; =y = c¢; for some ¢; € N,

3. ¢ <dijforalll <i<n,andc; < djy1 andc; < ci1 foralll <i <n,

4 \p={ytand \i =0 forall1 <i<n.

Note that the third requirement is not really restrictive, since it states a “san-
ity” rule: violation of it introduces redundancy, deadlocks or may even have the
result that the edge sequence has no executions. We claim that the specification
of components that have an approximately known delay in their computation, e.g.,
the cycle of a programmable logic controller, often is of the form as defined above.

Lemma 2.7 If an edge sequence has a predictable delay for y (with the naming of
variables as in Definition , then it has a y-delay interval that equals [cy,, ¢y, if
Gn =y = ¢y, and [cy, dy,] otherwise.

'The unconventional notation § € [a, co] means that § > a.

The non-strictness constraints of the first and second item are present to simplify the definitions
and proofs in the sense that less cases need to be considered. We claim, however, that they can be
dropped resulting in only very minor changes to the theorems.
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PROOF. Assume that the edge sequence o = ey, €2, .. ., e, has a predictable delay
for y. We use the naming of variables as introduced in Definition We first
prove the first part of Definition [2.5] To this end, consider the compressed form of
an execution of o that starts in state ({1, v1) such that v (y) = 0:

™= (llv Vl) —)61 (l]_’Vi) —€l (l2’ Uz) —)62 e —6n—1

(lnayn) —0n (ln,V;l) —en (ln+17Vn+1)

First, note that delay(m) equals >, ¢; by definition, which is equal to v/}, (y) since
v1(y) = 0 and y is only reset on e,, by Definition Now assume that ¢,, has
the form y = ¢,,. Then clearly, v/,(y) = ¢, since otherwise e,, is not enabled.
Therefore, delay(m) = ¢, € [cn, ¢y). For the second case, assume that ¢,, has the
form y > c¢,. Clearly, v/,(y) > ¢, since otherwise e, is not enabled. Hence,
delay(m) > ¢,. Furthermore, v/, = I(l,,), since we assumed that (,,v],) is a
state. Thus, v}, = y < d, by Definition [2.6] and therefore v/,(y) < d,,. Hence
delay(m) < d,.

Next, we prove part 2 of Definition Depending on the form of ¢, let
0 € [en,cn), orletd € [cp,dy]. Let (I1,v1) be a state such that [; = src(ep)
and v1(y) = 0. Consider the following sequence of pairs of locations and clock
valuations:

™= (llv Vl)v (llv Vi)a (l27 1/2)7 (1,27 l/é)a SRR (ZTH Vn)a (lnv V,:L), (ln+17 Vn+1)

where the clock valuations are defined as follows:

7 = vi+cgforalll <i<n
v; = rtce_forall2<i<n
v, = 1n+d

Vny1 = (1 +6)[{y}=0]

Informally, the delay in every location — except for [,, — is kept as small as pos-
sible to enable the guard of the outgoing edge. In location [,, the total delay then
is increased to match . This can all be done due to the requirements stated in
Definition [2.6] A more formal proof is straightforward but tedious and is therefore
omitted. |

The proof of the previous lemma enables us to use the syntax of a timed au-
tomaton to compute the delay interval of an edge sequence with a predictable de-
lay. Consider, for instance, the timed automaton depicted in Figure It is an
abstract model of the parallel composition of some control program and an en-
vironment which is modeled by clock z and the (very large) constant L. It has
two consecutive edge sequences that have a predictable delay for clock y, namely
(L1, 7, true,{y},L2) and (L2,7,y > 1,0,L3),(L3,7,y > 3,{y},LI) (7 is the
“empty” label and is not depicted). The delay interval for the edge from L/ to L2
equals [0, 2] and the delay interval for the edges between the locations L2, L3, L1
equals [3, 5].
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finished

L2
y<=4

Figure 2.1: Timed automaton P.

It would be convenient to be able to sum the y-delay intervals of consecu-
tive edge sequences to obtain the y-delay interval of the total edge sequence. A
lemma is proved below that formalizes this. First, however, an intermediate result
is proved.

Lemma 2.8 Let aj,az € N, let by, by € NU {o0}, let a1 < by and let ay < ba.
If5 S [a1 + ag,b1 + bz], then a 51 S [al,bl] and (52 S [ag,bg] exist such that
0 = 01 + 09.

PROOF. We distinguish three cases.

1. b1 = by = co. We let 61 = aq (thus 6; € [al,bl]) and 09 = 6 — 91 (thus
6 = 61 + 92). Since & > aj + ao it holds that d5 > ao. Thus dy € [az, bQ]
since by = oo.

2. by = oo and by # oco. (The case by # oo and by = oo obviously is similar.)
We let 62 = az and 7 = & — 2. The proof is similar to the previous case.

3. by # oo and by # oo. Without loss of generality we may assume that
a; +ba < by + ag. Now let § € [a; + ag, b1 + ba]. We distinguish three
cases:

(@) 0 € [a1 + ag,a1 + by]. Then §; = a; and 02 = § — a;. Clearly,
0 € [al,bl] and d9 € [CLQ,bQ].

(b) 0 € [a1 + ba,b1 + a2]. Then §; = 6 — by and d2 = by. Clearly,
d2 € [ag, ba]. It also clearly holds that §; > a;. Furthermore, ¢; <
b1 + ao — by. Since as < by, we can conclude that 61 < by.

() 0 € [by + az,by + ba]. Then §; = by and d3 = § — by. Clearly,
01 € [al,bl] and Jy € [ag,bg].
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Lemma 2.9 Let o be a consecutive edge sequence, and suppose that it can be
written as o1, . .., oy, such that o; has a y-delay interval of |a;,b;] where a; € N
and b; € NU {00}, and y is reset on every last edge of o;. Then o has a y-delay

interval of | Z?:l ag, 2?21 bil.

PROOF. The lemma can be proved by induction on n. The base case in which ¢ can
be written as o7 is trivial. Now assume that the lemma holds for n = k. Consider
the case forn = k + 1,i.e, 0 = 01,...,0k,0+1. We first prove the first part of
Definition Therefore, consider an execution of o that starts in a state (I1,11)
such that 11 (y) = 0 (and let e, be the last edge of o, and let e, be the last edge

of op41):

7= (l,v) = =% (lp,vp) = - =% (lg, 1)

Execution of 01, ..., 0%

By the induction hypothesis we know that the delay up to state (I,,, ), denoted
by 41, is an element of [Zle ag, Zle b; |. Furthermore, clock y is reset on edge
ex, by assumption. Therefore, v/, (y) = 0, and we can use Deﬁnitionto conclude
that the delay J, of the execution of o1, i.e., the path (l,,vp) — -+ —+1
(I4,v4) takes a value in [ ag41, bg41 ]. Clearly, 81 + 62 € [ag41 + Zle @i, bgy1 +
i bil.

Next, we prove the second part of Deﬁnition Let (I1, 1) be a state such that
Iy = sre(o) and v1(y) = 0, and let § € [ Y54 a;, S M0, 1. By Lemma we
can write 0 as 01 + 0o, where §; € [Zle a;, Zle b;] and 02 € [ak+1,bg+1]- Us-
ing the induction hypothesis and Definition an execution of oy, ..., 0o exists
that starts in (I1,11), say, (I1,v1) — -+ = (I, vp) with delay 6;. By assump-
tion, o is consecutive which means that {,, = src(o41). Furthermore, y is reset on
edge e;, by assumption, and therefore v, (y) = 0. We can thus use Definition
to extend this path with an execution of o1 that has delay do. Thus, the resulting
path is an execution of ¢ with delay d; + d2 = . |

2.4 Acceleration of Timed Automata

Cycles can also have a delay interval, and when they do, the result of an arbitrary
number of executions of the cycle can be computed in one step.

Definition 2.10 (Acceleratable Cycle) An edge sequence o is a y-acceleratable
cycle if and only if it is cyclic, it can be written as o1, . . . , 0, such that each o; has
a predictable delay for y, and y is reset on every incoming edge of the first location

of o.

Note that every y-acceleratable cycle has a y-delay interval that can easily be
computed from the syntax (by Definition Lemma and Lemma[2.9). Con-
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sider, for instance, the automaton in Figure [2.1] The cycle that starts in location L/
is a y-acceleratable cycle and has a y-delay interval of [3, 7].

The following definition appends an additional cycle to timed automata. We
will see that a well-chosen additional cycle may be used to compute the effect of
the iterated execution of an acceleratable cycle.

Definition 2.11 (Extension) Let M = (L,I°, %, X, I, E) be a timed automaton,
letl € L, letb € Nandlet x € X. The timed automaton A(M,1,z,b) = (L U
{10, X, I E U {e1,ea}) (assume that I ¢ L), where I' = T U {(I', true)},
er= (I, 7,z > 0,{x},l'), and ea = (I', 7,2 > b, {x}, 1) is an extension of M.

This definition adds an extra cycle, the additional cycle, consisting of two edges
to the automaton. Note that if [ is on an y-acceleratable cycle of M, then the
additional cycle of the extension A(M,[,y,b) has a y-delay interval that equals
[b, o0]. For instance, Figure depicts a possible extension of location L/ in
which z = y and b = 3 of the automaton in Figure Clearly, the extension has
a y-delay interval that equals [3, co].

L3 L1
@ y>3 ﬁs y>=3 \/y_<\:2 L finished

L2
y<=4

Figure 2.2: Timed automaton P4: an extended version of P.

The extended automaton is only interesting if we can use it to model check
properties of the original automaton. Next, we prove that some extensions are
exact w.r.t. reachability properties. To this end, we first need an auxiliary lemma.

Lemma 2.12 For all A € R and a,b € N such that a < b holds that if A >

(3251 - a, then ann € N exists such that A € [na,nb].

PROOF. We consider two cases:

1. a = 0. We have that A > 0 and we must find an n € N such that A € [0, nb].
Since we assumed that b > a we know that b > 1. The choice n = [A]
proves this case.

2. a > 0. First, note that from n > % easily follows that (n+1)a < nb for all
a,b,n € N. Next, we prove this case. To this end, let A > [ﬁ] -a. Clearly,
some n € N exists such that na < A < (n + 1)a. Since A > [2-] - a, we
can conclude that n > [;%-]. Thus clearly n > %, and hence (n + 1)a <
nb. Since na < A < (n + 1)a we conclude that A € [na, nb].
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Theorem 2.13 (Exactness) Let M be a timed automaton, let s° be the initial state
of M, let o be a y-acceleratable cycle of M with a y-delay interval of [a, b] such
that a < b, and let ¢ be a state property of /\/IEI Consider the extension M’ =
A(M,sre(0),y, 5% - a). Then

(M, s") F EF(¢) <= (M',s") |= EF(¢)

PROOF. The = implication is trivial, since any path of M clearly also is a path
of M’. Now consider the converse implication. Let src(0) = I. We prove that
for any path 7 = (1% vipit), - . ., (Iy, v¢) in the extension such that [; # ', a path
7 = (1% vinit), - - -, (I, vf) in M exists. The proof is by induction on the number
of occurrences of e;-action transitions in 7 (see Definition [2.11). The case for 0 of
those transitions is trivial, since then clearly also no es-action transitions occur in
m, and as a result, 7 is a path in M. Now assume that it holds for any path with
m occurrences, and assume that 7 has m + 1 occurrences of eq-action transitions.
Then we can compress 7 and split 7 as follows:

(ZO’ Vinit) . (l, l/) H(51 (l, Z//) _e1 (l/, Z/”) _>52 (l/, Z//l/) _,e2 (l’ I/””) . (lfa Vf)

m occurrences 0 occurrences

By the induction hypothesis, (I, v) is also reachable in M from the initial state.
Note that either (I,v) = (I° Vi) or an action transition leads to (I, v). Since
1y is reset on every incoming edge of [ (by Definition and vini(y) = 0 we
can conclude that v(y) = 0. It also holds that " (y) = 0, since y is reset on
eo by assumption. Furthermore, we know that no other clock than y is reset in
the additional cycle. Therefore, """ (xz) = v(x) + A for all clocks  # y and
for some A € R*. By the assumptions from the theorem and Definition we
know that the additional cycle has a y-delay interval that equals [[ ;%] - a, 00].
Thus, A > [$%-7 - a and we can use Lemma to conclude that an n exists
such that A € [na,nb]. Now consider the edge sequence o™ in M (which equals
n executions of the acceleratable cycle). Since o is a cycle that that starts (and
ends) in [, this edge sequence is consecutive. Furthermore, o has a y-delay interval
of [a,b] by assumption, and y is reset on the last edge of o by Definition m
Therefore, we can use Lemma [2.9] to conclude that o™ has a y-delay interval of
[na, nb]. Hence, by Definition 2.5 we can indeed reach ({,"””) from (l,v) in M
by executing o™. Since the path from (I, ") to (I, v) in 7 does only use edges
that are also present in M, we conclude that a (I°, ;i )-path that ends in (I, v¢)
also exists in M. [ |

SRemember that a state property is a set of states. Therefore, a state property of M is a state
property of any extension of M (see Definition [2.TT).
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The extension P4 as depicted in Figure [2.2] satisfies the preconditions of the
previous theorem. Therefore, this automaton can be used to model check reach-
ability properties of the unaccelerated automaton P, which has been depicted in
Figure It may seem that the addition of the additional location cannot be a
good idea since it only increases the state space. The next theorem, however, is the
core of the explanation that it actually is a good idea when the difference in time
scales is large.

Theorem 2.14 (Effectiveness) Let M be a timed automaton with a accelerat-
able cycle o that has a y-delay interval of [a,b]. Consider an extension M' =
AWM, sre(o),y, 521 a) If (li,v1), ..., (1, 1) is an execution of o™ such that
n > 2= and vi(y) = O, then an execution (ly,11), ..., (I1, 1) of the additional
cycle exists.

PROOF. Note that the additional cycle has a y-delay interval of [[;2-] - a,oc].
Clearly, o™ is consecutive since o is a cycle. Furthermore, o has a y-delay interval
of [a, b] by assumption, and y is reset on the last edge of o by Definition
Therefore, we can use Lemma to conclude that ¢™ has a y-delay interval of
[na, nb.

Now consider an execution of o™, say (l1,v1), ..., (I1,v}), such that v (y) =
0. Then v{(y) = 0 since y is reset on the last edge of o by Definition and
Definition Furthermore, by the same definitions we know that no other clock
than y is reset in . Therefore, v/{ () = v1(z) + A for all clocks = # y. Since o™
has a y-delay interval of [na, nb] and n > [;%-], we know that the execution takes
at least [~ - a time, i.e, A > [2-] - a.

Using the assumption on the delay interval of the additional cycle and Defini-
tion we know that for any § > [;%-] - a an execution of the additional cycle
starts in (I1, 1) that has delay §. By definition, such an execution ends in a state
(11, vm) such that v,,(y) = 0 (since y is reset on the last edge of the additional
cycle by Definition and v, (z) = vi(x) + & (since only clock y is reset in the
additional cycle by assumption). Since A > [;%-] - a, we can choose § = A with
the result that v, = v}. Hence, the desired execution (I1,v1),..., (I1,1]) of the
additional cycle exists. |

Consider automaton P in Figure [2.1|and its accelerated version P4 in Figure
[2.2] We want to know whether location finished is reachable. As mentioned before,
model checkers for timed automata use a finite abstraction of the transition system
to enforce decidability. States in the zone abstraction, which is used by the UPPAAL
model checker, are tuples (I, Z), called symbolic states, where [ is a location and
Z is a zone, which is a set of clock valuations. For instance, when location L/ is
reached for the n-th time (the acceleratable cycle then is executed n — 1 times),
then the zone of that state can be described by: y € [0,2] Az € (3n,Tn]Az—y €
(3n,7n — 2]. Figure [2.3| shows the zones that belong to states that are reached
when location L/ is visited for the first, second and third time. This clearly shows
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the fragmentation problem. First, it takes many executions (and therefore a lot of
computation time) to get to a state such that the transition to finished is enabled
(since we assumed that the constant L is very large), and second, all these “small”
zones are individually stored, which is not necessary since the union of a large
subset of them is convex and can therefore be described by a single Zon

y
0 1 %\ Kk \ 1 ] 2
0 2 4 6 8 10 12 14 16 18 20 22

Figure 2.3: Three zones (the rightmost two overlap) that belong to states that are
reached when location L/ is visited for the first, second and third time.

Figure shows the zone of that is reached after 1 execution of the additional
cycle from the state that visits location L/ for the first time. This zone can be
described by y € [0,2] A z € (6,00] Az —y € (6,00]. Indeed, this symbolic
state swallows all fragmented symbolic states that are reached after more than 1
executions of the acceleratable cycle.

|, g,

0 2 4

Figure 2.4: The zone that results from execution of the additional cycle from the
state that visits location L/ for the first time.

When we check whether location finished is reachable in model P and P,4 as a
function of the value of the constant L (using a breadth-first search order to enforce
that the additional cycle is executed very early in the exploration), then we see that
the time and space needed by both UPPAAL and KRONOS [107]] for model P rises
at least linearly while they are constant for model P4. Theorem [2.14] explains
this phenomenon. We claim that in practice the accelerated model performs much
better than the normal model in both space and time.

2.5 Experimental Results

During previous work a compiler has been build which translates UPPAAL mod-
els to (i) executable LEGO Mindstorms code and (ii) another UPPAAL model of
the run-time behavior of the executable code [54]. We constructed a very small
example to illustrate how our acceleration technique can be used to speed-up the
verification of the run-time behavior.

* Zones of a single location that form a convex union are not united in the current release of
UPPAAL (3.4.11 and 3.5.9) since this is computationally expensive.
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in1>=10 hurry! a:=OFF in2>=3  hurry! b:=ON
SOO in1<10,in1>5 1 S0 1
hurry! a:=ON
inl<=5 hurry!  a:=OFF in2<3 hurry!  b:=OFF
Figure 2.5: Process Fj. Figure 2.6: Process P;.
S3 S2
x<=LARGE x<=LARGE
x==LARGE
inl:=0, x:=0

x==LARGE x==LARGE
in2:=0, x:=0 in2:=5, x:=0

S0 x==LARGE
@Q hurry? inl:=7, x:=0
S0 st
x<=LARGE x<=LARGE
Figure 2.7: The hurry dummy. Figure 2.8: The environment.

Consider the processes P and P; in Figures [2.5] and [2.6] These processes
model a reactive program, called B, which controls two actuators and uses two
sensors. Process Py uses sensor 1 (whose value is modeled by the variable inl)
and actuator A (whose mode is modeled by the variable a). Similarly, process P;
uses sensor 2 and actuator B. Initially, both actuators are off. If the sensor value
of sensor 1 becomes between 5 and 10, process Fy switches actuator A on. If
the sensor value leaves this region, then process P switches actuator A off again.
Process P; functions in a similar manner.

Figures and [2.8] depict the environmental processes. The hurry dummy
provides an always enabled synchronization over the urgent channel hurry. The
effect of this is that edges labeled with hurry! are taken as soon as they are enabled.
Note that all edges of Py and P; use this channel, which models instantaneous
reactions of these automata on the environment. The environment periodically
updates the sensor values with a pace as expressed by the constant LARGE.

After compilation of the model, we obtain the symbolic byte code program
shown in Figure There are three kinds of instructions present. First, there are
assignments, e.g., v/0]:=0 and actmode[A]:=off. The first assignment manipulates
the internal variable with index zero. The second assignment manipulates the mode
of actuator A. Second, there are “test and branch far” instructions, e.g., tbf 0/=v[0],
51. If the boolean expression 0/=v[0] evaluates to true, then control is transferred
to the instruction with address 51. Otherwise, control is transferred to the next
instruction. Finally, there are “branch always far” instructions, e.g., baf 14. This
instruction transfers control to the instruction with address 14.
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0000 wvI[0] := 0
0005 wv[1l] =0
0010 actmode[A] := off

0012 actmode[B] off
0014 tbf O0!=v[0], 51

0022 tbf 10<=snsval[0], 48
0030 tbf 5>=snsval([0], 48
0038 wv[0] :=1

0043 actmode[A] := on

0045 baf 106

0048 baf 106

0051 tbf 10==snsval([0], 67
0059 tbf 10>=snsval[0], 77
0067 vI[0] := 0

0072 actmode[A] := off
0074 baf 106

0077 tbf 5==snsval([0], 93
0085 tbf 5<=snsval[0], 103
0093 wvI[0] := 0

0098 actmode[A] := off
0100 baf 106

0103 baf 106

0106 tbf O!=v[1l], 143

0114 tbf 3==snsval[l], 130
0122 tbf 3>=snsval[l], 140
0130 wv[1l] :=1

0135 actmode[B] := on

0137 baf 164

0140 baf 164

0143 tbf 3<=snsvalll], 161
0151 wv[1l] := 0

0156 actmode[B] := off
0158 baf 164

0161 baf 164

0164 baf 14

Figure 2.9: The executable byte code.

The byte code simulates one interleaving of Py and P;. The processes execute
action transitions in an alternating way in an infinite loop. This loop starts with the
instruction at address 14, and ends with the baf instruction at address 164. The tbf
instructions inside the loop implement the alternation between Fy and P; and the
guards on the edges.

The second product of compilation is a model of the run-time behavior of the
byte code program shown in Figure This model naturally contains the envi-
ronmental processes of Figures[2.7)and[2.8] The processes P and P;, however, are
replaced by an exact model of the run-time behavior of the generated byte code,
which is depicted in Figure [2.10]

The “byte code process” of Figure [2.10] is constructed by concatenation of
models of the individual instructions of the executable byte code program [70].
Location S% models the ¢ + 1-th instruction. For example, location SO models the
first instruction, which is the assignment v/0]:=0. Clock x is used to model the
duration of the instruction, which in this case is between 40 and 50 time units. The



2.5. EXPERIMENTAL RESULTS 25

MNe MNe
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X<= x:=0, 52 x:=0, s1 x:=0, S0
PO__a:=0 x<=50 pe_P1=0 x<=50 pe_P0:=0 x<=50
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Figure 2.10: The UPPAAL model of the byte code program.

actual assignment is performed on exit of the location.

Note that every cycle in the byte code process is an acceleratable cycle. Our
theory of exact acceleration, however, has been developed for single timed au-
tomata, and not for networks of timed automata that have been extended with
bounded integer variables and concepts like urgency and commitment. We claim,
however, that exact acceleration of single components in such an extended model
can be achieved in the following way: (i) action transitions of a component are dis-
abled if some other component is in its additional cycle, and (ii) an additional cycle
can only be started if the clock that is used for it is equal to 0. A detailed proof
of correctness of the acceleration of single components in a parallel composition
is not presented here. Note, however, that the sketched approach certainly gives an
over-approximation of the reachable state space.

We implemented our theory of exact acceleration in the compiler to accelerate
idle cycles of the byte code processes. These idle cycles occur when no transi-
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tions of the source processes of the byte code are enabled. In this situation, the
byte code process tests all guards, but finds none satisfied. As a result, the byte
code process exhibits useless busy-waiting behavior. To demonstrate the effect of
this automatic application of exact acceleration, we checked two properties for the
generated model of the run-time behavior of the byte code, namely AG (true) and
EF (Env.S3). The first property is used to explore all reachable states and the sec-
ond property is used to explore only a part of the reachable state space. The time
and memory consumption for these two properties have been measured as a func-
tion of the value of the constant LARGE for the unaccelerated model B and for the
model B in which four idle cycles are accelerated. Tables [2.1]and [2.2]contain the
results, which show that the resource consumption is not insensitive to the value of
the constant LARGE as in the theoretical example. For both complete and partial
exploration of the state space, however, there still is a significant improvement.

Table 2.1: Run-time data of the regular model B and the accelerated model B 4 for
the property AG (true) using a breadth-first search order.

B Ba
LARGE mem [kB]  t[s] mem [KB]  t[s]
10° 1120 0.03 1080 0.03
10% 2396  0.07 1084 0.04
10° 5924  2.80 4068 1.33
10° 36204 752 18928 376

Table 2.2: Run-time data of the regular model B and the accelerated model B 4 for
the property EF(Env.S3). Both the breadth-first and the depth-first search order
have been measured for the regular model.

B (bf) B (df) B4 (bf)
LARGE mem [kB]  t[s] mem [kB]  t[s] mem [kB]  t[s]
10° 1144 0.02 720 0.02 800 0.03
10* 2140 0.03 968 0.02 1084 0.03
10° 4300 1.29 1140 0.04 1908 0.04
108 20244 311 5416  3.01 3268 1.22
107 - - 32772 712 10900 279

2.6 Conclusions

We have presented an exact acceleration technique for forward symbolic reacha-
bility analysis of timed automata. Our technique is applicable to a subset of timed
automata, namely those that contain acceleratable cycles. We append an extra cy-
cle to the timed automaton that in a single execution computes the result of the
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iterated execution of the acceleratable cycle in the original automaton. Whether or
not a cycle is acceleratable, and the form of the additional cycle are easily com-
putable from the syntax of the timed automaton. This makes the technique readily
applicable in existing model checkers.

We have proved that our syntactic adjustment is exact with respect to reachabil-
ity properties and that it will speed-up forward symbolic reachability analysis with
a breadth-first search order. An example in which the technique is automatically
applied demonstrates that it can be quite effective.

As future work it would be interesting to investigate the weakening of the con-
straints on acceleratable cycles as used in this chapter. Furthermore, we would like
to evaluate the practical usefulness of this technique by applying it to a number of
examples. Therefore, it would be convenient to have a tool that detects accelerat-
able cycles and accelerates them.

Acknowledgements. The authors thank Oliver Moller for his suggestions con-
cerning the fragmentation problem, and Jozef Hooman for valuable comments on
earlier versions of this chapter.
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Chapter 3

Enhancing Uppaal by Exploiting
Symmetry

MARTIJN HENDRIKS

Abstract. Efficiency is one of the major concerns in the world of model checking. Con-
sequently, many techniques to optimize the time and space usage of model checking al-
gorithms have been invented. One of these techniques is reduction of the searchable state
space through arguments of symmetry. This technique can be very profitable and has been
implemented in various model checkers. This paper proposes an enhancement of UP-
PAAL with symmetry reduction. We adopt the theory of symmetry of Ip and Dill and their
scalarset data type, as implemented in the model checker MURy. The main result of this
chapter is a soundness proof of our symmetry enhancement, which does not follow triv-
ially from the work of Ip and Dill since the description languages of UPPAAL and MUR,
which are used to detect the symmetries, are quite different.

3.1 Introduction

Model checkers emerge as practical tools for the mechanical verification of all
kinds of systems [37]. In this approach, a model of the system to be verified and
the verification properties serve as input to the tool, which consequently computes
whether or not the model satisfies the specification. Nowadays, many model check-
ers are available, ranging from model checkers for JAVA source code [39] to model
checkers for timed automata [[16,[107].

Despite the relative ease of use of model checkers, they are not applied on a
large scale. An important reason for this is that they must cope with the state space
explosion problem. This is the problem of the exponential growth of the state space
as models become larger. This growth often renders the mechanical verification of
realistic systems practically impossible: there just is not enough time or memory
available.

One possible approach to the huge resource requirements of model checkers
consists of finding more efficient techniques to explore the state space. The ex-
ploitation of behavioral symmetries is such a well-known technique that has been
successfully implemented for various model checkers, e.g., MURy [45,169], SMV
[83]] and SPIN [65l 26]. Especially the exploitation of full symmetries in a model
can be profitable, since its gain can approach a factorial magnitude.

There are two main problems that need to be solved before symmetry reduction

This chapter is an almost literal copy of [S5]].
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can be implemented. First, one has to statically detect symmetries in the system
description. Second, during the state space exploration, one must decide whether
or not some discovered state has already been encountered in the past. This de-
cision should of course take symmetry into account. It has been shown that this
so-called orbit problem is — in general — at least as difficult as testing for graph-
isomorphism [38] and, unfortunately, there are no known polynomial algorithms
for this last problem. This does not necessarily mean that symmetry reduction is a
lost case, since we can always try to revert to sub optimal, but still feasible, solu-
tions. Moreover, it might happen that the considered instance of the orbit problem
is not so difficult.

This paper proposes a symmetry enhancement of UPPAAL, a model checker
for networks of timed automata, by applying the theory of symmetry of Ip and Dill
and adding their scalarset data type [69]. The main result of this paper is a sound-
ness proof of our symmetry enhancement. More precisely, we prove that certain
permutations on the states are sound with respect to reachability properties: if we
have seen a state s, then we can conclude that we have seen all states which are
obtainable by applying these permutations to s. Thus, we can use the permutations
to reduce the amount of states which need to be explored by the model checking
algorithm.

Our main result does not follow trivially from the work of Ip and Dill since the
description languages of UPPAAL and MUR¢, which are used to detect the symme-
tries, are quite different. This difference disallows us to apply Ip and Dill’s sound-
ness proof in a straightforward manner without loosing confidence in its validity.
Since formal methods require mathematical precision, we are forced to construct a
new proof for the soundness of symmetry reduction in UPPAAL.

This work is directly motivated by attempts to verify various distributed sys-
tems, which clearly exhibit full symmetry, using UPPAAL. For example, Fischer’s
mutual exclusion protocol (see, for instance, [[1]]) for 12 or more processes is prac-
tically unverifiable. Similarly, a simple model of a CSMA/CD protocol (see, for
instance, [107])) is practically unverifiable when 13 or more processes are consid-
ered. The state space explosion problem is felt more directly during the attempts
of verifying a distributed agreement algorithm [10]. It is very difficult to verify
the smallest interesting instance of the algorithm (three processes). Hopefully,
implementation of symmetry enhanced UPPAAL can help us to overcome these
boundaries.

Outline. In Section we summarize the theory of Ip and Dill for symme-
try reduction. In Section [3.3] we extend the description language of UPPAAL with
the scalarset data type, and with multidimensional arrays of integer variables and
channels. We illustrate the extended syntax by modeling Fischer’s mutual exclu-
sion protocol. Moreover, we give a formal definition of these SUPPAAL models,
and we explain their semantics. In Section [3.4| we extract the automorphisms from
the system description, and we give the soundness proof. Finally, in Section [3.5]
we summarize this paper and we discuss future work.
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3.2 A Theory of Symmetry

In this section we summarize the theory of symmetry developed by Ip and Dill
[69]. They consider state graphs, which are tuples containing a set () of states,
a set Qg C @ of initial states, a transition relation A C @ x ) and a unique
error state, which we omit in our presen‘[atio A state ¢ € @Q is reachable, iff
a sequence qo, q1, .., gn—1 €Xists, such that ¢ € Qo, ¢ = gn-1, ¢ € @ for all
0<i<mn,and (g;,qi+1) € Aforall0 <i<n—1.

We assume the existence of a set of state properties ®, for whose elements we
can decide whether they are true or false in some state. If a state property ¢ € ® is
true in state ¢, then we denote this by ¢ = ¢. Also, we assume that for each state ¢
the set succ(q) = {¢'|(g,¢') € A} is finite and effectively computable. Figure [3.1]
depicts a standard forward exploration algorithm, which (semi) decides whether or
not a state is reachable which satisfies some given state property ¢.

passed = ()
waiting := Qo
while waiting # () do
get g from waiting
if ¢ = ¢ then return YES
else if ¢ ¢ passed then
add q to passed
waiting := waiting U succ(q)
fi
od
return NO

Figure 3.1: Standard forward reachability analysis.

The algorithm starts by adding the initial states to the waiting set. Then it
enters a loop that processes all the states in the waiting set in the following way.
If some waiting state ¢ satisfies the state property ¢, then the algorithm returns
YES. Otherwise, it checks whether ¢ has already been seen. If this is the case,
q € passed, then the algorithm discards ¢ and gets a new state from the waiting
set. If ¢ has not yet been encountered, then it is added to the passed set and all its
successors are added to the waiting set. If the state space — the set () — is finite,
then this algorithm halts. Otherwise, it may not halt.

Ip and Dill define symmetry within a state graph as a graph automorphism
different from the identity relation.

Definition 3.1 (Automorphism) Let (Q), Qo, A) be a state graph. A graph auto-
morphism on this state graph is a bijection h : Q — Q) such that

(i) q € Qo iff h(q) € Qo forall q € Q, and

! Omitting the error state does not change the validity of Ip and Dill’s results [69].
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(ii) (q1,q2) € Aiff (h(q1),h(q2)) € A forall q1,q2 € Q.

For any set of graph automorphisms H, the closure of H U {id}, where id
is the identity function, under inverse and composition, denoted by C(H), is a
group. Such a symmetry group C(H) induces a relation ~yC @ x @ such that
q1 ~p qq iff there exists an h € C(H) such that h(q1) = g2. This relation is an
equivalence relation and we let [g] denote the equivalence class of state g. Using
these equivalence classes we can define a quotient graph.

Definition 3.2 (Quotient graph) Ler A = (Q,Qo,A) be a state graph and let
C(H) be a symmetry group for A. The quotient graph induced by C(H) is the
graph A~y = (Q', Qp, A'), where Q" = {[q] | ¢ € Q}, Q = {ldl| ¢ € Qo} and
A" ={([p],la) | (p.q) € A}.

Ip and Dill observed that a quotient graph can be used to check reachability
properties: q is reachable in A iff [¢] is reachable in A~ . Since the quotient graph
is at most as large as the original state graph, and in many cases smaller, the use of
the quotient graph can speed up the model checking process.

As already mentioned in the introduction, the two major problems that should
be solved in the actual implementation of symmetry reduction are the following:

e We must detect a set of automorphisms from the system description. The
corresponding symmetry group induces the (smaller) quotient graph.

e During the exploration of the state space, we must be able to decide whether
or not two states are symmetric. Thus, for states ¢ and ¢/, we must decide
whether or not [q] = [¢'].

In order to protect the gain of using the quotient graph, the approaches to both
problems should be computationally cheap. In the next sections, we add the well-
known scalarset data type to UPPAAL in order to statically detect symmetries from
the system description. As for the second problem, our strategy is to convert all
explored states to a so-called normal form using the detected automorphisms. This
normal form represents the equivalence class of the state. The only correctness
requirement for our normal form operator 6 is the following:

Vogeq (0(q) =6(d) = [d =1d1) 3.1)

This criterion says that if two states have the same normal form, then they are
contained in the same equivalence class. Note that if § € C(H ), then property
is certainly satisfied. If the implication of property (3.1I) also holds the other way
around, then the normal form operator is canonical.

The function © : 29 — 2% converts a set of states to their normal forms
in the regular way: ©(Q) = {6(¢q) | ¢ € Q }. We now can state a new forward
exploration algorithm, depicted in Figure[3.2] which uses the normal form operator
to take symmetry into account.
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passed = ()
waiting := ©(Qo)
while waiting # () do
get ¢ from waiting
if ¢ = ¢ then return YES
else if ¢ ¢ passed then
add q to passed
waiting = waiting U O (succ(q))
fi
od
return NO

Figure 3.2: Adding symmetry to the forward reachability analysis.

This new algorithm uses € and © to convert all discovered states to their normal
forms. If 4 is canonical, then exactly the quotient graph will be explored. However,
if 6 is not canonical, then at most the original state graph will be explored.

Note that the symmetry reduction technique as shown in algorithm 3.2] only is
sound if the state property ¢ is symmetric:

Vogeq (a=ud = (e o< d F0)) (32)

If this is not the case, then the normal form that is stored to represent a whole
symmetry class might not satisfy ¢ while an element of the symmetry class does
satisfy ¢, which is not detected by the algorithm.

3.3 From Uppaal to SUppaal

The tool UPPAAL has been based on the theory of timed automata of Alur and Dill
[[Z,/5]. In short, a UPPAAL model consists of a network of timed automata enhanced
with (arrays of) bounded integer variables, which communicate through shared
variables and by binary blocking synchronizations (see, for instance, the ielp menu
in the tool itself and [[16]). In this section we explain how we add the scalarset data
type to the system description language of UPPAAL. We assume some knowledge
about this description language, and in particular about the “templates” and their
instantiation mechanism. Note that UPPAAL 3.2 has been taken as a basis for this
work.

In section [3.3.1] we formally define the symmetry extension of the syntax of
the system description language. In section we give a formal definition of
UPPAAL models enhanced with symmetry, which we call SUPPAAL models from
now on. Moreover, we present a version of a model of Fischer’s mutual exclusion
protocol that has been adjusted for symmetry. Finally, in section [3.3.3| we explain
the semantics of these models using the mathematical representation.
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3.3.1 Adding the scalarset data type to Uppaal

In this section, we explain how we extend the syntax of the system description
language of UPPAAL with scalarsets. We do not give the complete original syntax
of this language here since it can be easily found in the help menu of the tool itself.
At the end of this section we use the extended syntax to model Fischer’s mutual
exclusion protocol (see, e.g., [1]).

The additions we propose are split into three parts. First, we explain the ad-
ditions to the declarations section, second, we explain the changes to template
parameters, and third, we explain the additions to the process assignments section.

Additions to the declarations section

First, we add the scalarset data type to UPPAAL. This is a sub range of integers
with fixed size, and whose elements can be arbitrarily permuted without changing
the behavior of the system. First, we want to be able to declare scalarset types with
different sizes in the global declaration sections of UPPAAL models as follows:

scalarset pid[3];
scalarset bid[5];

A scalarset « is the sub range {0, ..., || — 1}, where |a| denotes the size of
the scalarset. From now on, () is used as a set of scalarset names (each element of
() is associated with a subrange of the natural numbers). We should be able to use
scalarset names in declarations. For example:

int[0,1] input[bid];

The scalarset array input contains boolean values. Its size is fixed by the
size of the scalarset, which in this case equals 5. In order to make optimal use of
scalarsets we also add multi dimensional arrays of bounded integer variables and
channels. For example:

int dim3[pid] [bid][7];
chan cd[5] [pid];

The three-dimensional integer array dim3 thus contains 3 X 5 X 7 elements,

and cd is a two dimensional array of channels with 15 elements.

Next, we formally state the changes to the original syntax of UPPAAL 3.2 to
facilitate the mechanisms sketched above (see the help menu of UPPAAL for the
complete original syntax definition). First, we add the scalarset type to the syntax:

Declarations ::= ( NewDecl ;' )=*

NewDecl ::= Decl \ ‘scalarset’ ID ‘[’ CExpr "1’

The second formal adjustment to the original syntax is the redefinition of the
grammar for ITL:

IL ::= ILID ( ‘," ILID )=«

ILID ::= ID ( ‘[" CExpr ‘]’ )=
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This renewed definition of IL allows us to declare (multi-dimensional) arrays
of channels. Note that with this syntax we can also declare (multi-dimensional)
arrays of clocks. However, for reasons of simplicity we do not allow this. Finally,
we redefine the variable identifiers:

VID ::= ID ( ‘[" (CExpr | ID) ‘]'" )= | ID ‘:=" CExpr

The renewed definition of VID allows us to declare multi-dimensional arrays
of integers. The second appearance of the non-terminal ID in the first rule of the
definition of VID must be bound to a scalarset. Thus, we can use a scalarset type
to index arrays.

Additions to the template parameters

Apart from using scalarset types to declare variables and to index arrays, we also
want to use them for the instantiation of templates. Consider for example the well-
known Fischer mutual exclusion protocol. It contains n processes, which only
differ in a unique process identifier, which can be modeled by the scalarset pid.
The UPPAAL model only contains a single template, say P, of a generic Fischer
process which takes a process identifier as argument. All processes are created by
instantiation of this template. We propose the following syntax for the template
parameters of P:

process P ( scalarset pid; )

For the sake of simplicity we only allow templates to be instantiated with
scalarsets. Thus, we redefine the syntax for template parameters as follows:

Param ::= ( ‘scalarset’” ID (’,’ ID)x* )~x*

Note that this definition allows an empty parameter list.

Additions to the process assignments section

We explained above that we can model the unique process identifiers of the Fischer
protocol as a scalarset, say pid. Additionally, we can instantiate the above men-
tioned template P with the elements of this scalarset. We propose the following
syntax for this instantiation in the process assignments section:

FischerProcs := P (pid);

Informally, this means that the “object” FischerProcs is the parallel com-
position of |pid| instantiations of template P with all elements of the scalarset
pid. Moreover, we also propose layered instantiation using the scalarsets. As-
sume that pid and bid are scalarsets, then

Procsl := P (pid);
Procs2 := B(pid,bid);

creates the process Procs1 as the parallel composition of |pid| instances of tem-
plate P and Procs2 as the parallel composition of |[pid| x |bid| instances of
template B. In general, we redefine the syntax for the process assignments, given
by PAList, as follows:
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PAList ::= (ID ’:=" ID ' (' [Values] ")’ ’';")x*
Values ::= ID (',’ 1ID)~x

Of course, there are some syntactical and semantic restrictions for using the
new process assignment construction. We do not elaborate on them here, since
they are not very interesting and mostly straightforward.

Example: Fischer’s mutual exclusion protocol

We can use the new syntax to model Fischer’s mutual exclusion protocol (based on
the model that is distributed with UPPAAL). We start with the global declarations
of the SUPPAAL model:

scalarset process_1id[3];
int id:=-1;

Next, the template P with the header process P (scalarset pid) and
a local clock x is defined. This template has been depicted in Figure[3.3

id==-
x:=0 req

. X<=2

x:=0

id:=-1 o

X>2,
cs id==pid wait

Figure 3.3: The Fischer process template.

The global idea of the protocol is that each “Fischer process” has a unique pro-
cess identifier (elements of the scalarset pid in our model). As soon as a Fischer
process wants to enter its critical section, it writes its own identifier in a global
variable (id in our model). If the global variable still contains its identifier after a
certain amount of time (2 time units in our model), then the Fischer process may
enter its critical section. When it leaves its critical section, it resets the global vari-
able to a neutral value (-1 in our model). The process assignments section consists
of only the following line:

Procs := P (process_id);

As we explained in the previous section, the object Procs denotes the parallel
composition of 3 Fischer processes (since the scalarset process_id has size 3).
Note that the process identifiers range from O to 2, which ensures that -1 indeed
is a neutral value for the global variable id. Finally, the system definition section
only contains the line “system Procs;”, which speaks for itself.
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3.3.2 Mathematical Description of SUppaal Models

In the previous section we added multidimensional arrays and the scalarset data
type to UPPAAL’s system description language to obtain the system description
language of SUPPAAL. In this section we give a mathematical representation of
these SUPPAAL models, which can easily be derived from the new system descrip-
tion language.

To formally define a SUPPAAL model, we first need to define guards, invariants
and assignments over the clocks and guards and assignments over the bounded
integer variables.

Definition 3.3 (Clock guard) A clock guard ¢ over a set of clocks X is defined
by the grammar ¢ ::= x ~ n|x ~ y+n|d A ¢, where x,y € X, n € N and
~e{<, < =, >, 2 We let CG(X) denote the set of all clock guards over X.

Next, we define the set of invariants, which is a subset of the set of clock guards.

Definition 3.4 (Invariant) An invariant ¢ over a set of clocks X is defined by the
grammar ¢ = x ~ n|P A ¢, wherex € X, n € Nand ~€ {<,<}. We let
Inv(X) denote the set of all invariants over X.

Clock assignments reset clocks to an integer value greater than or equal to zero.

Definition 3.5 (Clock assignment) A clock assignment ca over a set of clocks X
is defined by the grammar ca ::= x := n, where x € X andn € N. We let CA(X)
denote the set of all clock assignments over X.

Next, we define the integer expressions, which can be used as part of integer
assignments, integer guards and synchronizations. For sake of simplicity, we do
not allow arrays to index arrays.

Definition 3.6 (Integer expression) An integer expression, IExpr, over a set of
variables V' and a set of scalarset names (Q is defined by the grammar

SIExpr == z | « | v | (SIExpr© SIExpr)
IExpr = Slexpr | v[SIExpr]t

where z € Z, « € Q, v € V,and @ € {/,*,+,—}. Welet IX(V,Q) denote the
set of all integer expressions over V and (). Elements of SIExpr are called simple
integer expressions.

An integer guard consists of a conjunction of comparisons between two integer
expressions.

’The constant true can be defined by = > 0.
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Definition 3.7 (Integer guard) An integer guard ¢ over a set of variables V' and
a set of scalarset names $) is defined by the grammar ¢ ::= IExpr ~ [Expr| ¢ A ¢,
where ~ € {<,<,=,#,>,>}. We let IG(V, Q) denote the set of integer guards
over V and Q.

An integer assignment assigns the value of some integer expression to an inte-
ger variable, or to an entry of a (multi dimensional) integer array.

Definition 3.8 (Integer assignment) An integer assignment ¢ over a set of vari-
ables V and a set of scalarset names ) is defined by the following grammar
¢ = v[SIExpr|* := IExpr where v € V. We let IA(V,2) denote the set of all
integer assignments over V and §.

Finally, we define the set of synchronizations over a set of synchronization
labels 3, a set of variables V, and a set of scalarset names 2.

Definition 3.9 (Synchronization) A synchronization ¢ over a set of labels 3., a
set of variables V' and a set of scalarset names ( is defined by the grammar

= 7 | olSIEpt | olSIEwpr*?

where T denotes the “empty” synchronization and o € Y. We let Sync(X,V, Q)
denote the set of all synchronizations over Y, V, and ).

For instance, if s € ¥ and « € Q, then s[a]! € Sync(2, V, Q). Such a synchro-
nization does not mean that « is send over the channel s. Instead, it expresses the
blocking synchronization over the p(«a)-th element of the array of channels s (p
assigns a value to scalarset names in the context of processes; this becomes clear
below). This construct is motivated by models in which the symmetric compo-
nents are modeled by the parallel composition of synchronizing processes, e.g., a
computation process and a broadcast process.

A SUPPAAL model consists of a set of global integer variables, V9, a set of
global clocks, XY, a set of channels, X, a set of scalarset names, {2, and multiple
SUPPAAL processes with local variables and clocks. The processes are created by
instantiation of templates, and therefore we proceed with the definition of these
templates over V9, X9, ) and 3.

Definition 3.10 (SUPPAAL template) A SUPPAAL template over V9, X9, Q) and
Yisatuple T = (L, L°It, X,V, S, I,vt,init, E), where

e L is a finite set of locations,
o LY € L is the initial location,
o It: L — {regular,urgent, committed } assigns a type to every location,

e X is a finite set of local clocks (assume X9 N X = (),
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e V is a finite set of local bounded integer variables (assume VI NV = (),
o S C Q) is a finite set of scalarset names,

o [: L — Inv(X9U X) assigns invariants to locations,

o vt: V — (NUS)* assigns a type to every local variable,

o vs:V — (Z x Z) assigns a finite domain to every local variable,

init : V. — Z7T initializes every local variable, and

o ECLxSync(X,VUVYI S)x G x Ax Lisa set of edges, where

- Gisapairof guards in IG(V UVY S) x CG(X U XY), and
— A s a pair of assignments in (IA(V U V9, 8))* x 20AXUX)

It is relatively straightforward to construct the mathematical SUPPAAL tem-
plates from the system description language. The only difficulty might occur when
constructing the set S (and thereby vt and ). During the construction the template
parameter is replaced by the scalarset it mimics. In the example of the Fischer
protocol, this means that the set S for the template P contains only one scalarset,
namely process_id, and the name pid in the edges of the template has been
replaced by process_id.

The vt function can be explained by an example. Assume that v is a variable
and that v¢(v) = (3, o, 8), where «v is a scalarset in S. This means that the variable
v is a three dimensional array. Its first dimension is a regular dimension with size
3, its second dimension is indexed by scalarset « (its size is also determined by «,
see below), and its third dimension also is a regular dimension, but with size 8. If
vt(v) equals the empty sequence, denoted by ¢, then v is a regular variable.

The init function initializes the local variables. Our representation does not
include the “decoding” scheme needed for arrays. However, this does not matter,
since array entries are initialized to O by default.

We use indices to refer to the specific parts of templates. E.g., if T; denotes a
template, then X; denotes the set of local clocks of T;. With the previous definitions
of SUPPAAL templates we are ready to define SUPPAAL models.

Definition 3.11 (SUPPAAL model) A SUPPAAL model is defined by a tuple M =
(Q, s, VI, vt,init, X9, %, ct,T), where

e () is a finite set of scalarset names,

o s:Q — Ndefines the size of each scalarset (s(«) is also written as |«

)

o VY is a finite set of global integer variables,

o vt: V9 — (NUQ)* assigns a type to every global variable,
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vs : V9 — (Z x 7) assigns a finite domain to every global variable,

e init: V9 — 77 initializes every global variable,

X9 is a finite set of global clocks,

Y. is a finite set of communication channels,

ct : ¥ — {regular,urgent } assigns a type to every channel, and

T is a finite set of templates over V9, X9, Q) and 3.

The tuple M contains all information needed to construct the set of actual
processes in the system, which defines the semantics of the model. We define
these SUPPAAL processes as follows.

Definition 3.12 (SUPPAAL process) Let M be a SUPPAAL model as above. A
SUPPAAL process of M is a tuple A = (T, p), where T € Tand p : S — N,
such that 0 < p(«a) < s(«) for all scalarset names o € S.

As with templates, we use indices to refer to the components of processes.
Thus, if A; is a process, then 7T; is its template, and V; is the set of local variables
of the process’ template.

Note that SUPPAAL processes of M that originate from the same template have
equal sets of local variables, clocks and scalarsets. To simplify the explanation of
the semantics of M, which we define in the next section, we “flatten” the presen-
tation. That is, we define the set of processes A associated with M as uniquely
renamed SUPPAAL processes of M:

A = {renamer, ,\((T;, pi)) | (T3, pi) is a SUPPAAL process of M} (3.3)

By subscribing the one-to-one renaming functions with (75, p;), we want to
express that these renaming functions are unique in the sense that the local clocks,
variables and constants of different processes share no elements. This allows us to
merge the sets of clocks, variables and variable type functions of all processes of a
SUPPAAL model. From now on, Var denotes the set of all variables, tVar denotes
the set of all variable type mappings and Clock denotes the set of all clocks. As will
become clear later, this assumption, which can be made without loss of generality,
is very convenient for the definition of the semantics of the model.

We can easily extract the mathematical description of the model from any SUP-
PAAL system description. From this mathematical description, we can generate the
set of processes A (thereby choosing suitable renaming functions). Moreover, we
can derive the partial equivalence function equivg : Vi — Vj for every pair of
processes A; and Aj:
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. -1 ~1
equiv}?(a) B { b if T; =T} and rename(Ti’pi)(a) = rename . pj)(b)

T  otherwise

This equivalence function links the local variables of processes which originate
from the same template. Similarly, we can derive the partial equivalence function
equivf]{ : X; — X for local clocks. It is straightforward to see that if equiv;;j(a)
is defined, then equivj; o equiv;j(a) = a.

Syntactical Restrictions on SUPPAAL Models

The mathematical description of a SUPPAAL model as defined previously should
satisfy a number of restrictions to be syntactically correct. For instance, a refer-
ence to an array of integers must contain the right number of dimensions given by
the #Var function. We do not elaborate on these well-understood restrictions here.
Instead, we discuss restrictions concerning the newly introduced scalarsets.

First, we need to introduce the concept of well-formed integer expressions.
Therefore, we need the help of a projection []; which selects elements from arrays
or sequences. This projection function is defined as follows:

[(eo, €1, €n)]i = { T otherwise

Informally, an integer expression is well-formed if it is not an array, or if it is
an array of which all scalarset dimensions are indexed by scalarset constants of the
same type.

Definition 3.13 (Well-formedness) Let exp € IX (VI UV}, S;) be an integer ex-
pression of some process. We call exp well-formed, if exp is a simple integer
expression, or if exp = alig|...[in,] such that if [tVar(a)|x = «, then iy, = o for all
a € Qandforall0 < k< m.

This concept of well-formedness can easily be lifted to well-formedness of syn-
chronizations, integer assignments, integer guards and edges. For instance, assume
that we have a SUPPAAL model with a scalarset id with size 3, and a variable
array a, such that tVar(a) = (id). This means that a is a one-dimensional array
indexed by the scalarset id. Moreover, there is a template in this model which
is parameterized with this scalarset, and which has local integer variable v. Fig-
ure [3.4] depicts a well-formed edge of this template, and Figure [3.5] depicts a non
well-formed edge.

We also distinguish a special subset of non well-formed integer expressions
and synchronizations.

Definition 3.14 ((«, n)-malformedness) Let alig]...[n]...[in] be an non well-
formed integer expression or synchronization. If the n € {0, ...,s(«) — 1} is the
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afid]==3 a[2]==3
C><] a[id]:=0 ©<] a[v]:=0

Figure 3.4: A well-formed edge. Figure 3.5: A non well-formed edge.

unique cause of this since it indexes an o dimension, then we call this integer
expression or synchronization («, n)-malformed.

Again, we can easily lift this concept to edges: an edge is (<, n)-malformed, iff
it contains (v, n)-malformed integer expressions or synchronizations. For instance,
assume the same context as associated with the figures above and consider Figure
which contains three ((id, n))-malformed edges: one for every n € {0, 1, 2}.
Note that the edge of Figure is not (c, n)-malformed for any « or n.

a[0]==3
a[0]:=0

a[2]==3 a[1]==3
a[2]:=0 a[1]:=0

Figure 3.6: (id, n)-malformed edges (where n € {0, 1,2}).

Now we can state the restrictions concerning scalarsets in a SUPPAAL model.
In short, there may be no symmetry breaking operations on scalarsets and we have
formulated the following restrictions to achieve this:

(1) Consider a scalarset « € .S; of process A;. We can use « in only three ways:

a) Assign the scalarset to a regular variable: v := o may appear in process
A;. (See the assignment id:=pid in Figure[3.3).

b) Use the scalarset in guards: v = « and v # « may appear in process
A;. (See the guard id==pid in Figure[3.3).

c) We can use « to index o dimensions of arrays: alig]...[a]...[iy],
where « indexes dimension k and a € Var U X, may appear in process
A;, if [tVar(a)]r = «. This means that well-formed integer expressions
may appear in our model.

Thus, the scalarsets in processes may not be used in arithmetical expressions,
clock guards and invariants.

We can compute a set of variables used,, for each scalarset o as follows:
a € used,, if and only if there exists an assignment a := « or there exists a
guard a = « or a # « in the model.
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(2) Let v € used, for some scalarset . For instance, the global variable id
in the Fischer protocol example at the end of section [3.3.1]is an element of

usedyyocess_id-
a) v is initialized to a value ¢ {0, ..., |o| — 1}.
b) used, Nusedg = () for all scalarsets «v and (3.

¢) v can only be used in assignments and guards as in (1a) and (1b) or we
can assign an integer value z to v, or we can use v in a guard of the
form v = z or v # z, such that z ¢ {0, 1, ..., |a| — 1}.

Thus, v can neither be used in arithmetical expressions, nor can it be used to
index arrays. Note that our Fischer example satisfies these conditions: 1d is
initialized to -1, the Fischer template only assigns -1 or the scalarset constant
to id, and it compares id only to -1 or to the scalarset constant.

(3) Anedge e = (src,0,g,a,dst) € E; of a SUPPAAL model should either be
well-formed, or it should be («, n)-malformed, such that:

— the edge is not (3, m)-malformed for any 3 # « or m # n, and

- forevery n’ € {0, ...,|a| — 1} \ {n} there exists an («, n')-malformed
edge ¢’ = (sre,0’,¢',d,dst) € E; such that o/, ¢’ and o’ only syntac-
tically differ from o, g and a in that the appearances of n as a dimen-
sion index have been replaced by n’.

For instance, the example belonging to Figure [3.6|satisfies these constraints,
since every (1d,n)-malformed edge is not (id, m)-malformed for an m #
n (for instance, an edge labeled with the guard a [ 1 ] ==3 and the assignment
a[2] :=0 is not allowed). Moreover, there are the three required “equiva-
lent” (1d, n)-malformed edges: one for each n € {0, 1, 2}.

Note that this restriction allows processes to “reset” scalarset dimensions of
arrays without breaking the symmetry, which can be very convenient if not
necessary for the modeling of many systems.

The restrictions above are very similar to those imposed by Ip and Dill, except
for item (2). In contrast with their theory, we allow the assignment of a “scalarset
type” to a regular variable (these variables are caught by the used-sets). Our mo-
tivation is based on the Fischer protocol, which would not fit in our framework
without this extension, although it clearly exhibits full symmetry. With the pre-
vious restrictions we are able to prove in section [3.4] that our proposed symmetry
reduction technique is sound.

3.3.3 Semantics of SUppaal Models

The semantics of a SUPPAAL model is, as with regular timed automata, defined by
an infinite transition system which originates from the set of (renamed!) SUPPAAL
processes A. The states of this transition system are defined as follows:
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Definition 3.15 (State) A state of a UPPAAL model containing n processes is a
tuple (1,v,v), where

o [is the location vector, such thatl; € L; forall )0 <i<n—1,

o v : Var — Z% is the variable valuation, which maps every variable to a value
(or a tuple of values in case of an arrayﬂ and

o v : Clock — Ry is the clock valuation which maps every clock to a non-
negative real number including zero.

The set of variable valuations for some model is denoted by A, the set of clock
valuations for some model is denoted by I', and the set of all states is denoted by
S.

This definition explains the need for the renaming functions in definition [3.11]
If we allow equal local names of variables or clocks in processes, then we would
need a clock and variable valuation for every process.

There are three kinds of transitions between states of a UPPAAL model. Be-
fore we define these, we specify how the assignments and guards are interpreted
over the clock and variable valuations. Since the integer guards and integer assign-
ments might contain scalarsets, we need the context of a SUPPAAL process (more
precisely, the scalarset valuation p) for evaluation.

eval : IX(Var,Q) x AX A — 7Z
eval : CG(Clock) x T' — {true, false}

eval : IG(Var,Q) x A x A — {true, false}

These functions are defined in the usual way. Using these evaluation functions,
we can easily define the integer assignment execution function and the clock reset
execution function, whose types are given below.

exec : (IA(Var,Q))* x Ax A — A

2CA(ClOCk) «xT =T

exec :

Now we are ready to define the transitions of a SUPPAAL model (we assume
that there are n processes). The first kind of transition is a simple action transition
in which an individual process executes an edge labeled with the “empty” channel
T

Definition 3.16 (Simple action transition) A tuple of states ((I,v,v), (I, v/,1"))
is a simple action transition if an edge (src, T, (Ye, Yv), (ac, av), dst) € Ej exists,
such that

3We do not explicitly explain the encoding and decoding of these arrays, since it is enough to
assume that this happens in a consistent way.
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Iy = srcand l;, = dst and I; = 1 for all j # F,

eval((ye,v)) = eval((yw, Ak, v)) = true,

v = exec((av, Ay, v)) and V' = exec((ac,v)),

eval((1;(1;),v)) = eval((L;(l), V")) = true for all 0 < i < n — 1, and

if there exists a l; such that It;(l;) = committed, then Ity (l) = committed.

The second kind of transition is a synchronizing action transition in which two
processes simultaneously execute an edge with matching synchronization labels.

Definition 3.17 (o action transition) A tuple ((I,v,v), (I',v/,V)) of states is a o
action transition if there exists an edge (src,(o,!), (Ye; ), (ac,av),dst) € Ej
and an edge (src, (0,7), (7%, 7,), (acd,av’), dst’) € Ey, such that :

lp, = srcand l, = dst and l, = src and I}, = dst’ and I} = 1; for all
i hk,

eval (1, v)) = eval(yo, Ax,v)) = eval(vsv)) = eval((}, Ap,v)) =
true,

v/ = exec((av', Ay, exec(av, A, v)))) and V' = exec((cl., exec((ce, v)))),
eval((1;(1;),v)) = eval((L;(l), V")) = true for all 0 < i < n — 1, and

if there exists a l; such that It;(l;) = committed, then Ity (1) = committed or
Ity,(I) = committed.

Note that the exclamation mark side of the synchronization precedes the ques-
tion mark side of the synchronization with respect to assignments. The last kind of
transition is transition in which only time elapses.

Definition 3.18 (6 delay transition) A tuple of states (I, v,v), ([,v,1)) isa d de-
lay transition, where 6 € RY and § > 0, if

Vz)=v(z)+ 6 forallz € X,
eval((I;(1;),v)) = eval((I;(1;),V")) = true for all 0 < i < n — 1, and
Iti(l;) # committed for all 0 <1i <mn —1,

if there exists an i such that It;(l;) = urgent, then no state r exists such
that ((1,v,v),r) is a simple action transition or o action transition for some
=D

no state r exists such that ((1,v,v), r) is a o action transition for some o € X
such that ct(o) = urgent.
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With the definitions of states and the three transitions we have defined the struc-
ture of our transition system. We finish with describing the initial state of a SUP-
PAAL model. The location vector of this state is defined by the L? for every process
1, the initial variable valuation is given by the inif functions, and finally, the initial
clock valuation assigns O to all clocks in the model.

Definition 3.19 (Run) A finite or infinite sequence of states sg, S1, ... is a run, if So
is the initial state, and (si, si+1) is a simple action transition, a o action transition,
or a 6 delay transition for all i.

For a SUPPAAL model M we let R(M) denote the set of all runs of M, which
thus captures the behavior of M. Since the theory of symmetry that we adopt
(summarized in section [3.2) is solely concerned with reachability of states, we
limit ourselves to reachability properties. Let us assume that we have a set of state
properties P, for whose elements ¢ we can easily say whether they are true or false
in some state.

Definition 3.20 (Reachability) For a SUPPAAL model M and a state property ¢,
we say that ¢ is reachable in M, denoted by M = 3¢, if a run sg, s1, ... € R(M)
exists such that ¢ is true in some s; of that run.

The model checking engine of UPPAAL can decide whether or not M = 3¢,
It constructs a finite abstraction of the transition system of M on-the-fly, using
difference bounded matrices for symbolic representation of the clock valuation of
the state [84) [18} 143] 16]]. This finite abstraction is then treated by a classical finite
state model checking algorithm as depicted in Figure 3.1} It is not very difficult
to adjust the engine to take symmetry into account, as is schematically depicted in

Figure[3.2]

3.4 Extraction of Automorphisms

In this section we extract automorphisms from an SUPPAAL model which has been
extended with scalarsets. First, we define the so-called swap functions, and second,
we prove that these swap functions are automorphisms.

We assume the context of a SUPPAAL model (2, s, V9, vt,init, X9,%, ct, T)
which gives rise to n (uniquely renamed!) processes, denoted by A; = (T3, p;).

3.4.1 Defining the automorphisms

As Ip and Dill we define permutations on the state graph of, in our case, a SUPPAAL
model. Part of the state of a SUPPAAL model consists of local contributions of the
various processes of the model. Moreover, the behavior of the model is defined
by the control structure of the processes. Therefore, we use processes which are
(almost) syntactically equivalent to permute the state.
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Definition 3.21 (Process swap) Let A; and A; be processes of M that originate
from the same template (T; = T;). We define a process swap &;; : S — S as

follows: &j((l_;v, V) = (U W', V), such that

i =1;,1; =li,and [} =y forall k # i, j
v(equiv};(a)) ifaeV;
v'(a) = v(equiv}/;»(a)) ifa €V
v(a) otherwise

v(equivi (x)) ifr € X;

V(x) = V(equivﬁ(x)) ifr e X;

v(z) otherwise
Lemma 3.22 A process swap is its own inverse.

PROOF. We prove that &;; o §ij((l_; v, V) = §ij((l7, o', V) = (I",v", V") such that
" =1, v" = v, and v = v. We split the proof in three parts:
e " = [ From definition we know that [; = [; and I; = I;. Applying
§ij again gives us that [ = I’ and [ = [;. Thus, [j' = I;, and lj = I; and
Iy =1l forall k # i, 5.

e v" = v. We prove that v"(a) = v(a) for all variables a in three cases:

- a ¢ V; UV;. We see in definition that the value of a remains
unchanged. Thus v”(a) = v/(a) = v(a).

- a € V;. In definition we read that v'(a) = v(equiv;;(a)). Since
the equivalence function is a bijection from V; to Vj;, we know that
equivij(a) € Vj. Applying another process swap thus gives us that

v"(a) = v(equiv;; o equiv;;(a))
At the end of section we explained that equiv,; o equiv;; = id.
Therefore, we can say that v/ (a) = v(a).
— a € Vj. The proof of this case is similar as the proof in the previous
item.
e " = 1. We can proof this by an argument similar to the one in the previous
item.
]

Next, we define the multiple process swap.

Definition 3.23 (Multiple process swap) Let o € () be a scalarset and let 0 <
i # j < s(«). A multiple process swap is the composition ff‘j = &kyky O&ksky, ©--. O
gy 1kam» SUCh that for all processes Ay, , ..., Ak, the following holds:
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® Tky, | =Tiy, foralll <p<m,
° szp,l(a) = i and py,, (a) =jforalll <p<m,

® Pkopy (B) = Pryy, (B) for all 1 < p < m and for all 3 # .

Moreover, there are no process indices k1 and k, such that the three items above
are satisfied, and §,,_, 1., is not in the composition. (Note that &;; = ;).

Lemma 3.24 A process is swapped at most once by a multiple process swap.

PROOF. Consider some process A,, such that p, (o) = i. Equationallows us to
conclude that there is exactly one other process A, which originates from the same
template, p,(cr) = j, and whose other scalarsets match those of A,. Therefore,
only the process swap &, (or, equivalently, £,,) involving A,, can be present in the
multiple process swap. n

Lemma 3.25 If process A, is not swapped by a multiple process swap &, then

oola) ¢ (0. 1).

PROOF. We prove that if p,(a) € {i, 7}, then the process is swapped, which is
logically equivalent to our lemma. Thus, we assume p,(c) = i. Equation
allows us to conclude that there is exactly one other process A, which originates
from the same template, p,(a) = j, and whose other scalarsets match those of A,.
Therefore, the process swap &,q must be in the multiple process swap & according
to definition A similar argument holds for the situation pp,(a) = j. |

Lemma 3.26 Consider four processes A, Ay, Aqand Ay and two process swaps
Epp and &g o If the four processes are all different, then &, ;y 0 &g o = §q.4/ © Ep.pr-

PROOF. In definition [3.21] we see that the process swaps are orthogonal, because
they only swap the local contributions to the state of the processes. Thus, if the
four processes are different, then it does not matter in which order we apply the
process swaps. |

The second step swaps the dimensions of integer variable arrays which are
indexed by some scalarset, and it swaps the integer variables which are target of an
assignment with a scalarset constant.

Definition 3.27 (Data swap) Let o € Q2 be a scalarsetandlet0 < i # j < s(a)}.
A data swap is defined as %((l_; v,V)) = (l_; v',v), such that: for every regular
variable a:
i ifv(a) = jand a € used,
v'(a) =< j ifv(a) =iand a € used,
v(a) otherwise



3.4. EXTRACTION OF AUTOMORPHISMS 49

And for every n dimensional integer array a:

v'(alio]-.[in-1]) = v(al(i0)a.0]---[(in-1)an-1])
where the functions () o1, : N — N are defined for array a as:

i ifc=jand[tVar(a)ly = «
(Qak =1 J ifc=1iand[tVar(a)l, = a
c otherwise

Lemma 3.28 A data swap is its own inverse.

PROOF. We prove that (% o Za]((f, v, V) = g((l_;, o', v") = (I, 0", V") such that
1" =1,v" = v, and v = v. We split the proof in three parts:

e " = [. From definition we know that the data swap does not alter the
location vector. Therefore, I = I.

e v" = v. First, we proof that v”(a[ig]...[in—1]) = v(a[ig]...[in—1]) for all n
dimensional integer arrays a. Therefore, let us apply two data swaps to this
array:

v”(a[io] wfin-1]) = U(a[((io)a,O)a,O]"- [((in—l)a,n—l)a,n—l])

Next, we prove that ((¢)ak)ar = c¢. We distinguish three cases. First,
¢ = i and [tVar(a)];, = a. By definition ((¢)a,k)ak = (j)a,k = @ Second,
¢ = j and [tVar(a)ly = a. Then ((¢)ak)akr = (i)ar = j. The third
case encompasses all other situations, and thus ((¢)ak)ar = (€)ar = c by
definition 3.27

Second, we must prove that v”/(a) = v(a) for all regular variables a. Again,
we distinguish three cases. First, v(a) = j and a € used,. By definition
v'(a) = i and - of course — still a € used,. Applying another swap thus
gives us by definition that v”(a) = j. The second case, v(a) = 4 and
a € used,, is similar. The third case encompasses all other situations, and
again by definition [3.27) we know that v"(a) = v/(a) = v(a).

e 1/ = v, since the data swap does not alter the clock valuation.

Lemma 3.29 Consider a process swap &pq and a data swap (;i. The order of

application does not matter: &pq 0 (% = (7% 0 &pg.

PROOF. Assume that &y, o g((l_;v,y)) = Eg((, 04, 04) = (I7,0),V)!), and
similarly % o §pq((Lv,v)) = (3 (I3, v5,15)) = (I3, v5,v5). We prove that
(I, v, v) = (I, g, ).
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° l71’ = I, because we now by definition that the data swap does not alter
the location vector.

e v/ = of, thus v{(a) = v (a) for all (arrays of) integer variables a. We
distinguish three cases:

— a € V). There are two situations. First, a can be a regular (non-array)
variable. Then v/ (a) equals ¢ if v(a) = j and a € used,, or j if
v(a) =i and a € used,, or v(a) otherwise. Similarly, v} (b) equals 4
if v(b) = j and b € used,, or j if v(b) = i and b € used,, or v(b)
otherwise, where b = equiv,,,(a). Note that b exists since a is a local
variable of process A,. Applying the process swap swaps the value of
a with the value of b, thus:

i if v(b) = j and b € used,,
vi(a) =vi(b) =< j if v(b) =i and b € used,,
v(b) otherwise

Next, we consider v4(a), which results from a process swap. Thus:
vy(a) = v(b), where b = equiv,,,(a). Applying the data swap gives us
by definition:

i if vh(a) = v(b) = j and b € used,
vh(a) =< j if vj(a) = v(b) = i and b € used,,
v(b) otherwise

Therefore, v} (a) = v4(a) for all regular variables a.

Second, a can be a n-dimensional array of integers. Applying the data
swap first gives v} (a[io]...[in—1]) = v(a[(i0)a.0]---[(in—1])a.n—1). The
process swap then swaps all entries of a with equiqu(a):

vy (alio]...[in-1]) = v(equivyy(a)[(i0)a,0]---[(in-1])an—1)
On the other hand, applying the process swap first gives us that

vy(alio]...[in—1]) = v(equiv,,(a)[io]...[in—1]). Next, we apply the data
swap with the result that

vy (alio]...[in-1]) = v(equivyy(a)[(io)a,0]---[(in-1])an-1)
Thus, we conclude that v} (a) = v4(a) for all (arrays of) integer vari-
ables a.

- a € V;. We can prove this with a similar argument as appears in the
previous item.

- a ¢ V, UV,. These variables are left unchanged by the process swap,
as we can read in definition Therefore, obviously v} (a) = v4(a)
for these variables.
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e ' = vy, because we now by definition that the data swap does not alter
the clock valuation.

Using the multiple process swap and the data swap we can define the permuta-
tions which permute the ¢-th and the j-th element of a scalarset consistently through
the state.

Definition 3.30 (State swap) Letr o be a scalarset and let 0 < i # j < s(«).
Then, ;% o gg is a state swap abbreviated Dy .

Lemma 3.31 A state swap is its own inverse.

PROOF. Consider a state swap p1 = (75 0 &5 = (% 0 &gk © Ehigky © - © Ehgpy 1 g -

Since a multiple process swap does always swap a process at most once (see lemma

3.24]), we can use lemma and lemma to rewrite this state swap to p2 =

Ekam—1kam © -+ © Ekiky © (- Thus p1 = po, and using lemma 3.22{and lemma 3.2
we can rewrite pj o ps in the following way:

P1op2 = (%0 &kiky © - O ko 1kam © Eham1kam © -+ © Ekika ©
= CZC; o fk1k2 0.0 ng’m,73k27‘n72 oido £k2m73k2m72 0..0 §k1k2 0 ij
= Czag © §k1k2 ©..0 gkszskszz © €k2m73k2m72 ©..0 §k1k2 © iaj

id
Thus, a state swap is its own inverse. |

In the next section we define swap functions on the syntax of our models. We
use these to prove that the state swaps as defined above are automorphisms.

3.4.2 Syntactical Swaps

This section defines swaps on the syntax of a SUPPAAL model. We use these
swaps in the soundness proof in the next section. In the remainder of this section
we abbreviate the state swap 77; by 7, while maintaining the parameters «, ¢ and

VE

Definition 3.32 (Syntactical integer expression swap) A syntactical integer ex-
pression swap is a function 7, - IX(VIUV,, Sp) — IX(VIUV,, S,) defined as
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Sfollows:
exp ifexp € ZUS,
exp ifexp e V\'V,
equiv,,(exp) ifexp € V),
s _ ) vimpg(en)].[mpg (em)] if exp = vleq]...[em]
Tpa(€P) = andv € V\'V,
equivy, (v)[mp,(e1)]...[mp,(em)]  if exp = vler]...[em]
andv €'V,
(mpq(e1) @ mp,(€2)) ifexp = (e1 @ e2)

Lemma 3.33 Let e € IX (VI U V), Sy) be a well-formed expression of process
Ap, let m be a state swap and let 7, be a syntactical integer expression swap. If
e # aand e ¢ used,, then

(1) If m swaps A, with Ag, then it is true that eval(e, Ay, [(l_:v, v)|1) equals
eval(ﬂgq(e), Aq7 [ﬂ-(lv v, V)]l)'

(2) If ™ does not swap A, then it is true that eval(e, A, [(l_; v,v)]1) equals
eval(ea Apa [W(l_; v, 1/)]1)‘

PROOF. We proof all seven cases of definition separately for both parts of the
lemma.

e ¢ € Z. We know that eval(e, Ap, [(I,v,v)1]) = z by definition of the eval-
uation function. And eval(m,,(e), Ay, [7(I,v,v)]1) = z, since no variable
interpretation is needed for the evaluation of a number, and the syntactical
swap does not change such a number by definition. This proves part (1) and
part (2) of the lemma.

e ¢ = [ for a scalarset § # a. We know by definition of the evaluation
function that eval(e, A,, [(I,v,v)]1) = pp(e). And therefore:

eval(m3,(e), [w(T,v,0)]1) = eval(e, [ (T, v, )]1) = py(e)

In definition[3.23| we read that A, and A, do only differ in the value of their
a scalarset. Therefore, p,(e) = py(e). This proves part (1) of the lemma. As
for part (2), we say that the variable interpretation is not needed to evaluate
scalarset e.

—

e ¢ € V\ V. Obviously, eval(e, Ay, [(I,v,v)1]) = v(e). Second,

eval(my,(e), Ag, [7r/( ,0,v)]1) = eval(e, Ay, (w0, 0)]h) =

eval(e, Ap,v') = v

By definition, 7’s process swaps do not alter e, since e is not local to A,,.
Moreover, 7’s data swap does also not alter the value of e, since we assumed
in the lemma that e ¢ used,,. Therefore, v'(e) = v(e). This proves part (1)
of the lemma, and with a very similar argument we can easily prove part (2).
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e ¢ € V). Obviously, eval(e, A, [(I,v,v)1]) = v(e). Second,
eval(m3,(€). Ag,[r(lv.0)]1) = evallequivyy(e). Ag.[r(l,v.v)]1)
= eval(equiv,,(e), Ay, V')

By definition, 7’s process swap does alter the value of e in the following
way: v'(e) = w(equivy,(e)). Moreover, v'(equiv,,(e)) = v(equiv,, o
equiv,,(e)) = v(e), since equiv,, o equiv,, = id. The data swap does not
alter the value of e, since we assumed in the lemma that e ¢ used,,. Thus,
eval(equiv,,(e), A4, v") equals v(e). This proves part (1) of the lemma. As
for part (2), note that A, is not swapped. Therefore, the value of the local
variable e is not changed.

e ¢ = (e1 © e3) By definition [3.6| we know that e; and eg are simple integer
expressions. For part (1) of the lemma we must prove that

- -

eval((e1 @ e2), Ap, [(l,v,v)]1) = eval(mp,(e1 @ e2), Ag, [7(l,v,v)]1)
And thus by definition

eval(er, Ay, [(1,v,0)]1) @ eval(ea, Ay, (1, v, v)]1)

eval(my,(e1), Ag, [w(l,0,0)]1) @ eval(my,(e2), Ay, [ (1, v,)]1)

This can easily be proved by induction on the syntax of e; and e,. The base
is formed by the four previous items. The induction step is straightforward
and we do not explicitly explain it. The proof of part (2) is very similar.

e exp = aleg)...[ey] and a € V' \ V},. We start with the proof of part (1) of the
lemma. First we rewrite the first term in our lemma as follows:

eval(aleg]...[em], Ap,v) = v(aleval(eg, Ap,v)]...[eval(em, Ap,v)])

Second, we rewrite the second term in our lemma using the definition of the
evaluation function and definition 3.32

eval(my, (aleo].-[em]), Ags [W(l_; v,v)]1) =
eval(a [ Tog(€0)]-- (Mg (em)], Ag,v') =
v'(aleval(myy(eo), Ag, v')]..leval(my, (em), Aq, v')])

where v/ = [ (I, v, )]1. Note that 7 does not “alter” the values in the array
a, since the process swap of 7 does not affect a (since a ¢ V}). Thus,
entries of a are merely swapped around (see definition[3.27|of the data swap).
Therefore, we can rewrite the previous term to:

U(a[(eval(ﬁzq(eo), Ay v"))ao) ...[(eval(wf,q(em), Ay, V")) aml])
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Thus, we must prove the following equality for all array dimensions k:

eval(ey, Ay, [(Lv,v)1) = (eval(myy(ex), Ags [w (L v, v)]1))ak

Again, we must consider all possible cases for the syntax of e;. In definition
we see that e, must be a simple integer expression. Thus, we enumerate
the possibilities:

- ey € Z. We know by definition that eval(ey, Ay, v) = ey, and also that
(eval(er, Ag,V"))ak = (€k)a k- Since we assumed that our expression
is well-formed, this k-th dimension may not be a scalarset dimension.
Therefore, (e;)ak = €k-

- e = (3 for some scalarset 3. By definition eval(ey, A,,v) = pp(er).
As for the second part:

—

(eval(ﬂgs)q(ek)v Aqa [ﬂ—(l’ v, V)]l))a,k = (Pq(ek))a,k:

We now can distinguish two cases. First, § # «. Since the expression
is well-formed, we know that the k-th dimension is not an «« dimension.
Thus we conclude that (pg(er))ar = pqg(er). Since T swaps process
A, with A, we can conclude from definition that the 3 constant
of these processes is the same. Thus: p,(ex) = pq(er).

Second, 3 = a. Since m swaps process A, with A,, we know that
ppler) = i, and pg(er) = j. Thus, (pg(ex))ak = (flak = i by
definition, because the k-th dimension now is an a dimension.

- e, € VIUV, ore, = (e1 © ea), where e and ey are simple expres-
sions. Since we assumed that the expression under consideration is
well-formed, we conclude that dimension £ is a non-scalarset dimen-
sion. Therefore,

(eval(w3y(e), Agy [r(T, v, )]1) e = eval(my(ex), Ag, (T v,1)]1)

The proof for this case can be found in the third, fourth and fifth main
item of the proof of this lemma.

Next, we prove the second part of the lemma. With an argument similar to
the one at the start of this item, we conclude that we must prove the equality

eval(ey, Ay, [(Lv,v))1) = (eval(eg, Ap, [r(Lv,v)]1))a

where ey, is a simple integer expression. Again, we distinguish three cases.

— ey € Z. We know by definition that eval(ey, Ap,v) = ey, and also that
(eval(e, Ap, V")) ak = (€k)a,k. Since we assumed that our expression
is well-formed, this k-th dimension may not be a scalarset dimension.
Therefore, (ex)ar = €k-
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- e, = [ for some scalarset 3. By definition eval(ey, A,,v) = pp(er).
As for the second part:

(eval(er, Ap, [7 (L0, )1)ak = (Ppler))a

We now can distinguish two cases. First, 3 # «. Since the expression
is well-formed, we know that the k-th dimension is not an o dimen-
sion. Thus, (pp(er))a,r = Pp(er). Second, B = «. Since m does not
swap process A,, we know by lemma that p,(ex) # ¢,j. Thus,
(pp(ek>)a,k = Pp(ek)~

- e, € VIUV, ore, = (e1 @ ez), where eq and ey are simple expres-
sions. Since we assumed that the expression under consideration is
well-formed, we conclude that dimension k is a non-scalarset dimen-
sion. Therefore,

(eval(ex, Ap, [w(1,0,)]1))ax = eval(ey, Ay, [x(L,v,v)]1)

The proof for this case can be found in the third, fourth and fifth main
item of the proof of this lemma.

e exp = aleg)...[em] and a € V). We start with the first part of the lemma. We
rewrite the first term in our lemma as follows:

eval(aleg)...[em], Ap, v) = v(aleval(eg, Ap,v)]...[eval(ey,, Ap, v)])

Second, we rewrite the second term in our lemma using the definition of the
evaluation function and definition [3.32}

eval(ms,(aleo)...[em]), Ag, [t (v, v)]1) =
eval(equiv,,(a)[mp,(eo)].-[Tp, (em)], Ag, V")

Again, we can rewrite this to
V' (equiv,,, (a)[eval(my, (eo), Ag,v')]...[eval(my, (em), Ag,v")])

Note that 7 consists of a multiple process swap and a data swap. The
process swaps swap entire arrays, while the data swap swaps dimensions
of arrays. More precisely, v'(equiv,,(a)[io].--[im]) is equal to v(equiv,, o
equivy, (a)[(i0)e,0]-+[(im)a,m]). Thus, we can rewrite the previous term to:

U(a[(eval(ﬂ;q(eo), Agy ")) a0] ...[(eval(ﬂ;q(em), Ay, V")) am])
Thus, we must prove the following equality for all array dimensions k:
eval(ey, Ap, [(1,0,v)1) = (eval(m,(ex), Ag [w(1v,1)]1) ok

We have already done this in the previous item.

The proof of the second part of the lemma is very similar to the proof in the
previous item, and we do not explicitly explain it.
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Lemma 3.34 Let us consider some (3, n)-malformed integer expression in dimen-
sion d, say aleg]...[eq—1][n][eqs1]...[em]. There exists ann’ € {0, ...,|B| — 1} such
that .

eval(aleq]...leq-1] ] eas1)--lem], Aps 11,0, 2)]1)

eval(m3, (aleo]...[ea1][0[eas].-lem]), Ag, [(T. v, )]1)

PROOF. We can use the same argument as in the last two items of the proof of
lemma [3.33|to argue that we first must prove that

eval(ey, Ap, (I v, 1)1 = (eval(my(er), Ag, [w(Lv, v)]1)ak
for every array dimension k& # d. We can use the last two items of the proof of

lemma to prove this.
Now we consider the remaining situation for dimension d. Since the expression

is (8, n)-malformed in this dimension, we thus know that n € {0,...,|3| — 1}.
From definition it is clear that 7, (n) = n. Moreover, we do not need the
variable interpretation for the evaluation of n. Thus, we must show that we can
find an n’ € {0, ...,|3| — 1} such that:

n=(n")ad
It is not difficult to see that the following definition of n’ satisfies this equality:

i ifn=janda=p

n=<j ifn=ianda=g
n  otherwise
(See definition for the definition of the ()4, function.) |

We can also define syntactical swaps of the integer assignments. These func-
tions take an integer assignment of process A, and change the syntax in such a way
that it becomes an integer assignment of process A, if A, and A, originate from
the same template.

Definition 3.35 (Syntactical integer assignment swap) A swap of a syntactical
integer assignment is a function 7, : TA(VIUV,, Sp) — TA(VIUV,, S,) defined
as follows:

b= mp,(exp) ifa=0b:=exp
andb ¢ V,,
equiv,, (b) := mp,(exp) ifa=0b:=exp
5 (a) = andb €V,
Pq blmp,(e1)]...[mp (em)] := 7, (exp) ifa = bley]...[em]
r=expand b ¢V,
equivy, (b)[mp,(e1)].-.[mp,(em)] := mp,(exp) if a = ble1]...[enm]
;=expand b €'V,
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where the function w,, which appears right of the large bracket is the syntactical
integer expression swap

The next lemma states that an integer assignment in process A, has the same ef-
fect as an integer assignment in process A, modulo symmetry, if they are swapped
by a state swap.

Lemma 3.36 Consider a well-formed integer assignment ia € IA(V9I UV,,S,)
of Ay, two states (1, v,v) and (U, v, V') such that v' = exec((ia, Ap,v)), a syn-
tactical assignment swap T, and a state swap .

—

(1) If m swaps Ap with Ay, then it is true that exec((mp,(ia), Ag, [7(l,v,V)]1))
equals [7 (I, v, /)],

(2) If 7 does not swap A,, then [x(I',v',1/)]1 = exec(ia, Ay, [x(1,v,1)]1)).

PROOF. We use the following abbreviations in our proof: v” = [ (I’,+/,1/)]; and
V" = ewec((my,(ia), Ag, [7(l,v,v)]1)). We start with part (1) of the lemma, for
which we distinguish two cases. First, 7a is of the form a := exp. In this case, we
distinguish another four cases:

e a € V, and a € usedg for some scalarset 3. In this case, exp may only be
equivalent to to a value z € Z \ {0,1,...,s(8) — 1} or to 3 (see restriction
(2¢) on page[43). In the first situation,

—

V" = exec((my,(ia), Ay, [ (l,v V)]l)) =
exec((equivy,(a) := w5, (exp), A | Lv,v)h)) =
exec((equiv,,(a) = z, Ay [ (Lv,v)]1))

Thus, we can define v as follows:

o (B) = z if b = equiv,,(a)
| [7(I,v,v)]1(b) otherwise

Similarly, we can deduct that

PP - ifb=a
vi(b) = { v(b) otherwise

And therefore we can conclude that

z if b = equiv,,(a)
[7(l,v,v)]1(b) otherwise

Concluding, v” = v". In the second case we can rewrite v"” as follows:

" = 6%60(( pq(a —5)7Aq7[7r(l_;v7_7{)]1))
= exec((equiv,,(a) := B3, Ag, [7(l,0,V)]1))
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Thus, we can define v"” as follows:

" _ Pq (B) ifb= equiqu(a)
V) _{ [7(l,v,)]1(b) otherwise

Similarly, we can deduct that

v,(b):{ Z}(,é)ﬁ) ifb=a

otherwise

Now we distinguish two further possibilities. First, 3 = «. Then we now by

definition that p,(3) = i, and that p, (/) = j. Applying the state swap
thus changes the value of a and swaps it with its equivalent in process A,:

U//(b) = [W(l_f’vlv V/)]l(b) - { {W(Z_:U, V)]l(b) i)ftlliejweigziqu(a)

We can conclude that v” = v"/. Second, 3 # «. In this case we now by
definition that p,,(3) = pq(3). Applying the state swap to v’ does only
swap the variable a with its equivalent in process A:

o"(6) = [x(l', o', i (b) = { [pﬂ(f l,mh(b) e

Again, we can conclude that v = v,

a € V9 and a € usedg for some scalarset 3. We can proof this item with a
proof very similar to the one in the previous item. The only difference is that
the multiple process swap of ™ now has no effect on the value of a.

a € Vj, and a ¢ usedg for all scalarsets 3. Again, we rewrite v"” using the
definitions.

V" = exec((m,(a := exp), Ay, [x(l,v,1)]1))

e:vec((equiqu(a) = W;q(exp), Aq, [W(l_;% v)1))

Thus, we can define v as follows:

o (b) = evai(wgq(exp), Ay, (v, v)]1) ifb= equiv,,(a)
[m(l,v,v)]1(b) otherwise

Similarly, we can deduct that

1y | eval(exp, Ap,v) ifb=a
vi(b) = { v(b) otherwise
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And therefore we can conclude that

V(b) = [w(7 0! ) (b) = {

eval(exp, Ap,v) if b= equiv,,(a)
[m(l,v,v)]1(b)  otherwise

To prove v” = v" we prove that eval(r,, (exp), Ag, [w(l,v,v)]1) equals
eval(exp, Ap,v). We know that exp # [ for all scalarsets 3, since a ¢
usedz. Moreover, according to restriction (3) on page exp ¢ usedg for
all scalarsets 3. Therefore, we can immediately use part (1) of lemma [3.33]
to conclude that v” = v"”.

e a € V9and a ¢ useds for all scalarsets 5. We can proof this item with a
proof very similar to the one in the previous item. The only difference is that
the multiple process swap of ™ now has no effect on the value of a.

Second, ai is of the form a[ig]...[i,,] := exp. By the restrictions on the syntax
of the model stated on page we know that a, exp ¢ usedg and exp # [3 for all
scalarsets 3. We only distinguish two other cases:

e o € V. We can rewrite v as follows:

—

— exeC(W;q(a[iO]m[im] = eﬂ:p), Aq7 [TF(Z,U, V)]l)

exec(equiv,y (a) 5, (i0)].-- (75, (im)] = 75y (exp)), Ag, [x(T,v, 1)]1)

This enables us to define v as follows:

—

ey — § valmia(ean), Au 100, )]0) i = equiv (@)l
[7(l,v,v)]1(b) otherwise
where i, = eval(n®, (i), Ay, [ ﬁv, v)]1). Next, we construct a definition
k pq q
for v using the following definition of v':

o (b) = eval(exp, Ap,v) if b = aleval(ig, Ap,v)]...[eval(im, Ap, V)]
v(b) otherwise

The process swap of 7 interchanges the whole array with an equivalent array
in process A,, and it swaps around the data in the array:

eval(exp, Ap,v) if b= equiv,,(a)[(eval(io, Ap,v))a0]---
v"(b) = [(eval(im, Ap,v))a,m)
[7(l,v,v)]1(b)  otherwise

Thus, we must prove the following two statements in order to prove that
14 n .

v =w
- eval(exp, Ap,v) = eval(mp,(exp), Ay, [7(I,v,v)]1). Due to the form
of exp, we can immediately use part (1) of lemma|[3.33|to conclude that
this statement is true.
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- (eval(ix, Ap,v))ar = eval(my, (ix), Ag, [w(,v,v)]1) for all simple in-

teger expressions ix. There are many possibilities for the form of .
If i, # « and iy ¢ used,, then we can immediately use part (1) of
lemma in conjunction with the fact that the array assignment is
well formed to conclude that this statement is true.
Now let us consider the other cases. First, assume that i, = «. Since
A, is swapped, we know by definition that p, (i) = 4, and that
pqlequivy,,(ir)) = j. Applying the definition of the (), function
gives us that (eval(ix,v))ar = j. Now, eval(m,,(ix), [7(l,v,)]1)
equals eval(equiv,,(ix), [7(l,v,v)]1), which equals pqlequivy,(ir))-
This proves the first case. The second case, i, € used,, cannot ex-
ist, since variables in the used sets may not be used to index arrays
according to the restrictions on page [42]

e a € V9. We can proof this item with a proof very similar to the one in the
previous item. The only difference is that the multiple process swap of 7
now has no effect on the value of a.

This concludes part (1) of the lemma. As for part (2) we only say that the proof
is very similar — with respect to the structure — to the proof given above. The key
observation is that the state swap m now does not affect local variables of a, and

that p,(a) # ¢, j by lemma 3.25
|

Lemma 3.37 Consider a ([3,n)-malformed integer assignment ia € ITA(VI U
Vp, Sp), two states (I,v,v) and (I',v',v/') such that v' = exec((ia, Ap,v)), a syn-
tactical assignment swap 7, and a state swap 7. We can find a n’ €40,...,|8|-1}
such that for ia’, which results from replacing malformation n by n’ in ia, the fol-
lowing holds:

—

(1) If m swaps A, with Ay, then it is true that exec((mp,(ia), Ag, [n(l,v,v)]1))

equals [w (U, v/, 1)1 .
(2) If w does not swap Ay, then [x(I',v',V)]1 = exec(ia', Ay, [x(I,v,)]1)).

PROOF. We can follow the structure of the proof of the previous lemma. This gives

the desired result without much effort, when used in conjunction with lemma|3.34
|

Lemma 3.38 Consider a well-formed integer guard g € 1G(VI UV, Sy) of Ap,
a state (l,v,v), a syntactical assignment swap w,, and a state swap T.

(1) If ™ swaps Ay, with A, then it is true that eval(g, A, [(I,v,v)]1) equals
eval((ﬂf,q(g), Ay, [m(lv,0)h)).
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(2) If © does not swap Ay, then it is true that eval(g, A, [(I,v,v)]1) equals
eval((97 AP7 [ﬂ—(l? v, V)]l))

PROOF. We start by proving part (1) of the lemma. According to definition
the integer guard ¢ has the form e; ~ ey, where e, e; € IX (V9 UV,,S,). By
definition, the evaluation of the integer guard is expressed by the evaluation of both
integer expressions. We prove that

—

eval((e1 ~ e2), Ap, (v, 0)]1) = eval(mp,(e1 ~ e2), Ag, [7(l,v,v)]1)
Which is, by definition, equivalent to the following equality:

eval(ey, Ay, [(I,v,)]1) ~ eval(es, Ap, [(1,v,)]1)

eval(my,(e1), Ag, [7(l,v,0)]1) ~ eval(my,(e2), Ag, [7(l,v,)]1)

This can easily be proved for a large set of integer expressions using lemma [3.33
However, the following, remaining, cases are not yet covered by using the lemma:

e g=a=aorg=a# o, wherea € used, and o € S). If a € V9, then we
can rewrite the equality above to:

v(a) ~ ppler) = eval(a, [w(I;v,v)]1) ~ py(a)

We now by definition of the state swap that p,(o) = i and py(a) = j.
Now we can distinguish three cases. First, v(a) = i. Since a € used,, the
data swap of  is such that [7(l,v,)]1(a) = j. This proves the first case.
The second case, v(a) = j, can be proved with a similar argument. Third,
v(a) # i,j. Now, the data swap does not alter the value of a and we can
derive: v(a) ~ i = [r(l,v,v)]1(a) ~ j for ~& {=, #£}, since both variable
interpretations assign a value not equal to 7 or j to a.

Now the case remains where a € V,. We must prove:

0(a) ~ py(a) = eval(equiv,y(a), [x(T,v,v)]1) ~ pylc)

Again, we know by definition that p,(a) = @ and py(a) = j. We
distinguish three cases. First, v(a) = 4. Then, [x({, v, V)1 (equivy,(a)) = 7,
since 7 swaps the values of a and equiqu(a), and it applies a data swap.
Second, if v(a) = 7, then we can conclude that [ (, v, v)1(equivy,(a)) =i
by a similar argument. Third, if v(a) # 4, j, then [r ([, v, v)|1(equivy,(a)) #
1, 7, since the process swap interchanges the values of a and equiqu(a) and
the data swap leaves these values unchanged.

e g=a=zorg=a#z,wherea € used, and z € Z\ {0,1, ..., s(a) — 1}.
If a € V9, then we can rewrite the equality above to:

v(a) ~ z = eval(a, Aq, [m(lv,0)]1) ~ 2
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If v(a) = i or v(a) = j, then the data swap part of the state swap changes
the value of a. Since z is either larger than both ¢ and j, or smaller than
both i and j, the equality holds. If v(a) # i, j, then the value of a is left
unchanged by the state swap. Therefore, the equality holds.

If a € V), then we can rewrite the equality above to:
v(a) ~ z = eval(equiv,,(a), Ag, [w (v, 0)]1) ~ 2

If v(a) = i or v(a) = j, then the process swap and data swap of the state
swap act in such a way that the value of equiqu(a) becomes j or 7. Since z
is either larger than both 7 and j, or smaller than both ¢ and 7, the equality
holds. If v(a) # i, j, then the state swap acts in such a way that the value of
equiv,,(a) becomes the value of a. Thus, the equality holds.

As for part (2) of the lemma, we only say that it can easily be proved by argu-
ments very similar as above. The key observation is that the value of variable a is
only possibly changed by the data swap, and not by the multiple process swap. Bl

Lemma 3.39 Consider a (3, n)-malformed integer guard g € IG(VIUV,, S,), a
state (lj v, V), a syntactical assignment swap Tpq and a state swap m. We can find a
n’ €{0,...,s(8) — 1} such that for g', which results from replacing malformation
n by n' in g, the following holds:

(1) If m swaps Ay, with Ag, then it is true that eval(g', Ap, [(l_;v, v)|1) equals
eval((ﬂ;q(g/)a Aqv [ﬂ-(l7 v, V)]l))

(2) If  does not swap A,, then it is true that eval(g', A,, [(l_; v,v)|1) equals
eval((g', Ap, [7(l,v,v)]1)).

PROOF. A (f3,n)-malformed integer guard can appear in two different shapes.
First, it can appear as alig)...[n]...[i,] ~ exp, where the left side is malformed
and the right side is well-formed. Second, it can appear as alig|...[n]...[i;,] ~
b[jo]...[n]...[jr], Where both sides are malformed.

Let us consider the first case. With an argument as appears in the previous
proof we can show that we must prove that we can find a n such that

eval(alig]...[n]...[im], Ap, v) ~ eval(exp, Ap,v)

eval(ms,(alio)...[n']...[im]), Ag, [ (L v, 0)]1) ~

eval(my, (exp), Ay, [W(l_;va v)h)

By restrictions 2 and 3 on page #2] we know that exp is not equal to «v and that it
is not in used,,. Therefore, we can use lemma to say that eval(exp, Ap,v) =
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eval(my,(exp), Ay, [7(I,v,v)]1). Moreover, by lemma we can find a n such
that

eval(alig]...[n']...[im], Ap, v) = eval(my, (alig]...[n]...[im]), Aqg, [ (1, v,)]1)

This proves part (1) of the lemma for the first appearance of the malformed guard.
Let us consider the second case. Now we must prove that we can find a n’ such

that
eval(alig]...[n]...[im], Ap, v) ~ eval(b[jo]...[n']...[Jr], Ap, v)

eval(my, (alio]...[n']...[im]), Aq, [W(l,_)l}, )]1) ~
eval(my, (bljo]...[n']...[3r]), Ag, [T ([, v, v)]1)
Since both expressions are (3, n)-malformed, we can find one n’ that proves this
equivalence by lemma [3.34] This proves part (1) of the lemma.
Part (2) of the lemma.is very similar to the proof above, and we do not explicitly
explain it. |

Definition 3.40 (Syntactical clock assignment swap) A syntactical swap of a
clock assignment is a function m,, : CA(X9 U X;,) — CA(X9 U X,) defined as:

s Y equiqu(:v) =n ifrekX,
qu(x =n) { Ti=n otherwise

Lemma 3.41 Consider a clock reset ca € CA(X9 U X)), two states (I,v,v) and
(v, 1) such that V' = exec((ca,v)), a clock reset swap Tpq and a state swap .

(1) If m swaps A, with A, then [x(I', 0,2 = exec((mp,(ca), [w(l,v,0)]2)).

(2) If 7 does not swap Ay, then [w(I, v, 1))y = exec((ca, [x(I,v,1)]2)).

PROOF. According to definition [3.5] the clock reset is of the form z := n. We
distinguish two cases for the proof of part (1) of the lemma:

e 1 € X9. We know by definition that v/ (y) = n if y = = and v(y) otherwise.
Applying the state swap gives us that [7(I’,v,1/)]2(y) = n if y = z and
[7(I,v,1)]2(y) otherwise, since z € X9. We now evaluate the right hand
side of the equality. By definition: exec(z := n, [x(l,v,v)]2)(y) = n if
y = z, and [r(L, v, v)]2(y) otherwise. We see that the definitions of both
sides of the equality match.

e © € X,. First, we know by definition that /(y) = n if y = z and v(y)
otherwise. Applying the state swap has as effect that the values of the local
clocks of A, and A, are swapped. Therefore, we can expand the left hand
side of the equality to:

n if y = equiv,, (), since z € X

(!, Y ]a(y) = {

[7(l,v,v)]2(y) otherwise
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It is straightforward to expand the right hand side of the equality to the same
definition.

As for part (2) of the lemma we note that the state swap 7 can only change the
values of local clocks by the process swaps. Since 7 does not swap A, the values
of the local clocks of A, remain unchanged. Therefore, [m(l,v,v)]2(2) = v(z) for
all z € X9 U X, which proves part (2). |

Definition 3.42 (Syntactical clock guard swap) A syntactical swap of a clock
guard is a function 7, : CG(X9 U X)) — CG(X9 U X,) defined as:

Tpq(x) ~ 1 ifcg=x~n
Tpa(cg) = Tpq(®) ~ Tpe(y) feg=a~y
WPQ(x)Nqu(y)‘Fn ifcg=x~y+n

where x,y € X9U X, andn € N, and the syntactical clock swap mpq : CG(X9U
Xp) — CG(XIUX,) is defined as: mpy(x) = equiv,,(v) if v € Xp and mpy(z) =
x otherwise.

—

Lemma 3.43 Consider a clock guard cg € CG(X9 U X)), a state (l,v,v), a
syntactical clock guard swap m,, and a state swap .

(1) If m swaps A, with A, then it is also true that eval(cg, [(I,v,v)]2) equals
eval((WZq(Cg)7 [ﬂ(la v, V)]Q))

(2) If ™ does not swap Ay, then eval(cg, [(I,v,v)]2) = eval(cg, [x(I,v,)]2)).
PROOF. We distinguish three cases for the proof of part (1) of the lemma:

e cg = x ~ n. We prove that v(z) ~ n equals [r (], v, V)]2(mpg(z)) ~ n. We
distinguish two cases. First, x € X9. Then, by definition the state swap =
does not alter the value of x. Moreover, the syntactical clock swap does not
change x. Thus, the right hand side can be written as v(x) ~ n. Second,
x € X,. Then the state swap interchanges the values of the local clocks of
process A, and A,. Thus, [w(l,v,0)]2(x) = v(equiv,,(r)) and similarly,
[w(l,v, v)|2(equiv,,(z)) = v(z). Using this, we rewrite the right hand side
of the equality as follows:

[w(L v, v)]a(mpg(2)) v = [W(lgval/)]z(equiqu(w)) ~n

e cg = x ~ y. To prove the equality, we must prove that v(z) ~ v(y) equals
[m(l, v, v)|2(mpq(@)) ~ [7 (L, 0, )]2(pg ()
In the previous item we have shown that v(z) = [r(],v, V)]2(mpg(2)), if
x € X9 U X,,. This proves the equality.
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e cg = x ~ y + n. The proof of this case, again, is straightforward, since
I/(.T) = [ﬂ-(hv) V)]2(7rpq(x)), ifre X9U Xp

As for part (2) of the lemma we note that the state swap 7 can only change the
values of local clocks by the process swaps. Since 7 does not swap A,, the values

of the local clocks of A, remain unchanged. Therefore, [ (1, v, v)]2(z) = v/(x) for
all z € X9 U X, which proves part (2). |

Definition 3.44 (Syntactical synchronization swap) A swap of a synchronization
is a function 7, : Sync(E, VIUV,, Sp) — Sync(X, VI UV, S,) defined as:

T ifs=Tt
T, (s) =4 o fs=oceX
G[W;q(ig)]...[ﬂ;q(im)] if s = olig]...[im)]

where T, (ix) is a syntactical intej’ger expression swap of definition which acts
on the simple integer expression iy,.

Lemma 3.45 Assume that 7 is a state swap which swaps process A, with process
Ay If (sre, 0, (ig,cg), (ia, ca), dst) € E,, then

(s7¢, Mpy (), (Mg (19), Ty (cg)), (mp,(ia), mp,(ca)), dst) € E,

PROOF. The syntactical swaps, denoted by the overloaded function 7y , convert
local clocks, local variables and local constants of process A, to equivalent local
clocks, local variables and local constants of process A,. These equivalence func-
tions come forth from the template instantiation mechanism. One can see that this
mechanism is such that the syntactical equivalence between the edges of the lemma

holds. |

In the next section we prove that the state swaps of definition [3.30]are automor-
phisms.

3.4.3 Proving Soundness

In this section we prove that the state swaps defined in definition [3.30|are automor-
phisms as defined in definition [3.1f We split the proof in five small lemmas. (We
abbreviate w7 to m, &% to §, and (jj to ¢ while maintaining the parameters c, ¢ and
J-)

Lemma 3.46 If 7 is a state swap, then s is the initial state iff 7(s¢) is the initial
state.

PROOF. We must prove that 7(sg) = sp. First, we note that the initial locations
of instances of the same template are the same. Since the process swaps only
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swap instances of the same template and the data swaps leave the location vector
untouched, we can conclude that the location vector remains the same.

Now let us consider the variable interpretation. First, we note that array entries
are initialized to zero. Therefore, swapping equivalent arrays by a process swap, or
swapping dimensions by a data swap does not have any effect. This leaves us the
regular variables and we distinguish two cases.

e The regular variable € used,,. If the variable is global, then only the data
swap can change its value. However, it does not do that, since in restriction
(2) (page [A3)) we required that the variable is initialized to a value not in
{0, ..., s(a) — 1}. If the variable is local to a template, then every instance
of the template initializes the variable to the same value. This is due to the
initialization requirement mentioned above.

e The regular variable ¢ used,. In this case, the value might only be changed
due to a process swap if the variable is local. This does not change the
variable interpretation, since the equivalent variable of the other template
instance can only be initialized to the same value (otherwise, the variable
would be € used,,).

Therefore, state swap does not change the variable interpretation of the initial state.
Finally, consider the clock interpretation. Since all clocks are set to zero in the
initial state, the clock interpretation does not change by swapping clock values. B

Lemma 3.47 (s, s) is a simple action transition iff (w(s), w(s")) is a simple action
transition.

PROOF. We separately proof both sides of the equivalence, and we start with the
implication to the right. Assume that (1, v,v), (,v', 1)) is a simple action transi-

tion as defined on page We prove that (7(l, v, v), w(I',v', 1)) is a simple action
transition too. We split the proof in two parts.

e The transition is due to a well-formed edge (src, o, (ig, cg), (ia, ca),dst) €
E,. We claim that if process A, is not swapped by 7, then this edge is still
enabled. Otherwise, the edge

(s7¢, Tpo (), (Mg (19), Tpy(cg)), (mpq(ia), mp,(ca)), dst)

which is an edge of A, by lemma|[3.43] is enabled. We prove all items of the
definition:

— From our main assumption we know that [, = src and I}, = dst. If A,
is not swapped, then the location of A, is not changed. Thus, obviously
[w(l,v, v)|1, = srcand [ (U0, V), = dst. If A, is swapped with
A,, then the active locations of these processes are interchanged. Thus,
[w(l,v, V)1, = lp = srcand [x(, v, V), =1, = dst.
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— Our main assumption is that eval(ig, A,,v) = true and eval(cg,v) =
true. Assume that A, is ngt swapped. By part (2) of lemma we
know that eval(ig, Ap, [1(l,v,v)]1) = eval(ig, Ay, v) = true. Simi-
larly, by part (2) of lemma we know that eval(cg, [x(I,v,v)]2) =
eval(cg,v) = true.

Now let us assume that A, is swapped with A,. We must prove that
both 75 (ig) and 7, (cg) are true. By part (1) of lemmawe know
that eval(m,,(ig), Ag, [(l,v,v)]1) equals eval(ig, Ap, v) = true. Sim-
ilarly, we know that eval(m,,(cg), [7(l,v,0)]3) = eval(cg,v) = true
by part (1) of lemma(3.43

Concluding, in both cases the guards are satisfied.

— Our main assumption states that v' = exec(ia, A,,v) and also that
V' = exec(ca,v). Assume that A, is not swapped. By part (2) of
lemma we know that [7 (7', v/, 1)), = exec(ia, Ay, [x(I,v,)]1).
Similarly, by part (2) of lemma we know that [x(I/,v/,1/)]y =
exec(ca, [m(l,v,v)]2).

Assume that A, is swapped with A,. By part (1) of lemma [3.36| we

know that [x(I', v/, /)] = exec(my, (ia), Ay, [7(l,v,v)]1). Similarly,

we know that [ (I, v/, 1/)]s = exec(m,,(ca), [7(l,v,v)]2) by part (1)
of lemma [3.41]

Concluding, in both cases the interpretations match the assignments.
— We know by our assumption that eval(1;(l;), v) = true for all processes

i. Now consider an invariant ,,({,,). If 7 does not swap A,, then we

know that eval(I,(l,), [7(l,v,0)]3) = eval(I,(1,), [(I,v,v)]2) = true

by lemma Similarly, eval(I,(l,), [m(l,v,0/)]2) = true.

If  does swap A, with A, then we know by lemma 3.43|that

eval(y (I (1)), [r(T v, 0)]2) = eval(L,(1,), [(7, v, v)]2) = true

Similarly,

eval(mg, (I4(lq)), [77([:"”: v)|2) = eval(Iy(lg), [(l_: v,v)]2) = true
The syntactical swap converts the invariants: 7, (I,(lp)) = I4(l4), and
vice versa. Thus, eval(I,(l,), [7(I,v,v)]3) = true and the same holds
for 1,(l,). We can repeat the same argument for (l_f ' V).
Concluding, all invariants are still satisfied after the state swap.

— Observe that the state swap permutes the location vector. Therefore,
the count of committed locations does not change. Moreover, if A, is
swapped with A, then the active locations are interchanged. Thus, [,
is active iff [ (I, v, v)]; , is active. (The processes originate from the
same template, thus the same locations are committed.)



68 CHAPTER 3. ENHANCING UPPAAL BY EXPLOITING SYMMETRY

e The transition is due to an (3, n)-malformed edge (src, o, (ig, cg), (ia, ca),
dst) € E,. We claim that if A, is not swapped by 7, then we can use this
edge, or we can find another edge in E, which proves that (7 (s),m(s")) is
a simple action transition. The proof follows the same structure as in the
previous item, except we use the lemma’s and [3.39]in conjunction with
restriction (3) on page 43} On the other hand, if A, is swapped with A, by
m, then we can find an edge in £, which proves or claim. Again, we need
the lemma’s and [3.39]in conjunction with restriction (3).

The implication to the left can easily be proved. Assume that (7(s),7(s")) is
a simple action transition. Above we have proved that if (s, s) is a simple action
transition, then (7(s),w(s’)) is a simple action transition. Thus, we can say that
(mom(s),mom(s')) is a simple action transition. In lemma [3.31) we have proved
that 7w o 7(s) = s. Therefore, (s, s’) is a simple action transition. [ |

Lemma 3.48 (s, s') is a o action transition iff (7 (s),7(s")) is a o action transi-
tion.

PROOF. The proof of this lemma is very similar to the prove given for lemma[3.47
Therefore, we do not explicitly explain it. |

Lemma 3.49 (s, s') is a ¢ delay transition iff (7 (s), 7(s")) is a § delay transition.

PROOF. We defined a § delay transition on page As in the previous proofs, we
first prove the implication to the right. The implication to the left follows without
effort.

Assume that ((I, v, v), (I,v,7')) is a § delay transition. We consider every item
of the definition separately:

e We know by our assumption that /() = v(z)+4 for all clocks x. Now con-
sider a clock y and assume that it is not swapped. Thus: [w(ﬁ v,V)]a(y) =
v(y), and [x(I,v,")]2(y) = /(y). Since we assumed that v '(z) = v(z)+0
for all clocks x, we can conclude that [ (1, v,/)]2(y) = [x(I, v, v)]2(y) + 6.

If y is swapped, then [ ([, v,1)]2(y) = v(z) and [x([,v,1/)]2(y) = V/(2)
for some equivalent clock z. Since we assumed that v (a:) = ( ) + ¢ for all
clocks x, we know that [7r (1, v, ")]2(y) = [7(l,v,v)]2(y) + ¢

-

o See the fourth item of the first bullet in the proof of lemma|3.47

e The state swap only permutes the active locations. Therefore, no committed
locations become active by swapping.

e By our main assumption we know that if there exists an ¢ such that /7;(l;) =
urgent, then no state r exists such that (s, r) is a simple or o action transition.
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We must prove that if there exists an 7 such that I;(1;) = urgent, then no state
r’ exists such that (7(s),’) is a simple or ¢ action transition. It suffices to
prove the right hand side of the implication. Therefore, assume that this
state r’ does exist. From lemma and lemma we know that (7 o
m(s),m(r")) also is a simple or o action transition. By lemma [3.31] we can
conclude that (s, (7)) is a simple or o action transition. Thus, the state r
mentioned above does exist, namely ¢ = 7(r’). From this contradiction we
can conclude that the state r’ does not exist.

e The argument is similar to the one in the previous item.

The following corollary is the main result of this paper.

Corollary 3.50 (Soundness) Every state swap is an automorphism.

PROOF. By combination of lemmas [3.31} [3.46] [3.47] [3.48| and [3.49] [ |

We can use these automorphisms to construct a normal form operator 6, which
can be used by the forward exploration algorithm, see section In general, com-
puting a canonical representative of a symmetry class (the so-called orbit problem)
is at least as difficult as the graph isomorphism problem, for which currently no
polynomial time algorithms exist [38]]. Therefore, it is practically more useful to
use a fast, but non-canonical, normal form operator. This increases the memory
usage in comparison with a canonical normal form operator, but is, very probably,
much faster. There are many possibilities for a non-canonical normal form opera-
tor (for example, see [26]). These are all based on minimizing the state using the
automorphisms. The challenge is to find a computationally efficient normal form
operator, which improves on the non-symmetric tool in most situations. Since we
find reasoning about the gain of normal form operators for different models very
difficult, we like to address this with experimental research which can be conducted
after the prototype implementation.

As a final note we mention that the so-called state properties, which are used to
define sets of states, should also be taken into account by our normal form operator.
We do not expect this to be a difficult problem.

3.5 Conclusions

We have proposed an enhancement of the model checker UPPAAL, which exploits
structural symmetries to reduce the searchable state space. In Section |3.2| we sum-
marized work of Ip and Dill [69] which we used for our symmetry reduction tech-
nique. In Section we have proposed a syntactical adjustment of the system
description language of UPPAAL version 3.2. More precisely, we have added the
well-known scalarset data type, and multi-dimensional arrays of integer variables



70 CHAPTER 3. ENHANCING UPPAAL BY EXPLOITING SYMMETRY

and channels. In Section [3.4] we used these scalarsets to extract automorphisms
on the state graph of our models. The main result of this paper is corollary
which states that our technique is sound.

Clearly, the soundness proof given in this chapter heavily depends on the syntax
of the modeling language. Therefore, even the smallest change to the language in
principle invalidates the proof. This poses a problem since the syntax of modeling
languages often is changing and growing rather quickly. (This certainly is the case
for UPPAAL: version 3.2 differs greatly from the current version 3.4 and will differ
even more from the next major release.) There are at least two solutions to this
problem. First, one can formalize the current syntax and soundness proof in a
theorem prover such as Pvs [89]. Probably, the construction of the formalized
proof is not very hard since the manual proof is not “deep” but does consist of
many case-distinctions. When small changes to the syntax are made, PVS might be
able to rerun the existing proof automatically. Second, one might be able to think
of certain meta-theorems that ensure the soundness of a whole class of modeling
languages. Another issue concerning the correctness of the tool is that often several
techniques to improve the scalability are applied simultaneously. It must therefore
be ascertained that these techniques do not influence each other in an unsound way.

Future work includes the implementation of the proposed technique. As experi-
ences of Ip and Dill already showed, the actual implementation of the computation
of the representative of a symmetry class is very important [69]]. Canonical repre-
sentatives minimize the space usage, but can be very costly in time. The feasibility
of non-canonical representatives, however, might vary per model. Therefore, ex-
periments with different algorithms to compute non-canonical representatives and
a fairly large set of different models are necessary to assess the effectiveness of
scalarsets in a dense-time setting.

Acknowledgements. The author thanks Frits Vaandrager for commenting on
earlier versions of this chapter.
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Abstract. We describe a prototype extension of the UPPAAL real-time model checking tool
with symmetry reduction. The symmetric data type scalarset, which is also used in the
MUR¢ model checker, was added to UPPAAL’s system description language to support
the easy static detection of symmetries. Our prototype tool uses state swaps, described
and proved sound earlier by Hendriks, to reduce the space and memory consumption of
UPPAAL. Moreover, under certain assumptions the reduction strategy is canonical, which
means that the symmetries are optimally used. For all examples that we experimented with
(both academic toy examples and industrial cases), we obtained a drastic reduction of both
computation time and memory usage, exponential in the size of the scalar sets used.

4.1 Introduction

The state space explosion problem often renders the mechanical verification of
realistic systems practically impossible: there just is not enough time or memory
available. As a consequence, much research has been directed at finding techniques
to fight the state space explosion. One such a technique is the exploitation of
behavioral symmetries [66} (98711168}, 148., [38]]. The exploitation of full symmetries
can be particularly profitable, since its gain can approach a factorial magnitude.
There are many timed systems which clearly exhibit full symmetry, e.g., Fis-
cher’s mutual exclusion protocol [[1]], the CSMA/CD protocol [99, [107], industrial
audio/video protocols [53]], and distributed algorithms, for instance [10]. Moti-
vated by these examples, the work presented in [S5] describes how UPPAAL, a
model checker for networks of timed automata [16, [7, 6], can be enhanced with
symmetry reduction. The present paper puts this work to practice: a prototype of
UPPAAL with symmetry reduction has been implementecﬂ The symmetric data
type scalarset, which was introduced in the MUR¢ model checker [45], was added
to UPPAAL’s system description language to support the easy static detection of

This chapter is a literal copy of [58]], which on its turn is the extended version of [S7].
"We currently are working on the implementation of symmetry reduction in the UPPAAL main
line. We expect that symmetry reduction comes publicly available from version 3.5.0.
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symmetries. Furthermore, the state swaps described and proved sound in [55]] are
used to reduce the space and time consumption of the model checking algorithm.
The reduction strategy is optimal under certain assumptions that essentially con-
cern the discrete part of the state only. Thus, the dense time domain does not add
extra complexity to the symmetry reduction technique. Run-time data is reported
for the examples mentioned above, showing that symmetry reduction in a timed
setting can be very effective.

Related work. Symmetry reduction is a well-known technique to reduce the
resource requirements for model checking algorithms, and it has been success-
fully implemented in model checkers such as MURp [45,68], SMV [83]], and SPIN
(65 26]. As far as we know, the only model checker for timed systems that ex-
ploits symmetry is RED [102] [104]. The symmetry reduction technique used in
RED, however, gives an over approximation of the reachable state space (this is
called the anomaly of image false reachability by the authors). Therefore, RED can
only be used to ensure that a state is not reachable when it is run with symmetry
reduction, whereas symmetry enhanced UPPAAL can be used to ensure that a state
is reachable, or that it is not reachable.

Contribution. We have added symmetry reduction as used within MURp, a
well-established technique to combat the state space explosion problem, to the real-
time model checking tool UPPAAL. For researchers familiar with model checking
it will come as no surprise that this combination can be made and indeed leads to a
significant gain in performance. Still, the effort required to actually add symmetry
reduction to UPPAAL turned out to be substantial. The soundness of the symmetry
reduction technique that we previously developed for UPPAAL does not follow triv-
ially from the work of Ip and Dill [68]] since the description languages of UPPAAL
and MUR, from which symmetries are extracted automatically, are quite different.
In fact, the proof that symmetry reduction for UPPAAL is sound takes up more than
20 pages in [S5]. The main technical contribution of the present work is an efficient
algorithm for the computation of a representative that — under certain assumptions
—is optimal. This is not trivial due to UPPAAL’s symbolic representation of sets of
clock valuations. Many timed systems exhibit symmetries that can be exploited by
our methods. For all examples that we experimented with, we obtained a drastic
reduction of both computation time and memory usage, exponential in the size of
the scalar sets used.

Outline. Section presents a very brief summary of model checking and
symmetry reduction in general, while Sections 4.3] and [4.4] introduce symmetry
reduction for the UPPAAL model checker in particular. In Section[d.3] we present
run-time data of UPPAAL’s performance with and without symmetry reduction, and
Section summarizes and draws conclusions.
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4.2 Model Checking and Symmetry Reduction

This section briefly summarizes the theory of symmetry presented in [68]], which
we reuse in a timed setting since (i) it has proved to be quite successful, and (ii)
it is designed for reachability analysis, which is the main purpose of the UPPAAL
model checker. We simplify (and in fact generalize) the presentation of [[68]] using
the concept of bisimulations.

In general, a transition system is a tuple (@), Qo, A), where Q) is a set of states,
Qo C Q is a set of initial states, and A € @) x @ is a transition relation between
states. Figure [4.1] depicts a general forward reachability algorithm which, under
the assumption that () is finite, computes whether there exists a reachable state g
that satisfies some given property ¢ (denoted by ¢ = ¢).

(D passed := ()
) waiting 1= Qg
(3)  while waiting # 0 do

4) get ¢ from waiting

5) if ¢ = ¢ then return YES

(6) else if ¢ ¢ passed then

@) add q to passed

(3) waiting := waiting U{q¢ € Q | (¢,¢') € A}
9 fi

(10) od

(11)  return NO

Figure 4.1: A general forward reachability analysis algorithm.

Due to the state space explosion problem, the number of states of a transition
system frequently gets too big for the above algorithm to be practical. We would
like to exploit structural properties of transition systems (in particular symmetries)
to improve its performance. Here the well-known notion of bisimulation comes in
naturally:

Definition 4.1 (Bisimulation) A bisimulation on a transition system (Q,Qo, A)
is a relation R C QQ x Q such that for all (q,q') € R,

1. q € Qo ifand only if ¢’ € Qo,
2. if (q,7) € A then there is an v’ such that (¢, ") € A and (r,7") € R,

3. if (¢',7") € A then there exists an r such that (q,r) € A and (r,7") € R.

Suppose that, before starting the reachability analysis of a transition system,
we know that a certain equivalence relation = is a bisimulation and respects the
predicate ¢ in the sense that either all states in an equivalence class satisfy ¢ or
none of them do. Then, when doing reachability analysis, it suffices to store and
explore only a single element of each equivalence class. To implement the state
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space exploration, a representative function 0 may be used that converts a state to
a representative of the equivalence class of that state:

Veeq (g = 0(q)) 4.1

Using 0, we may improve the algorithm in Figure {.1| by replacing lines 2 and
8, respectively, by:

(2) waiting :={0(q) | g € Qo }
(8) waiting := waiting U {6(¢') | (¢,¢') € A}

It can easily be shown that the adjusted algorithm remains correct: for all (fi-
nite) transition systems the outcomes of the original and the adjusted algorithm are
equal. If the representative function is “good”, which means that many equiva-
lent states are projected onto the same representative, then the number of states to
explore, and consequently the size of the passed set, may decrease dramatically.
However, in order to apply the approach, the following two problems need to be
solved:

e A suitable bisimulation equivalence = that respects ¢ needs to be statically
derived from the system description.

e An appropriate representative function  needs to be constructed that satisfies
equation (4.1)), and that can be computed efficiently. Ideally, # satisfies ¢ ~
q¢ = 6(q) = 0(q’), in which case it is called canonical.

In this paper, we use symmetries to solve these problems. As in [68]], the no-
tion of automorphism is used to characterize symmetry within a transition system.
This is a bijection on the set of states that (viewed as a relation) is a bisimulation.
Phrased alternatively:

Definition 4.2 (Automorphism) An automorphism on some transition system, say
(Q,Qo, A), is a bijection h : Q — Q such that

1. q € Qo ifand only if h(q) € Qo forall q € Q, and
2. (¢:¢') € Aifand only if (h(q), h(¢')) € A forall q,q' € Q.

Let H be a set of automorphisms, let id be the identity function on states, and
let G(H) be the closure of H U {id} under inverse and composition. It can be
shown that G(H ) is a group, and it induces a bisimulation equivalence relation ~
on the set of states as follows:

g q <= Fheam) (W) =) (4.2)

We introduce a symmetric data type to let the user explicitly point out the
symmetries in the model. Simple static checks can ensure that the symmetry that is
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pointed out is not broken. Our approach to the second problem of coming up with
good representative functions consists of “sorting the state” w.r.t. some ordering
relation on states using the automorphisms. For instance, given a state ¢ and a
set of automorphisms, find the smallest state ¢’ that can be obtained by repeatedly
applying automorphisms and their inverses to ¢. It is clear that such a 6 satisfies
Equation[4.1] since it is constructed from the automorphisms only.

4.3 Adding Scalarsets to Uppaal

The tool UPPAAL is a model checker for networks of timed automata extended
with discrete variables (bounded integers, arrays) and blocking, binary synchro-
nization as well as non-blocking broadcast communication (see for instance [[16]).
In the remainder of this section we illustrate by an example UPPAAL’s description
language extended with a scalarset type constructor allowing symmetric data types
to be syntactically defined. Our extension is based on the notion of scalarset first
introduced by Ip and Dill in the finite-state model checking tool MUR¢p [43] |68]].
Also our extension is based on the C-like syntax to be introduced in the forthcom-
ing version 4.0 of UPPAAL.

To illustrate our symmetry extension of UPPAAL we consider Fischer’s mu-
tual exclusion protocol. This protocol consists of n processes, identical up to their
unique process identifiers. The purpose of the protocol is to ensure mutual exclu-
sion on the critical sections of the processes. This is accomplished by letting each
process write its identifier (pid) in a global variable (i d) before entering its criti-
cal section. If after some given lower time bound (say 2) id still contains the pid
of the process, then it may enter its critical section.

A scalarset of size n may be considered as the subrange {0,1,...,n — 1} of
the natural numbers. Thus, the n process identifiers in the protocol can be modeled
using a scalarset with size n. In addition to the global variable id, we use the array
active to keep track of all active locations of the processeﬂ Global declarations
are the following:

typedef scalarset[3] proc_id; // a scalarset type with size 3

proc_id id; // declaration of a proc_id
// variable

bool set; // declaration of a boolean

int activel[proc_id]; // declaration of an array

// indexed by proc_id

The first line defines proc_id to be a scalarset type of size 3, and the second
line declares id to be a variable over this type. Thus scalarset is viewed as
a type constructor. In the last line we show a declaration of an array indexed by
elements of the scalarset proc_id.

*This array is actually redundant and not present in the standard formulations of the protocol. It
is, however, useful for showing important aspects of our extension.
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At this point the only thing missing is the declaration of the actual processes
in the system. In the description language of UPPAAL, processes are obtained as
instances of parameterized process templates. In general, templates may contain
several different parameters (e.g. bounded integers, clocks, and channels). In our
extension we allow in addition the use of scalarsets as parameters. In the case of
Fischer’s protocol the processes of the system are given as instances of the template
depicted in Figure 4.2

process Fischer (const proc.id pid)

set==0 req
idle acti(\)/e[pid]:=1, x<=2
Xi=|

set:=0, x:=0, set==0

active[pid]:=0 id:=pid, active[pid]:=1,
set:=1, x:=0
active[pid]:=2

X>2,
cs id==pid wait
active[pid]:=3

Figure 4.2: The template for Fischer’s protocol.

The template has one local clock, x, and no local variables. Note that the header
of the template defines a (constant) scalarset parameter pid of type proc_id.
Access to the critical section cs is governed by suitable updates and tests of the
global scalarset variable id together with upper and lower bound time constraints
on when to proceed from requesting access (req) respectively proceed from wait-
ing for access (wait). Note that all transitions update the array act ive to reflect
the current active location of the process. The instantiation of this template and
declaration of all three process in the system can be done as follows:

FischerProcs = forall i in proc_id : Fischer(i);
system FischerProcs;

The forall construct iterates over all elements of a declared scalarset type.
In this case the iteration is over proc_id and a set of instances of the template
Fischer is constructed and bound to FischerProcs. In the second line the
final system is defined to be precisely this set.

4.4 Using Scalarsets for Symmetry Reduction

This section first presents a method to extract automorphisms from a UPPAAL sys-
tem description using the new scalarset type. These automorphisms can be used
for computation of the representative of a state as described in Section[d.2] Second,
a total preorder is introduced on the individual clocks of zones that are generated



4.4. USING SCALARSETS FOR SYMMETRY REDUCTION 77

during the exploration of the state space. Third, a representative function is de-
fined that uses this preorder on clocks. The main technical result is a proof that this
function is canonical under certain assumptions. The representative function may
not be canonical without all these assumptions, but it certainly is sound.

4.4.1 Extraction of Automorphisms

The extended syntax as described in the previous section enables us to derive the
following information from a system description:

1. A set Q2 of scalarset types.

2. For each a € 2: (i) a set V,, of regular variables of type oﬂ and (ii) a set
D,, of pairs (a,n), where a is an integer variable or clock array and n is
a dimension of a that is to be indexed by « elements such that o # § =
D, N Dﬁ = 0.

3. A partial mapping v : P x {2 — N that gives for each process p and scalarset
« the element of o with which p is instantiated. This mapping is defined by
quantification over scalarsets in the process definition section.

A UPPAAL state is a tuple (I,v, Z), where [ is the location vector, v is the
integer variable valuation, and Z is a zone. A zone is a set of clock valuations,
i.e., functions v : X — R, where X is the set of clocks and R denotes the
set of non-negative real numbers. Zones are represented in UPPAAL by difference
bounded matrices (DBMs) [[18| 143]]. Concretely, the location vector and variable
valuation are implemented by arrays of integers, and the DBM is implemented by
a matrix of integers. The UPPAAL state representation assumes that every process
has a fixed index in the location vector, every regular integer variable and every
entry of an integer array variable has a fixed index in the variable valuation, and
that every clock has a fixed index in the DBM. Thus, there are three injections, all
denoted by p, that map processes, integer variables, and clocks to indices.

Next, we introduce the notion of substate for every scalarset element. Infor-
mally, the substate of element 7 of the scalarset « is a triple containing (i) indices of
processes that have been instantiated with element ¢ of «, (ii) indices of variables
(or array entries) that are associated with element ¢ of «, and (iii) indices of clocks
that are associated with element ¢ of o. These substates can statically be derived,
and do not change during the state space exploration.

Definition 4.3 (Substate) Let ¢ be an element of the scalarset o. The substate of
this element, denoted by substate(c, 1), is a tuple (1,7, ¢), where

3The soundness proof in [S5] uses the so-called used,, set for this set. Moreover, it is assumed
that arrays of integer variables cannot be part of this used, set, which is needed for the soundness
proof of the state swaps. Since this soundness proof is reused in the present paper, the assumption
that V., only consists of regular variables should be made. This assumption, however, can probably
be dropped.
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e [ is the ordered sequence of indices of all processes in {p|v(p,a) =i}
e U is the ordered sequence of indices of

— the local integer variables of all processes p that satisfy ~(p, o) = 1.

— integer array entries that are associated with the i-th element of o, i.e.,
the entry blj1] - - - [jk] - - - [Jn] is associated with the i-th element of o if
and only if (b, k) € D, and jj, = 1.

e Cis the ordered sequence of indices of

— local clocks of all processes p that satisfy ~y(p, o) = 1.

— clock array entries that are associated with the i-th element of a, i.e.,
the entry c[j1] - - - [Jx] - - - [Jn] is associated with the i-th element of « if
and only if (¢, k) € Dy and ji, = i.

We use these substates to define the automorphisms, and to this end we need
the next assumptions. We note that the definition of automorphisms that appears in
[55] does not need the assumptions below and therefore is more general, but also
more complicated. Moreover, these assumptions are also needed in the proof that
the representative function is canonical.

Assumption 4.4 (Basic assumptions)

(1) Local arrays are not indexed by scalarsets and V,, only contains global vari-
ables.

(2) At most one dimension of an array can be indexed by a scalarset, i.e.,
{(b,n) € Do|a € Q An € N}| < 1 for all arrays of integer and clock
variables b.

(3) A process can be associated with at most one scalarset element, i.e.,
{(a, ) | v(p, ) =i A € Q}| < 1 for all processes p.

The contributions to the state of different substates are completely disjoint,
which is formalized by the following lemma.

Lemma 4.5 If o # ( ori # j, then substate(cv, i) and substate([3, j) are disjoint.

PROOF. Let substate(c,i) = (I, 71, @) and let substate(3, j) = (I3, T2, &).

1. [ and I3 share no indices. For the proof, assume that they do, i.e., by Defi-
nition {4.3|a process p exists such that y(p, @) = i and y(p, 5) = j. We see,
however, that p now is associated with two scalarset elements, since « # (3
or i # j, which contradicts the third item of Assumption Therefore, 1
and l_é share no indices.
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2. v and v share no indices. In the previous item we proved that the substates
refer to disjoint sets of processes. Thus, the sets of local variables of these
sets of processes also are disjoint. Now consider an array entry b[hy] . .. [hy)]
and assume that it is associated with the i-th element of o and with the j-th
element of 3. This means (see Definition that some £ exists such that
(b,k) € Do A hy, = i and some k' exists such that (b, k") € Dg A hyy = j.
From our assumption that o # (3 V i # j we can easily prove that k # k'
(1) if @ # 3, then D, N Dg = . Therefore, (b, k) # (b, k) and clearly
k # k. (2)ifi # j, then hy, # hy and clearly k # k’. Thus, two dimensions
of b are indexed by scalarsets which clearly contradicts the second item in
Assumption [4.4] Therefore, ¢} and ¥ share no indices.

3. ¢ and ¢5 share no indices. We can prove this by a similar argument as in the
previous case.

Consider some substate (fl, U1,¢1) and a state ¢ = (E v, Z). We can project
the state to this substate: [[fl]] 4 1s obtained from L by replacing every index by
the encoding of the associated active location (according to g of course). The
projection of ¢ to 1, denoted by [v] o> 1s obtained similarly. If we use the notation

m i to refer to the k-th element in the sequence I, then for all k:

[1], =0 where [ = [ 7, 4.3)
[0], =01  where [#}]k = [v]3,), (4.4)

Note that the location and variable projections can be ordered using the lexico-
graphical order on sequences of numbers. We cannot easily define the projection
of a state to the clock indices, since the state contains a set of clock valuations. For
a single clock valuation v, however, we define the projection of v to a clock index
vector ¢ as follows:

[c1], = ¢  where [¢)]x = v(p~"([c1]x)) (4.5)

Clock valuation projections can be ordered using the lexicographical order on
sequences of numbers. In the next subsection a preorder on clocks is defined that
enables us to compare the projections of the clock parts of substates for any given
state.

The next assumption formalizes the correspondence between substates of dif-
ferent elements of a scalarset. This correspondence is ensured by the implemen-
tation of UPPAAL, and is needed to define the state swaps that are used for the
computation of representatives.

Assumption 4.6 (Detailed assumptions) Let substate(c,i) = (fl, U1, C1), and let
substate(a, j) = (la, V2, @2).
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1. The length of Iy equals the length of l5, and i < j <> [l_i]k < [fg]k

2. The length of Uy equals the length of U, and i < j < [U1]x < U]k, and
[U1]k and [Us)y; refer to equivalent variables:

o [U1]y; is the index of the local variable b of the process p_l([l_i]q) if and
only if [U2], is the index of the local variable b of the process p~( [l_é]q)

o [U1]y, is the index of the array entry blh1] ... [hp—1][i][hps1]. .. [hg] if
and only if 03]}, is the index of blh1] . . . [hp—1][F][hp+1] - - - [Rg)-

3. The length of ¢ equals the length of ¢, and i < j < [¢1]k < [Co]k, and
[C1]k and [G2]y; refer to equivalent clocks (defined as above).

Assumptions [4.4|and |4.6|enable us to define so-called state swap

Definition 4.7 (State swap) Consider two distinct elements, say i and j, of some
scalarset o Let substate(c,1) = (11,71, 1), and let substate(c, j) = (la, U, C2).
The state swap is defined as swap?;((l,v, Z)) = (I',v', Z"), where:

o s defined as follows for all k:
Ui ifk¢handk ¢l
Pl =1< [, ifk=1[L], wherem =[]
I h

mm ifk = [la],,, where m = [l1],,

e v’ can be defined as follows (remember that V,, only contains global non-
array variables):

[v], ifk ¢ Uiandk & Uy and p~t(k) & Va
i if p~1(k) € Vo and [v]), = j

[V]k=1 j if =1 (k) € Vo and [v] =i

if k = [U1],, where m = [U3],,

if k = [Ua],,, where m = [v1],,

o 7' = {s(v)|v € Z}, where the clock value swap s is defined for all clocks
T as:

(sw)(@) =q v(p~ ([Er) ifp(z)
vip ' ([@lk) i p(z) =[Gk
*A more general definition that covers the current definition, but does not need Assumption

appears in [55)]. E.g., that definition also covers the case when an array is indexed by multiple
scalarsets.

v(z) if p(x) & {[
[
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Note that by definition swapg;(¢) = swap§';(¢). A number of syntactic checks
have been identified in [S5] that ensure that the symmetry as suggested by the
scalarsets is not broken. These checks are very similar to those originally iden-
tified for the MUR¢ verification system [68]. For instance, it is not allowed to
use variables of a scalarset type for arithmetical operations such as addition. The
next soundness theorem has been proved in [S3]] (provided that the symmetry is not
brokenﬂ

Theorem 4.8 (Soundness) Every state swap is an automorphism.

As a result, the representative function 6 can be implemented by minimization
of the state using the state swaps. Note that every state swap resembles a transposi-
tion of two scalarset elements. Hence, the equivalence classes induced by the state
swaps originating from a scalarset with size n consist of at most n! states. The
maximal theoretical gain that can be achieved using the state swaps therefore is in
the order of a factor n!.

Consider the instance of Fischer’s mutual exclusion protocol as described in
the previous section with three processes. There are three state swap functions:

proc-id proc-id proc-id

swapy 1“7, swapy " and swap’;°. Now consider the following state of the

=

model (the active location of the i-th process is given by [I]; and the local clock
of this process is given by z;; also note that the zone Z only contains one clock
valuation):

r (idle,wait,cs)

v : id=2, set =1, active[0] =0, active[l]| =2, active[2] =3
VA $0:4,$1:3,CE2:2.5

When we apply swapggc’id to this state, the result is the following state:

I (cs,wait, idle)

v id =0, set =1, active[0] =3, active[l] =2, active[2] =0
Z . x9g=25,r1=3, 15=414

The process swap swaps [y with lo, and z¢ with x2. Moreover, the value of
the variable id is changed from 2 to 0, since id € V..., and the values of
proc-id

active[0] and active[2] are swapped. Applying swapy’s™* to this state gives the
following state:

I (cs,idle,wait)
v id =0, set =1, active[0] =3, active[l] =0, active[2] =2
Z x0:2.5,:c1:4,:1c2:3

Note that this swap does not change the value of id, since the scalarset ele-
ments 1 and 2 are interchanged and id contains scalarset element 0.

5The soundness theorem has also been proved correct for the more general definition of the state
swap function that appears in [S5]. Thus, a definition of state swaps exists such that Theorem
holds without the need for Assumption[{.4]
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4.4.2 A Preorder on Clocks

The zone semantics seems to render a straightforward comparison of clocks im-
possible, since there are in general many different clock valuations in a zone. If
we assume, however, that the UPPAAL model resets its clocks to zero only and that
the convex-hull over-approximation is not used, then the zones that are generated
by the forward state space exploration satisfy the diagonal property. This property
informally states that a zone never contains valuations on both sides of a diagonal.
This implies that the individual clocks can always be ordered using the order in
which they were reset. To formalize this, three binary relations on the set of clocks
X parameterized by a zone Z are defined:

r=<zy <= Vezv(z)<v(y) (4.6)
rrzy = Vez v(z) =v(y) (4.7)
r<zy <= (x=xzyAzHzYy) (4.8)

Clearly, the relation <7 is reflexive and transitive and hence it is a preorder on
the set of clocks. Totality of this preorder w.r.t. zones that are generated during the
state space exploration follows from the diagonal property.

Lemma 4.9 (Diagonal property) Consider the state space exploration algorithm
described in Figure 6 of [l16 ﬂ Assume that the clocks are reset to the value 0
only and that the convex-hull over-approximation is not used. Then for all states
(l_; v, Z) stored in the waiting and passed list during a run of the algorithm and for
all clocks x and vy it holds that either x <z y, x =~z yory <z x.

PROOF. We prove that the diagonal property holds for the arbitrary clocks = and y
by an inductive argument. Consider the initial zone, which contains only one clock
valuation. It is clear that the diagonal property holds for such a zone. Before we
prove the induction step we observe that x ~z y, * <z y, and y <z z are mutually
exclusive: if one holds then the remaining two do not hold. Now consider a zone
Z that satisfies the diagonal property. If the convex-hull over-approximation is not
used, then the three operations on zones that are used during state space exploration
are the following [5]]:

1. Intersection with zone Z’. This results in a zone Z” C Z. Now assume
that z <z y, which means that v(z) < v(y) for all v € Z, and that a
v € Z exists such that v(z) # v(y). Clearly, for all v € Z” still holds
that v”(z) < v(y). Next, we distinguish two cases: First, a v”" € Z” exists
such that v/ (z) # v (y). Then clearly z <z~ y. Second, such a v/ does
not exist. Then v"(z) = v"'(y) for all v € Z” and thus x ~z» y. Itis
straightforward to see that x =z y implies that x =z~ y. Thus, the diagonal
property also holds for Z”.

®Essentially, this is a UPPAAL tailored instance of the algorithm in Figureof the present paper.
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2. Resetting clock z in zone Z. This results in the zone Z’ = {v[z := 0] |
Z}, where vjz = 0](u) = v(u) if v # =z, and v[z = 0](x) = 0.
distinguish two cases:

Ve
We

e u ~z w, where u # x and w # z. Thus, the clock valuations in Z’
have not changed for v and w, and clearly u ~ 7 w.

e 1z ~z y. If there exists a v/ € Z’ such that /(y) > 0, then z <z y by
definition, since v/(x) = 0 and v/(y) > 0 for all v/ € Z'. Otherwise,
V(z) = V' (y) = 0forall v/ € Z', and hence = ~z y. (Note that
resetting clocks to values greater than zero destroys the property in this
case.)

Thus, the diagonal property also holds for Z’.

3. Time elapse. This removes the upper bounds on the individual clocks: Z' =
{v+d|lve ZANd e Ry}, where (v +0)(z) = v(z) + 0 forall z € X.
Now assume that x <z y, which means that v(x) < v(y) for all v € Z, and
that a v € Z exists such that v(z) # v(y). First, consider a (v + §) € Z'.
Clearly, (v + §)(z) < (v + 0)(y), since v(z) < v(y). Second, consider
the v € Z such that v(z) # v(y). By definition, (v + §) € Z’ for any
J. Clearly, (v + 60)(x) # (v + 6)(y). Therefore, z <z y. Now assume
that x ~z y, which means that v(x) = v(y) for all v € Z. By definition,
(v+96)(x) = (v+9)(y), and clearly = ~ 4 y. Thus, the diagonal property
also holds for Z’.

(Note that the convex-hull over-approximation uses some kind of union of zones
which clearly does not preserve the diagonal property.) This proves that every zone
generated during the state space exploration satisfies the diagonal property. |

The clock parts of two substates can be compared using a lexicographical pre-
order that is based on the <z preorder.

Definition 4.10 (Clock preorder) Let ¢; and ¢ be two clock index vectors with
length k, and let q be a state with zone Z. We say that ¢1 <, Ca if and only if

Jo<icr (p7H([E1):) <z p7 (@) A Vo<j<i (p7'([E1)) =z p~ ' ([E2]))))

The non-strict version of the clock order is defined as usual: ¢ <, C» if and only
if ¢y <4 Ca or pfl([é'l]j) ~y ,071([52]])]?0}”61”0 <j<k

Lemma 4.11 [f the clocks in the model are reset to zero only and the convex hull
over-approximation is not used, then the relation on clock index vectors of equal
length as defined in Definition is a total preorder.

PROOF. Straightforward, since <z is a total preorder on the set of clocks under the
mentioned premises (see Lemma[4.9). [ |
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The next lemma relates the clock preorder that is defined for zones to the pro-
jections of the state to the individual clock valuations.

Lemma 4.12 Let ¢1 and ¢5 be two clock index vectors with length k and let q be a
state with zone Z. If some v € Z exists such that [c1],, < [c2],, then ¢ <4 Ca.

PROOF. Assume that a v € Z exists such that [¢1], < [¢2],. From Equation
we know that a 0 < j < k exists such that v(p~1([¢1];)) < v(p~1([c2];)) and
v(p~1([1):)) = v(p~t([ca]);)) forall 0 < i < j. Now suppose that &) ¢, C». Since
the preorder is total (see Lemma.11)), we consider the two remaining possibilities.

First, suppose that ¢; =, ¢>. By Definition and Equations 4.8} for all
v € Z must hold that v(p~1([¢1];)) = v(p~*([éa];)) forall 0 < j < k. This

clearly does not hold, and from this contradiction we can conclude that ¢; #, ca.

Second, suppose that & >, ¢». By Definition and Equations for all
v € Z must hold that v(p~1([¢1];)) > v(p~*([c2);)) forall 0 < j < k. This

clearly also does not hold, and we conclude that ¢; %, ¢>. Thus, ¢1 <4 . |

In the next subsection we define a total preorder on substates and use the state
swaps to compute the representative of a symmetry class, which under certain as-
sumptions is canonical.

4.4.3 Computation of Representatives

A comparison between the state contributions of different scalarset elements is
defined as follows.

Definition 4.13 (Substate preorder) Consider substate(c,i) = (fl, v1,¢), and
also substate(c, j) = (l2,U2,C2), and let q be a state. Then substate(cv,i) <q
substate(cv, §) iff

o [0, < [2], or
o [[l_i]]q = [[l;]]q and [01]], < [02],, or
o [1], = [2], and [1], = [%:], and &1 <4 .

The non-strict version is defined as usual: substate(c, i) <, substate(c, j) if and
only if substate(cv, i) <g substate(c, j) or [l1], = [l A[T1], = [G2]] NGt =4 Co.

Lemma 4.14 [f the clocks in the model are reset to zero only and the convex-hull
over-approximation is not used, then the relation as defined in Definition isa
total preorder on the substates of a scalarset.

PROOF. Straightforward since the preorders on the three components of the sub-
state are total under the mentioned assumptions. |

The next lemma states how the substate preorder is affected by state swaps.
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Lemma 4.15 Let ¢’ = swap;;(q), and let 7(i) = j, n(j) = 4, and 7(k) = k for
all k # 14, j. Assume that substate(3, m) ~ substate(3,n), where ~ € {<,=>}.

o If a # (3, then substate(3, m) ~, substate([3,n).
o If a = [3, then substate(3, m(m)) ~y substate(3,m(n)).

PROOF. The first case can easily be proved using Lemma [.5] The state swap
of o does not affect the parts of the state that are relevant for the substates of (.
Therefore, the order of the elements of § is not disturbed. For the second case
assume that « = (3 and let ¢ = (l_;v, Z),q = (ﬁ,v’,Z’), s1 = substate(3,m) =
(fl,ﬁl, @), and so = substate(3,n) = (l;,ﬁg,é'g).

e Suppose that m = n. Since substate([3, k) =, substate([3, k) for all states g
and for all 3 € QY and k € 3 the lemma clearly holds.

e Suppose that i and j are not equal to m or n. Thus, 7(m) = m and 7(n) =
n. This case can easily be proved using Lemma 4.5 and Definition the
state swap does not affect the projections to the substates of m and n.

e Suppose that m = i and n # i, j. Thus, 7(m) = j and m(n) = n. Let s3 =
substate(3, j) = (I3, V3, C3). We prove that [I3], = [l],, [v3], = [#1],
and that if ¢; ~g Ca, then €3 ~y ¢, where ~€ {<, =, >}. This proves (see
Definition [4.13) that s3 ~ s2.

1. Leti; = (19,1},...,1%) and let I3 = (13,1},...,1}). By Definition
we see that []; = [l if k ¢ [, and k ¢ l5. Moreover, the
definition has the effect that the values of the entries at indices ¢ and
1% are swapped for all 0 < i < n. Clearly, [I3] = [ia] y

2. Since we assumed that V, only contains global non-array variables (see
Assumption .4 and the second assumption at the beginning of Section
[@.4.1), we can use the same argument as in the previous item to prove
(3], = [%1],-

3. Assume that ¢; <, ¢z and let ¢; = (c(l],c%...,clf), and let ¢ =
(3, ¢, ..., ck). By Definition we know that some 0 < f < k
exists such that:

pHe]) <z p(e]) (4.9)
Vo<e<s p () mz p7H(c5) (4.10)
This means by definition of the ~z and <z relations that
ez v(p~(e]) <vip () @.11)
Vo<e<s Yoez v(p~'(cf)) = v(p~"(c5)) (4.12)

Next, we apply Definition 4.7| which swaps the values of p~(c}) and
p~t(c4) for all 0 < I < n and lets the other clocks unchanged. Since
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substates are disjoint (see Lemma we know that the clocks in cs
keep their values: s(v)(p~!(c})) = v(p~!(c})) forall 0 < I < n.
Furthermore, s(v)(p~1(c})) = v(p~1(c})) forallv € Z and 0 < [ <
n. Combination with the previous equations gives us that:

ez v(p~(c}) < v(p~'(ch)) (4.13)
Vo<e<s Yuez v(p~(c5)) = v(p(c5)) (4.14)

By definition of the ~ and < relations:

p_l(cg) <z p_l(cg) (4.15)
Vocecr 7 (c§) mzr p~(c5) (4.16)

By Definition we can conclude that ¢3 <, 3. The case for ¢1 =,
Co is similar.

e Suppose that m = i and n = j. Thus, 7(m) = j and w(n) = . With a
similar argument as in the previous item we can prove that [I1], = [li2],,
HZQ]]q, = Hll]]q’ [[171]]q/ = [[Ugﬂq, [[172]](1, = Hﬁl]]q, and if 81 ~q 52, then
Ca ~g C1, Where ~€ {<, =, >}. Hence, s3 ~¢ s1.

We minimize the state by sorting the substate contributions of each scalarset
according to the substate preorder of Definition To this end, we apply a vari-
ation of the bubble-sort algorithm, see Figure 3] It is clear that this representative
computation satisfies Equation 4. 1| which ensures soundness, since states are trans-
formed using the state swaps only, which are automorphisms by Theorem [4.8]

ey
2
3
“
&)
(6)
@)
®)
€))

(10)
(1)

Figure 4.3:

for all o« € Q2 do
for i = 1to |a| do
for j = |a| — 1 to i do
if substate(c, j) <, substate(o, j — 1) then
q:=swap§_; ;(q)
{substate(cv, j — 1) <, substate(ct,m), j <m < |a|}

od

{substate(c,0) <, --- <, substate(c,i — 1)}
od
{m < n = substate(c, m) <, substate(c,n)}

od

Minimization of state ¢ using the bubble-sort algorithm. The size of

scalarset type « is denoted by |«|. Lines 6, 8 and 10 show the loop invariants.

The following theorem states the main technical contribution of our work. In-
formally, it means that the detected symmetries are optimally used.
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Theorem 4.16 (Canonical representative) If Assumptions and H.6| are true,
the convex hull over-approximation is not used, there are no variables of a scalarset
type (Vo = 0) and the clocks in the model are reset to zero only, then the represen-
tative function 0 as computed by the algorithm in Figure[d.3|is canonical.

PROOF. The loop invariants can easily be proved using the fact that the preorder
on substates is total (Lemma [4.14)) and the fact that swapping two elements of a
scalarset only has an effect on those two elements, i.e., the relations between other
substates are not disturbed (Lemma [4.15)).

Next, we prove that the algorithm computes a canonical representative, i.e.,
0 satisfies ¢ =~ ¢ = 6(q) = 6(¢'). Suppose that ¢ ~ ¢/, i.e., a sequence of
state swaps exists that transforms ¢ into ¢’. Now consider 0(q) = (f, v, Z) and
0(¢) = (I',v',2") (clearly, 6(q) ~ 6(q') by Equation and assume that they
are different.

1. Assume that I # I, more precisely, [l # [z, and [I]; = [I]; for all
1 < j < k. Without loss of generality we can also assume that [ﬂ k>

[']. Clearly, some scalarset « and ¢ € « exist such that k& € [;, where
I, = [substate(cv,i)]op since otherwise entry k cannot be swapped and as
a result 0(q) % 60(q') which we assumed. Moreover, exactly one such a
combination exists, since substates are disjoint according to Lemma[4.5] Say
that [; = (19,11, ...,17) and that lzh = k. By Definition we know that
19 <1 forall 0 < g < h. Combination with the fact that [I]; = '] ; for all
1 < j < k gives us then that [[l:ﬂe(q) > [[l;]]e(q’)-

Since 6(q) = 6(q’) it is possible to transform 6(q) into 6(q’) by state swaps.
By Definition 4.7 and the fact that substates are disjoint (see Lemma [4.5)),
the i-th element of « can only be replaced by the following elements of « as

a result of such a transformation:
J={J] [[fj]]e(q) = [[l:ﬂe(q,) wherel} = [substate(c, )]0 N0 < j < || }

Clearly, J # () since that would mean that 6(q) % 6(q'). Now we show that
a j € J must exist such that j > i. Therefore, assume that 5 < ¢ for all
j € J, and consider the following set of location vector indices which are
exactly those indices whose entries in ['can replace the value [ZT % as a result
of the transformation that proves that 6(q) ~ 0(¢’):

G = {[l;]n | where I; = [substate(v, j)]o and j € J }

By Assumption 4.6 and the assumption that j < i (and j # ¢) forall j € J
we know that g < k for all ¢ € G. Thus, [ﬂg = [l_;}g forall g € G
and [I]; # []s. Clearly, [ can never be transformed into /. This contra-
dicts our assumption that 6(q) = 6(q’), and therefore we can conclude that
a j € J exists such that j > 7. Now we fix this § > 7 and have that
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[[fjﬂg(q) = [[l_;]]g(q/). Above we have shown that [[l:-]]a(q) > [[[;]]O(q/)' Com-

bination gives us that 7 < j and [[l_;]]@(q) > Hfjﬂe(q)- In other words, ¢ < j
and substate(cv, i) >g(q) substate(c, j), which clearly contradicts the loop
invariant in line 10 of the algorithm in Figure Therefore, | = I'.

2. Assume that [ = I A v # o', Since we assumed that V,, = () we know
that the difference between v and v’ is in the projections to some substate.
Therefore, the proof is the same as in the previous item.

3. Assume that [ = I/ AT = o' A Z # Z'. This means thata v € Z exists such
that v ¢ Z'. Moreover, since 6(q) ~ 6(q’), av’ € Z’ exists such that v can
be transformed into v’ by the state swaps. Let us consider this v and this v/
By assumption, a clock index k exists such that v(p~1(k)) # v/(p~1(k))
and v(p~1(i)) = vV/'(p~1(7)) for all 0 < i < k. Without loss of gen-
erality we can assume that v(p~1(k)) > v/(p~'(k)), and that k € & =
[substate(c,i)]2. Thus, [G], > [c],,. With a similar argument as in the
first item we can prove that a j > ¢ exists such that [¢;], = [G],,, where
C; = [substate(c, j)]a.

Combination gives us that < j and [&], > [¢;],. Applying Lemma[4.12]
gives us then that i < j and ¢; >¢,) Cj, which clearly contradicts the loop
invariant in line 10 of the algorithm in Figure [4.3] Therefore, Z = Z'.

Due to the presence of the global variable id, which has scalarset type, our
model of Fischer’s protocol does not satisfy the conditions of the theorem above.
And indeed the representative function # as computed by the algorithm in Figure
[.3]is not fully canonical for this model. This is due to the fact that two processes
can take the transition to location wait at the same moment. The projections to
the resulting substates of the processes then are equal, but the value of id depends
on the order of arrival. Our algorithm cannot distinguish these two different states.
We claim, however, that the implementation does compute a canonical representa-
tive, since it also considers the V,, variables for the decision whether to swap two
scalarset elements.

4.5 Experimental Results

This section presents and discusses experimental data that has been obtained with
the UPPAAL prototype. The measurements were done using the tool memtime, for
which a link can be found at the UPPAAL website.

In order to demonstrate the effectiveness of symmetry reduction, the resource
requirements for checking the correctness of Fischer’s mutual exclusion protocol
were measured as a function of the number of processes for both regular UPPAAL
and the prototype, see Figure A conservative extrapolation of the data shows
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that the verification of the protocol for 20 processes without symmetry reduction
would take 115 days and 1000 GB of memory, whereas this verification can be
done within approximately one second using less than 10 MB of memory with
symmetry reduction.
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Figure 4.4: Run-time data for Fischer’s mutual exclusion protocol showing the
enormous gain of symmetry reduction. The step in the graph of the memory usage
is probably due to the the fact that UPPAAL allocates memory in chunks of a few
megabyte at a time.

Similar results have been obtained for the CSMA/CD protocol ([99, 107]) and
for the timeout task of a distributed agreement algorithm which is described in
[1O]. To be more precise, regular UPPAAL’s limit for the CSMA/CD protocol is
approximately ten processes, while the prototype can easily handle fifty processes.
Similarly, the prototype can easily handle thirty processes for the model of the
timeout task, whereas regular UPPAAL can only handle six processes.

Besides the three models discussed above, we also investigated the gain of
symmetry reduction for two more complex models. First, we measured the gain for
the previously mentioned agreement algorithm, of which we are unable to verify an
interesting instance even with symmetry reduction due to the size of the state space.
Nevertheless, symmetry reduction showed a very significant improvement for less
interesting instances of the algorithm (only two symmetric processes ). Second, we
measured the gain for a model of Bang & Olufsen’s audio/video protocol, which
is described in [53]]. This paper describes how UPPAAL is used to find an error
in the protocol, and it describes the verification of the corrected protocol for two
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(symmetric) senders. (It is interesting to note that analysis of the corrected version
of the protocol in [[100] reveiled another error.) Naturally, we added another sender
— verification of the model for three senders was impossible at the time of the first
verification — and we found another error, whose source and implications we are
investigating at the time of this writing. Table [4.1] shows run-time data for these
models.

Table 4.1: Comparing the time and memory consumption of the prototype with the
regular tool for the agreement algorithm (where the message delay varies) and for
Bang & Olufsen’s audio/video protocol with two and three senders. Three verifi-
cation runs were measured for each model and the best one w.r.t. time is shown.

Model Time [s] Memory [MB]
Nored. Red. Nored. Red.
Agreement (0) 1 3 33 45
Agreement (1) 21 16 294 180
Agreement (2) 80 23 905 245
Agreement (3) 231 32 2126 321
B&O (2) 2 1 16 10
B&O (3) 265 36 1109 181

4.6 Conclusions

The results we obtained with our prototype are clearly quite promising: with rel-
atively limited changes/extensions of the UPPAAL code we obtain a rather drastic
improvement of performance for systems with symmetry that can be expressed
using scalarsets.

An obvious next step is to do experiments concerning profiling where com-
putation time is spent, and in particular how much time is spent on computing
representatives. In the tool Design/CPN [66, [71} 47] (where symmetry reduction
is a main reduction mechanism) there have been interesting prototype experiments
with an implementation in which the (expensive) computations of representatives
were launched as tasks to be solved in parallel with the main exploration algorithm.

As noted before, due to the presence of the global variable id, which has
scalarset type, our model of Fischer’s protocol does not satisfy the conditions of
Theorem[.16] We claim, however, that the implementation does compute a canon-
ical representative, since it also considers the V,, variables for the decision whether
to swap two scalarset elements. Nevertheless, of course, it remains an interesting
topic for future research to optimize the representative function for timed automata
models that do not satisfy the restrictions of Theorem 4.16]

In this paper, we have exploited symmetries to statically derive bisimulations
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and (efficient) representative functions from system descriptions. A complemen-
tary static analysis technique for deriving bisimulations and representative func-
tions is the dead variable reduction technique described in the PhD thesis of Karen
Yorav [[106]. In Yorav’s terminology, a variable v is used in a transition [ T if
v appears in g or in the right hand side of an assignment in up. Variable v is defined
in the transition if it is in the left hand side of an assignment in up. Notice that in
an assignment “v := v + 1” v is first used, and then it is defined. A variable v is
said to be dead at location [ if on every execution path from [, v is defined before it
is used, or is never used at all. Clearly, states that only differ on the values of dead
variables are bisimilar, and any function that assigns a fixed value to these variables
will give us a canonical representative function. An example of a dead variable is
the global variable id in Fischer’s protocol, of which the value does not matter
for locations in which none of the components is in its waiting location. Dead
variable reduction is closely related to the static guard analysis technique for timed
automata as described in [[13]. It would interesting to implement dead variable re-
duction in UPPAAL and to investigate the resulting speedup on some benchmark
examples.

The scalarset approach that we follow in this paper only allows one to express
total symmetries. An obvious direction for future research will be to study how
other types of symmetry (for instance as we see it in a token ring) can be exploited.
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Chapter 5

Model Checker Aided Design of a
Controller for a Wafer Scanner

MARTIJN HENDRIKS
BAREND VAN DEN NIEUWELAAR
FRITS VAANDRAGER

Abstract. For a case-study of a wafer scanner from the semiconductor industry it is shown
how model checking techniques can be used to compute (i) a simple yet optimal deadlock
avoidance policy, and (ii) an infinite schedule that optimizes throughput. Deadlock avoid-
ance is studied based on a simple finite state model using SMV, and for throughput analysis
a more detailed timed automaton model has been constructed and analyzed using the UP-
PAAL tool. The SMV and UPPAAL models are formally related through the notion of a
stuttering bisimulation. The results were obtained within two weeks, which confirms once
more that model checking techniques may help to improve the design process of realistic,
industrial systems. Methodologically, the case study is interesting since two models were
used to obtain results that could not have been obtained using only a single model.

5.1 Introduction

Scheduling and resource allocation problems occur in many different domains,
for instance (1) scheduling of production lines in factories to optimize costs and
delays, (2) scheduling of computer programs in (real-time) operating systems to
meet deadline constraints, (3) scheduling of instructions inside a processor with
a bounded number of registers and processing units, (4) scheduling of trains (or
airplanes) over limited quantities of railway tracks and crossroads, and (5) mission
planning for autonomous robots on spacecrafts. Typically, in each of these do-
main problems are solved using different approaches and mathematical tools. The
EU IST project AMETIST envisages a unifying framework for time dependent be-
havior and dynamic resource allocation that crosses the boundaries of application
domains.

In the AMETIST approach, components of a system are modeled as dynamical
systems with a state space and a well-defined dynamics. All that can happen in a
system is expressed in terms of behaviors that can be generated by the dynamical
systems; these constitute the semantics of the problem. Verification, optimization,
synthesis and other design activities explore and modify system structure so that the
resulting behaviors are correct, optimal, etc. Preferably, the limitations of currently

This chapter is a literal copy of [60].
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known computational solutions should not influence modeling too much: only after
the semantics of a problem is properly understood, abstractions and specialization
due to computational considerations can intervene. In such situations, the sound-
ness of abstractions should ideally also be proved, either via deductive verification
or model checking. AMETIST aims to extend this approach, which underlies the
successful domain of formal verification, to resource allocation, scheduling and
other time-related problems. The present paper serves as an illustration of this
methodology.

A major concern in the design of controllers for many resource allocation sys-
tems (RASs) is deadlock, a permanently blocking condition. There are three gen-
eral ways of handling deadlock: (i) deadlock prevention, (ii) deadlock detection
and resolution, and (iii) deadlock avoidance. Deadlock prevention restricts the sys-
tem in such a way that deadlock is a priori impossible. As a consequence, perfor-
mance may be unnecessarily low. Deadlock detection and resolution, on the other
hand, is not restrictive at all and detects and resolves a deadlock at run-time. This,
however, may be very expensive. Deadlock avoidance achieves a middle ground;
it dynamically chooses the control actions to avoid the occurrence of deadlock. In
this paper, we show how a least restrictive deadlock avoidance policy (DAP) for
the wafer scanner can be easily computed using SMV, a model checker for finite
automata. This DAP can be represented by a very short predicate over the states
of the wafer scanner, which can be used by the controller for the wafer scanner. In
addition, we use the timed automaton tool UPPAAL to define a refined model that
adds timing constraints to address the issue of throughput optimization. We relate
the UPPAAL model to the SMV model via the concept of stuttering bisimulation
introduced by Browne, Clarke and Grumberg [31]. Since stuttering bisimulation
preserves validity of CTL formulas (without nexttime operator), all properties (and
in particular the DAP) that we established for the untimed model using SMV, carry
over to the UPPAAL model. It is not possible to compute the least restrictive DAP
directly for the UPPAAL model since (a) UPPAAL does not support full CTL, and
(b) the state space of the UPPAAL model is so big that it cannot be fully explored.
Using heuristics, however, we are able to use the UPPAAL model checker to find
an infinite schedule that optimizes throughput.

Contribution. The main contribution of our paper is a uniform, model based
approach to deal with both deadlock avoidance and throughput optimization. We
present a case study in which for each of these two problems a model is constructed
and a solution is computed with a model checker. The two models are related
formally through the notion of a stuttering bisimulation. We are not aware of other
work that addresses both deadlock avoidance and throughput optimization in (what
essentially is) a single framework.

Our results were obtained within two weeks, and we believe that our method
can be applied by engineers with a background in computer science after training
of only a few days. This confirms that model checking may help to improve the
design process of realistic, industrial systems. Our DAP computation approach
is referred to in a patent application of ASML, which shows its significance for
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industry. Methodologically, the case study is interesting since two models were
used in combination to obtain results that could not have been obtained using only
a single model. Our approach illustrates once more that building models that are
just abstract enough for addressing a specific question, often provides a way to deal
with the state space explosion problem. Probably, we could have carried out the
complete analysis using a single tool, namely KRONOS [[107]], a model checker for
timed automata that supports full Timed CTL. We decided to use UPPAAL because
of its greater maturity, efficiency and user friendliness. In particular, the graphical
user interface and simulator facilitated communication about our model with the
ASML engineers. Since UPPAAL does not support full CTL model checking, we
used SMV, which is also very mature and efficient, for the computation of the DAP.

Related work. Much research has been devoted to deadlock avoidance in RASS,
see for instance [90, 94]. Discouraged by the NP-completeness of optimal dead-
lock avoidance for many RAS classes, see for instance [[76]], this kind of work
generally focuses either on computation of suboptimal but polynomial DAPSs or on
optimal policies for very specific sub classes. Much of this work uses the Petri net
formalism [86] for the modeling and analysis of RASs. Using these approaches,
the deadlock avoidance problem from the present paper can be solved very easily.

In [52]], the model checker SMV is used to construct a deadlock free controller
by an iterative process. The parallel composition of the controller and the plant
is checked against deadlock by SMV. If a deadlock state is found, then the con-
troller is adjusted to exclude the counterexample and the verification is run again.
Otherwise, the controller is deadlock free. The work presented in [[105] deals with
verification of several DAPs using SMV.

Papers in which model checking tools are used to solve scheduling problems
include a case study in which a control schedule for a smart card personalization
system is synthesized using the SMV model checker [50], a case study in which
the UPPAAL model checker is used to find feasible schedules for a steel plant [49],
a recent case study in which the UPPAAL model checker is used to find feasible
schedules for lacquer production [15]], and a case study by Niebert et al. [87]] who
used KRONOS [[107]] to synthesize infinite schedules with stationary throughput for
a chemical batch plant. The present work is a follow-up on [30], which considers
the same example and uses suboptimal deadlock avoidance heuristics to generate
schedules that are not guaranteed to be optimal.

Outline. First, Section informally presents the case study. Section
then presents the SMV model and shows two ways of obtaining an optimal DAP
using SMV. In Section a UPPAAL model of the wafer scanner is described,
and infinite schedules which optimize throughput are computed. Also, we present
a stuttering bisimulation that relates the UPPAAL model with the SMV model of
Section[5.3] Finally, Section[5.5]draws some conclusions and gives directions for
future work.
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5.2 The EUV Machine

Lithographic machines, called wafer scanners, are used within the semiconductor
industry to project chip designs on slices of silicon which are called wafers. A
key performance characteristic of wafer scanners is throughput, i.e., the number of
wafers that can be processed per time unit. For a typical recipeE] it is desirable that
the exposure operation (which uses the lens which is the most expensive part of
the machine) is critical in optimal schedules. In order to maximize throughput, a
controller should have a strategy that optimizes throughput in the absence of errors.
Furthermore, a controller should be deadlock-free, since deadlock resolution is
expensive. ASML aims at design-time verification of (key parts of) the control
software for the wafer scanners that it develops, in order to prevent occurrence of
errors while customers are using the machines.

Figure schematically depicts a possible design of an Extreme Ultra Violet
machine (EUV machine), which is a particular type of wafer scanner that is cur-
rently being developed by ASML. The inside of an EUV machine is kept vacuum
as EUV light is absorbed by air. The wafer flow is presented in Figure [5.1] First,

Locks Internal robots Chucks

measure €xpose

Figure 5.1: Wafer paths within the EUV machine.

the external track robot (which is not shown) puts a wafer in one of the four locks.
This lock is depressurized, and then the wafer is picked up by one of the two in-
ternal robots. Each internal robot has two arms that can each hold a wafer and
that are opposite to each other. The internal robot turns and puts the wafer on the
closest chuck, which is in the so-called “measure position”. The wafer is mea-
sured and a chuck swap is performed. The chuck with the measured wafer now is
in the “expose position” and the wafer is exposed. After another chuck swap, the

!The timing parameters of the production depend on the chips to be produced.
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exposed wafer is picked up by one of the internal robots which turns and puts it in
a depressurized lock. After the lock has been pressurized, the track robot removes
the exposed wafer from the machine. Each wafer thus has a fixed recipe for its
route: lock - internal robot - chuck - internal robot - lock. There is a choice which
locks, internal robots and chucks are used by a wafer. An obvious question that
arises is why we not let the unexposed wafers enter through the upper two locks
and let the exposed wafers exit through the lower two locks. In that case there
are no crossing material paths which means that we have deadlock prevention by
construction. The answer is twofold. First, if locks are unidirectional then fill-
ing the machine from the initial, empty, state takes unnecessarily long. Second, if
locks are unidirectional then the depressurization operation might become critical
instead of the exposure, since depressurization takes more than twice as long as
exposure in a typical wafer recipe. As noted above, this is undesirable. In Section
[5.4] we will prove that indeed the exposure subsystem is critical in the design of
Figure and that restricting the wafer flow to prevent deadlock a priori lowers
both the throughput and the utilization of the exposure subsystem.

A typical example of a deadlock situation in the EUV machine would be a
state in which all four robot arms hold unprocessed wafers, and both chucks hold
processed wafers. A controller for the EUV machine should ensure that no such
deadlock situation can ever be reached. The problem of finding such a control
strategy is commonly referred to as the deadlock avoidance problem. The EUV
machine is a disjunctive RAS according to the taxonomy of [[77]]. Instead of the
traditional Petri net or graph based approaches to solving the deadlock avoidance
problem, we will show in the next section how it can be tackled using the SMV
model checker.

5.3 Least Restrictive Deadlock Avoidance Policy

In this section, after a (very) brief introduction into SMV, we present our SMV
model of the EUV machine, discuss how one can formalize the notion of deadlock
as a temporal logic formula, and present the deadlock avoidance policy that we
synthesized using SMV. The reader is referred to [37] and [83] for an extensive
introduction into model checking and SMV.

5.3.1 SMV

In the approach supported by the SMV model checker, a system is modeled as a
finite rransition system, i.e. as a tuple (S, s;,, —) Where S is a finite set of states,
S 1S the initial state, and — C S x S is the transition relation. We write s —
s’ instead of (s,s’) €—. A state is defined as a valuation of a number of stare
variables. The value of state variable v in state s is denoted by s(v). Furthermore,
s[v := | denotes the state that is obtained by updating the value of v in state s to c.
A path of a transition system is a sequence Sgs1S2 - - - such that for all 7, s; — s;41.
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A state is reachable if it occurs on some path that starts in s;;.

In SMv, specifications are described in Computation Tree Logic (CTL) which is
a branching time temporal logic. Below some examples of CTL formulas are given,
which should be sufficient to understand the present paper. The basic building
blocks of CTL are atomic formula, which denote functions from the set of states to
{true, false}. For instance, if v is a state variable, then v = 2 is an atomic formula,
which denotes the function from states to {true, false} that maps a state s to true iff
s(v) = 2. In this case, we say state s satisfies formulav = 2, notation s = (v = 2).
Every atomic formula is a state formula. State formulas can be combined with
Boolean connectives and path operators. We show three path operators that are
relevant for this paper. First, if ¢ is a state formula, then AG(¢) also is a state
formula. A state s satisfies AG(¢), denoted by s = AG(¢), if for all paths
508182 ... with s = s¢, and for all ¢ > 0, s; = ¢. Second, if ¢ is a state formula,
then EF(¢) is also a state formula. We define s = EF(¢) if there exists a path
508182 ... such that s = sg and s; |= ¢, for some ¢ > 0. Finally, if ¢ is a state
formula, then EG(¢) also is a state formula. We define s = EG(¢) if there exists
a path sps1sz ... with s = sg such that for all i > 0, s; = ¢.

5.3.2 An SMYV Model of the EUV Machine

The EUV machine can be modeled conveniently and concisely in SMV. In fact, the
full code is displayed in Figure[5.2]

For each of the 10 positions in the machine our model contains a state variable:
an array 1 of size 4 for the locks, a 2-dimensional array rb of size 2 x 2 for the
robots, and an array c of size 2 for the chucks. These state variables can either
take value e (empty), which means that the position is empty, value r (red), which
means that the position is occupied by an unexposed wafer, or g (green), which
means that the position is occupied by an exposed wafer. Initially, the machine is
completely empty and all state variables have value e.

To model the system dynamics, i.e., the movement and exposure of wafers,
we introduce 22 asynchronous processes, which are executed in an interleaving
fashion:

e For each of the 4 locks i we have process t1[i|, which may either put an
unexposed wafer in lock i if it is empty, or move an exposed wafer from
the lock to the track robot. In the definition of process t1[i] we use an
auxiliary function entry_exit that describes the state change that results
from running this process.

e For each of the 16 pairs of positions i, j such that i is on the left of j and
a wafer can move directly from i to j (or back), we introduce a process that
takes care of moving unexposed wafers from i to j, and exposed wafers
from j back to i. In the definition of these processes we use a function
move(1lft,rgt) that describes the state change that results from moving a
wafer from 1ft to rgt or vice versa.
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module entry_exit (p)
{

if (p=e) next (p):=r;

else if (p=g) next (p) :=e;
}

module move (lft,rgt)
{
if (1ft=r && rgt=e) {
next (1ft) :=e;
next (rgt) :=r;
}
else if (lft=e && rgt = g){
next (1ft) :=g;
next (rgt) :=e;
}
}

module expose (p)
{

if (p=r) next (p):=g;
}

module main ()
{
-—- state variables
1 : array 0..3 of {e,r,g};
rb: array 0..1 of array 0..1 of {e,r,g};

c : array 0..1 of {e,r,g};
—- initialization
for (i1=0; i<4; i=i+1) init(1[i]) :=e;
for (i=0; i<2; i=i+1)
for (§=0; 3j<2; Jj=j+1) init(rb[i][]j]):=e;
for (i=0; i<2; i=i+1) init(c[i]) :=e;

—-— system dynamics
for (i=0; i<4; i=i+1)
tl[i]: process entry_exit (1[i]);

for (i=0; i<4; i=i+1)
for (J=0; j<2; j=3j+1)
1r[i1([3]:
process move (1[1i],rb[(i<2?20:1)]1[3]1);

for (i=0; 1i<2; i=i+1)
for (3=0; 3j<2; J=j+1)
for (k=0; k<2; k=k+1)
rc[i] [J][k]:
process move (rb[i][j],c[k]);

for (i=0; 1i<2; i=i+1)

exp[i]: process expose(c[i]);
Figure 5.2: SMV model of EUV machine.
e For each of the 2 chucks i we introduce a process exp[i| that models expo-

sure of the wafer. An auxiliary function expose describes the state change
that results from exposing the wafer at position p: the value of the corre-
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sponding state variable changes color from r (red) to g (green).

In the SMV model we abstract from the turning of internal robots. So a wafer can
be picked up by both arms of an internal robot (possibly, the robot first has to turn).
Similarly, the SMV model abstracts from chuck swaps and the measure operation.
In Section we present a more detailed model of the EUV machine in which we
do not abstract from these aspects.

As it turns out, our SMV model has 57116 reachable states, which is close to
the total number of states which equals 3'° = 59049. An example of an unreach-
able state is one in which the machine is completely filled with exposed wafers.
Transition systems of this size can very easily be handled by SMV and the com-
puter hardware that is available today, so we expect that our approach can also be
applied to considerably larger designs.

5.3.3 Defining Deadlock and Safety in SMV

Standard textbooks on operating systems, e.g. [97], state four conditions for dead-
lock in systems that consist of processes that compete for resources. The first three
conditions concern the model itself and are necessary, and the fourth condition
concerns the states of the model and is necessary and sufficient when the first three
are met: (i) mutual exclusion: only one process may use a resource at a time, (ii)
hold and wait: a process may hold allocated resources while awaiting assignment
of others, (iii) no preemption: no resource can be forcibly removed from a process
that is holding it, and (iv) circular wait: a closed chain of processes exists such that
each process holds at least one resource needed by the next resource in the chain.

In the EUV machine, the wafers are modeled as the processes and they compete
for the positions in the machine that constitute the resources. The model of the
EUV machine satisfies the first three conditions for deadlock. The fourth condition,
which thus is necessary and sufficient for deadlock, can be formalized with help
from a needs function, that specifies for each wafer the set of positions it may
move to. Let P denote the set of positions in the EUV machine. For p € P and
¢ € {r,g}, we define needs(p,c) C P to be the set of positions (different from
p) to which a wafer with color ¢ at position p may move next. In particular, if p
is a chuck, then needs(p,r) = needs(p,g) = R, where R is the set of positions
of the internal robots. If s is a state and p a position then we use needs®(p) as an
abbreviation for needs(p, s(p)). The circular wait property can now be defined as
follows.

Definition 5.1 (Circular wait) A state s has a circular wait in @ C P iff s(q) #
e A # needs®(q) C Q # 0 forall q € Q.

It is not possible to directly formulate the circular wait property in terms of
CTL, so some encoding is required. The basic idea is that the machine has a cir-
cular wait in a subset () of positions iff the wafers in () will never be able to move
again. Observe that if in our model a transition s — s’ moves a wafer from place p
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to place p/, then p is empty in s’. Thus, the property that some wafer cannot move
anymore can be formalized in CTL as follows.

Definition 5.2 (Jam) A position p is jammed in state s iff s = AG(p # e). A
state s is jammed iff some position is jammed in s.

Proposition [5.5] below asserts the equivalence of the circular wait and jammed
properties, thereby providing us with a way to express deadlocks in CTL. In order
to prove the proposition, we need two technical lemmas stating that (a) circular
waits are preserved by the transition relation, (b) if a position p is jammed then
also any position to which the wafer at p may move next is jammed. We prove
Proposition [5.5]and the technical lemmas only for our model of the EUV machine,
but from the proofs it should be clear that these results can be generalized to a
whole class of resource allocation problems.

Lemma 5.3 Suppose that state s has circular wait in Q and s — s'. Then state s'
has circular wait in Q).

PROOF. We consider three cases, corresponding to different types of transitions:

e [f a process entry_exit takes a step, then this does not involve any position
in Q: entry of a new wafer on positions in () is not possible since all these
positions are filled; also exit of a wafer in @ is not possible since for all
positions in ¢ € ) we have needs®(q) # (). Since none of the variables in
Q is modified, the fact that s has circular wait in ) implies that also state s’
has circular wait in ().

e Also if a process move takes a step then this does not involve any position
in Q: entry of a new wafer on positions in () is not possible since all these
positions are filled; also exit of a wafer in () is not possible since for all
positions in ¢ € @) we have needs®(q) C ). Hence the circular wait property
is preserved by the transition.

e If a process expose takes a step, then this does not effect emptiness of
positions, nor the value of the needs set. Hence the circular wait property is
preserved by the transition, and also s has circular wait in Q.

Lemma 5.4 Suppose position p is jammed in state s and p' € needs®(p). Then
position p' is jammed in s.

PROOF. By contradiction. Suppose p’ is not jammed. Then there exists a path
on which eventually p’ is empty. If in this path, directly after p’ becomes empty,
we schedule a transition that empties p (this is possible since p’ € needs®(p)), we
obtain a path in which eventually p is empty. But we assumed no such path exists.
Contradiction. |



102 CHAPTER 5. MODEL CHECKER AIDED DESIGN

Proposition 5.5 A state has a circular wait in some Q) iff it is jammed.

PROOF.

=- Assume that state s has a circular wait in (). Pick an element ¢ € @ (this
exists since s has circular wait in )). By Lemma any state s’ reachable
from s in zero or more steps has circular wait in Q. Hence, s’ = (¢ # e). It
follows that s = AG(q # e). Therefore, state s is jammed.

< Assume that state s is jammed. Then there exists a position g such that ¢
is jammed in s. Define ¢ to be the least fixed-point uQ({q} U needs*(Q)).
Then, by construction, needs®(q) € @Q # (. By Lemma using an in-
ductive argument, it follows that all positions in () are jammed in s. This
implies in particular that, for all ¢ € Q, s(q) # e and needs®(q) # (0 (the
latter inequality follows because if needs®(q) = () this implies that ¢ is a lock
that is filled with an exposed wafer, so ¢ can be emptied in a single transition,
which contradicts the assumption that ¢ is jammed). It now follows that state
s has a circular wait in Q).

In the remainder of this paper, we will say that a state is deadlocked if it has
circular wait, i.e., if it is jammed. The question that we need to answer is whether
and how we can prevent the system of entering a deadlocked state. In Dijkstra’s
paper on the banker’s algorithm [42], the first published deadlock avoidance algo-
rithm, a state is defined to be safe if “all processes can be run to completion”. In
our case, the wafers are the processes and ““a wafer is run to completion” if it exits
the machine. Thus, Dijkstra’s definition can be translated to CTL as follows.

Definition 5.6 (Safe states) A state s is safe iff s = EF (/\pg plp= e)).

Note that in general safe and not being deadlocked are different things. If a state
s is not deadlocked then s |= A ,c p EF(p = e), i.e., each individual position can
be emptied, but it need not be the case that all positions can be emptied simul-
taneously. If a state is deadlocked it is unsafe, but if it is unsafe it need not be
deadlocked. However, in many cases and (according to SMV) in particular for our
model of the EUV machine, the following property does hold for the initial stateﬂ

AG(safe <= (EG —deadlock)). (5.1)

?In fact, in the EUV machine a state is safe if and only if it has no deadlock. Thus, the RAS struc-
ture induced by the operation of the wafer scanner facilitates the application of the results presented
in [76194]. It is, however, easy to come up with variations of the machine with states that are not
safe and not deadlocked, for example a design in which the internal robots only have one arm. In
such cases, in order to make formula hold, we need to require weak fairness for all processes
in the SMV model to exclude runs in which no progress is made due to infinite stuttering of some
components.
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This formula suggests a simple least restrictive DAP: just keep the system in a safe
state. This policy can be realized for the EUV machine. Every non-initial safe state
has at least one safe successor (different from itself), otherwise it would not be not
possible to return to the initial state. In addition, we verified using SMV that all
successors of the initial state are again safe.

5.3.4 A Least Restrictive DAP

In order to actually build a controller that always keeps the system in a safe state,
it would clearly be very helpful to have a simple, yet exact characterization of the
set of safe states. We see two ways to obtain such a characterization.

1. When checking whether the initial state is safe, SMV computes a binary
decision diagram (BDD, see [33]) which provides a compact representation
of the set of safe states.

2. The set of safe states can be manually characterized by a predicate expression
P that is constructed by the following iterative procedure:

P := true
while (s, £ AG(safe < P))
P:=PA(—C)

where C' is the characterization of the last state of the counter example that
is generated by SMV.

The first approach enables a least restrictive DAP with linear time complexity,
since checking whether a state is included in a BDD takes O(n) operations, where
n is the number of booleans from which the BDD is composed (20 in case of the
EUV machine). The size of the BDD, however, can in the worst case be expo-
nential in the number of booleans. A second drawback is that it can be difficult
to derive individual unsafe and/or deadlock situations from a BDD, which may be
required during the design phase of the system. The second approach can quickly
become practically infeasible since all unsafe states are explicitly enumerated. If it
is carried out manually, however, then it might be possible to abstract from irrele-
vant state information and to visualize the various unsafe situations in the system.
Of course, this requires some effort and creativity from the analyst. The second ap-
proach has been used to characterize the safe states of the EUV machine. With five
iterations, we found four unsafe situations, depicted in Figure which happen
to characterize all deadlocks.

The predicate P that exactly characterizes the set of safe states is the negation
of the situations shown in Figure and which are described by predicates d1i,
d2, d3 and d4 in Figure[5.4]

Note that SMV can also be used to obtain a simple under-approximation of the
set of safe states (when, e.g., the BDD is too large to use and the iterative process
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Figure 5.3: The four unsafe scenarios (modulo symmetry) in the EUV machine.
A right-pointing arrow represents an unexposed wafer, a left-pointing arrow rep-
resents an exposed wafer, and a black square represents an unexposed or exposed
wafer.

is too time consuming). If C is a candidate for a simple under-approximation,
then this can be verified with the CTL property AG(C' = safe). Again, counter-
examples can be used to correct C' while retaining low complexity. Note, however,
that it now becomes is necessary to ensure that the initial state is reachable from
any state in C' (this is true by definition for the set of all safe states).

5.4 Throughput Analysis

A first objective for a controller of the EUV machine is to avoid deadlocks. In the
previous section, using our SMV model, we synthesized a least restrictive control
policy that achieves this. A second key objective for a controller of the machine
of course is to maximize throughput. Our SMV model is not sufficiently detailed
to address this issue since, for instance, relevant information about the delays in
the locks and the speed of the robots has not been included. Also, the SMV model



5.4. THROUGHPUT ANALYSIS 105

#define empty (1[0]=e & 1l[l]=e & 1l[2]=e & 1[3]=e &
rb[0][0]=e & rb[0][1l]=e &
rb[1][0]=e & rb[l][1l]=e &
c[0]=e & cl[l]=e)

#define safe (EF (empty))

#define dla (1[0]l=r & 1l[l]=r &

rb[0][0]=g & rb[0][1]=9)

#define dlb (1[2]=r & 1[3]=r &

rb[1][0]=g & rb[1l][1]=9)

#define dl (dla | dlb)

#define d2 ("c[0]=e & “cl[l]=e & rb[0][0]l=r &

rb[0][1]=r & rb[1][0]=r & rb[l][1l]l=r)

#define d3a ("c[0]=e & "c[l]l=e & rb[0][0]l=r &

rb[0] [1]=r & ((rb[1][0]=r & rb[1l][1l]=g) |

(rb[1]1[0]l=g & rb[l][1l]=r)) & 1[2]=r & 1[3]=r)
#define d3b ("c[0]=e & “c[l]l=e & rb[l][0]l=r &

rb[1][1]=r & ((rb[0][0]=r & rb[O0][1]=g) |

(rb[0][0]l=g & rb[0][1l]=r)) & 1[0]=r & 1[1l]=r)
#define d3 (d3a | d3b)
#define d4 ("c[0]l=e & “c[l]l=e & 1[0]=r &

1[1]l=r & 1[2]=r & 1[3]=r &

((rb[0] [0]=r & rb[O0][1]=qg) |

(rb[0] [0]l=g & rb[0][1l]=r)) &

((rb[1]1[0]=r & rb[1l][1l]l=g) |

(rb[1][0]=g & rb[l][1l]=r)))

safe_iff _p0O: SPEC AG(safe <-> 1);

safe_iff pl: SPEC AG(safe <-> 7 (dl));

safe_iff p2: SPEC AG(safe <-> 7(dl1]d2));

safe_iff p3: SPEC AG(safe <-> 7(dl1|d2|d3));

safe_iff_p4d: SPEC AG(safe <-> 7 (dl|d2|d3|d4));

Figure 5.4: SMV characterization of the set of safe states.

abstracts from the delays due to turning of the internal robots, measuring of wafers,
and swapping of the chucks. Therefore, in this section, we present a more refined
timed automata model ([[1, 18]]), which contains sufficient information to address the
throughput issue.

In order to define and analyze our model, we used the UPPAAL model check-
ing tool. UPPAAL supports modeling of systems in terms of networks of timed
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automata extended with blocking synchronization and bounded integer variables.
Similarly to SMV, the semantics of a UPPAAL model is defined by a transition
system. In addition to the discrete part, the states also contain a real-valued clock
valuation. For these models, the UPPAAL model checker can decide a subset of
Timed Computation Tree Logic (TCTL, see [6]). For a detailed account of UPp-
PAAL we refer to [16] and to http://www.uppaal .com.

After presenting the UPPAAL model of the EUV machine in Section[5.4.1] we
discuss the relationship between the UPPAAL and SMV models in Section [5.4.2]
Then, in Section[5.4.3] we use UPPAAL to derive a schedule for the EUV machine
that optimizes throughput.

5.4.1 UPPAAL Model

The UPPAAL model of the EUV machine contains the same state variables as the
SMV model for the positions in the machine: arrays 1, rb and ¢, which may take the
same values e, r and g to indicate that a position is respectively empty, filled with
an unexposed wafer, or with an exposed wafer. In addition, the UPPAAL model has
a number of Boolean state variables to ensure “physical integrity”:

e For each lock id there is a Boolean 1bt[id] which is frue iff either pressure
in the lock is not atmospheric or in case a trackrobot is busy loading or
unloading a wafer.

e Similarly, for each lock id there is a Boolean 1b[id] which is true iff ei-
ther the lock is not vacuum or in case an internal robot is busy loading or
unloading a wafer.

e For each chuck id there is a Boolean cb[id]| which is frue iff either an inter-
nal robot is accessing chuck c[id] or an internal robot may not access chuck
c[id] because it is not in location measure (i.e., it is busy with something).

The model consists of 12 automata, of which 11 model physical components
of the machine: the trackrobot, the four locks, the four robotarms (two for each of
the robots), and the two chucks. These automata move wafers around with certain
delays and according to the material paths as specified in Section[5.2] An additional
automaton, the observer, is used for throughput optimization.

Within the model a number of timing parameters are used. Figure [5.5]lists the
values for these parameters that were provided by the designers of the machine.

Below, the individual timed automaton templates of the model are explained.
Each template has a local clock z.

Figure [5.6] shows the trackrobot process. Initially, the trackrobot is ready to
load a wafer to a lock. From its initial location, the trackrobot may move instan-
taneously to a location where it is ready to unload a wafer from a lock, but the
reverse transition takes time 7R/. When the trackrobot is ready to load, it may
actually start loading a wafer to one of the four locks, provided the lock is empty
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const H 1480; const S 260;
const LOAD 25; const UNLOAD 25;
const TR1 50; const TR2 50;
const DEPRES 670; const PRES 120;
const R2L_T 23; const L2R_T 23;
const TURN 10; const R2C_T 40;
const C2R_T 54; const MEAS 140;
const EXPO 250; const SWAP 10;

Figure 5.5: Timing parameters in the UPPAAL model.

and has atmospheric pressure. Similarly, when the trackrobot is ready to unload,
it may start to unload a wafer from one of the locks, provided the lock contains
a processed wafer and has atmospheric pressure (which is governed by the 1bt
variables). Upon finishing an unload operation the trackrobot synchronizes over
the channel unload with the observer (which is explained below), and after TR2
time units returns to its initial state.

Figure shows the UPPAAL template for a lock. It has one parameter id,
that provides the identity of this lock. Initially, a lock has atmospheric pressure. A
lock may start depressurizing if the trackrobot is not busy with it. Similarly, if a
lock is vacuum, it may start pressurizing if the internal robot is not busy with it.

There are two internal robots in the system, each equipped with two arms.
Initially, one arm points at the chucks and the other arm points at the locks. An
internal robot may turn, which interchanges the positions of the arms. Figures [5.§]
shows the template for one type of robotarm, namely for the arms that initially
point at the locks.

This template has four parameters: a constant id that identifies the internal
robot to which the arm belongs, two constants [0 and // that identify the locks to
which the robotarm has access, and a channel furn. When a robotarm is at the
locks, then it can get a wafer from a lock (LO2R and LI2R), or it can put a wafer
in a lock (R2L0 and R2L1). Of course, it can only perform these actions if the lock
is vacuum, and if the wafer flow is as specified in Section Similarly, when a
robotarm is at the chucks then it can load/unload a wafer to/from the chuck that is
at the measure location. The cb variables are used to ensure that only one robotarm
has access to the chuck at a time and that the chuck cannot execute a transition
while the robotarm is loading/unloading a wafer. The template for the type of
robotarm that initially points to the chucks is almost similar. It has another initial
location, namely at_chuck, and it uses the “receiving” part of the channel (turn?)
for proper synchronous turning of the two arms.

Figure shows the UPPAAL processes for the chuck that initially is in the
“measure” position. Like the robotarms, the chucks can simultaneously swap by
synchronization over the channel swap. The cb variables are used by the chucks
and the robotarms to prevent faulty behavior: (i) a robot can only access a chuck if
it is in the measure position and not measuring (thus, the chuck must be in location
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x<=LOAD
I[0]==E && !Ibt[0] M x==LOAD
x:=0, Iot[0]:=true, ~ Iot[0]:=false
I[0]:=R
x<=LOAD

I[1]==E && lbt[1]  _ x==LOAD
x:=0, Iot[1]:=true, -~/ Ibt[1]:=false
1]:=R

==E && !Ibt[2
x:=0, Ibt[2]:=true, Ibt[2]:=false
I2]:=R

I[3]==E && !Ibt[3
x:=0, Ibt[3]:=true, Ibt[3]:=false
I13]:=R

@ ready_to_load

x==TR2

x==UNLOAD x<=UNLOAD

unload! && llb
x<=TR2 Ibt[0]:=false, x:=0 Ibt[0]:=true,

I[0]:=E, x:=0

x==UNLOAD x<=UNLOAD [[1]==G
unload! 28& !
Ibt[1]:=false, x:=0

(o T’ D
Ibt[1]:=true,
I[1]:=E, x:=0

x==UNLOAD x<=UNLOAD [[2]==G

unload! |

Ibt[2]:=false, x:=0 Ibt[2]:=true,
I[2]:=E, x:=0

x==UNLOAD x<=UNLOAD [[3]==G

unload! ( )g && !Ibt[3 _
Ibt[3]:=false, x:=0 Ibt[3]:=true,

I[3]:=E, x:=0

Figure 5.6: Process for the trackrobot.

measure), and (ii) when a robot is accessing a chuck, then the chuck may not
perform any transitions. Each chuck has a local Boolean variable m which is true
iff there is a measured wafer on the chuck; only a measured wafer can be exposed.
The process for the chuck that initially is in the expose position is almost identical.
It has expose as initial location, and it uses the “receiving” part of the channel
(swap?) for proper synchronous swapping of the chucks.

Finally, Figure [5.10| shows the observer process which, as we will explain in
more detail in Section is used to ensure progress in the model. This pro-
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depressurize
atm x<=DEPRES

Ibt[id]:=true,
x:=0

x==PRES
Ibt[id]:=false

Iblid]:=false

lbfid]
. Ibid]:=true,
pressurize x:=0 vacuum
x<=PRES

Figure 5.7: Template for a lock.

LO2R
x<=L2R_T

R2C0
x<=R2C_T

R2C1
x<=R2C_T
Io[I1]:=false

x==L2R_T

[10]==R && rb[id][0]==R &&
rb[id][0]== E && c[0]==E &&
1b[10] ) Icb[0

I[Id]::E, rb[id][0]:=R, rb[ld]{O]::E, c[0]:=R,
Ib[I0]:=true, x:=0 cb[0]:=true, x:=0
turning

x==R2C_T
cb[1]:=false

x==L2R_’
b[l0]:=false

x==R2C_T
cb[0]:=false

thlid][0]== E && tblid][0]==R &&

7)== &8 i) ' ’cc[; %T=E 8&

s Sl um -2 410
E , X u |ocks turning2 cb[1]:=true, x:=0

1b[id]0]==G && ¢ x==TURN thlid][0}==E &&

[11]==E && !Ib[i1] tum! cl1]==G &&

rb[id0]:=E, [11]:=G,

!cb_[1{
Ib[I1]:=true, x:=0 rb[id][0]:=G, c[1]:=E,

cb[1]:=true, x:=0

blid][0]==G && rblid][0]==E &&

10]==E && cl0]==G && ZE[T)(];;ifF;TsTe
!IbHIO]][ ] _ !cb,[O{ _ _
2L T roli0):<E, [10]:=G rolillol:=G, ofol:<E, x=<GCoR T
Io[11]:=false Ib[I0]:=true, x:=0 cb[0]:=true, x:=0 cb[1]:=false
R2L1 C12R
x<=R2L_T x<=C2R_T
R2LO CO2R
x<=R2L_T x<=C2R_T
Figure 5.8: Template for a robotarm O.
~ Icb[0] W\ x>=SWAP
So0ltaise swapl owapping "%
measuring - cb[0]:=true, x:=0 X —g\'I)VA% x:=0 exposing
x<=MEAS <= x<=EXPO

x>=SWAP swapping2
swap! x<=SWAP swap! =G,
m:=true cb[0]:=false (M x:=0 m:=false
N

Figure 5.9: Process for chuck 0.

cess measures the time until the first wafer exits the system (this is signaled by
the trackrobot over the channel unload) in location L0, and the time between two
consecutive unload events in location L/ using its local clock x.
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LO L1

@ unload? ( ); unload?
x:=0 x:=0
Figure 5.10: Process for the observer.

5.4.2 Bisimulation between SMV and UPPAAL models

Clearly, there is a relationship between the SMV model and the UPPAAL model.
The SMV model is an abstraction from the UPPAAL model, which has the property
that every transition in the UPPAAL model can be simulated in the SMV model, and
vice versa. Formally, the relationship between the two models can be expressed as
a stuttering bisimulation relation in the sense of [31]]. Stuttering bisimulations are
defined in terms of Kripke structures, an extension of transition systems in which
to each state a set of atomic propositions is associated that hold in that state.

Definition 5.7 (Kripke Structures) Let AP be a set of atomic proposition sym-
bols. A Kripke structure is a structure (S, Sy, —,1), where (S, Syu, —) s a tran-
sition system and function | : S — 24F associates to each state a set of atomic
proposition symbols.

In this paper, we let AP be the set of equations of the form p = v, where p
is a position in the EUV machine and v € {e,r,g}. For the transition systems
induced by the SMV and UPPAAL models, the labeling is obvious: we label a state
s with p = v iff this equation holds in s. For the SMV model the labeling function
is injective: different states have different labels. For the UPPAAL model this is
clearly not the case.

A stuttering bisimulation relates the states from two Kripke structures. Initial
states are related, and related states are labeled with the same proposition symbols.
If two states are related and from one state a transition is possible, then it should
be possible to simulate this transition from the related state, after first doing zero
or more stuttering transitions, i.e., transitions that do not change the labeling.

Definition 5.8 (Stuttering Bisimulation) A stuttering bisimulation between two
Kripke structures (S, $yu, —,1) and (S', s}, —',1) is a relation R C S x S’ s.1.

Y “init?

1. (31m'173/ ) €R,

2. If (r,s) € Rthenl(r) =l(s),

3. if(r,s) € Randr — r' then there exist, for some n > 0, sq, $1,. . . , Sy, such
that sy = s and, for all i < n, s; —' s;41, (r,8;) € Rand (1, s,,) € R.

4. if (r,s) € Rand s — §' then there exist, for somen > 0, 1,71, . .., 7y such
that ro = r and, for all i < n, r; — ri41, (r5,8) € Rand (ry,,s') € R.
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Proposition 5.9 Consider the projection function w from states of the Kripke struc-
ture induced by the UPPAAL model to states of the Kripke structure induced by the
SMV model. Function m only preserves the values of the arrays 1, rb and c. Let R
be the relation consisting of pairs (s, n(s)), for s a reachable state from the UP-
PAAL model. Then R is a stuttering bisimulation between the UPPAAL and SMV
Kripke structures.

PROOF. Function m maps the initial state of the UPPAAL model, in which the
machine is completely empty, to the initial state of the SMV model.

By definition 7, and hence R, preserves labeling of states.

Transfer property (3) follows by inspection of all the transitions in the UPPAAL
model: each transition either does not affect the labeling, in which case it can be
simulated by a stuttering transition in the SMV model, or it does affect the labeling
but then a process in the SMV model is enabled that results in the same change of
labels.

Proving transfer property (4) is somewhat more involved. We need a number of
auxiliary invariants on the UPPAAL model. These include the integrity constraints
mentioned at the beginning of Section [5.4.1| that restrict the values of the Booleans
1bt[id], 1b[id] and cb[id]. Also, we need some obvious invariants that relate the
locations of connected robotarms, and the locations of the two chucks. The full
set of invariants is listed in the file EUV-invariants.q which is available at
http://www.cs.ru.nl/ita/publications/papers/martijnh/.
The state space of the UPPAAL model is too big to establish these invariants di-
rectly. However, we were able to prove them automatically for an abstraction of
the model in which we remove all clock variables, the arrays 1, rb and c, as well
as all references to these variables in transitions and locations. This is a valid ab-
straction in the sense that each invariant of the abstract model also holds for the
original full UPPAAL model.

A key observation in the proof of transfer property (4) is that from any reach-
able state of the UPPAAL mode we can drive the system back to its initial state
— except for the values of arrays 1, rb and c, the values of the local clocks x,
and the value of the m variables — by doing stuttering steps only. More specifi-
cally, let p be the mapping from states of the SMV model to states of the UPPAAL
model such that, for any r, in state p(r) the values of arrays 1, rb and c are equal
to the values in 7, and all locations and Boolean variables have their initial value,
except the two m variables, which are true iff the corresponding chuck contains an
unprocessed wafer. Then we claim that, for any reachable state s of the UPPAAL
model with 7(s) = r, there exists a path with only stuttering steps from s to a state
which, up to the values of local clocks, is equal to p(r) To see why this claim
holds, first observe that each process in a non-quiescent location (a location with a
nontrivial invariant) may evolve to a quiescent state by some stuttering transitions
with guards that only refer to the local clock x, and (possibly) with synchronization

3 Technically, the values of the clocks are irrelevant (“inactive”) in the initial locations, and UP-
PAAL also abstracts from their value.
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output labels (!) for which a corresponding input (?) is always enabled. After all
processes have reached a quiescent state we can, one by one, drive each process
back to its initial location:

1. The trackrobot only has two quiescent locations: ready to load and ready to
unload. Via two successive internal transitions, we can drive the trackrobot
from ready to unload to ready to load in time TR1.

2. Each lock has two quiescent locations corresponding to atmospheric pres-
sure and vacuum. If a lock id is vacuum then, since the robotarms are in a
quiescent state, due to the invariants, !1b[id]. Hence we can drive the lock
to its initial location (atmospheric pressure) via two successive transitions in
time PRES.

3. In order to bring the robotarms to their initial location, we may need to turn
them around. The invariants for the robotarms imply that we can bring all
arms in their initial location simultaneously.

4. For the chucks, we also have to ensure that m is true in case a chuck con-
tains an unprocessed wafer. This can be achieved by driving the automaton
through the measuring location, which may require swapping of the chucks.
After the m variables have been set to the appropriate value, me may need
to swap the chucks again. The invariants for the chucks imply that we can
bring both chucks to their initial location.

If all processes are in their initial location, then the invariants imply that also the
Boolean arrays 1b, 1bt and cb have their initial values. From this the claim fol-
lows.

Next, we claim for any state r from the SMV model that if s enables some
transition, this can be simulated from p(r), possibly after some stuttering steps.
This follows from a routine case distinction. For instance, a transition moving a
wafer from a lock O to an internal robot can be simulated by first depressurizing
lock 0O, possibly turning the robotarm, and then moving the wafer to the robot via
the transition to location LO2R. We leave it to the reader to check the details of all
the cases. |

The significance of the above result stems from the fact that validity of CTL
formulas without nexttime operator (i.e. all the formulas used in this paper) is pre-
served by stuttering bisimulation equivalence (see [31]). Thus, all the results on
deadlock avoidance established using SMV in Section [5.3] carry over to the Up-
PAAL model. It is not possible to obtain these results directly using the UPPAAL
tool since (a) UPPAAL does not support full CTL, and (b) the state space of the
UPPAAL model is so big that it cannot be fully explored.
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5.4.3 Finding an Optimal Schedule

As mentioned above, the process of Figure [5.10] observes unload events. It starts
in location L0 and upon the first unload event it resets its local clock x and enters
location L/. In location L/ the clock is reset whenever an unload event takes place.
The observer is used to find an infinite schedule that takes at most H time units
until the first unload event, and that has at most S time units between two unload
events. Such a schedule is specified by the following TCTL property that can be
checked by UPPAAL.

(observer.LO — observerx < H)
EG A (5.2)
(observer.L1 — observerx < S)

If this property is satisfied, then UPPAAL can return an example execution that
consists of a path followed by a cycle. Such an execution thus gives an infinite
control schedule for the wafer scanner with a stationary throughput of at least one
wafer per .S time units. Unfortunately, the size of the reachable state space prevents
UPPAAL from finding such an execution directly. We therefore added heuristics to
the model to prune the state space:

1. The DAP derived in the previous section has been used to avoid unsafe ma-
terial configurations of the machine.

2. Some transitions are useless (or suboptimal) in certain states, e.g., an internal
robot can always turn, but this is useless if it does not hold wafers. The state
space has been reduced by adding guards that prevent such useless behavior.

3. The optimal behavior of the locks in the initial phase (the filling of the ma-
chine) differs from their optimal behavior in the stationary phase. Therefore
a heuristic has been added to enforce this difference: a lock can pressurize
when it contains either an exposed wafer, or it is empty and the machine is
not yet filled with enough wafers to be in the stationary state.

4. Some transitions have been made urgent (greedy): they must be taken as
soon as they are enabled. For instance, if the DAP allows loading a wafer to
a lock, then this must be done immediately.

Note that using urgent transitions without the DAP may be an unwise idea,
since this can result in many deadlocks with the effect that an execution satisfying
Property [5.2] does not exist anymore in the model. Also note that at least the last
three heuristics may remove good schedules.

A lower bound on the time until the first unload event, minj, can easily be
derived from the model. It is also easy to see that the minimal separation time
between exposed wafers that appear at the chuck that is in the measure position
(and can therefore be picked up by an internal robot) equals

ming = EXPO + SWAP,
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Figure 5.11: A schedule that optimizes the stationary throughput of the EUV ma-
chine. The cyclic part of the schedule consists of the interval between points A and
B. The operation of the chucks (the EXPO and SWAP operations at CO and C1) is
critical in the cyclic part.

where the former is the time needed for the expose operation and the latter is the
time needed for the chuck swap. Therefore, the theoretical maximal stationary
throughput of the machine is at most one wafer per min, time units. For the UP-
PAAL model with heuristics it is possible to find (in almost no time) an execution
that satisfies Property [5.2] for a value of H that is 5% larger than min;, and for
S = mins. This execution was found by minimizing the values of H and S in
formula 5.2 such that it can still be fulfilled. Figure shows this schedule that
thus optimizes the stationary throughput of the EUV machine.

It took only little effort to change the UPPAAL model in order to analyze two
alternative machine designs with respect to throughput. In the first design alter-
native, the incoming wafers have been restricted to the upper two locks and the
outgoing wafers to the lower two locks, in order to prevent deadlock a priori (see
Section[5.2)). Note that one lock has a wafer throughput of one wafer per

min; = LOAD + PRES + DEPRES + L2R_T

time units, where LOAD is the time needed by the track robot to place a wafer in
the lock, (DE)PRES is the time needed to (de)pressurize a lock, and L2R_T is the
time needed by an internal robot to grab a wafer from a lock. Thus, two locks
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Figure 5.12: A schedule that optimizes the stationary throughput of the EUV ma-
chine in which unexposed wafers enter through the upper two locks (LO and L1)
and exposed wafers exit through the lower two locks (L2 and L3). The cyclic part
of the schedule consists of the interval between points A and B. The operation of
the locks is critical in the cyclic part.

have a throughput of at most one wafer per imin; time units. Since Jmin; > min,
a better upper bound on the throughput is 1 wafer per imin; time units. We are
able to find a schedule for a value of H that is 11% larger than min; and for

= <min;. Therefore, this schedule optimizes the stationary throughput of this
alternative machine lay-out. Concluding, the optimal stationary throughput is 61%
smaller than the optimal stationary throughput of the original machine, and not
the expose operation but the locks have become critical. This confirms our line of
thought in Section[5.2] Figure[5.12]shows this alternative schedule.

The second design alternative consists of only two locks and one internal robot.
Again, an upper bound on the throughput of this machine is 1 wafer per Jmin; time
units. The throughput loss compared to the original machine thus is at least 61%.
However, the best schedule we have been able to find with UPPAAL has a stationary
throughput that is 83% worse than the optimal schedule for the original machine.
Figure [5.13]shows this alternative schedule.
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Figure 5.13: A schedule for the EUV machine with only two locks and one internal
robot. The cyclic part of the schedule consists of the interval between points A and
B.

5.5 Conclusions

The SMV model checker has successfully been used to characterize the set of safe
states of the EUV machine. This characterization consists of a very short boolean
expression over the places in the machine and is useful for the design of an actual
controller since deadlock can easily be avoided by examining the possible succes-
sor states of the current state. Since the characterization is exact, the controller
implements a least restrictive (optimal) deadlock avoidance policy.

Furthermore, we used the UPPAAL model checker to compute infinite sched-
ules for the EUV machine that optimize stationary throughput. It took little effort
to change the UPPAAL model in order to analyze two alternative machine designs.
In theory, our approach can be applied to a broad class of resource allocation sys-
tems. As always when using model checking, the state space explosion is the main
problem for scalability.

Altogether, in our view, the present work nicely illustrates the usefulness of
model checking techniques to support the design process of applications that in-
volve resource allocation and scheduling. Building models that are just abstract
enough for addressing a specific question, often provides a good way to deal with
the state space explosion problem.

A nice topic for future research would be to add probabilities to the picture.
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The timing of the various robot and exposure operations in the EUV machine is
known very precisely and exhibits minimal variability. So for these operations our
deterministic model appears to be the right choice. However, the delay involved in
the operation of the locks (pressurization and depressurization) is variable and for
this a stochastic model makes sense. It would be interesting to carry out an analysis
along the lines of [22] in which the quality of schedules that we computed using
UPPAAL is assessed with respect to timeliness, utilization of resources, and sensi-
tivity to different assumptions about the stochastic behavior of the EUV machine.
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Chapter 6

Production Scheduling by Reachability
Analysis

GERD BEHRMANN
ED BRINKSMA
MARTIJN HENDRIKS

ANGELIKA MADER

Abstract. Schedule synthesis based on reachability analysis of timed automata has received
a significant amount of attention during the last couple of years. The main strength of this
approach is that the expressiveness of timed automata allows — unlike many classical ap-
proaches — the modeling of scheduling problems of very different kinds. Furthermore, the
models are robust against changes in the parameter setting and against small changes in the
problem specification. This paper presents a case study that was provided by AXX0M, an
industrial partner of the AMETIST project. It consists of a scheduling problem for lacquer
production, and is treated with the timed automata approach. A number of problems have
to be addressed for the modeling task: the information transfer from the industrial partner,
the derivation of timed automaton model for the case study, and the heuristics that have
to be added in order to reduce the search space. We try to isolate the generic problems
of modeling for model checking, and suggest solutions that are also applicable for other
scheduling problems. Finally, model checking experiments are discussed.

6.1 Introduction

Scheduling theory is a well-established branch of operations research, and has pro-
duced a wealth of theory and techniques that can be used to solve many practical
problems, such as real-time problems in operating systems, distributed systems,
process control, etc. [92,91]]. Despite this success, alternative and complementary
approaches to schedule synthesis based on reachability analysis of timed automata
have been proposed recently [49 13| 2]. The main motivation of this previous work
is the observation that many scheduling problems can very naturally be modeled
with timed automata. Furthermore, the expressiveness of timed automata renders
the models robust against changes in parameter settings and changes in the prob-
lem specification. It has been shown that this approach is not necessarily inferior
to other methods developed during the last three decades [3]].

This chapter is a slightly modified version of [15] and reflects the most recent experimental data.
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The case study presented in this paper is one of the four industrial case stud-
ies of the European IST project AMETIST, which focuses on the application of
advanced formal methods for the modeling and analysis of complex distributed
real-time systems with dynamic resource allocation as one of its special topics.
The application of timed reachability analysis to this problem is one of the main
subjects of the project. Technical material related to this case study, and different
approaches to its solution can be retrieved from the AMETIST website

The remainder of this paper is organized as follows. The principles of the
derivation of schedules by reachability analysis are sketched in Section [6.2] Sec-
tion contains a description of the case study. Modeling issues and the use of
heuristics are discussed in Section [6.4] The results of our model-checking exper-
iments are collected and discussed in Sections [6.5] and [6.6] Finally, Section
evaluates the model checking approach to the case study and concludes the paper.

6.2 Scheduling with Timed Automata

The synthesis of schedules using timed automata can be seen as a special case of
control synthesis [82], and was first introduced by [49]], and by [3]. In general,
a model class that provides the possibility to represent system events as well as
timing information is suitable for real-time control synthesis. In this paper, the
timed automata of Alur and Dill are used for modeling [8]]. These timed automata
extend the traditional model of finite automata with real-valued clock variables
whose values increase with the rate of the progress of time. Clock variables can
be reset to zero and they can be used in guards for discrete transitions as well as
in guards for the elapse of time (this is used to ensure progress). In general, timed
automata models have an infinite state space. The region automaton construction,
however, shows that this infinite state space can be mapped to an automaton with
a finite number of equivalence classes (regions) as states [8]]. Finite-state model
checking techniques can then be applied to the reduced, finite region automaton. A
number of model checkers for timed automata is available, for instance, KRONOS
[107] and UPPAAL [16].

Schedule synthesis using timed automata works as follows. First, a model of
the unscheduled system is constructed. In our case, this model consists of the
parallel composition of a number of timed automata. The non-determinism that
is present in the parallel composition reflects the unresolved scheduling choices.
Second, feasibility is formulated as a reachability property, for instance, “It is pos-
sible that the production is finished by Friday evening”. Third, the model checker
exhaustively searches the reachable state space in order to check whether the prop-
erty holds. If this is the case, then the model checker can provide a trace that proves
the property. In our example, this is a trace from the initial state to a state in which
the production is finished and it is not later than Friday evening. The information

"http://ametist.cs.utwente.nl/


http://ametist.cs.utwente.nl/

6.3. DESCRIPTION OF THE CASE STUDY 121

contained in such a trace suffices to extract a feasible schedule, which is the final
step of our approach.

The advantage of this approach is its (modeling) robustness against changes in
the parameter settings and small changes in the problem specification. The disad-
vantage lies in the well-known state space explosion problem: the reachable state
space is far too large to handle within a practical amount of time for many inter-
esting cases. The approach that is used in this paper is to add heuristics and to
use features of schedules that reduce the reachable state space to a size that can be
searched more easily. We argue that these heuristics are quite general and applica-
ble in many cases.

6.3 Description of the Case Study

The case study deals with a problem that is almost a job-shop problem [91], ex-
tended by parallel use of resources and additional timing restrictions between pro-
cessing steps. Lacquers can be produced according to one of three recipes, for the
lacquer types uni, metallic or bronce. A recipe specifies the processing steps, the
resources needed for a processing step, the processing time, and timing constraints
between processing steps. See Figure[6.1|for a graphical description of the recipes.
There is a restricted number of resources available, such as mixing vessels, dose
spinners, filling lines, etc. The problem is to schedule a number of lacquer orders
Each order is specified by a lacquer type (i.e., recipe to use), release date, and due
date.

As mentioned above, the problem has a lot in common with job-shop schedul-
ing. The main differences are (i) there are additional timing restrictions between
production steps (e.g., there must be at most 4 hours between the end of the first
production step and the start of the second production step for uni lacquers), and
(ii) an order must use resources in parallel (every lacquer needs a mixing vessel
during its production in parallel with other resources).

There are two additional features of the case study that need explanation. First,
an availability factor is associated with every resource. This factor models the
fraction of the time that a resource is available due to the working hours of the
personnel. E.g., if a resource is operated by personnel that works in two 8 hour
shifts from Monday 6 am to Friday 10 pm (i.e., 16 x 5 hours per week), then the
availability factor of that resource equals %. This availability factor is used to
take the working hours constraint into account by extending the processing times:
if a processing step needs P minutes of processing time on a resource that has
availability factor A, then the processing time is extended to %, for the example
above that would be P x 7§024. The use of the availability factor is intended for
approximation in long-term scheduling, i.e., the question how many orders can be
done within the next half year. For daily scheduling the actual working hours have
to be modeled. Second, a performance factor is associated with every resource.
This factor models the fraction of the time that a resource is unavailable due to
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Figure 6.1: An alternative graphical representation for the three recipes.

break-downs or maintenance. The performance factor is used in the same way as
the availability factor to extend the processing times. Note that both availability
factors and performance factors are given by AXXOM, as well as the mechanism to
extend processing times. Section [6.6] discusses these performance factors in more
detail. Seven slightly different versions of the case study have been examined:

1. The performance and availability factors are used to extend the processing
times of the 29 orders. Furthermore, the processing times do not depend
on the size of an order (i.e., producing 15000 kg takes as much time as
producing 5000 kg).

2. Same as (1), but with 73 orders instead of 29.

3. Same as (2), except that the orders are “vertically multiplied” n times. L.e.,
this essentially means that model 2 is scheduled n times (for a given n).
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4. Same as (2), except that the orders are “horizontally multiplied” n times with
proper replication of the resources.

5. The processing times are a function of the size of an order, storage costs
are added for the final product, and delay costs are added for all processing
steps to quantify the quality of schedules. Furthermore, the model of some
resources has been made more exact (for instance to model setup times be-
tween processing steps). The performance and availability factors are used
to extend processing times.

6. Same as (5), except that an exact model of the working hours constraint is
used. The performance factor still is used to extend processing times.

7. Same as (6), except that this model also includes storage costs for the inter-
mediate products.

6.4 Modeling with Timed Automata

This section explains how the problem has been modeled with timed automata.
We intend to make the models that have been used in this paper available on the
AMETIST website as soon as possible.

6.4.1 Information Transfer from Industry

A substantial amount of the time spent on the case study went into the modeling
activities. The most difficult part here was the information transfer from AXXOM
to the academic partners. In the first place, there was a language problem regarding
the domain specific interpretation of terminology. For this purpose we compiled an
initial dictionary in which relevant terms used are explained in natural language.
This dictionary served as an agreement with AXXOM on the main, basic facts. Ad-
ditionally, there was a documentation problem, regarding the (implicit) knowledge
that always exists beyond any written specification. This problem remained present
even after agreeing on the dictionary. This suggests that, beyond a dictionary, ad-
ditional validation of the basic facts would be desirable.

Another difficulty was caused by the format that AXXOM used for the recipes,
which was neither standard, nor intuitive. A better (from the computer science
perspective, at least) representation had to be devised, which resulted in the de-
scription shown in Figure This new notation also helped to detect other gaps
in the case description.

Finally, AXXOM is not working on lacquer production, but develops tools for
value chain management. The case description they provided is to some extent the
description of their own model of the original case. Making our timed automata
models we faced the problem that we were remodeling another model, tailored for
another tool, rather than the original case. One example in point are the occurrence
of very high delay costs. In the AXXOM tool these are needed to simulate hard
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deadlines by using (soft) due dates. With timed automata, hard deadlines can be
modeled directly.

6.4.2 Timed Automaton Models

The lacquer production case is very similar to the job shop scheduling problem,
involving just a few additional timing constraints, and the basic modeling by timed
automata roughly follows [3]. Each processing step can be mapped to a sequence
of three locations in a timed automaton (fragment), see Figure[6.2] where the transi-
tion between the first two locations claims the resource, the second location repre-
sents the processing period, and the transition to the last location frees the resource.

resource>0 time==processing_time
resource--

time:=0 e resource++
O -O -O

time<=processing_time

Figure 6.2: A single processing step modeled as timed automaton fragment.

The sequential and interleaved composition of the automaton fragments fol-
lows the descriptions and timing restrictions in the recipes. For each recipe there
is a timed automaton (template) with free parameters for release date and due date.
Five resources are modeled as counters, and the remaining resources are modeled
as small automata (since these resources need their own clock). The parallel com-
position of the instantiated automata and the resource automata forms the system
model.

When looking for feasible schedules we checked the reachability property “all
orders (automata representing an order) reach their final state”, where a guard in
the model only allowed to enter the final state if the due date has not passed already.

6.4.3 Modeling Heuristics

The heuristics we used are more or less standard in operations research, and are
thus not specific for this case study. For instance, the “non-laziness” heuristic
as explained below is the same as considering only “active” schedules [91]. The
modeling of these heuristics can be seen as standard patterns that can be re-used for
similar cases. Each heuristic reduces the search space. We distinguish two kinds of
heuristics. First, there are “nice” heuristics, for which we know that for each good
schedule that was pruned away there is a schedule in the remaining search space
that is at least as good. Second, there are “cut-and-pray” heuristics for which there
is no such guarantee (i.e., the optimal schedule may be lost). Below we describe
each of the heuristics we used, and show our modeling into the timed-automaton
framework.
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Non-overtaking

This heuristic is applied within each group of orders following the same recipe.
It says, that an order started earlier also will get critical resources earlier than an
order started later. This heuristics makes sense if for every two orders it holds that
if the start time of the first order is smaller than the start time of the second order,
then the end time of the first order is smaller than the end time of the second order.
It is easy to see that for two orders following the same recipe, a non-overtaking
schedule can be constructed from a schedule with overtaking. This can be done if
at each moment when a resource is assigned to the later order (overtaking moment),
we give it instead to the earlier order. This obviously is also a “nice” heuristic, if
the processing times have the same length.

id==0 Il phase[id-1]>=k

resource>(0

phase[id]++ time==processing_time
resource--

time:=0 e\ resource++

time<=processing_time

Figure 6.3: A timed automaton fragment for taking a resource with non-overtaking.

Technically, we divided an order in phases that roughly reflect the processing
steps and that are numbered from 1 upwards. Non-overtaking has been realized by
counters keeping track of the phase in which the order is. When a phase (processing
step) is entered and a resource is taken, the counter is incremented. A restriction
for entering a phase is that the previous order already has entered the phase before.
For this purpose we have indexed counters phase[id], one for each order having
the number id. Note, that the sequence of identification numbers id reflects the
sequence of release dates (and due dates, because the maximal production periods
are the same). The order with identification number 0 is the first and may enter new
phases without restriction. In Figure we extended the basic timed-automaton
fragment of Figure[6.2] by the counter construction. The constant k represents the
k-th phase of the order. Note also that we have an indexed counter for each set of
orders following one of the three recipes (thus, an order for metallic lacquer may
overtake an order for a uni lacquer).

Non-laziness

In operations research non-lazy schedules are called active. The following behavior
is excluded: a process needs a resource that is available, but it does not take the
resource. Instead, the resource remains unused: no other process takes it. Then,
after a period of waiting the process decides to take the resource. (And we regard
this waiting time as wasted, which is only true if there are no timing requirements
for starting moments of subsequent processes.) This is a “nice” heuristic.
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time<processing_time

resource>0 resource==
time:=0 urgent!
resource>0
urgent! time==processing_time
resource--
time:=0 e\ resource++ >O

time<=processing_time
Figure 6.4: A timed automaton fragment for taking a resource with nonlaziness.

In [28]] it is shown that non-laziness can be expressed directly in timed au-
tomata. Technically, we extended the basic timed automaton fragment of Figure
[6.2]by an extra location that is entered if the resource is available, but not taken as
depicted in Figure The new location can only be left, if there is another order
taking the resource. If for processing_time the resource has not been taken, a dead-
lock is caused, which has the effect of back-tracking and searching for other solu-
tions. The intuition is, that if the resource has not been taken for processing_time
the actual order could have taken it without being in the way for another order.
Note that we use urgent communication on channel urgent so that some transitions
are taken immediately if their guards become true, or pre-empted immediately by
another enabled transition, if it exists. To make this work an automaton contin-
uously offering synchronization on the urgent channel by a simple selfloop in its
only location is part of the model. In the initial location of the automaton of Fig-
ure@ therefore, when a resource becomes available it is either taken immediately
or the idling state is reached immediately.

Greediness

This is a “cut-and-pray” heuristic. If there is a process step that needs a resource
that is available, then the process step claims this resource immediately. By this
it excludes possibly better schedules where some other (more important, because
closer to deadline) process would claim the same resource shortly later. Note that
greediness is stronger than non-laziness, i.e., every greedy schedule is non-lazy.

resource>0
urgent! time==processing_time
resource--

time:=0 a\ resource++
O -O -O

time<=processing_time

Figure 6.5: A timed automaton fragment for taking a resource with greediness.

Modeling greediness in a timed automaton is easy: the requirement is that a
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resource has to be taken as soon as it is available. The communication via an
urgent channel forces to take the transition as soon as the guard resource> 0,
becomes true, see Figure[6.5]

Reducing the Number of Active Orders

When not restricting the number of active orders (i.e., the orders that are processed
at a certain moment), it often happens that many processes fight for the same re-
sources, and block other resources while they wait. In our example the dose spin-
ners (2 instances of these resources are present) have to be used by each process
twice. Restricting the overall number of active orders avoids analysis of behavior
that is likely to be ineffective. This heuristic is very powerful, but belongs to the
“cut-and-pray” type. Technically, we realized this heuristics by a global variable
that is increased when an order starts and decreased when an order is finished. A
start condition for an order is that the counter has not reached a predefined upper
bound.

Increasing the Earliest Starting Time of Orders

This is a very simple heuristic that we use in the models that include costs. Ideally,
an order is finished right on its deadline: it then has neither storage nor delay
costs. Thus, when many orders are finished too early, their starting times may be
increased to reduce the costs.

6.4.4 Modeling the Extended Case Study

Some constraints have been approximated in the basic case study (i.e., in models 1
—4) to simplify the problem. In this section we discuss the extension of the model
to cope with the full constraints. We begin with an informal explanation of these
constraints.

First, there are setup times and costs. The filling lines must be cleaned between
two consecutive orders if those orders are not of the same type. Thus, additional
cleaning time (5 — 20 hours) is needed and there is a certain cost involved with
cleaning. Modeling this constraint poses no problems. Instead of modeling the
filling lines by an integer variable, they are now each modeled by an automaton
that keeps track of the type of the order that has last been processed by it.

Second, there are delay and storage costs. The happiness of a customer de-
creases linearly with the lateness of his order. Thus, each order has a delay cost,
which is a “penalty” measured in euros per minute. Similarly, if an order is finished
too early, then it has to be stored and this also costs a certain amount of euros per
minute. In the initial problem, the costs are approximated by requiring that every
order must be finished before its deadline. A more refined cost model enables us
to prefer an order that is five minutes late to an order that is weeks early. UPPAAL
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CORAE] is a version of UPPAAL for cost optimal reachability analysis in linearly
priced timed automata. UPPAAL CORA enables us to model delay and storage
costs in a natural way [75]. It allows the representation of costs as affine functions
of the clock variables. For instance, Figure [6.6] depicts how delay costs are mod-
eled. Every order has a delay cost factor (dcf) that gives the cost per time unit when
the order is too late. Furthermore, every job has a function isLate() that returns 0
when the due date of the order has not yet passed, and 1 otherwise. Every location
of the order automaton in which the order is not yet finished then is equipped with
a specification of the time-derivative of the cost: cost’==isLate()*dcf. A similar
strategy is followed for modeling the storage costs. Every location of the order
automaton in which the order is finished is equipped with cost’==!isLate()*scf,
where scf is the storage cost factor.

resource>0 time==processing_time
resource--
time:=0 Y resource++
O -O -O
cost’==isLate()*dcf time<=processing_time cost’==!isLate()*scf

cost’==isLate()*dcf

Figure 6.6: A timed automaton fragment for costs.

Third, there is the working hours constraint. The lacquer production is over-
seen by personnel that works in two or three shifts, depending on the machine they
operate. Furthermore, the production is interrupted in weekends. Note that this
constrained is approximated in the initial problem by the availability factor of ma-
chines. Another complicating factor is that some production steps may only be
interrupted for 12 hours. Modeling the working hours constraint proved to be quite
involved. A separate automaton was added that computes the effective processing
time e, given the current time and the net processing time c. For instance, if the
current time and c are such that the processing must be interrupted, then e = c+ B,
where B equals the length of the interruption. The additional automaton is rather
big and laborious to produce, but quite logical in structure.

6.5 Model Checking Experiments

In Table[6.1| we collected models and model checking experiments for the feasibil-
ity analysis and schedule synthesis of the basic case study (i.e., models 1-4). The
results were obtained using UPPAAL 3.5.6 on 2.6 GHz Intel-P4-Xeon processor
and 2.5 GB of memory running Linux kernel 2.6.8.

Initial experiments revealed scalability problems, partly caused by the large
number of clocks contained in the models. The heuristic limit of the number of
active orders also provides a limit on the number of clocks needed (one per active
order instead of one per order), and the non-overtaking heuristic provides an easy

Zhttp://www.cs.aau.dk/~behrmann/cora/
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Table 6.1: Experiments for the generation of delay-free schedules. Abbreviations
for the heuristics are: g — greedy, nl — non-lazy, no — non-overtaking. Each exper-
iment was repeated for a model without both availability and performance factors
(column no av, no pf), a model with only availability factors (column av, no pf),
and a model with both availability and performance factors (column av, pf). For
each experiment the run-time in seconds is provided. All measurements were done
using depth-first search. A run was terminated after 10 minutes, or when memory

consumption reached 2 GB (indicated by a “-” in the table).

) S
g | & >

=g |g |g| & =

| = = = = = =
1129 - - 78.0 - -
1|29 nl - 0.3 1.5 35
1129 nlno | - 0.3 2.5 2.6
1|29 g - 0.2 2.8 -
1129 gno | - 0.2 29 -
2 |73 - - - - -
2 173 nl - - - -
2 |73 nlno | - 24.6 - -
2 |73 nlno | 3 0.4 - -
2 |73 nlno | 4 1.1 04 0.3
2 |73 nlno | 5 4.4 0.6 0.9
2 |73 g - 15.0 - -
2 173 gno | - 9.2 | 433 30.5
2 |73 gno |3 0.3 | 165.1 -
2 |73 gno |4 0.4 0.3 0.3
2 |73 gno |5 2.2 0.4 6.8
3 |146 | gno | 4 1.3 0.9 0.8
3 1584 |gno |4 377 | 212 | 18.6
3 1168 | gno |4 | 1664 | 92.1 80.7
3 12044 | gno | 4 | 5654 | 311.6 | 271.9
4 | 146 | gno |5 9.7 - -
4 | 146 | gno |6 | 167.8 - -
4 | 146 | gno |7 - | 21.0 -
4 | 146 | gno |8 -] 182 | 126
4 1219 | gno |8 - - -
4 (219 |gno |9 - - | 3479
4 1219 | gno | 10 - - -
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way of uniquely assigning shared clocks to orders, since it fixes the starting order
of orders of a particular type. This change reduced the number of clocks to 3- A+3,
where A is the maximum number of active orders.

The results show that, even for the case of the 29 orders, the use of heuristics is
essential. The non-overtaking heuristic does not make much difference for a case
without availability factors, whereas in the case with availability factors the perfor-
mance gets worse. This might be caused by additional deadlocks in the state space
that would otherwise have led to a schedule. For 73 orders and more, however,
non-overtaking decreases the computation time considerably. Limiting the number
of active orders increases the speed by several orders of magnitude (partly due to
the possible reuse of clocks).

Experiments have been performed also for the extended version of the case
study (i.e., models 5-7) using UPPAAL CORA, see Table Although the con-
straint of the explicit working hours (used in the models 6 and 7) makes the model
much more complex, the results show that their schedules have much lower cost
than the schedules for model 5. A possible explanation is that the availability fac-
tors distribute the availability uniformly over time. In reality, however, a resource is
available during the weekdays and completely unavailable in the weekends. There-
fore, the availability factors give in some cases a large over-approximation of the
processing times, with the result that scheduling becomes much harder.

Table 6.2: Table of experiments for the versions including costs with performance
factors (pf) for all models, availability factors (av) in model 5, and explicit working
hours (ex) in the models 6 and 7. A random-best-depth-first search of 10 minutes
was used for the experiments with models 5 and 6. The experiments with model 7
(which used the same search order) had to be limited to 10 seconds due to problems
with running UPPAAL CORA. The number of successful runs (termination rate),
the lowest cost of any run and the average cost of all runs is shown.
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7129 | -| yes/nolyes | 5 10s. | 3/10 | 80-10° | 81-10°

The meaning of the costs is as follows: in model 6, a schedule with a cost of
approximately 2 million (the best schedule of the 10 runs) is a schedule in which
2 orders are a bit late (1 day and 45 minutes respectively) and the others are much
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too early (since intermediate products do not incur storage costs). In model 7, this
effect is countered by storage costs for intermediate products, which makes the
schedules more expensive. The investigation of these effects is still ongoing work.
It should be noted that the non-laziness heuristic is not applicable to the extended
case, since storage costs make it profitable to be lazy. Also the non-overtaking
heuristic is rendered a “cut-and-pray” by the addition of costs. The greediness
heuristic is not applicable either, but this is due to a limitation in UPPAAL. Still,
we derived schedules that are competitive with those provided by AXXOM.

6.6 Stochastic Analysis

As explained earlier, so-called performance factors are used to indicate the percent-
age of time that a resource is unavailable due to maintenance and break-downs. The
way in which AXXOM deals with this information is that the processing time on
each resource is extended by the corresponding factor. E.g., if a machine only is
available half of the time, the processing time for each processing step using this
resource is doubled. Schedules are derived assuming that the process durations are
extended in this way. This raised the question on the interpretation of the sched-
ules derived with the extended processing times. Stochastic analysis [22] showed
that the schedules derived in this way have less chance to reach the due dates than
schedules without extended times. The interpretation roughly is as follows: if we
reserve time for break-down when a resource is actually available, this time is sim-
ply wasted. Later, when the resource really breaks down, there will be too little
time left to reach the due date. A conclusion is that extending processing times
may give a useful indication how many orders can probably be done within a long
time interval, say a few months, but it does not help for daily fine-tuned scheduling.

6.7 Evaluation and Conclusion

We have shown that feasible schedules for a lacquer production case can be de-
rived doing real-time reachability analysis with the timed automata model checker
UPPAAL. We could treat instances ranging from 29 to 2044 orders (all within 10
minutes, given the right heuristics). To deal with the full set of constraints of the
original problem we had to introduce costs into the model, viz., setup costs for
filling stations, storage costs for orders that are produced too early, and delay costs
for orders that are too late. This transformed the problem into a cost-optimization
problem, which was treated using UPPAAL CORA, a cost-optimizing version of
UPPAAL. A further extension of the model was needed to deal with the so-called
working hours constraints, which increased the size and complexity of the model
significantly. Yet, also for this case competitive schedules could be derived using
UPPAAL CORA.

On the one hand, it is clear that this application of model checking techniques
to this kind of production scheduling problems is not (yet) push-button technol-
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ogy: to obtain results our models had to be constructed with care, and the right
heuristics had to be identified. On the other hand, it is reasonable to assume that
many production scheduling problems have similar ingredients and that modeling
techniques and patterns for typical plant processes and heuristics can be reused.
Further experiments have to be carried out to identify a useful core collection of
such modeling patterns.

The use of performance and availability factors leads to questions of interpre-
tation. Extending the processing times by these factors can be used to analyze
how many orders should be feasible on a longer time scale. The stochastic analy-
sis in [22], however, has shown that using performance and availability factors to
obtain concrete schedules increases the probability to miss deadlines. The use of
these factors thus makes models inherently approximative, and it does not seem
very useful to include finer information about penalties (such as setup and cleaning
costs) into the model, as is the case now. It is unclear what modeling assump-
tions are best suitable for the derivation of concrete short-term schedules, where
storage costs have to be minimized and delay costs to be avoided. An idea that
we want to explore is that of using a form of schedule refinement taking rough
long-term schedules as a basis for obtaining precise schedules for concrete short-
term. A transformation approach to scheduling, although in a different context,
was successfully used in another case study of the AMETIST project, viz., the CY-
BERNETIX case [81]. Another idea that will be investigated is that of searching
for schedules in reverse time, starting from the due dates of orders; valid schedules
obtained this way avoid storage and delay costs by construction.

The case study also raised a number of pragmatic questions concerning the
modeling process. It turned out to be nontrivial to obtain all relevant information
from AXXOM. In spite of our efforts to create a dictionary and better graphical
representations, the models had to be changed substantially in an advanced stage of
the project, as initially provided requirements turned out to be over-specified. The
experience suggests that beyond a dictionary, there should have been some joint
activity to certify the informal explanations. A related aspect is that the problem
description of AXXOM was strongly influenced by the capabilities of their own
planning tool. This implies that in some places we may have been remodeling the
AXXO0OM model, rather than modeling the original problem.

Summarizing, we can say that our experience with the AXXOM case study
shows that the application of model checking techniques for production schedul-
ing is very promising. Still, considerable further work on modeling methods, re-
usability of modeling patterns, identification and evaluation of heuristics — all in
the context of case studies of greater orders of magnitude — is needed to develop it
into a readily applicable standard technique for schedule synthesis.

Acknowledgements. We would like to acknowledge the essential role played
by Dagmar Ludewig and Sonja Loeschmann of AXX0M, who were always willing
to provide the answers to our many questions concerning this case study.



Chapter 7

Model Checking the Time to Reach
Agreement

MARTIJN HENDRIKS

Abstract. The timed automaton framework of Alur and Dill is a natural choice for the
specification of partially synchronous distributed systems (systems which have only par-
tial information about timing, e.g., only an upper bound on the message delay). The past
has shown that verification of these systems by model checking usually is very difficult.
The present paper demonstrates that an agreement algorithm of Attiya et al, which falls
into a — for model checkers — particularly problematic subclass of partially synchronous
distributed systems, can easily be modeled with the UPPAAL model checking tool and that
it is possible to analyze some interesting and non-trivial instances with reasonable compu-
tational resources. Although existing techniques are used, this still is an interesting case
study since it shows that the class of partially synchronous distributed systems now slowly
comes within reach of mechanical verification techniques. Furthermore, the agreement
algorithm has not been formally verified before to the author’s knowledge.

7.1 Introduction

Distributed systems are in general hard to understand and to reason about due to
their complexity and inherent non-determinism. That is why formal models play
an important role in the design of these systems: one can specify the system and its
properties in an unambiguous and precise way, and it enables a formal correctness
proof. The I/O-automata of Lynch and Tuttle provide a general formal modeling
framework for distributed systems [180} 79, [78]]. Although the models and proofs in
this framework can be very general (e.g., parameterized by the number of processes
or the network topology), the proofs require — as usual — a lot of human effort.
Model checking provides a more automated, albeit less general way of prov-
ing the correctness of systems [37]. The approach requires the construction of a
model of the system and the specification of its correctness properties. A model
checker then automatically computes whether the model satisfies the properties or
not. The power of model checkers is that they are relatively easy to use compared
to manual verification techniques or theorem provers, but they also have some clear
drawbacks. In general only instances of the system can be verified (i.e., the algo-
rithm can be verified for 3 processes, but not for n processes). Furthermore, model
checking suffers from the state space explosion problem: the number of states

This chapter is an almost literal copy of [S6].



134 CHAPTER 7. CHECKING THE TIME TO REACH AGREEMENT

grows exponentially in the number of system components. This often renders the
verification of realistic systems impossible.

A class of distributed systems for which model checking has yielded no ap-
parent successes is the subclass of partially synchronous systems in which (i) mes-
sage delay is bounded by some constant, and (ii) many messages can be in tran-
sit simultaneously. In the partially synchronous model, system components have
some, possibly incomplete, information about timing. For instance, only an up-
per bound on the message delay may be known. It lies between the extremes of
the synchronous model (the processes take steps simultaneously) on one end and
the asynchronous model (the processes take steps in an arbitrary order and at ar-
bitrary relative speeds) on the other end [/8]]. The timed automata framework of
Alur and Dill [8] is a natural choice for the specification of partially synchronous
systems (as is the Timed I/O-automaton framework [73[], which, however, does not
support model checking). Verification of the above mentioned subclass of “dif-
ficult” partially synchronous systems by model checking, however, is often very
difficult since every message needs its own clock to model the bounds on message
delivery time. This is disastrous since the state space of a timed automaton grows
exponentially in the number of clocks. Moreover, if messages may get lost or mes-
sage delivery is unordered, then on top of that also the discrete part of the model
explodes rapidly.

Many realistic algorithms and protocols fall into the class of “difficult” partially
synchronous systems. Examples include the sliding window protocol for the reli-
able transmission of data over unreliable channels [99] [35]], a protocol to monitor
the presence of network nodes [20, 72, [21]], and the ZeroConf protocol whose pur-
pose is to dynamically configure IPv4 link-local addresses [34, 51]]. Furthermore,
the agreement algorithm described in [10] (see also Chapter 25 of [78]]) also is a
partially synchronous system that is difficult from the perspective of model check-
ing. The analysis of this algorithm with the UPPAAL model checker is the subject
of the present paper. The main contribution consists of the formal verification of
some non-trivial instances of the algorithm, which has not been done before to the
author’s knowledge. Although standard modeling and verification techniques are
used, the case study still is interesting since it shows the current power of the UP-
PAAL tool and increases the existing body of case-study experience. Independently
of the present work, Leslie Lamport has also analyzed a distributed algorithm that
falls into the class of difficult partially synchronous systems as defined above [74].

The remainder of this paper is structured as follows. The timed automaton
framework and the UPPAAL model checker are very briefly introduced in Sec-
tion Section [/.3] then presents an informal description of the distributed al-
gorithm of [10], which consists of two parts: a timeout task and a main task.
Section describes the UPPAAL model that is used to verify the timeout task.
A model for the parallel composition of the timeout task and the main task is
proposed in Section Two properties of the timeout task that have been ver-
ified in Section are used to reduce the complexity of this latter model. Fi-
nally, Section[7.6|discusses the present work. The UPPAAL models from this paper
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are available at http://www.cs.ru.nl/ita/publications/papers/
martijnh/. Note that the UPPAAL development version 3.5.7 has been used.

7.2 Timed Automata

This section provides a very brief overview of timed automata and their semantics,
and of the UPPAAL tool, which is a model checker for timed automata. The reader
is referred to [15, 18, |16, [19] for more details.

Timed automata are finite automata that are extended with real valued clock
variables [ 8]. The basic definitions concerning timed automata from [S] are
reused here. Let X be a set of clock variables, then the set ®(X) of clock con-
straints ¢ is defined by the grammar ¢ := x ~ ¢| @1 A ¢a, where x € X, c € N,
and ~€ {<, <,=,>,>}. Aclock interpretation v for a set X is a mapping from X
to R™, where R™ denotes the set of positive real numbers including zero. A clock
interpretation v for X satisfies a clock constraint ¢ over X, denoted by v = ¢,
if and only if ¢ evaluates to frue with the values for the clocks given by v. For
5 € R*, v + § denotes the clock interpretation which maps every clock z to the
value v(x) + §. Foraset Y C X, v[Y := 0] denotes the clock interpretation for
X which assigns 0 to each x € Y and agrees with v over the rest of the clocks. We
let I'(X') denote the set of all clock interpretations for X.

A timed automaton then is a tuple (L, 1%, %, X, I, E), where L is a finite set of
locations, I € L is the initial location, X is a finite set of labels, X is a finite set of
clocks, I is a mapping that labels each location ! € L with some clock constraint
in ®(X) (the location invariant) and E C L x ¥ x ®(X) x 2% x L is a set of
edges. An edge (I, a, ¢, \,l") represents a transition from location [ to location I’
on the symbol a. The clock constraint ¢ specifies when the edge is enabled and the
set A C X gives the clocks to be reset with this edge. The semantics of a timed
automaton (L, [°, ¥, X, I, F) is defined by associating a transition system with it.
A state is a pair ([, v), where | € L, and v € I'(X) such that v |= I(l). The initial
state is (1%, 1Y), where 1°(x) = 0 for all z € X. There are two types of transitions
(let 6 € R™ and let @ € ¥). First, ((1,v), (I,v + §)) is a -delay transition iff
v+ ¢ = I(l) forall 0 < 6" < 4. Second, ((I,v), (I',1/)) is an a-action transition
iff an edge (I, a, ¢, A, I) exists such that v = ¢, v/ = v[\ := 0] and v/ = I(U').
Note that location invariants can be used to specify progress, and that they can
cause time deadlocks.

The transition system of a timed automaton is infinite due to the real valued
clocks. The region and zone constructions, however, are finite abstractions that
preserve Timed Computation Tree Logic (TCTL) formulas and a subset of TCTL
formulas (most notably reachability) respectively [6l l44]. This enables the appli-
cation of finite state model checking techniques as implemented, for instance, by
the UPPAAL tool.

The UPPAAL modeling language extends the basic timed automata as defined
above with bounded integer variables and binary blocking (CCS style) synchro-
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nization. Systems are modeled as a set of communicating timed automata. The
UPPAAL tool supports simulation of the model and the verification of reachability
and invariant properties. The question whether a state satisfying ¢ is reachable can
be formalized as EF(¢). The question whether ¢ holds for all reachable states
is formalized as AG(¢). If a reachability property holds or an invariant property
does not hold, then UPPAAL can provide a run that proves this. This run can be
replayed in the simulator, which is very useful for debugging purposes.

7.3 Description of the Algorithm

This section presents an informal description of an algorithm that solves the prob-
lem of fault-tolerant distributed agreement in a partially synchronous setting [[10]]
(see also Chapter 25 of [78]]). A system of n processes, denoted by p1, ..., Dy, 1S
considered, where each process is given an input value and at most f processes
may fail. Each process that does not fail must eventually (termination) choose a
decision value such that no two processes decide differently (agreement), and if
any process decides for v, then this has been the input value of some process (va-
lidityﬂ The process’s computation steps are atomic and take no time, and two
consecutive computation steps of a non-faulty process are separated c; to c time
units. The processes can communicate by sending messages to each other. The
message delay is bounded by d time units, and message delivery is unordered. Fur-
thermore, messages can get neither lost nor duplicated. The constant D is defined
as d + ca. As mentioned above, f out of the n processes may fail. A failure may
occur at any time, and if a process fails at some point, then an arbitrary subset of
the messages that would have been sent in the next computation step, is sent. No
further messages are sent by a failed process. It is convenient to regard the algo-
rithm, which is run by every process, as the merge of a timeout task and a main
task, such that a process’s computation step consists of a step of the timeout task
followed by a step of the main task.

7.3.1 Description of the Timeout Task

The goal of the timeout task is to maintain the running state of all other processes.
To this end, every process p; broadcasts an (alive, j) message in every computa-
tion step. If process p; has run for sufficiently many computation steps without
receiving an (alive, j) message, then it assumes that p; halted either by decision or
by failureﬂ Figurecontains the description of a computation step of the timeout
task of process p; in precondition-effect style.

LThis is required to avoid trivial solutions in which every process always decides for some prede-
termined constant value.

>The message complexity of this algorithm is quite high. Recently, an alternative with an ad-
justable “probing load” for each node has been proposed in [20]], further analyzed in [72], and im-
proved in [21].
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Precondition:
- blocked
Effect:
broadcast((alive,i))
for j :=1tondo
counter(j) := counter(j) + 1
if (alive,j) € buff then
remove (alive,j) from buff
counter(j) :=0
else if counter(j) > ng +1
then
add j to halted
od

Figure 7.1: The timeout task for process p;.

The boolean variable blocked is used by the main task to stop the timeout task.
Initially, this boolean is false. It is set to true if the process decides. The other state
components are a set halted C {1, ...,n}, initially (), and for every j € {1,...,n} a
counter counter(j), initially set to —1. Additionally, every process has a message
buffer buff (a set), initially (). Two properties of the timeout task have been proved
in [10].

Ay If any p; adds j to halted at time t, then p; halts, and every message sent
from p; to p; is delivered strictly before time ¢.

Ao If p; halts at time ¢, then every p; either halts or adds j to halted by time
t+T,whereT =D + ¢y - (ng +1).

These two properties are used in [10] for the correctness proof of the complete
algorithm. In this paper, these two properties are first mechanically verified for
a number of instances of the algorithm. Consequently, they are used to make an
abstract model of the complete algorithm in Section[7.5]

7.3.2 Description of the Main Task

Figure contains the description of a computation step of the main task of pro-
cess p; in precondition-effect style. Apart from the input value v; and the state
components used by the timeout task, there is one additional state component,
namely the round counter r, initially zero. The input values are assumed to be
either zero or one for simplicityﬂ

Each process tries to decide in each round. Note that a process may decide for
0 only in even rounds, and for 1 only in odd rounds. Furthermore, if a process fails

3 An extension to an arbitrary input domain is discussed in [10].
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Precondition: Precondition:
r=0Av;, =1 r>1A3; (r,5) € buff
Effect: Effect:
broadcast((0,7)) broadcast((r, :))
r:=1 r:=r-+1
Precondition: Precondition:
r=0Av; =0 rzlAVj¢hal[ed(r—l,j)ebuﬁ/\
Effect: —3; (r,7) € buff
broadcast((1,i)) Effect:
decide(0) broadcast((r + 1,1))

decide(r mod 2)

Figure 7.2: The main task for process p;.

to decide in round r, then it broadcasts r before going to round r + 1. On the other
hand, if a process decides in round 7, it broadcasts r 4+ 1 before halting. In order
for a process to decide in a round r > 1, it ensures that it has received the message
r — 1 from all non-halted processes, and no message r from any process. Three
main results that are obtained in [[10] are the following.

M; (Agreement, Lemma 5.9 of [10]). No two processes decide on different
values.

My (Validity, Lemma 5.10 of [10]). If process p; decides on n, then n = v, for
sOme process j.

M3 (Termination, Theorem 5.1 of [10]). The upper bound on the time to reach
agreement equals (2f — 1)D + max {T,3D}.

These results are mechanically verified in Section [7.5] for a number of non-
trivial instances of the algorithm.

7.4 Verification of the Timeout Task

7.4.1 Modeling the Timeout Task

Note that every process runs the same algorithm, and that the timeout parts of
different processes do not interfere with each other. Therefore, only two processes
are considered, say p; and p;. By the same argument, only one direction of the
timeout task is considered: p; (Observer) keeps track of the running state of p;
(Process).

Figure shows the UPPAAL automaton of the merge of the timeout task and
abstract main task of Process (the only functionality of the main task is to halt).
It has one local clock x to keep track of the time between two consecutive com-
putation steps. The Process automaton must spend exactly co time units in the
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initial
x<=c2

turn()

b?
active[id]=true,
x=0

o O

x=0 comp halted idle alive=true, t=0, sending
x<=c2 x=0 active[id]=false x<=d
Figure 7.3: The Process automaton. Figure 7.4: The broadcast template.

initial location init before it takes the transition to location comp (the reason for
this is explained below). It then immediately either fails or does a computation
step. Failure of Process is modeled by the pair of edges to halted, which models
the non-deterministic choice of the subset of messages to send. The computation
step is modeled by the self-loop and by the upper transition to halted (a decision
transition that blocks the timeout taskﬂ Note that x is reset on every edge to halted
for verification purposes.

As required by the algorithm, Process broadcasts an alive message at each
computation step. This action is modeled by a b-synchronization, which activates
an instance of the broadcast template, shown in Figure This template is pa-
rameterized with a constant id in order to give each instance a unique identifier.
Clearly, the UPPAAL model must ensure output enabledness of Process: it must be
able to broadcast the alive message when it wants to. Since the maximal number
of simultaneous broadcasts equals L%j + 2, this many instances of the broadcast
template must be present in the model. The guard turn() and the assignments to
active[id] implement a trick to reduce the reachable state space by partially ex-
ploiting the symmetry among the broadcast instanceﬂ After a b-synchronization,
a broadcast automaton may spend at most d time units in location sending, which
is modeled using the local clock x. The actual message delivery is modeled by the
assignment alive=true on the transition back to idle. The reset of the global clock
t is used for the verification of property A;.

Figure shows the automaton for the Observer, which is the composition
of an abstract main task (whose only purpose again is to halt) and the “receiving
part” of the timeout task. It has a local integer variable cnt, initialized to —1, and
a local clock x. Furthermore, the boolean has_halted models whether Process €
halted ppserver- The Observer automaton must first spend co time units in the initial
location before taking the edge to location comp. Then, it must immediately either
do a computation step or fail. The computation step is modeled by the self-loop
and by the upper transition to halted. The procedure update() updates the variables

* A straightforward model contains a third edge to halted with the guard = > ¢, the synchroniza-
tion b/, and the reset x = 0. Such an edge is, however, “covered” by the present upper edge to halted
and can therefore be left out

3 A next release of UPPAAL will hopefully support symmetry reduction, which can automatically
exploit the symmetry among broadcast automata [57].
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void update ()

{
initial if ('has_halted)
x<=c2 cnt++;

if (alive)
x==c2 {

alive = false;
x>=cl x>=cl cnt = 0;
update(), update() }
x=0 comp halted has_halted = cnt>=(D/cl)+1;
x<=c2 }
Figure 7.5: The Observer automaton. Figure 7.6: The update() function.

cnt, has_halted and alive as specified in Figure[7.6] Failure is modeled by the lower
edge to halted.

Both the Observer automaton and the Process automaton must first spend c
time units in their initial location. This is a modeling trick to fulfill the requirement
from [10]] that “every process has a computation or failure event at time 0. Le.,
our model starts at time —co. (If UPPAAL would allow the initialization of a clock
to any natural number, then both initial locations can be removed.)

7.4.2 Verifying the Timeout Task

Property A; is translated to the following invariant property of the UPPAAL model
(a broadcast automaton with identifier ¢ is denoted by b;):

has_halted — ) 7.1

AG < (Process.halted \V; b;.idle Nt > 0)

The state property V; b;.idle At > 0 ensures that all messages from Process
to Observer are delivered strictly before the conclusion of Observer that Process
halted. Property As is translated as follows:

(Process.halted N\ Process.x > T)
AG — (7.2)
(Observer.halted V has_halted)

The branching time nature of As is specified by this invariance property due
to the structure of our model: Process.r measures the time that has been elapsed
since Process arrived in the location halted.

Properties and have been verified for the following parameter val-
ue

e c;=1,cp0=1andd € {0 -5},

A 3.4 GHz Pentium 4 machine with 2 GB of main memory running Fedora Core 4 has been
used for all measurements. The tool memtime (available via the UPPAAL website http://www.
uppaal . com/) has been used to measure the time and memory consumption.
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failCount()<f && mayFail
blid]! .
bvlid]=fail Value(), gffdz](,) stoplid]!
failed[id]=true, reset() byl d‘]=1

initial it s ”

X<=c2 wall ’ timeout main  declid]=0.

<= xo=cl Q) _(@)_"eet0 alllnformed() {)
tofid]! =/ to_fin[id]?

x=0

update finished

pre4() x<=T
prel() blid]! bv[id]=0, r[id]=1 bl[id]!

bv[id]=r[id]+1,
pre3() blid]! _bv[id]=r[id]. r[id] dec[id]=r[id] %2,

cleanMB()

reset()

I(prel() Il pre2() Il pre3() Il pre4())

Figure 7.7: The process template.

e ci=1,cp=2andd € {0 — 5}, and

e ¢c;=9,c0=10andd € {5,9 — 11, 15,20,50}.

Each of the above instances could be verified within 5 minutes using at most
25 MB of memory.

7.5 Verification of the Algorithm

The UPPAAL model of the parallel composition of the main task and the timeout
task, which is used to verify properties M;—M3, is presented in this section. It
is assumed that every process receives an input by time zero (synchronous start),
since otherwise the state space becomes too large to handle interesting instances. If
the timeout task is modeled explicitly, then many alive messages must be sent every
computation step, which results in an overly complex model. Using properties A;
and A,, however, the explicit sending of alive messages can be abstracted away.

7.5.1 Modeling the Algorithm

Figure shows the UPPAAL template of the behavior of the algorithm. This
template is parameterized with two constants, namely its unique identifier id, and
a boolean mayFuail which indicates whether this process may fai

Similar to the model of the timeout task, a process first waits cy time units in
its initial location. Then, it non-deterministically chooses an input value in {0, 1}
on the edge to wait. The global clock ¢ is used to measure the running time of the
algorithm, and is only reset on this edge. Then it either starts a computation step
or fails. A computation step first activates the timeout automaton of the process,
which is described below, on the edge to timeout. When the timeout automaton
finishes (it may have updated the halted set), the edge to main is taken. Then there

7 Again, this is a trick that exploits the symmetry of processes to reduce the reachable state space.
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bool prel () bool prez2 ()
{ {
return r[id]==0 && v[id]==1; return r[id]==0 && v[id]==0;
} }
bool pre3 () bool pred ()
{ {
if (r[id]1<=0) if (r[id]<=0 || pre3())
return false; return false;
for (j:pid_t) for (j:pid_t)
if (buffl[id][r[id]]1[]]) if ('halted[id] []] &&
return true; 'buff[id] [x[1id]-111[31])
return false; return false;

} return true;

}

Figure 7.8: The preconditions for the four transitions of the main task.

turn()
b[id]? sending
x<=d

irpid_t
bv[id}<0 bylid]: shouldDeliver(i)
by[id]=0 ‘“‘gal‘zeo’ deliver(i)
xX=

allDelivered()
reset()

Figure 7.9: The broadcast template.

are five possibilities: one of the four preconditions of the main task transitions is
satisfied (note that they are all mutually exclusive), or none of them is satisfied. In
the first case, the specified actions are taken, and in the second case nothing is done.
The committed locations (those with a “C” inside) specify that a computation step
is atomic and that it takes no time (if a committed location is active, then no delay is
allowed and the next action transition must involve a committed component). Note
that broadcasting the message (1, ) is achieved by assigning m to bv/[id] on an
edge with a b[id]-synchronization. Figure shows the functions that implement
the preconditions of the four transitions of the main task (see also Figure[7.2)).

A failure is modeled by the edge from wait to update. This edge is only enabled
if fewer than f failures already have occurred. The failValue() function computes
the value that would have been broadcast during the next computation step.

In location update the process has halted either by decision or by failure. It
can stay there for a maximum of 7" time units and during that time it provides a
stop[id]-synchronization. This is used for the abstraction of the timeout task, which
is explained below. When all other processes have been informed that this process
has halted (alllnformed() returns true), then the transition to location finished is
enabled.

Similar to the model of the timeout task, the broadcasts are modeled by in-
stances of the broadcast template which is shown in Figure
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to_fin[id]!

error L:pid_t
allActive mayAdd(i)
. b[id]? © e stop[i]?

halted[id][i]=true
Figure 7.10: The timeout template.

The template is parameterized with two constants, namely id, the identifier of
the process automaton this broadcast automaton belongs to, and bid, an identifier
that is unique among the other broadcast automata of process automaton id. The
broadcast automaton is started — if it is its tur — with a b[id]-synchronization. If
the value of bv[id] is smaller than zero, then nothing is done (this is convenient for
modeling in the process template). In location sending it starts delivering the mes-
sage that has been passed to it in bv[id]. The shouldDeliver() and allDelivered()
functions ensure that it delivers all messages on time, but only if necessary. Le.,
it is not useful to deliver a message to a process that already has halted, since that
message is never used; it only increases the reachable state space.

Each process automaton has a separate timeout automaton that has two func-
tions. First, it is activated at the beginning of each computation step of the process
it belongs to in order to update the halted set of the process. Second, it serves as a
test automaton to ensure that the process it belongs to is output enable(ﬂ The time-
out template is shown in Figure[7.10] It has one parameter, namely the constant id,
which refers to the process it belongs to.

When a timeout process is activated, it non-deterministically picks a subset of
processes that have halted and adds them to the halted set. Here properties A; and
Ajg of the timeout task come in. The function mayAdd() checks for a given process
J whether all messages from j to this process have been delivered. If not, then
it may not add j to halted (property A1). Furthermore, the synchronization over
the channel stop[j] must be enabled. In Figure can be seen that this is only
the case for the T time units after j has halted (property As). But if this process
has not added j to halted by that time, then j cannot proceed to location finished
(in that case alllnformed() returns false), with a time deadlock as result. This is
exactly the case when T' — p;.x < ¢1 — p;.x for processes 7 and j. We believe that
this abstraction of the timeout task is safe, i.e., every admissible computation path
in the original model of [10]] can be mapped to an equivalent path in the UPPAAL
model.

The second function of the timeout template is implemented by the edge to the
error location. This location is reachable if the process wants to broadcast and all
its broadcast automata are active already. In a correct model, the error location

8Similarly as in the model of the timeout task in the previous section, the guard furn() partially
exploits the symmetry between the broadcast automata of a single process to reduce the reachable
state space.

°In this model, the number of necessary broadcast automata is no longer easily to determine.
Therefore, an explicit check is useful.
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therefore is not reachable.

7.5.2 Verifying the Algorithm

Properties M1—M3 are translated as follows (where U is the upper bound on the
running time of the protocol as specified before).

Agreement: AG (Vi,j dec; > 0 Ndec; > 0 — dec; = decj) (7.3)
Validity: AG (Vi dec; > 0 — 3; dec; = vj> (7.4)
Termination: AG((ELL' piwait) — t < U) (7.5)

The following properties are health checks to ensure that (i) the processes are
output enabled, and (ii) the only deadlocks in the model are those that are expected.

AG (ﬁﬂi Tl-.error) (7.6)
AG ( deadlock — (V; p;.finished V 3; j pj.x — pj.x >T — c1) X7.7)

The properties (7.3)—(7.6) have been verified (using the convex-hull approxi-
mation of UPPAAL with a breadth-first search order) for the following parameter

Valuesﬂ
en=3fc{0,1},c;=1,c=1andd € {0,1,2,3,5,10},
en=3,f€{0,1},c1=1,¢0 =2,andd € {0,1,2,3,5,10}, and

en=3,fe{0,1},c;1 =9,c0 =10,and d € {5,9 — 11,15, 20, 50, 100}.

Each of the above instances could be verified within 11 minutes using at most
1014 MB of memory. Property has been verified for a subset of the above
parameter values, namely for the models with the three smallest values for d in
each item. This property is more difficult to model check since the convex-hull
approximation is not useful and it involves the deadlock state property, which dis-
ables UPPAAL’s LU-abstraction algorithm [[14] (a less efficient one is used instead),
and which is computationally quite complex due to the symbolic representation of
states.

7.6 Conclusions

Despite the fact that model checkers are in general quite easy to use (in the sense
that their learning curve is not so steep as for instance the one of theorem provers),
making a good model still is difficult. The algorithm that has been analyzed in
this paper can easily be modeled “literally”. The message complexity then, how-
ever, is huge due to the many broadcasts of alive messages, with the result that



7.6. CONCLUSIONS 145

model checking interesting instances becomes impossible. This has been solved
by a non-trivial abstraction of the timeout task. Ideally of course, model checkers
can even handle such “naive” models. Fortunately, much research still is aimed at
improving these tools. For instance, the UPPAAL model checker is getting more
and more mature, both w.r.t. usability as efficiency. An example of the former is
the recent addition of a C-like language. This makes the modeling of the agree-
ment protocol much easier, and makes the model more efficient. A loop over an
array, as for instance used in the pre3() and pre4() functions shown in Figure
can now be encoded with a C-like function instead of using a cycle of committed
locations and/or an auxiliary variable. This saves the allocation and deallocation
of intermediate states and possibly a state variable. Other examples of efficiency
improvements of UPPAAL are enhancements like symmetry reduction [57]] and the
sweep line method [36], which are planned to be added to UPPAAL soon. Espe-
cially symmetry reduction would greatly benefit distributed systems, which often
exhibit full symmetry. Furthermore, recent research also focuses on distributing
UPPAAL, which may even give a super-linear speed-up [[17, [12].

It seems that the class of partially synchronous systems, which is notoriously
difficult from the perspective of model checking, now slowly comes within reach
of present model checking tools. Therefore, these tools have the potential to play
a valuable role in the design of these systems. They may provide valuable early
feedback on subtle design errors and hint at system invariants that can subsequently
be used in the general correctness proof.

Acknowledgements. The author thanks Frits Vaandrager and Jozef Hooman for
valuable discussions and comments on earlier versions of the present paper.
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Samenvatting (Dutch summary)

Model Checking & Geklokte Automaten

Dit proefschrift gaat over het model checken van geklokte automaterm Model
checken is een techniek om systemen die gemodelleerd zijn in een wiskundige
taal automatisch correct te bewijzen. Omdat een formele wiskundige taal wordt
gebruikt om systemen te modelleren heeft het model een ondubbelzinnige seman-
tiek (betekenis). Een model checker is een programma dat de toestandsruimte van
een door de gebruiker gegeven model automatisch doorzoekt, en controleert of een
door de gebruiker gegeven specificatie klopt.

Het geklokte automaten formalisme is uitermate geschikt voor het modelleren
van allerlei realistische problemen die met tijd te maken hebben. Typische voor-
beelden hiervan zijn gedistribueerde algorithmen, protocollen, embedded software
en schedulingproblemen zoals de productiescheduling in fabrieken. Ondanks het
feit dat het transitiesysteem van een geklokte automaten model oneindig is (omdat
de tijd door de re€le getallen wordt gerepresenteerd), bestaan er efficiénte model
checkers voor deze modellen zoals KRONOS en UPPAAL.

Model checking is een rigoreuze wiskundige methode die relatief makkelijk te
leren en te gebruiken is. Deze techniek heeft echter ook duidelijke nadelelﬂ

1. Schaalbaarheid. Model checkers hebben grote last van de zogenaamde “toe-
standsruimte explosie”. Het aantal toestanden van een model groeit expo-
nentieel met het aantal componenten waaruit het is opgebouwd. Dit geeft
praktische problemen omdat model checkers in het algemeen de hele toe-
standsruimte (of een significant deel) in het computergeheugen op moeten
slaan. Daarom is het vaak niet mogelijk om realistische problemen op een
rechttoe-rechtaan-manier te modelleren en te analyseren.

2. Toegankelijkheid. Het bouwen van een goed model is moeilijk. Model chec-
kers zijn vaak academische tools zonder uitgebreide handleiding. Bovendien
is een goede kennis van het onderliggende formalisme vereist om modellen
te maken die geschikt zijn voor analyse.

3. Gebruiksvriendelijkheid. Model checkers zijn zelden onderdeel van de ont-
wikkelingsomgeving en daarom is er weinig tot geen automatische koppe-
ling met deze tools. Bovendien zijn de algemene invoertalen van model
checkers vaak niet uitgebreid genoeg voor een industriéle omgeving. Deze
twee factoren zorgen ervoor dat het modelleren en analyseren zeer veel tijd
vergen.

1De Engelse term voor dit formalisme is timed automata.
""De laatste drie nadelen slaan op algemene tools als KRONOS en UPPAAL en niet op sommige
specialistische “in house” industri€le tools die van model checking technieken gebruik maken.
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4. Realiseerbaarheid. Het is zeer vaak onduidelijk wat de relatie tussen een
model en de werkelijkheid is. Men kan een zeer abstract ontwerp verifiéren
met model checking technieken, maar wat zegt dat over de realisatie van dat
ontwerp?

Ondanks deze nadelen zijn model checkers toch zeer nuttig in de praktijk. Vele
protocollen zijn reeds geanalyseerd en niet zelden werden fouten opgespoord die
niet met conventionele technieken zijn gevonden.

Dit proefschrift

Het doel van dit proefschrift is tweeledig. Ten eerste wordt getracht om nieuwe
technieken te ontwikkelen en te implementeren die de toestandsruimte€xplosie van
geklokte automaten modellen aanpakken. Dit draagt bij aan het onderzoek naar het
schaalbaarheidsprobleem. Ten tweede wordt getracht de praktische toepasbaar-
heid van model chekers voor geklokte automaten te demonstreren en te evalueren.
Dit draagt bij aan het onderzoek naar de roegankelijkheids- en gebruiksvriendelijk-
heidsproblemen.

Dit proefschrift is geheel tot stand gekomen binnen het kader van het EU pro-
ject IST-2001-35304 AMETIST (http://ametist.cs.utwente.nl/). Het
doel van dit project was om de drie eerstgenoemde problemen met betrekking tot
model checking op te lossen. Het bovengenoemde doel van dit proefschrift sluit
hier dan ook goed bij aan.

Dit proefschrift bestaat uit zes op zichzelf staande artikelen die hieronder sum-
mier zijn samengevat:

e Hoofdstuk 2: Exact Acceleration of Real-Time Model Checking. Dit hoofd-
stuk gaat over de toestandsruimteéxplosie ten gevolge van de verschillende
“tijdsschalen” in een model. De bijdrage bestaat uit een stelling die dit pro-
bleem verkleint voor een subklasse van geklokte automaten.

o Hoofdstuk 3: Enhancing Uppaal by Exploiting Symmetery. Symmetrie-
reductie is een bekende techniek om de toestandsruimte van een model te
verkleinen wanneer er identieke componenten zijn. De bijdrage van dit werk
is een bewijs dat symmetriereductie ook voor geklokte automaten kan wor-
den gebruikt.

e Hoofdstuk 4: Adding Symmetry Reduction to Uppaal. Dit hoofstuk laat zien
dat de symbolische representatie van tijd de symmetriereductietechniek uit
hoofdstuk 3 niet gecompliceerder maakt dan in een situatie zonder tijd. De
techniek is in een prototype van het UPPAAL tool verwerkt en laat een expo-
nentiéle verbetering zien voor sommige modellen.

o Hoofdstuk 5: Model Checker Aided Design of a Controller for a Wafer Scan-
ner. Deze case study laat zien dat een verificatie- en een optimalisatiepro-
bleem op verschillende abstractieniveaus kunnen worden opgelost binnen
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één raamwerk met model checking technieken. Dit werk is onderdeel van
patentaanvraag ASML ref. P-1784.010 en laat daarmee zijn relevantie voor
de industrie zien.

e Hoofdstuk 6: Production Scheduling by Reachability Analysis. In deze case
study worden geklokte automaten die zijn uitgebreid met kosten functies
gebruikt om schedules te vinden voor de productie van lakken. Er wordt
aangetoond dat de aanpak gebaseerd op model checking in deze case study
competatief is met een commercieel tool.

e Hoofdstuk 7: Model Checking the Time to Reach Agreement. In dit hoofd-
stuk wordt een typisch verificatieprobleem gepresenteerd dat zeer moeilijk
is voor model checkers en dat slechts drie jaar geleden nog onmogelijk te
analyseren was.

Conclusies

Het is al jaren duidelijk dat model checking kan bijdragen aan het ontwerp en
de analyse van realistische systemen. Veel onderzoek was en is gericht op het
fundamentele schaalbaarheidsprobleem. Dit heeft geresulteerd in zeer krachtige
tools die het experts op het gebied van formele verificatie mogelijk maken om vele
interessante en realistische case studies routinematig op te lossen. De ASML-case
study uit hoofdstuk [5|en de Agreement-case study uit hoofdstuk [7]illustreren dit.

Het feit dat vele technieken die gericht zijn op schaalbaarheid vaak tegelijk
worden toegepast, roept vragen op over correctheid van zulke combinaties. Buiten
het feit dat de eigenlijke implementatie van het model checking algorithme cor-
rect moet zijn, moet het ook duidelijk zijn of de additionele technieken paarsge-
wijs compatibel zijn. Ook zorgen evoluerende modelleertalen voor problemen. De
symmetriereductietechniek uit de hoofdstukken [3|en [ bijvoorbeeld, is gebaseerd
op een versie van UPPAAL die de C-achtige taal uit de huidige versie nog niet on-
dersteunde. Hoe moet hiermee om worden gegaan? Moet al het theoretische werk
weer opnieuw worden gedaan om correctheid te garanderen?

Ondanks dat tenminste twee van de drie case studies uit dit proefschrift snel
en routinematig zijn opgelost, laten de case studies ook duidelijk zien dat model
checking nog geen “push-button technology” is. Er zijn drie problemen aan te
wijzen (buiten het fundamentele schaalbaarheidsprobleem):

e Het logisch en rechttoe-rechtaan modelleren van het probleem kan makkelijk
resulteren in een model dat te gedetailleerd is om te kunnen analyseren.

e Het is vaak erg moeilijk en onhandig om heuristieken aan het model toe te
voegen.

e Soms is het door de beperkte kracht van de modelleertaal erg moeilijk om
een bepaald aspect te modelleren.
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De eerste van de bovengenoemde problemen is sterk gerelateerd aan het schaal-
baarheidsprobleem en zal ook altijd een probleem blijven. Een effectieve manier
om met dit probleem om te gaan is het construeren van abstracties die precies zo
gedetailleerd zijn als nodig is. Dit is echter een niet triviale bezigheid zoals dui-
delijk wordt geillustreerd door de Agreement-case study. De ASML-case study
geeft een mooi voorbeeld van het gebruik van abstractie. Het verificatieprobleem
(waarvoor de hele toestandsruimte doorgerekend moet worden) wordt opgelost met
behulp van een abstract model en het optimalisatieprobleem wordt door middel van
heuristieken en een veel concreter model opgelost. Bovendien wordt handmatig
bewezen dat de abstractie correct is. Idealiter behoeft het proces van het constru-
eren en correct bewijzen van abstracties geen of slechts zeer weinig menselijke
interactie.

Het tweede probleem is typisch van toepassing op scheduling problemen. In
het algemeen is de toestandsruimte van deze problemen veel te groot om helemaal
door te rekenen. Daarom worden vaak heuristieken gebruikt om snel goede sche-
dules te vinden. Het modelleren van heuristieken is vaak niet eenvoudig. Dit is
duidelijk een toegankelijkheidsprobleem. Bovendien is het in het algemeen niet
gemakkelijk om de heuristieken op een elegante wijze van de kern van het model
te scheiden. Dit heeft als gevolg dat er snel vele versies van modellen ontstaan, wat
de onderhoudbaarheid van het model niet bevordert.

Het derde probleem wordt geillustreerd door de werktijden van het personeel
in de AXXOM-case study. Het modelleren van deze werktijden met geklokte auto-
maten is niet natuurlijk en heeft veel voeten in de aarde. Dit is weer een typisch
toegankelijkheidsprobleem: het modelleren is moeilijk en er moet bijzonder goed
worden opgepast dat het model analyseerbaar blijft. De conclusie is hier dan ook
dat pure geklokte automaten — net als ieder ander low level formalisme — niet erg
geschikt zijn om dit soort high level constraints te modelleren.

Het tweede en derde probleem zou kunnen worden ondervangen door high le-
vel domein-specifieke talen die een front end voor geklokte automaten modellen
vormen. In huidig werk wordt deze aanpak onderzocht voor de exploratie van
de ontwerpruimte van embedded systeemarchitecturen [61]. Een alternatief wordt
gevormd door het aanbieden van een bibliotheek met problem templates voor spe-
cifieke applicatiedomeinen. De gebruiker selecteert een template die erg dicht bij
zijn eigen probleem ligt (inclusief nuttige heuristieken). In het ideale geval hoeven
er slechts marginale veranderingen te worden uitgevoerd om het model geschikt te
maken voor het nieuwe probleem. Is dit echter niet het geval dan is gedetailleerde
kennis van geklokte automaten toch weer noodzakelijk.

Het fundamentele schaalbaarheidsprobleem blijft altijd aanwezig en er zal al-
tijd intensief onderzoek nodig zijn om de grenzen op te schuiven. Het AMETIST-
project heeft grote vooruitgang geboekt. De performance van UPPAAL is gedu-
rende dit driejarige project met verscheidene ordes vergroot. Er bestaan echter
nog vele technieken die aan UPPAAL zouden kunnen worden toegevoegd om het
tool nog sneller te maken. Deze zijn bijvoorbeeld de reductie van “inactieve in-
teger variabelen” [106]], klokoptimalisatie [40], “slicing” gebaseerd op de verifi-
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catie property [29], de “sweep-line” methodeE] [36l], en alternatieve symbolische
technieken zoals bijvoorbeeld gepresenteerd worden in [[103]]. De problemen van
toegankelijkheid en gebruiksgemak lijken steeds meer zichtbaar te worden met het
groeien van de performance van model checking tools. Een manier om deze op
te lossen is om high level talen voor specifieke applicatiedomeinen te construeren
die zich laten vertalen naar efficiénte low level modellen die geanalyseerd kunnen
worden met de bestaande tools. Een andere manier is het vullen van een “case stu-
dy bibliotheek™ waaruit reeds opgeloste problemen kunnen worden geleend. Deze
kunnen vervolgens worden aangepast om het bestaande probleem te analyseren.

12Recent is begonnen om deze techniek aan UPPAAL toe te voegen.



160 SAMENVATTING (DUTCH SUMMARY)



Curriculum Vitae

Martijn Hendriks was born in Canberra, Australia, on August 20, 1976. He lived
there for less than one year and then moved to Nijmegen, The Netherlands. After
graduation from the Elshof College he started his Chemistry studies in Nijmegen
in 1994. After 4 years he switched to Computer Science, also in Nijmegen. In
February 2002 he graduated cum laude and became a PhD student in the group
Informatics for Technical Applications, headed by prof. dr. Frits W. Vaandrager.
Currently, he works as a researcher in the same group.



162 CURRICULUM VITAE



Titles in the IPA Dissertation Series

J.O0. Blanco. The State Operator in Process Al-
gebra. Faculty of Mathematics and Computing
Science, TUE. 1996-01

AM. Geerling. Transformational Develop-
ment of Data-Parallel Algorithms. Faculty
of Mathematics and Computer Science, KUN.
1996-02

P.M. Achten. [Interactive Functional Pro-
grams: Models, Methods, and Implementation.
Faculty of Mathematics and Computer Science,
KUN. 1996-03

M.G.A. Verhoeven. Parallel Local Search.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-04

M.H.G.K. Kesseler. The Implementation of
Functional Languages on Parallel Machines
with Distrib. Memory. Faculty of Mathematics
and Computer Science, KUN. 1996-05

D. Alstein. Distributed Algorithms for Hard
Real-Time Systems. Faculty of Mathematics
and Computing Science, TUE. 1996-06

J.H. Hoepman. Communication, Synchroniza-
tion, and Fault-Tolerance. Faculty of Mathe-
matics and Computer Science, UVA. 1996-07

H. Doornbos. Reductivity Arguments and Pro-
gram Construction. Faculty of Mathematics
and Computing Science, TUE. 1996-08

D. Turi. Functorial Operational Semantics and
its Denotational Dual. Faculty of Mathematics
and Computer Science, VUA. 1996-09

A.M.G. Peeters. Single-Rail Handshake Cir-
cuits. Faculty of Mathematics and Computing
Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering Speci-
fication Formalism. Faculty of Mechanical En-
gineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in
Lambda Calculus and its Relation to Type In-
ference. Faculty of Mathematics and Comput-
ing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and Par-
tition Refinement for Model Checking. Faculty
of Mathematics and Computing Science, TUE.
1996-13

M.M. Bonsangue. Topological Dualities in Se-
mantics. Faculty of Mathematics and Computer
Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of
Small Treewidth. Faculty of Mathematics and
Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transforma-
tions in Context. Faculty of Computer Science,
UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data
Types. Faculty of Mathematics and Computing
Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory in
Logic and Mathematics. Faculty of Mathemat-
ics and Computing Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Ex-
plicit Substitution. Faculty of Mathematics and
Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Alge-
bra. Faculty of Mathematics and Computing
Science, TUE. 1997-06

F.AM. van den Beuken. A Functional Ap-
proach to Syntax and Typing. Faculty of Math-
ematics and Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Testing.
Faculty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-
Event Simulator for Systems Engineering. Fac-
ulty of Mechanical Engineering, TUE. 1998-02

J. Verriet. Scheduling with Communication for
Multiprocessor Computation. Faculty of Math-
ematics and Computer Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous
Low-Power 80C51 Microcontroller. Faculty
of Mathematics and Computing Science, TUE.
1998-04

A.A. Basten. In Terms of Nets: System Design
with Petri Nets and Process Algebra. Faculty
of Mathematics and Computing Science, TUE.
1998-05

E. Voermans. Inductive Datatypes with Laws
and Subtyping — A Relational Model. Faculty
of Mathematics and Computing Science, TUE.
1999-01



H. ter Doest. Towards  Probabilistic
Unification-based Parsing. Faculty of Com-
puter Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simulation of
Surface Processes. Faculty of Mathematics and
Computing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evo-
lutionary Search. Faculty of Mathematics and
Natural Sciences, UL. 1999-04

E.L. Barakova. Learning Reliability: a Study
on Indecisiveness in Sample Selection. Faculty
of Mathematics and Natural Sciences, RUG.
1999-05

M.P. Bodlaender. Scheduler Optimization in
Real-Time Distributed Databases. Faculty of
Mathematics and Computing Science, TUE.
1999-06

M.A. Reniers. Message Sequence Chart: Syn-
tax and Semantics. Faculty of Mathematics and
Computing Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satis-
fiability problems. Faculty of Mathematics and
Computing Science, TUE. 1999-08

J.MLT. Romijn. Analysing Industrial Protocols
with Formal Methods. Faculty of Computer Sci-
ence, UT. 1999-09

P.R. D’Argenio. Algebras and Automata for
Timed and Stochastic Systems. Faculty of Com-
puter Science, UT. 1999-10

G. Fabian. A Language and Simulator for Hy-
brid Systems. Faculty of Mechanical Engineer-
ing, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts
and Proof Rules. Faculty of Mathematics and
Computing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neural
Prediction System. Faculty of Mathematics and
Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementa-
tion of Attribute Grammars. Faculty of Mathe-
matics and Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for Par-
allel Program Construction. Faculty of Mathe-
matics and Computing Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and Statecraft
in the Dutch Republic. Faculty of Mathematics
and Computer Science, UVA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified
approach to the verification of distributed algo-
rithms. Faculty of Mathematics and Computer
Science, UU. 2000-02

W. Mallon. Theories and Tools for the Design
of Delay-Insensitive Communicating Processes.
Faculty of Mathematics and Natural Sciences,
RUG. 2000-03

W.0.D. Griffioen. Studies in Computer Aided
Verification of Protocols. Faculty of Science,
KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the Math-
Spad Editor. Faculty of Mathematics and Com-
puting Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and
Packaging Plant. Faculty of Mechanical Engi-
neering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriving
Correct Programs. Faculty of Mathematics and
Computing Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging Het-
erogeneous Applications. Faculty of Natural
Sciences, Mathematics and Computer Science,
UvA. 2000-08

E. Saaman. Another Formal Specification Lan-
guage. Faculty of Mathematics and Natural Sci-
ences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary Search
Discovering and Representing Search Space
Structure. Faculty of Mathematics and Natural
Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a computa-
tional approach to knowledge, observation and
communication. Faculty of Mathematics and
Computing Science, TU/e. 2001-02

M. Huisman. Reasoning about Java programs
in higher order logic using PVS and Isabelle.
Faculty of Science, KUN. 2001-03

LM.M.J. Reymen. Improving Design Pro-
cesses through Structured Reflection. Faculty
of Mathematics and Computing Science, TU/e.
2001-04

S.C.C. Blom. Term Graph Rewriting: syntax
and semantics. Faculty of Sciences, Division
of Mathematics and Computer Science, VUA.
2001-05

R. van Liere. Studies in Interactive Visualiza-
tion. Faculty of Natural Sciences, Mathematics
and Computer Science, UvA. 2001-06



A.G. Engels. Languages for Analysis and Test-
ing of Event Sequences. Faculty of Mathematics
and Computing Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switching
Classes. Faculty of Mathematics and Natural
Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Analy-
sis of Data in Environmental Epidemiology: A
Case-study into Acute Effects of Air Pollution
Episodes. Faculty of Mathematics and Natural
Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model Checking.
Faculty of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of con-
currency control and recovery protocols. Fac-
ulty of Mathematics and Computing Science,
TU/e. 2001-11

M.D. Oostdijk. Generation and presentation
of formal mathematical documents. Faculty
of Mathematics and Computing Science, TU/e.
2001-12

A.T. Hofkamp. Reactive machine control: A
simulation approach using x. Faculty of Me-
chanical Engineering, TU/e. 2001-13

D. Bosnacki. Enhancing state space reduc-
tion techniques for model checking. Faculty
of Mathematics and Computing Science, TU/e.
2001-14

M.C. van Wezel. Neural Networks for Intelli-
gent Data Analysis: theoretical and experimen-
tal aspects. Faculty of Mathematics and Natural
Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Specification
and Analysis of Industrial Systems. Faculty of
Mathematics and Computer Science and Fac-
ulty of Mechanical Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding
Legacy Software Systems. Faculty of Natural
Sciences, Mathematics and Computer Science,
UvA. 2002-03

S.P. Luttik. Choice Quantification in Process
Algebra. Faculty of Natural Sciences, Mathe-
matics, and Computer Science, UvA. 2002-04

R.J. Willemen. School Timetable Construc-
tion: Algorithms and Complexity. Faculty
of Mathematics and Computer Science, TU/e.
2002-05

M.LA. Stoelinga. Alea Jacta Est: Verifica-
tion of Probabilistic, Real-time and Parametric
Systems. Faculty of Science, Mathematics and
Computer Science, KUN. 2002-06

N. van Vugt. Models of Molecular Computing.
Faculty of Mathematics and Natural Sciences,
UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guid-
ing and Cost-Optimality in Model Checking
of Timed and Hybrid Systems. Faculty of
Science, Mathematics and Computer Science,
KUN. 2002-08

R. van Stee. On-line Scheduling and Bin Pack-
ing. Faculty of Mathematics and Natural Sci-
ences, UL. 2002-09

D. Tauritz. Adaptive Information Filtering:
Concepts and Algorithms. Faculty of Mathe-
matics and Natural Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Logics
for Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Science,
UvA. 2002-11

J.1. den Hartog. Probabilistic Extensions of
Semantical Models. Faculty of Sciences, Di-
vision of Mathematics and Computer Science,
VUA. 2002-12

L. Moonen. Exploring Software Systems. Fac-
ulty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary Com-
putation to Constraint Satisfaction and Data
Mining. Faculty of Mathematics and Natural
Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra.
Faculty of Mathematics and Computer Science,
TU/e. 2002-15

Y.S. Usenko. Linearization in ;«CRL. Faculty
of Mathematics and Computer Science, TU/e.
2002-16

J.J.D. Aerts. Random Redundant Storage for
Video on Demand. Faculty of Mathematics and
Computer Science, TU/e. 2003-01

M. de Jonge. To Reuse or To Be Reused: Tech-
niques for component composition and con-
struction. Faculty of Natural Sciences, Math-
ematics, and Computer Science, UVA. 2003-02



J.M.W. Visser. Generic Traversal over Typed
Source Code Representations. Faculty of Nat-
ural Sciences, Mathematics, and Computer Sci-
ence, UVA. 2003-03

S.M. Bohte. Spiking Neural Networks. Fac-
ulty of Mathematics and Natural Sciences, UL.
2003-04

T.A.C. Willemse. Semantics and Verification in
Process Algebras with Data and Timing. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2003-05

S.V. Nedea. Analysis and Simulations of Cat-
alytic Reactions. Faculty of Mathematics and
Computer Science, TU/e. 2003-06

ML.E.M. Lijding. Real-time Scheduling of Ter-
tiary Storage. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science, UT.
2003-07

H.P. Benz. Casual Multimedia Process Anno-
tation — CoMPAs. Faculty of Electrical En-
gineering, Mathematics & Computer Science,
UT. 2003-08

D. Distefano. On Modelchecking the Dynam-
ics of Object-based Software: a Foundational
Approach. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2003-
09

M.H. ter Beek. Team Automata — A Formal
Approach to the Modeling of Collaboration Be-
tween System Components. Faculty of Mathe-
matics and Natural Sciences, UL. 2003-10

D.J.P. Leijen. The \ Abroad — A Functional
Approach to Software Components. Faculty of
Mathematics and Computer Science, UU. 2003-
11

W.P.A.J. Michiels. Performance Ratios for the
Differencing Method. Faculty of Mathematics
and Computer Science, TU/e. 2004-01

G.L Jojgov. Incomplete Proofs and Terms and
Their Use in Interactive Theorem Proving. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2004-02

P. Frisco. Theory of Molecular Computing —
Splicing and Membrane systems. Faculty of
Mathematics and Natural Sciences, UL. 2004-
03

S. Maneth. Models of Tree Translation. Fac-
ulty of Mathematics and Natural Sciences, UL.
2004-04

Y. Qian. Data Synchronization and Browsing
for Home Environments. Faculty of Mathemat-
ics and Computer Science and Faculty of Indus-
trial Design, TU/e. 2004-05

F. Bartels. On Generalised Coinduction and
Probabilistic Specification Formats. Faculty of
Sciences, Division of Mathematics and Com-
puter Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real Analysis:
a Type-Theoretical Formalization and Applica-
tions. Faculty of Science, Mathematics and
Computer Science, KUN. 2004-07

E.H. Gerding. Autonomous Agents in Bargain-
ing Games: An Evolutionary Investigation of
Fundamentals, Strategies, and Business Appli-
cations. Faculty of Technology Management,
TU/e. 2004-08

N. Goga. Control and Selection Techniques
for the Automated Testing of Reactive Systems.
Faculty of Mathematics and Computer Science,
TU/e. 2004-09

M. Niqui. Formalising Exact Arithmetic: Rep-
resentations, Algorithms and Proofs. Faculty of
Science, Mathematics and Computer Science,
RU. 2004-10

A. Loh. Exploring Generic Haskell. Faculty of
Mathematics and Computer Science, UU. 2004-
11

I.C.M. Flinsenberg. Route Planning Algo-
rithms for Car Navigation. Faculty of Mathe-
matics and Computer Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Media Pro-
cessing Using Conditionally Guaranteed Bud-
gets. Faculty of Mathematics and Computer
Science, TU/e. 2004-13

J. Pang. Formal Verification of Distributed Sys-
tems. Faculty of Sciences, Division of Mathe-
matics and Computer Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-Based Eco-
nomics. Faculty of Technology Management,
TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position Esti-
mation Using a Single Base Station. Faculty
of Mathematics and Computer Science, TU/e.
2004-16

S.M. Orzan. On Distributed Verification and
Verified Distribution. Faculty of Sciences, Di-
vision of Mathematics and Computer Science,
VUA. 2004-17



M.M. Schrage. Proxima - A Presentation-
oriented Editor for Structured Documents. Fac-
ulty of Mathematics and Computer Science,
UU. 2004-18

E. Eskenazi and A. Fyukov. Quantitative Pre-
diction of Quality Attributes for Component-
Based Software Architectures. Faculty of Math-
ematics and Computer Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2004-20

N.J.M. van den Nieuwelaar. Supervisory Ma-
chine Control by Predictive-Reactive Schedul-
ing. Faculty of Mechanical Engineering, TU/e.
2004-21

E. Abrahdm. An Assertional Proof System for
Multithreaded Java -Theory and Tool Support-
. Faculty of Mathematics and Natural Sciences,
UL. 2005-01

R. Ruimerman. Modeling and Remodeling in
Bone Tissue. Faculty of Biomedical Engineer-
ing, TU/e. 2005-02

C.N. Chong. Experiments in Rights Control -
Expression and Enforcement. Faculty of Elec-
trical Engineering, Mathematics & Computer
Science, UT. 2005-03

H. Gao. Design and Verification of Lock-free
Parallel Algorithms. Faculty of Mathematics
and Computing Sciences, RUG. 2005-04

H.ML.A. van Beek. Specification and Analysis
of Internet Applications. Faculty of Mathemat-
ics and Computer Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System Archi-
tecting - A Systematic Approach to Developing
Future-Proof System Architectures. Faculty of
Mathematics and Computing Sciences, TU/e.
2005-06

G. Lenzini. Integration of Analysis Techniques
in Security and Fault-Tolerance. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2005-07

1. Kurtev. Adaptability of Model Transforma-
tions. Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2005-08

T. Wolle. Computational Aspects of Treewidth -
Lower Bounds and Network Reliability. Faculty
of Science, UU. 2005-09

0. Tveretina. Decision Procedures for Equal-
ity Logic with Uninterpreted Functions. Faculty
of Mathematics and Computer Science, TU/e.
2005-10

A.ML.L. Liekens. Evolution of Finite Popu-
lations in Dynamic Environments. Faculty of
Biomedical Engineering, TU/e. 2005-11

J. Eggermont. Data Mining using Genetic Pro-
gramming: Classification and Symbolic Regres-
sion. Faculty of Mathematics and Natural Sci-
ences, UL. 2005-12

B.J. Heeren. Top Quality Type Error Messages.
Faculty of Science, UU. 2005-13

G.F. Frehse. Compositional Verification of Hy-
brid Systems using Simulation Relations. Fac-
ulty of Science, Mathematics and Computer
Science, RU. 2005-14

M.R. Mousavi. Structuring Structural Opera-
tional Semantics. Faculty of Mathematics and
Computer Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of Proba-
bilistic Systems. Faculty of Mathematics and
Computer Science, TU/e. 2005-16

T. Gelsema. Effective Models for the Structure
of pi-Calculus Processes with Replication. Fac-
ulty of Mathematics and Natural Sciences, UL.
2005-17

P. Zoeteweij. Composing Constraint Solvers.
Faculty of Natural Sciences, Mathematics, and
Computer Science, UVA. 2005-18

J.J. Vinju. Analysis and Transformation of
Source Code by Parsing and Rewriting. Faculty
of Natural Sciences, Mathematics, and Com-
puter Science, UvA. 2005-19

M.Valero Espada. Modal Abstraction and
Replication of Processes with Data. Faculty of
Sciences, Division of Mathematics and Com-
puter Science, VUA. 2005-20

A. Dijkstra. Stepping through Haskell. Faculty
of Science, UU. 2005-21

Y.W. Law. Key management and link-layer
security of wireless sensor networks: energy-
efficient attack and defense. Faculty of Electri-
cal Engineering, Mathematics & Computer Sci-
ence, UT. 2005-22

E. Dolstra. The Purely Functional Software
Deployment Model. Faculty of Science, UU.
2006-01



R.J. Corin. Analysis Models for Security Pro-
tocols. Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2006-02

P.R.A. Verbaan. The Computational Complex-
ity of Evolving Systems. Faculty of Science,
UU. 2006-03

K.L. Man and R.R.H. Schiffelers. Formal
Specification and Analysis of Hybrid Systems.
Faculty of Mathematics and Computer Science
and Faculty of Mechanical Engineering, TU/e.

2006-04

M. Kyas. Verifying OCL Specifications of UML
Models: Tool Support and Compositionality.
Faculty of Mathematics and Natural Sciences,
UL. 2006-05

M. Hendriks. Model Checking Timed Au-
tomata - Techniques and Applications. Faculty
of Science, Mathematics and Computer Sci-
ence, RU. 2006-06



	Preface
	Introduction
	The Quality of Computer Systems
	Model Checking
	Overview of this Thesis
	Conclusions

	Exact Acceleration of Real-Time Model Checking
	Introduction
	Timed Automata
	Predictable Delays of Edge Sequences
	Acceleration of Timed Automata
	Experimental Results
	Conclusions

	Enhancing Uppaal by Exploiting Symmetry
	Introduction
	A Theory of Symmetry
	From Uppaal to SUppaal
	Extraction of Automorphisms
	Conclusions

	Adding Symmetry Reduction to Uppaal
	Introduction
	Model Checking and Symmetry Reduction
	Adding Scalarsets to Uppaal
	Using Scalarsets for Symmetry Reduction
	Experimental Results
	Conclusions

	Model Checker Aided Design of a Controller for a Wafer Scanner
	Introduction
	The EUV Machine
	Least Restrictive Deadlock Avoidance Policy
	Throughput Analysis
	Conclusions

	Production Scheduling by Reachability Analysis
	Introduction
	Scheduling with Timed Automata
	Description of the Case Study
	Modeling with Timed Automata
	Model Checking Experiments
	Stochastic Analysis
	Evaluation and Conclusion

	Model Checking the Time to Reach Agreement
	Introduction
	Timed Automata
	Description of the Algorithm
	Verification of the Timeout Task
	Verification of the Algorithm
	Conclusions

	Bibliography
	Samenvatting (Dutch summary)
	Curriculum Vitae

