
RECOGNIZING FINITE REPETITIVE
SCHEDULING PATTERNS IN
MANUFACTURING SYSTEMS

Martijn Hendriks1∗, Barend van den Nieuwelaar2†, Frits Vaandrager1∗

1Nijmeegs Instituut voor Informatica en Informatiekunde,
University of Nijmegen, The Netherlands
martijnh@cs.kun.nl, fvaan@cs.kun.nl

2Department of Mechanical Engineering,
Eindhoven University of Technology, The Netherlands
N.J.M.v.d.Nieuwelaar@tue.nl

Abstract Optimization of timing behaviour of manufacturing systems can be re-
garded as a scheduling problem in which tasks model the various pro-
duction processes. Typical for many manufacturing systems is that
tasks or collections of tasks can be associated with manufacturing en-
tities, which can be structured hierarchically. Execution of production
processes for several instances of these entities results in nested finite
repetitions, which blows up the size of the task graph that is needed
for the specification of the scheduling problem, and, in an even worse
way, the number of possible schedules. We present a subclass of UML
activity diagrams which is generic for the number of repetitions, and
therefore suitable for the compact specification of task graphs for these
manufacturing systems. The approach to reduce the complexity of the
scheduling problem exploits the repetitive patterns extracted from the
activity diagrams. It reduces the original problem to a problem contain-
ing some minimal number of identical repetitions, and after scheduling
of this much smaller problem the schedule is expanded to the original
size. We demonstrate our technique on a real-life example from the
semiconductor industry.

Keywords: Scheduling, manufacturing systems, UML activity diagrams, finite repet-
itive behaviour.

∗Supported by the European Community Project IST-2001-35304 (AMETIST).
†Part-time software architect at ASML.

1. Introduction
Scheduling in manufacturing systems has received much attention in

the literature. The basic scheduling issue, the assignment of mutually
exclusive resources to tasks, is addressed in the Job Shop Scheduling
literature [13, 19]. In addition, in some cases also the order of tasks
for a single resource influences temporal behaviour of the manufacturing
system [8], analogous to the Traveling Salesman Problem [10]. Both of
these problems are NP hard to solve. Combination of these optimization
problems and the size and diversity of practical manufacturing cases
makes scheduling of manufacturing systems an interesting challenge.

In [12], an overview of specific scheduling issues playing a role in man-
ufacturing systems can be found. One of them is the fact that the same
manufacturing processes have to be executed repetitively for several in-
stances of manufacturing entities. Often, the relations between the man-
ufacturing entities are hierarchical. For example, consider an assembly
system. A final product in such a system, called an assembly, can con-
sist of sub-assemblies, which in turn can consist of sub-sub-assemblies.
Products are manufactured in batches and manufacturing orders consist
of multiple batches. The relationships between the manufacturing enti-
ties of this system can be expressed by the Entity-Relationship Diagram
(ERD) of Figure 1.

Entity B Entity C Entity D Entity E
1 n 1 n 1 n 1 n

Entity A

Figure 1: Hierarchical structure of manufacturing entities.

For the assembly system example, entities A through E can be asso-
ciated with order, batch, product, sub-assembly, and sub-sub-assembly,
respectively. Another example with hierarchical manufacturing entity
relations concerns packaging. For instance, a manufacturing order of a
beer brewery consists of several pallets, containing several crates with
several bottles of beer. A third example concerns a wafer scanner man-
ufacturing system from the semiconductor industry [1]. Wafers are also
produced in batches (lots). A wafer scanner projects a mask on a wafer,
using light. Eventually, the projected masks result in Integrated Circuits
(ICs). On one wafer, multiple ICs and types of ICs are manufactured.
Multiple types of ICs involve multiple masks, and multiple masks are
placed on a reticle. The manufacturing entities can be modeled as in
Figure 1, where entity A through E can be associated with lot, wafer,
reticle, mask, and IC, respectively. As this example concerns not only
entities that end up in the final product but also other entities required

for manufacturing, this example is considered in the remainder of this
paper.

Repetitive execution of manufacturing processes for several instances
of manufacturing entities leads to finite repetitive patterns in manufac-
turing schedules. In practice, execution of the first few instances and
last few instances of a manufacturing entity differ slightly from the rest.
This is a large difference with unlimited repetitive behaviour of manufac-
turing systems, which has received much attention in literature [14, 20].
Furthermore, the hierarchical structure of the manufacturing entities
leads to patterns on several granularity levels. The purpose of this pa-
per is to describe an approach to identify exactly identical repetitive
scheduling patterns in order to reduce the complexity of the schedul-
ing problem. With this information, a (sub-) optimized manufacturing
schedule can be created by concatenation of the optimized sub-schedules
of the patterns. Without this information, combination of the possible
sub-schedules for these recurrent patterns blows up the number of pos-
sible overall schedules dramatically.

Concretely, our contribution is twofold. First, we introduce a subclass
of UML activity diagrams [16, 17] for the compact specification of task
graphs which may contain finite repetitive behaviour. Essentially, the
same type of activity diagrams is used within ASML to specify schedul-
ing problems. The key technical difficulty that we face when giving
a formal definition of this subclass of activity diagrams is to rule out
certain undesired race conditions. The second part of our contribution
consists of a method for finding repetitive subgraphs in these task graphs
using the activity diagrams. This information can be exploited to speed
up the scheduling process in a dramatic way. We show this by applying
our technique to a real-life example from the semiconductor industry.

Related work. In [15] UML activity diagrams that specify scheduling
problems are translated to timed automata models. Schedulability of
the activity diagram is translated to a reachability property, which is
checked by the Uppaal model checker [9]. If the property is satisfied (the
activity diagram is schedulable), then a trace that proves the property is
equivalent to a schedule for the activity diagram. Although the explosion
of the scheduling effort due to hierarchical, finite repetitions is recognized
in [15], no solution is provided.

Related work w.r.t. the semantics of UML activity diagrams includes
the verification of workflow models specified by these diagrams [4]. In
contrast to our work, the semantics of [4] associates a transition system
to each activity diagram, using some form of “token game”. The tran-
sition system semantics of [4] can serve as a basis for verification using
model checking but, unlike our task graph (partial order) semantics, it

cannot be used as a starting point for solving scheduling problems. An-
other semantics for UML activity diagrams is provided by [6], using a
straightforward translation to Petri nets. However, this semantics does
not address the evaluation of conditionals, and as a result it is unclear
how to extract a task graph in order to address scheduling issues.

Related work w.r.t. the second part of our contribution includes the
Cabins system [11]. It is “an integrated framework of iterative revision
integrated with knowledge acquisition and learning for optimization in
ill-structured domains” (quoted from the Cabins web-site). In this ap-
proach knowledge about task patterns that already have been scheduled
before is used to improve schedules. There are, however, numerous dif-
ference between the Cabins approach and ours. For instance, we do
not use learning, and Cabins supports run-time scheduling whereas our
approach is static.

Also related is the computer-aided design of video processing algo-
rithms of [18]. Most video algorithms consist of repetitive executions
of operations on data, which can be described by using nested loops
and multidimensional arrays. The scheduling problem in this case is
to minimize a particular cost function while satisfying certain timing,
resource and precedence constraints. However, apparently no exploita-
tion of equality of loop instances takes place. Our work also relates to
widening and acceleration techniques (e.g., [3] and [2, 7]), which try to
accelerate the fixed-point computation of reachable sets. At least the
approaches in the latter two use static analysis of the control graph
(the syntax) to detect interesting cycles, of which the result of iterated
execution can be computed by one single meta-transition. These meta-
transitions are then added to the system and favored by the state space
exploration algorithm, resulting in faster exploration of the state space.
Our technique also exploits cyclic structures, yet not in the syntax, but
in the semantics of the activity diagrams, to derive future behaviour.
When this is done during the actual scheduling, it can be regarded as a
form of acceleration. We are not aware of any other related work.

Outline. The paper is structured as follows. In Section 2, activity
graphs – a subclass of UML activity diagrams – are introduced, which
are suited to model finite repetitive behaviour of manufacturing sys-
tems. Subsequently, we formally define the syntax of activity graphs,
and we define the semantics by association of task graphs. Section 3
discusses an approach to recognize repetitive patterns in task graphs us-
ing the activity diagram it is associated with. Moreover, we show how
this information can be used in a real-life industrial example. Finally,
concluding remarks are presented in Section 4.

2. Activity Graphs
Task graphs are basic objects for the specification of scheduling prob-

lems. They are less suited for the specification of manufacturing systems
with finite repetitive behaviour. Consider figure 1 and assume that we
need to produce 5 units of each entity to be able to produce its parent
entity. A task graph describing such a problem then consists of 55 sub
graphs for the production of the needed quantity of entity E. In other
words, the task graph may be exponentially large (or even worse!) in
the number of different entities, which makes specification using a task
graph and scheduling inconvenient.

In Section 2.1 we introduce a subclass of UML activity diagrams
for the compact specification of task graphs which may contain lim-
ited repetitive behaviour [16, 17]. Section 2.2 associates task graphs
with activity diagrams using the so-called relevancy mapping, which is
needed to exclude the possibility that an activity diagram is ambiguous
(i.e. can be associated with multiple task graphs) due to race conditions.

2.1 Formal Definition of Activity Graphs
Activity graphs are directed graphs with different types of vertices

(a.k.a. nodes), which correspond to the types in UML activity diagrams,
and with an annotation of the conditional nodes, which is used to specify
finite repetitions of subgraphs. The actual scheduling of task graphs is
not considered in the present paper. Therefore, we omit the durations
and resource requirements of the activities/tasks in all definitions.

Definition 1 (Activity graph) An activity graph is defined by a
tuple (N,n0,�, c), where

N is a finite set of nodes, partitioned into the sets C,F, J,A, M
and E which are sets of conditional, fork, join, activity, merge
and exit nodes respectively,

n0 ∈ F ∪A ∪M is the initial node,

�⊆ N ×N is the set of precedence edges such that:

– exit nodes have no successors, fork nodes have at least two
successors, conditional nodes have two successors, and other
nodes have one successor, and

– join and merge nodes have at least one predecessor, and other
nodes have one predecessor. The initial node is an exception
since it may have no predecessors.

We write v � v′ for (v, v′) ∈�.

c : C → N × (N \ {0}) ×N × 2C is the conditional function such
that: if c(v) = (v′, n, v′′, R), then v � v′ and v � v′′. We call
v � v′ the true edge of v, n the upper bound of v denoted by
ub(v), v � v′′ the false edge of v, and R the reset set of v.

We can explain the conditional function c as follows. Assume that
c(v) = (v′, n, v′′, R). This means that initially the true edge of v is
enabled and the false edge of v is disabled. After n executions of the
true edge it becomes disabled and the false edge becomes enabled. The
enabledness can be reset to the initial situation by taking a false edge of
a conditional w such that v is in the reset set of w.

We use the regular UML conventions for the graphical representation
of activity diagrams to represent our activity graphs [16]. Summariz-
ing, forks and joins are represented by bars, merges by diamond shapes
with one outgoing arrow, activities by boxes with a name inside, exits
by circled black dots, and conditionals by diamonds with two guarded
outgoing edges. The initial node is preceded by a black dot. In our
representation we use the conditionals as “counters” to keep track of the
number of executions of the true edge of the conditional.

[c2<2][c1<2]

[c2>=2][c1>=2]

A2 A3

A1

Figure 2: A small activity graph.

For instance, Figure 2 depicts a small activity graph that has three
activities and uses two conditionals, c1 and c2. There is one cycle, con-
trolled by the conditionals, that is executed twice and in which activities
A2 and A3 can run in parallel. Activity A1 must be run once, and this
can happen in parallel with the cycle.

2.2 From Activity Graphs to Task Graphs
We define the semantics of an activity graph by unfolding it (which

means resolving the conditional choices) to obtain all reachable instances
of nodes and their precedence relation. For instance, Figure 3 depicts
the intended unfolding of the activity graph in Figure 2.

A2 A3 A1A3A2

Figure 3: The intended unfolding of the activity graph of Figure 2.

Although the unfolding operation is intuitively quite clear, a difficulty
concerning race conditions exists. Consider, for instance, the activity
graph of Figure 4. We can unfold this graph in two ways, since we
can choose when to reset c1. The first unfolding contains one instance
of both activities, whereas the second unfolding contains two instances
of activity A1 and one instance of activity A2. This example shows
that an activity graph may contain race conditions in which two parallel
branches of a fork use the same conditional counter, which results in a
non-unique unfolding. Such race conditions are undesirable and we want
to restrict ourselves to a subclass of activity graphs that do not contain
race conditions and which have a unique unfolding.

A2

[c1<1]

A1

[c2<1]

[c1>=1]
[c2>=1]
c1:=0

Figure 4: A non-deterministic activity
graph.

[c1<2]

[c1>=2]

A1 A2

Figure 5: An activity graph which
requires the use of additional coun-
ters.

In order to forbid situations in which an activity graph can be unfolded
in more than one way, we require the existence of a distribution of the
privileges of using the conditionals over the various parallel branches in

the activity graph. We obtain such a distribution, a relevancy mapping,
by assigning a set of relevant conditional nodes to each node in an ac-
tivity graph. In order to exclude race conditions, we forbid parallelism
of nodes that have overlapping relevancy sets. For instance, the condi-
tional c1 is relevant for both parallel branches of the fork node in Figure
4, which renders a unique unfolding impossible.

To avoid problems with, for instance, the unfolding of the activity
graph in Figure 5, we extend the range of the relevancy mapping to
all nodes1. The rationale behind the formal definition of the relevancy
mapping is as follows. First, we require that a node is relevant for itself,
and the reset set of a conditional is relevant for that conditional. Second,
we require that relevancy is passed on to neighboring nodes, except not
forward through forks and not backward through joins (we consider these
last two situations separately). This is necessary to give an inductive
definition of the unfolding operation. Third, if a node is relevant for the
successor of a fork, then it is also relevant for the fork. Moreover, the
relevancy sets of any two different successors of a fork are disjoint. The
first part is necessary for the inductive definition, and the second part
is to avoid race conditions. Fourth, we require that the set of relevancy
sets of the predecessors of a join is a partitioning of the relevancy set of
the join, which, again, is necessary for the inductive definition. These
four points are formalized as follows:

Definition 2 (Relevancy mapping) A relevancy mapping for an ac-
tivity graph (N,n0,�, c) is a function X : N → 2N such that:

(i) If v is a conditional node with c(v) = (v′, n, v′′, R), then {v}∪R ⊆
X(v). Otherwise, v ∈ X(v).

(ii) If v � v′, v is not a fork node and v′ is not a join node, then
X(v) = X(v′).

(iii) If v is a fork node with successors v1, ..., vn, then ∪n
i=1X(vi) ⊆ X(v)

and X(vi) ∩X(vj) = ∅ for all 1 ≤ i 6= j ≤ n.

(iv) If v is a join node with predecessors v1, ..., vn, then we require
X(v) = ∪n

i=1X(vi) and X(vi) ∩X(vj) = ∅ for all 1 ≤ i 6= j ≤ n.

1Assume that the nodes in a unfolding are tuples (v, γ), where v is a node and γ is a valuation
of the conditionals which are relevant for that node (γ(v) counts the number of executions
of the true edge of v since its last reset). Now consider Figure 5. When we construct the
set of relevant conditionals for each node, we see that either A1 must be labeled with c1
or A2 must be labeled with c1 (otherwise we cannot give a clean inductive definition of the
unfolding operation). If we assume that A1 is labeled with c1, and we unfold the activity
graph, then we see that only one instance of A2 appears, namely (A2, ∅), since A2 has an
empty relevancy set. This, of course, is not what we expect from the unfolding.

We can show that the problem whether a general activity graph has a
relevancy mapping is NP -complete by a reduction from 3-SAT without
negation and with exactly one true literal per clause [5]. However, for the
more restricted class of activity graphs for which holds that every node is
reachable from the initial node – which is not a limiting assumption – we
cannot find a reduction, yet we also cannot find a polynomial algorithm.
In practice we use an ad hoc algorithm to find a relevancy mapping that
works fine for all activity graphs that appear in the present paper.

In order to define the semantics of an activity graph, we define ΓN for
an activity graph with nodes N as the set of partial functions with type
N ↪→ N. We call a γ ∈ ΓN a node valuation and we use the following
abbreviations: γ[v := v +1] maps every node not equal to v to the same
value as γ, and it maps v, if it is defined by γ, to the value γ(v) + 1.
Similarly, γ[R := 0] agrees with γ on the value of every node not in R
and it maps every node in R, if it is defined by γ, to zero. If γ, γ′ ∈ ΓN

and they both are defined for disjoint sets of nodes, then we let γ ∪ γ′

denote the node valuation that is defined for the union of these node
sets according to γ and γ′. Finally, if γ ∈ ΓN and S is a subset of nodes,
then we let [γ]S denote the partial node valuation that is obtained by
projecting γ to S.

For simplicity we make two assumptions about our activity graphs:
(1) a conditional node is not immediately followed by a join node, and
(2) a fork node is not immediately followed by a join node. Note that we
can easily eliminate these constructions in an activity graph by adding
“dummy merges” with only one predecessor. Therefore, these assump-
tions can be made without loss of generality, yet they make the following
definition much shorter.

Definition 3 (Unfolding) Let A = (N,n0,�, c) be an activity graph
(N is partitioned in the usual way) with relevancy mapping X. The
unfolding of A is a directed graph (V, 7→), where V ⊆ N × ΓN is the set
of node instances, and 7→⊆ V × V is a set of directed edges, inductively
defined as follows:

(i) The base clause is: {(n0, γ0)} ∈ V , where γ0(v) = 0 if v ∈ X(n0)
and it is undefined otherwise.

(ii) The inductive clauses are2:
(v, γ) ∈ V v ∈ J ∪M ∪A v � v′ v′ /∈ J

(v′, γ′) ∈ V (v, γ) 7→ (v′, γ′) where γ′ = γ[v := v + 1]
(1)

2Essentially this is a parameterized definition. Thus, for each activity graph, we can find a
finite set of inductive clauses, which are “instances” of the parameterized clauses, that are
used for the construction of the unfolding of that particular activity graph.

(v, γ) ∈ V v ∈ F v � v1, · · · , v � vn

(vi, γi) ∈ V (v, γ) 7→ (vi, γi) where γi = [γ]X(vi)[v := v + 1]
(2)

(v1, γ1), · · · , (vn, γn) ∈ V v1 � v, · · · , vn � v
γ1(v1) = · · · = γn(vn) v ∈ J

(v, γ) ∈ V (vi, γi) 7→ (v, γ) where γ = ∪n
i=1γi[vi := vi + 1]

(3)

(v, γ) ∈ V v ∈ C c(v) = (v′, n, v′′, R) γ(v) < n

(v′, γ′) ∈ V (v, γ) 7→ (v′, γ′) where γ′ = γ[v := v + 1]
(4)

(v, γ) ∈ V v ∈ C c(v) = (v′, n, v′′, R) γ(v) ≥ n

(v′′, γ′′) ∈ V (v, γ) 7→ (v′′, γ′′) where γ′′ = γ[v := v + 1][R := 0]
(5)

All successors or predecessors are considered in rules (2) and (3).

The inductive definition of the unfolding of an activity graph has a
unique solution. For instance, the unfolding of the activity graph in
Figure 2 indeed is the one in Figure 3 (we omitted the node valuations,
since that unnecessarily complicates the picture).

An activity graph for which holds that its unfolding has no “loose
ends” (which are non exit instances with no successors) is called well-
defined. For instance, the unfolding in Figure 3 is well-defined. However,
if we construct the unfolding for the activity graph in Figure 2 in which
we have replaced the upper bound of conditional c1 with 3, then we see
that the third instance of activity A2 is a loose end, since there will be
only two instances of activity A3.

Note that the unfolding of a well-defined activity graph can be consid-
ered as a new activity graph in which all conditionals have been replaced
by merges. Compare, for instance, the activity graph in Figure 2 and
its unfolding in Figure 3.

Let a and b be two instances in some unfolding. If there is a path
from a to b, then we denote this by a 7→∗ b. A path consisting of at least
one edge is denoted by a 7→+ b. We define parallelism of instances as
follows:

a ‖ b ⇐⇒ (a 67→∗ b ∧ b 67→∗ a)

We say that an instance a is non-parallel if there is no instance b
such that a ‖ b. We now informally state some useful properties of
unfoldings. (For the formal statement and proof of these items we refer
to the appendix.)

Many different relevancy mappings may exist for an activity graph,
but they all lead to isomorphic unfoldings (Lemma 12).

A2

A2 A3

A3

A1

Figure 6: The task graph of the unfolding in Figure 3.

Race conditions do not appear in activity graphs which have a rel-
evancy mapping. Thus, node instances which use the same nodes
are not parallel (Lemma 5).

The instances in a well-defined unfolding satisfy the same require-
ments on the number of successors and predecessors as their nodes
in the activity graph, except that merge instances have one pre-
decessor and conditional instances have one successor (Lemmas 8
and 6).

An unfolding is acyclic, but it might be infinite (Lemma 9).

There exists a sufficient syntactical condition on activity graphs
that ensures finiteness of the unfolding. We can check this condi-
tion in time polynomial in the size of the activity graph (Lemma
10).

The control structure instances (all instances but those of activity
nodes) can be “stripped away” as conditional and merge instances have
no function anymore (see the third bullet above). The resulting structure
is the task graph. Hence, we call instances of activity nodes tasks.

Definition 4 Let (V, 7→) be the unfolding of activity graph A. The task
graph of A is the tuple (T,→), where

T = { (v, γ) ∈ V | v is an activity node }, and

→⊆ T × T defined as: a → b if and only if

– a 7→+ b, and

– no c ∈ T \ {b} exists such that a 7→+ c and c 7→+ b.

The fact that there are no cycles in an unfolding implies that the task
graph is acyclic too. For instance, Figure 6 depicts the task graph of the
unfolding in Figure 3. (Again, the node valuations of the instances are
not depicted.)

3. An Approach to Exploit Repetitive
Structures in Activity Graphs

In the previous section we introduced activity graphs as a means for
the specification of scheduling problems for manufacturing systems with
a finite repetitive control structure. The semantics of these activity
graphs was defined in terms of unfoldings, which in turn define (possibly
infinite) task graphs.

Apart from the known NP -hardness of the task graph scheduling
problem, we also face a possible blow-up in size of the task graph due to
nested cycles. This makes the approach in which we straightforwardly
unfold the activity graph and feed it to a scheduler infeasible. Instead, we
find so-called cyclic structures in the activity graph, which are subgraphs
that appear more than once in the unfolding. These cyclic structures
can be exploited during scheduling, since they also define reappearing
subgraphs in the task graph. Hence, only one such a subgraph needs to
be scheduled.

Our approach consists of three steps. First, we lower the upper bounds
of conditionals to values as small as possible, which means that we are
just able to recognize cyclic structures in the condensed activity graph.
Second, we compute the task graph of the condensed graph, and use
regular scheduling tools to find a solution for this relatively small prob-
lem. Third, using the cyclic structures and the schedule, we construct a
schedule for the original, generally much larger, activity graph.

3.1 Formalizing the Approach
In this section we formalize our three step plan introduced above for

scheduling activity graphs. The first step involves decreasing the upper
bounds of the conditionals that control the cycles in the activity graph
such that they are minimal w.r.t. to detecting the cyclic structures. At
this moment, our approach for finding the minimal activity graph is as
follows:

The activity graph has been constructed with a clear view of what
it should mean. Therefore, it is known which conditionals (or sets
of conditionals) specify the cycles of the manufacturing process.
The first step is to set the upper bounds of all these conditionals
to the value such that at least one regular instance of the manu-
facturing entity is present. E.g., all leading manufacturing entities
(that differ slightly from normal ones) are present, plus a single
regular entity. If the activities to be done for all entities are the
same, then the upper bound is set to one.

Increment the lower bounds of all conditionals that control a single
cycle, until the activity graph is “extendable” for the conditionals
(below we formally explain what extendability means). The order
of this search process can be arbitrary.

We define what we exactly mean with incrementing upper bounds.

Definition 5 ((G, n)-extension) Let A be an activity graph, let G be
a subset of conditionals of A, and let n ∈ N. We define the (G, n)-
extension of A, denoted by E(A, G, n), as the activity graph in which the
upper bounds of the conditionals in G have been incremented with n.

Clearly, a relevancy mapping for an activity graph is also a relevancy
mapping for any extension of that activity graph. In the general case,
however, the unfolding of such an extension does not need to be well-
defined, as we already have shown in the previous section. Next, we
define what we exactly mean with a “cyclic structure” in an activity
graph.

Definition 6 (Cyclic structure) Let A be an activity graph and
let A′ = (N ′,�′) be a subgraph of A. We call A′ a cyclic structure of
A iff there exists more than one isomorphic embedding of A′ into the
unfolding (V, 7→) of A, i.e., an injective function i : N ′ → V satisfying

i(v) = (v′, γ′) ⇒ v = v′

v � v′ ⇐⇒ i(v) 7→ i(v′)

This definition carries easily over to task graphs. Note that repeated
patterns in an unfolding are due to a cycle in the activity graph. The
scope of this paper is finite repetitive behaviour, which implies that the
cycles in the activity graph are controlled by conditionals. Therefore,
we try to grasp repetitive structures using subsets of conditionals. First,
we define the set of direct successors of a subset of instances N , and a
subset of the 7→ edge relation that excludes incoming edges of a set of
nodes G:

next(N) = {b | a 7→ b ∧ a ∈ N} (6)
7→G = {((v, γ), (v′, γ′)) ∈ 7→ | v′ /∈ G} (7)

We say that a 7→+
G

b if and only if there exists a path from a to b
which consists of one or more edges in 7→G. Using these two definitions
we can define the notion of repetitive structure within an unfolding.

Definition 7 (Repetitive structure) Let A be a well-defined ac-
tivity graph with a finite unfolding (V, 7→) and let G be a subset of condi-
tionals of A. The repetitive structure induced by A and G is inductively
defined as follows:

(i) Base: R0 = {(n0, γ0)} and B0 = {(v, γ) | (n0, γ0) 7→+
G

(v, γ)}.

(ii) Induction: Ri = next(Bi−1)\Bi−1 and Bi = {b | a 7→+
G

b∧a ∈ Ri}.

A repetitive structure consists of only a finite number of non-empty
sets since we assumed that the unfolding is finite, and we have proven
that it is acyclic. Also note that Ri only contains instances of condition-
als in G for i > 0, and all edges leading outside Bi lead to Ri+1. Figure
7 gives a graphical representation of a repetitive structure where all sets
Ri and Rj are disjoint.

R

R

R

B

1

2

k

1

V

Figure 7: A repetitive structure.

If all instances in Ri are pairwise parallel, then we define γ∗
i as the

union of all node valuations in Ri projected to the domain of the condi-
tionals (the set C) of the activity graph as follows (it is well-defined by
Lemma 5 of the appendix):

γ∗
i (v) =

{
γ(v) if ∃v′ (v′, γ) ∈ Ri ∧ γ(v) 6= ↑ ∧ v ∈ C
↑ otherwise

Next, we define the situation in which we are able to recognize cyclic
structures from the repetitive structure. The idea is that we state condi-
tions on the repetitive structure of a set conditional G such that certain

sets Ri ∪ Bi identify cyclic structures of the activity graph. As a re-
sult, we can copy-paste these sets to increase the upper bounds of the
conditionals in G to extend the activity graph.

Definition 8 (Extendability) Let G be a subset of conditionals of
an activity graph A and let R = {R1, ..., Rk} and {B1, ..., Bk} be the
associated repetitive structure. We call G extendable, if

the set R is a partitioning of the set of all instances of conditionals
in G, such that |Ri| = |G| (hence, γ∗

i is defined: see the proof of
the lemma below),

if (v, γ) 7→ (v′, γ′) and (v′, γ′) ∈ Bi, then (v, γ) ∈ Bi ∪Ri,

the outgoing edges of Ri either are all true edges or all false edges,
and

if Ri exits with true edges and Ri+1 exits with false edges, then:

c ∈ G ⇒
(
γ∗

i+1(c) = γ∗
i (c) + 1

)
∧

c /∈ G ⇒
(
γ∗

i (c) = γ∗
i+1(c) ∨ (γ∗

i (c) ≥ ub(c) ∧ γ∗
i+1(c) ≥ ub(c))

)
We call the set Ri ∪Bi a repetitive set.

The ugly-looking formula in the fourth item of the definition infor-
mally means that (i) conditionals in G have taken their true-edges once
in Bi, and (ii) the status of conditionals not in G has not changed: if
the true-edge (false-edge) is enabled according to γ∗

i , then the true-edge
(false-edge) is enabled according to γ∗

i+1.

Lemma 9 If an activity graph A is well-defined and extendable for G,
then E(A, G, n) is well-defined for any n ∈ N. Moreover, the subgraphs of
A associated with the repetitive sets are cyclic structures of the extension.

Proof (sketch). Let R = {R1, ..., Rk} and B = {B1, ..., Bk} be the
repetitive structure of G for an activity graph A. Let {i1, ..., im} be
the set of indices of the repetitive sets. We assume that the indices are
strictly increasing, that is j < k ⇒ ij < ik.

First we prove that the instances in Ri are pairwise parallel. From
Definition 7 follows that (i) every element of Ri is an instance of a
conditional in G, (ii) every element of Ri has a predecessor in Bi−1, and
(iii) Bi−1 ∩ Ri = ∅. Now assume that v 6‖ v′ and v, v′ ∈ Ri. Then there
exists a path from v to v′. Since the unfolding is acyclic, and conditional
instances have 1 predecessor, this path must pass through Bi. Since the

B-sets do not contain instances of conditionals in G v′ must be in the
set Rj such that i 6= j. Thus, R is not a partitioning, which we assumed.
Therefore, v ‖ v′.

Now consider the (G, n)-extension of A, denoted by A′. The rele-
vancy mapping for A also is a relevancy mapping for A′ and we use that
relevancy mapping to construct the unfolding of A′.

Since only the upper bounds of the conditionals in G are increased, we
can use exactly the same inductive clauses from Definition 3 to construct
the unfolding up to the conditionals in the set Ri1+1. Now instead of
taking the false edges of the conditionals, the true edges must be taken,
since the upper bounds of all counters in G have been increased with n.
By the fourth item in Definition 8 we know that in this situation exactly
the same conditional edges are enabled as from the conditionals in Ri1 .
Moreover, the second item of Definition 8 tells us that the structure
Ri1 ∪Bi1 is independent from the rest of the unfolding (in particular it
contains no join instances that have a predecessor that is not in Ri1 ∪
Bi1). Finally, the third item tells us that every instance of a conditional
in G takes its true edge from Ri1 and its false edge from Ri1+1. Therefore,
we can say that the subgraph Ri1∪ Bi1 exactly defines the last execution
of the cycle that is controlled by the set of conditionals G. In other
words, we can apply the same inductive clauses that we used to show
that Ri1 ∪ Bi1 is part of the unfolding to show that a “copy” of this sets
also is part of the unfolding. Thus, we can copy Ri1 ∪ Bi1 n times before
we proceed with the set Ri1+1.

If we do this copy-pasting for all the indices {i1, ..., im}, then we have
extended all conditional instances, since by the first item of Definition 8
we know that there are no conditionals in G that are not in some R-set.
The resulting unfolding is the unfolding of the (G, n)-extension of A.
Moreover, it is well-defined since A is well-defined and the second item
of the definition ensures that copy-pasting introduces no loose ends.

Finally, it is clear that the subgraphs of A associated with the sets
Rij ∪Bij are cyclic structures, since we have shown that these subgraphs
reappear in the (G, n)-extension of A due to the copy-pasting sketched
above. �

The previous lemma only covers the extension of a single set of con-
ditionals, whereas in general we need the extension of several sets of
conditionals. The next definition covers hierarchy (or nesting) between
cyclic structures of different sets of conditionals, which is needed for such
a parallel extension.

Definition 10 (Hierarchy) Let A be an activity graph and let G and
G′ be a disjoint sets of conditionals of A, which both are extendable for

A. We say that G ≺ G′ if and only if for all repetitive sets Ri ∪Bi of G
we can find a B′

j in the B-set of G′ such that Ri ∪Bi ⊂ B′
j.

The next lemma states that we can extend an activity graph for two
sets of conditionals, if they are hierarchical. Note that we can easily
generalize this lemma to an arbitrary number of hierarchical sets of
conditionals.

Lemma 11 If an activity graph A is well-defined and extendable for G
and for G′ and G ≺ G′, then E(E(A, G, n), G′, n′) is well-defined for any
n, n′ ∈ N. Moreover, the subgraphs of A associated with the repetitive
sets of G and G′ are cyclic structures of the extension.

Proof (sketch). The idea is to construct the extension ofA inside out.
This means that we first apply the method sketched in the constructive
proof of Lemma 9 to G, and then to G′. Assume that the repetitive
structure of G is given by R = {R1, . . . , Rm} and B = {B1, . . . , Bm},
and that the repetitive structure of G′ is given by R′ = {R′

1, . . . , R
′
n}

and B′ = {B′
1, . . . , B

′
n}.

By Definition 10 we can find for every repetitive set Ri ∪ Bi of G
a B′

j such that Ri ∪ Bi ∈ B′
j . Thus, we copy-paste the set Ri ∪ Bi n

times and also add the new instances to the set B′
j . Lemma 9 then

says that this creates the extension E(A, G, n). Next, we must prove
that G′ still is extendable for this extension. Therefore, we observe that
the copy-pasting does not change the status of conditionals not in G,
due to the fourth item of Definition 8. Thus, the “new” set R′

j that
follows the enlarged set B′

j is still equivalent to the old one w.r.t. the
status of the conditionals. Therefore, E(A, G, n) is still extendable for
G′, and the possibly enlarged repetitive sets R′

j∪B′
j are cyclic structures

of E(E(A, G, n), G′, n′). �

This concludes the first step of our approach. We now can lower the
upper bounds of a set of conditionals in an activity graph A such that
these conditionals are just extendable (Definition 8). Lemma 9 proves
that the subgraphs of A associated with the repetitive sets indeed are
cyclic structures of the extension of A. Definition 10 and Lemma 11
generalize this to multiple, hierarchical sets of conditionals.

The second step of our approach consists of using regular scheduling
tools to find a (optimal) solution for the condensed activity graph that
we have found in step one. We assume that we can obtain such a solu-
tion, since the actual scheduling falls outside the scope of this paper. It
is noteworthy, however, that scheduling a task graph consists of intro-
ducing extra precedence edges between tasks that are parallel and share
resources to ensure mutual exclusion of such tasks.

The third step consists of using the repetitive sets of the condensed
activity graph of step one and the schedule of step two to construct
a schedule for the original activity graph. There are many different
strategies to do this. For example, one could only consider the schedule
of the repetitive sets. The already partially scheduled unfolding (and
task graph) of the original activity graph can then be obtained using
the method sketched in the proof of Lemma 9. At this moment we are
happy with such a (hopefully!) good and non-trivial starting point for
the scheduling activity. Of course, matters of optimality are important
in this step and we regard it as an important subject of future work.

3.2 Example Application of the Approach
In this subsection we apply our approach to part of a scheduling prob-

lem from a wafer scanner. Its activity graph is depicted in Figure 8. In
order to achieve maximal utilization, a wafer scanner has a work queue
of recipes to do. This queue is extended with extra recipes every once
in a while. On such occasion the schedule is extended, which implies
a scheduling action of a (static) activity graph. The conditional upper
bounds of the graph are instantiated in accordance with the number of
entities of the recipes in the queue. This example covers three out of five
manufacturing entities that were discussed in the introduction: reticles,
masks, and ICs.

The number of reticles involved is 15 in this case. The conditional
set that can be associated with this GC = {c0, c1}. Obviously, the
upper bounds of these conditionals equal 15.

The number of masks involved is 8. The conditional set that can
be associated with this GD = {c2, c3}. For the first mask of
every reticle, some additional activities must be executed, which
is controlled by conditionals c4, c5, c6, and c8.

The number of ICs involved is 43, which is controlled by conditional
set GE = {c7}. Therefore, the total amount of ICs in the specified
schedule will be 15 × 8 × 43 = 5160.

It is clear that the task graph associated with this activity graph is
quite large and not easily schedulable. We have implemented the theory
in this paper in Java, and we can show in a few minutes that the task
graph consists of 11655 tasks (construction of the relevancy mapping
takes virtually no time).

We try to apply the technique explained in the previous section. The
first step consists of finding smallest upper bounds of the conditionals

E29

E30

E31

E32

E33

E26

c2:=0
c4:=0
c5:=0
c8:=0

c3:=0
c6:=0

E23

E25

E24

E28

E27

E20

E36 E34

E35

E37

E21

E38

[c0>=15] [c1>=15]
c0:=0 c1:=0

[c0<15] [c1<15]

[c3<8]

[c2>=8]

[c2<8]

[c3>=8]

E22

[c4>=1]

[c4<1]

[c5>=1]

[c5<1]

[c8<1]
[c8>=1]

[c6<1]

[c6>=1]

E39

E40

[c7<43]

[c7>=43]
c7:=0

Figure 8: An activity graph which specifies part of a real-life scheduling problem for
a wafer scanner.

that specify the repetitions for the reticles, masks and ICs. We start by
setting the upper bounds of GC and GE to 1, since every repetition is
equal. However, we set the upper bounds of GD to 2, since the first image
of every reticle differs from the rest. Next, we check the extendability
of GC , GD and GE for this condensed graph which we call A0: they are
all extendable. Moreover, GE ≺ GD ≺ GC as expected, which enables
the “parallel” extension of the conditional sets (see Lemma 11). Com-

putation of the cyclic structures and checking the extendability takes –
for this particular example – fractions of a second using our tool.

For the second step we use a regular scheduling tool to find an optimal
schedule for the condensed activity graph. One such an optimal schedule
is shown in Figure 9 as a Gantt chart.

a b c d

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

Figure 9: An optimal schedule for the condensed activity graph.

In the third step we use the repetitive structures of GC , GD and GE

to construct a schedule for the original activity graph. These repetitive
structures are given during computation of the extendability of the sets
of conditionals (see Definition 8 and Lemma 9). Furthermore, during
the scheduling of the activity graph in step 2, tasks that share resources
are put in a certain order to satisfy the mutual exclusion property of
resources that plays a role in this kind of scheduling problems. This
corresponds to adding additional precedences to the activity graph, such
that the task order is forced to be the same as in the schedule.

For our example, step 3 of our approach can be described using Figure
9 as follows. The repetitive structure that can be associated with GC

is the entire Gantt chart. The tasks in the time interval [b, d] are
associated with GD. Finally the tasks in the intervals [a, b] and [c, d]
are associated with GE . According to Lemma 11 we need to construct
the schedule for the original problem from the inside outwards. First, we
increase the upper bound of the conditional in GE . Therefore, we copy-

paste the interval [a, b] 42 times, and then we copy-paste the interval
[c, d] 42 times. Next, we proceed with copy-pasting the interval that
can be associated with GD 6 times to increase the upper bounds of
conditionals in GD to their original values. Finally, we copy-past all
tasks in the updated Gantt chart 14 times to increase the upper bound
of the conditionals in GC . Note that this copy-pasting does not concern
a time interval, but a sub graph of the task graph. The tasks on resource
7 and 9 that are shown at the left of Figure 9 will succeed the task that
ends at d, and the precedences admit that it is executed in parallel with
the task starting at d on the resources 3 and 5. We believe that the
schedule is still optimal after extension in this case.

It is clear that our method only involves the scheduling of the rela-
tively small task graph of the condensed problem. This renders it in
many cases much more suitable than the straightforward approach of
scheduling the original, very large, task graph. It is necessary to quan-
tify the (sub) optimality of the generated schedule, and we regard this
as an important subject for future work.

4. Conclusions
The idea of this work is to reduce the complexity of scheduling prob-

lems being faced in many manufacturing systems by exploitation of the
repetitive patterns that can be recognized in them. The task graph
that usually forms a basis for description of a scheduling problem is
extended with additional modeling features to describe this finite repet-
itive behaviour. This extended model follows the UML activity diagram
standard, and is called an activity graph. In fact, an activity graph is
a folded-in equivalent of a task graph with repetitive patterns, which is
generic for the number of pattern repetitions. The activity graph is for-
mally defined, and so is its equivalence with a task graph. An important
issue is the absence of race conditions of the activity graph, which can
be proven statically by construction of a relevancy mapping.

The expressivity of the activity graphs is sufficient for a subset of prac-
tical cases from industry. It is possible to model parallelism of different
instances of one manufacturing entity by introduction of multiple con-
ditionals controlling execution of activities that can run in parallel for
these different instances in the system. As a consequence of the fact that
conditionals are not hierarchical, i.e., a conditional that can be associ-
ated with a lower level is not a child of a conditional of a higher level, it
is not possible to describe a system in which manufacturing entities can
“overtake” each other. This means that processing order must be first
in, first out, which is fine for most practical cases. Extension of activity

graphs for hierarchical conditionals could be considered for future work.
The same goes for the ad-hoc algorithm to determine a relevancy map-
ping, which seems to be acceptable for practical cases, but a polynomial
one would be preferable.

The approach for reduction of the complexity of the scheduling prob-
lems exploits the hierarchical manufacturing entity structure that re-
sults in nested patterns in the schedule. First, the scheduling problem
is reduced with respect to the number of repetitions. Subsequently, the
reduced problem in the form of an activity graph is converted to the
usual form based on a task graph and can be scheduled using appropri-
ate tooling. Finally, the schedule of the reduced problem is extended
up to the size of the original problem using repetitive structures. This
extension algorithm is in general much more efficient than scheduling
the original task graph. We believe that preservation of (make span)
optimality is ensured for a subset of problems that can be described.
This means that for cases in which instances of manufacturing entities
are processed sequentially, recurrent TSP-alike problems are recognized
and therefore are to be scheduled only once while preserving optimality.
Finding this subset is an important subject for future research.

References
[1] Available through URL http://www.asml.com/.

[2] B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In 6th
International Conference on Computer Aided Verification, number 808 in LNCS,
pages 55–67. Springer–Verlag, 1994.

[3] P. Cousot and R. Cousot. Abstract interpretation and application to logic
programs. Journal of Logic Programming, 13(2–3):103–179, 1992. (The editor of

Journal of Logic Programming has mistakenly published the unreadable galley proof.

For a correct version of this paper, see http://www.di.ens.fr/~cousot.).

[4] R. Eshuis and R. Wieringa. Verification support for workflow design with UML
activity graphs. In Proceedings of International Conference on Software Engi-
neering, 2002.

[5] M.R. Garey and D.S. Johnson. Computers and Intractability. A guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[6] T. Gehrke, U. Goltz, and H. Wehrheim. The dynamic models of UML: Towards
a semantics and its application in the development process. In Hildesheimer
Informatik-Bericht 11/98. Institut für Informatik, Universität Hildesheim, 1998.

[7] M. Hendriks and K.G. Larsen. Exact acceleration of real-time model checking.
In E. Asarin, O. Maler, and S. Yovine, editors, Electronic Notes in Theoretical
Computer Science, volume 65. Elsevier Science Publishers, April 2002.

[8] C.M.H. Kuijpers, C.A.J. Hurkens, and J.B.M. Melissen. Fast movement strate-
gies for a step-and-scan wafer stepper. Statistica Neerlandica, 51(1):55–71, 1997.

[9] K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International
Journal on Software Tools for Technology Transfer, pages 134–152, 1998.

http://www.di.ens.fr/~cousot

[10] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. (eds.) Shmoys. The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization.
Wiley, New York, 1985.

[11] K. Miyashita and K. Sycara. CABINS: A framework of knowledge acquisition
and iterative revision for schedule improvement and reactive repair. Artificial
Intelligence Journal, 76(1-2):377–426, 1995.

[12] N.J.M. van den Nieuwelaar, J.M. van de Mortel-Fronczak, and J.E. Rooda. De-
sign of supervisory machine control. Accepted by European Control Conference
2003.

[13] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice Hall, 1995.

[14] X. Puquan, L. Changyou, and X. Xinhe. On sequencing problems of repetitive
production systems. IEEE Transactions on Automatic Control, 38(7), 1993.

[15] S. Roels. Applicability of model-checking methods to scheduling in machines.
Master’s thesis, Nijmeegs Instituut voor Informatica en Informatiekunde, Uni-
versity of Nijmegen, The Netherlands, October 2002. Confidential.

[16] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manuals. Addison-Wesley, 1999.

[17] OMG Unified Modeling Language Specification – version 1.4, September 2001.
Available through URL http://www.omg.org/uml/.

[18] W.F.J. Verhaegh. Multidimensional Periodic Scheduling. PhD thesis, Eindhoven
University of Technology, the Netherlands, 1995.

[19] M. Wennink. Algorithmic Support for Automated Planning Boards. PhD thesis,
Eindhoven University of Technology, the Netherlands, 1995.

[20] J.I. van Zante-de Fokkert and T.G. de Kok. The simultaneous determination of
the assignment of items to resources, the cycle times, and the reorder intervals
in repetitive pcb assembly. Annals of Operations Research, 92:381–401, 1999.

Appendix: Proofs
Definition 1 (Witness) A witness for an instance (v, γ) is a finite set of
instances W such that either

W = ∅ and (v, γ) = (n0, γ0), or

there exists an (instance of an) inductive clause H
H′ in Definition 3(ii) such

that “(v, γ) ∈ V ” occurs in H ′, and the set of instances appearing in H equals
W .

Definition 2 (Proof) A proof of an instance (v, γ) is a finite labeled tree such
that the root is labeled with (v, γ), and if a node is labeled with (v′, γ′), then the labels
of its children together are a witness for (v′, γ′). The size of a proof P is the number
of nodes in the tree, denoted by |P |.

Note that every instance of an unfolding has a proof.

Lemma 3 If X is a relevancy mapping and (v, γ) is an instance of the unfolding
that has been created using X, then the domain of γ equals X(v).

Proof. The lemma can be proven by induction on the number of applications of the
clauses of Definition 3 that are needed to show that (v, γ) is part of the unfolding.

Base: 1 application. Then (v, γ) is the initial instance, and clearly it holds
that the domain of γ0 equals X(n0).

Induction: assume that it holds for an instance whose existence can be “proven”
with n applications. We can easily show, using the extremal clauses of Defini-
tion 3, that the proposition must also hold for instances whose existence can
be proven with n + 1 applications.

�

Lemma 4 Let (v, γ) be an instance in an unfolding (V, 7→) such that q ∈ X(v).
Then a return path (n0, γ0) 7→∗ (v, γ) exists of which all nodes are labeled with q by
X.

Proof. We prove the lemma by induction on the number of applications of the
base and inductive clauses of Definition 3 that is needed to show that (v, γ) ∈ V .
The base of the induction is formed by one application of a clause. Since the first
application must be the base clause, we can only show that (n0, γ0) ∈ V . Therefore,
(v, γ) = (n0, γ0), which clearly proves that the path exists.

Now let us assume that the desired path exists for all instances for which we can
show that they belong to V with n applications of the base and inductive clauses.
Let us consider an instance (v′, γ′) for which we can show in n+1 applications of the
base and inductive clauses that it belongs to V . Then obviously (v, γ) 7→ (v′, γ′), and
we distinguish two cases:

The edge (v, γ) 7→ (v′, γ′) is added by inductive clause 1,2,4, or 5. Therefore,
v′ is not a join, and we can conclude by Definition 2 that q ∈ X(v′) implies
that q ∈ X(v). By applying the induction hypothesis we can conclude that the
desired path exists.

The edge is added by inductive clause 3. Then we know that (v1, γ1) 7→ (v′, γ′),
..., (vm, γm) 7→ (v′, γ′) such that (v, γ) = (vi, γi) for some 1 ≤ i ≤ m. Moreover,
we can show with n applications of the base and inductive clauses that (vi, γi)
belongs to V for all 1 ≤ i ≤ m. By Definition 2 we know that q ∈ X(v′) implies
that q ∈ X(vi) for some i. Thus, by applying the induction hypothesis we can
conclude that the desired path exists.

�

The next lemma is they key lemma that ensures that race conditions do not appear
in activity graphs which have a relevancy mapping.

Lemma 5 If (v, γ) and (v′, γ′) are two different instances such that q ∈ X(v) ∩
X(v′), then a path from (v, γ) to (v′, γ′) (or the reverse path) exists of which all nodes
are labeled with q by X.

Proof. Consider two instances (v, γ) and (v′, γ′) such that q ∈ X(v) ∩ X(v′). Let
P be the proof of (v, γ) and let P ′ be the proof of (v′, γ′). We prove the lemma
by induction on |P | + |P ′|. The base case it that |P | + |P ′| = 2, in which case
(v, γ) = (v′, γ′) = (n0, γ0). We assumed, however, that the instances are different.

From this contradiction we conclude that the proposition holds for the base case. Now
consider the case where |P |+ |P ′| = n. The induction hypothesis then says:

If (v, γ) and (v′, γ′) are two different instances with proofs P and P ′

respectively, and q ∈ X(v) ∩ X(v′), and |P | + |P ′| < n, then a path
from (v, γ) to (v′, γ′) (or the reverse path) exists of which all nodes are
labeled with q by X.

Using Lemma 4 we can say that two paths that are completely labeled with q exist:

(u0, γ0) 7→ (u1, γ1) 7→ (u2, γ2) 7→ ... 7→ (um, γm)

(u′0, γ
′
0) 7→ (u′1, γ

′
1) 7→ (u′2, γ

′
2) 7→ ... 7→ (u′n, γ′n)

where (u0, γ0) = (u′0, γ
′
0) = (n0, γ0), (um, γm) = (v, γ), and (u′n, γ′n) = (v′, γ′). Con-

sider the longest common prefix of these paths; assume that the paths are equal up
to index i. Clearly, if i = m or i = n, then the proposition holds. The other case is
that i < m and i < n. Then (ui, γi) = (u′i, γ

′
i), and (ui+1, γi+1) 6= (u′i+1, γ

′
i+1). We

show that this results in a contradiction by distinguishing two cases:

ui is a fork. Then ui+1 and u′i+1 are not join nodes by assumption (just
above Definition 3). If ui+1 = u′i+1, then we can conclude by Definition 3 that
γi+1 = γ′i+1, which contradicts the assumption that the i + 1-th instances are
different. Hence, ui+1 6= u′i+1. However, both are labeled by the relevancy
mapping with q. This violates the disjunction requirement on forks of the
relevancy mapping. This contradiction shows that ui cannot be a fork.

ui is not a fork. Therefore, we know that ui+1 = u′i+1. The only way to
achieve that (ui+1, γi+1) 6= (u′i+1, γ

′
i+1) is that ui+1 = u′i+1 is a join node, and

that there exists a predecessor of (ui+1, γi+1), say (w, γ∗), and a predecessor
of (u′i+1, γ

′
i+1), say (w′, γ′∗), such that w = w′ and γ∗ 6= γ′∗. Note that by

Definition 3 we know that γ∗(w = w′) = γi(ui) = γ′∗(w = w′). Since w = w′,
we know that w = w′ ∈ X(w) ∩X(w′). Moreover, P clearly contains a proof
for (w, γ∗) that is smaller than P , and P ′ clearly contains a proof for (w′, γ′∗)
that is smaller than P ′. Therefore, we can apply the induction hypothesis.
Thus a path (w, γ∗) 7→+ (w′, γ′∗) or a path (w′, γ′∗) 7→+ (w, γ∗) exists that is
completely labeled with w = w′. In the first case, γ′∗(w = w′) > γ∗(w = w′),
since the value of w is incremented on exit of (w, γ∗) and never reset, because
we assumed that it cannot be a conditional node (just above Definition 3).
This contradicts the information derived above. The second case is similar.

We can conclude from these contradictions that the case that i < m and i < n
cannot occur. This proves the lemma. �

Lemma 6 Instances of an unfolding either have the same number of successors (or
1 successor in case of conditional instances) as their counterparts in the activity graph,
or they have zero successors.

Proof. Suppose that we have an instance (v, γ) which has more than its allowed
number of successors. In other words, we can find two successors (v′, γ′) and (v′′, γ′′)
such that v′ = v′′ (by Definitions 1 and 3). By Lemma 3 we know that the domain
of γ′ equals the domain of γ′′. Now we distinguish two cases:

v′ = v′′ is not a join node. By definition, γ undergoes the same transformation,
since both edges must be added by the same inductive clause. Therefore we
can conclude that γ′ = γ′′, which contradicts our assumptions.

v′ = v′′ is a join node. Then, of course, (v′, γ′) and (v′′, γ′′) have their
other necessary predecessors (see Definition 3), say (v′1, γ

′
1), ..., (v

′
n−1, γ

′
n−1)

and (v′′1 , γ′′1), ..., (v′′n−1, γ
′′
n−1) respectively. Without loss of generality we may

assume that v′i = v′′i . It is clear that γ′i 6= γ′′i for at least one 1 ≤ i < n, since
otherwise γ′ = γ′′, which is a contradiction of our initial assumption. More-
over, we know that γ′i(v

′
i) = γ′′i (v′′i) by the combination of inductive clause (3)

and the fact that γ(v) = γ′i(v
′
i) and γ(v) = γ′′i (v′′i). Now we apply Lemma

5 to the different (as argued above) instances (v′i, γ
′
i) and (v′′i , γ′′i) (remember

that v′i = v′′i). Thus, we see that a path from (v′i, γ
′
i) to (v′′i , γ′′i) exists that is

completely labeled with v′i (or the other way around, but that case is similar).
Moreover, v′i = v′′i is not a conditional node (since we assumed just above
Definition 3 that conditionals cannot directly lead to a join in activity graphs)
and its value is therefore never reset. In other words, γ′′i (v′′i) > γ′i(v

′
i) which is

in contradiction with knowledge derived above.

Of course, due to failed synchronizations in join nodes, predecessors of join nodes may
have zero successors. The resulting unfolding is not well-defined. �

The next lemma is used in the proof of Lemma 8.

Lemma 7 Consider an activity graph A with a conditional node v and relevancy
mapping X. If v is reachable from the initial node, then there exists a non-conditional
node v′ such that v′ ∈ X(v).

Proof. Consider the activity graph A with a conditional node v and relevancy
mapping X, and assume that v is reachable from the initial node of A. Let us assume
that X(v) does not contain a non-conditional node, and consider the path in A from
the initial node to v, say v0, v1, . . . , vn, where v0 is the initial node and vn is v, and
such that vi 6= vj for all 0 ≤ i 6= j ≤ n. Definition 2 tells us that vn−1 must be a
fork node or a conditional node. If it is a conditional node, then we can repeat this
argumentation. Since the initial node cannot be a conditional node, a fork node vi

on the path exists such that vj is a conditional node for all i < j ≤ n.
Now consider the two successors of v, say v′ and v′′. Clearly, v′ 6= vj and v′′ 6= vj

for all i < j ≤ n, since conditional nodes can have only one predecessor. Note that
we assumed (just above Definition 3) that v′ and v′′ cannot be join nodes. Therefore,
v′ and v′′ must be conditional nodes, since the definition of the relevancy mapping
gives that v′, v′′ ∈ X(v) and we assumed that X(v) only contains conditional nodes.
Moreover, X(v′) and X(v′′) only contain conditional nodes, since X(v) = X(v′) =
X(v′′).

We can repeat the argumentation above and conclude that A must contain in-
finitely many conditional nodes, which is a contradiction by Definition 1. Hence we
conclude that X(v) does contain a non-conditional node. �

Lemma 8 Every instance has a unique witness.

Proof. Let us consider an instance (v, γ) in the unfolding. First, observe that (v, γ)
has at least one witness, because it is in the unfolding. We prove that this witness is

unique by contradiction. Thus, we assume that W and W ′ are distinct witnesses of
(v, γ), and distinguish three cases:

v is a merge, activity, fork or exit. Then we know by the inductive clauses that
we can write W = {(v′, γ′)} and W ′ = {(v′′, γ′′)}. Thus, (v′, γ′) 7→ (v, γ), and
(v′′, γ′′) 7→ (v, γ). By definition of the relevancy mapping X, we know that
v ∈ X(v′) and v ∈ X(v′′). Lemma 5 says that a path (v′, γ′) 7→ (v1, γ1) 7→∗

(v′′, γ′′) (or the other way around, but that case is identical) exists such that
v ∈ X(vi) for all instances (vi, γi) on that path. We distinguish two cases:

– (v1, γ1) 6= (v, γ). By Lemma 6 we can say that v′ is a fork node and that
v1 6= v. By construction of the path we know that v ∈ X(v1). Thus, the
relevancy mapping for the successors of the fork node v′ does not satisfy
the disjunction restriction, which is a contradiction.

– (v1, γ1) = (v, γ). According to the inductive clauses we can derive that
γ′′(v) > γ(v), since the value of v is increased on exit of (v, γ) and never
reset because v is not a conditional node. Moreover, since (v′′, γ′′) 7→
(v, γ) and v is never reset we know that γ(v) ≥ γ′′(v). Combination
of these two equations gives us that γ(v) > γ(v), which clearly is a
contradiction.

v is a join. Then we can write W = {(vi, γi) | 1 ≤ i ≤ n} and W ′ =
{(v′i, γ′i) | 1 ≤ i ≤ n}, where vi = v′i for some n. Now assume that γi 6= γ′i
for some i (otherwise, W = W ′). Then (vi, γi) 7→ (v, γ) and (v′i, γ

′
i) 7→ (v, γ).

Note that we assumed (see the text just above Definition 3) that a conditional
or a fork cannot be followed by a join node. Therefore, vi = v′i is not a condi-
tional or fork. By Lemma 5 we thus know that a path from (vi, γi) to (v′i, γ

′
i)

exists (or the other way around, but that is similar) that is completely labeled
with vi = v′i by the relevancy mapping. Moreover, by Lemma 6 we can con-
clude that the path passes through (v, γ) (since vi = v′i is not a fork). Since
vi = v′i is not a conditional, its value is never rest. Thus, we can derive that
γ′i(vi = v′i) ≥ γ(vi = v′i) and γ(vi = v′i) > γ′i(vi = v′i), since the value of vi = v′i
is incremented on exit of (v′i, γ

′
i). This clearly is a contradiction.

v is a conditional. Then we know by the inductive clauses that we can write
W = {(v′, γ′)} and W ′ = {(v′′, γ′′)}. Thus, (v′, γ′) 7→ (v, γ), and (v′′, γ′′) 7→
(v, γ). By Lemma 7 we know that w ∈ X(v) for some non-conditional node w.
By definition of the relevancy mapping also w ∈ X(v′) and w ∈ X(v′′). We
now can repeat the argumentation of the first item to show a contradiction.

Therefore, (v, γ) has a unique witness. �

The next lemma states a very useful property of our unfoldings, namely that they
are acyclic. This means that an unfolding defines a possibly infinite partial ordering,
which is exactly what we intended.

Lemma 9 An unfolding is acyclic.

Proof. First, we prove that if there is a cycle in an unfolding, then the initial instance
(n0, γ0) is on that cycle. Assume that there is a cycle, say (v1, γ1), ..., (vn, γn), (v1, γ1),
such that the initial instance is not part of the cycle. In order for this cycle to be
part of the unfolding, at least a path from the initial instance to this cycle must exist
(see the extremal clause of Definition 3).

From Lemma 8 we conclude that one of the instances in the cycle, say (vi, γi), is a
join instance that connects the initial instance to the cycle (since only join instances
can have multiple predecessors and the initial instance is not on the cycle). However,
by Definition 3 we know that γi+1(vi) = γi(vi) + 1. Since the value of a join node
cannot be reset, it is impossible that (vi+1, γi+1) 7→∗ (vi, γi). From this contradiction
we conclude that the initial instance must be part of the cycle.

Next, we prove the lemma by contradiction. Therefore, let us assume that a cycle
exists in the unfolding. Above we have shown that (n0, γ0) is on the cycle. With the
knowledge that the initial instance cannot be a conditional instance by Definition 1
(and its value thus is never reset), we can use a similar argument as above to show
that the cycle cannot be a cycle. Therefore, no cycles exist in unfoldings! �

The next lemma states a sufficient condition on the syntax of activity graphs for
finiteness of their unfoldings.

Lemma 10 Let A = (N, n0, �, c) be an activity graph. If for all cycles in A, say
v1, ..., vn, such that n ≤ 4 · | � | holds that they contain a conditional node, say vi,
such that (vi, vi+1) is the true edge and vi is not reset on the cycle, then the unfolding
of A is finite.

Proof. We prove the lemma by contradiction and therefore assume that the premises
hold, but the unfolding is infinite. This means that there exists an infinite path, and
since an activity graph is finite, at least one node, say v must appear infinitely often
in this path. This can only occur, if v is on a cycle. Since this cycle satisfies the
precondition, the counter of the “exit” conditional v′ of this cycle must be reset
infinitely often (otherwise the cycle is not infinitely often enabled). This means that
there must be another cycle involving node v that resets the counter. Thus, connecting
these cycles gives us a larger cycle that contradicts our assumption about the cycles
of the activity graph (namely that the counter of the exit conditional is not reset).
The question now is how long these two cycles can be.

We first consider the cycle which contains the true edge of the exit conditional,
say v′ � v′′. The path from v to v′ can be bounded by | � |, since any path from
v to v′ that is longer than | � |, can easily be transformed to a path with length
bounded by | � |. The same holds for the path from v′′ to v, with the result that
the length of this first cycle can be bounded by 2 · | � |. (More precisely, if there
is a cycle in the activity graph involving v and v′ � v′′ with a length greater than
2 · | � |, then there exists a cycle also involving v and v′ � v′′ with a length less or
equal to 2 · | � |.)

We can use the same argument to show that the cycle from v to the resetting
conditional of v′ and back also can be bounded by 2 · | � |. Combination gives the
required upper bound. �

Lemma 11 If (v, γ) 7→+ (v′, γ′) and w ∈ X(v) ∩ X(v′), then (v, γ) occurs on the
return path of (v′, γ′) for w.

Proof. Straightforward using Lemma 6. �

Lemma 12 If X and X ′ are relevancy mappings for an activity graph, then the two
resulting unfoldings are isomorphic.

Proof. Consider the two resulting unfoldings (V1, 7→1) and (V2, 7→2), respectively.
Inductively, we construct a mapping f : V1 → V2 such that

f(v1, γ1) = (v2, γ2) ⇒ v1 = v2 (A.1)
f(v1, γ1) = (v2, γ2) ⇒ γ1 and γ2 agree on intersection of domains (A.2)

(v, γ) 7→1 (v′, γ′) ⇔ f(v, γ) 7→2 f(v′, γ′) (A.3)

Suppose that f has been defined for all predecessors of some node (v′, γ′1) of V1. Let
W be the unique (by Lemma 8) witness for (v′, γ′1). We consider three cases:

1 W = ∅. Then (v′, γ′1) is the initial instance, i.e., v′ = n0 and γ′1(v) = 0
if v ∈ X(n0) and it is undefined otherwise. We map the initial instance of
(V1, 7→1) to the initial instance of (V2, 7→2), i.e., we define f(v′, γ′1) = (n0, γ0

2),
where γ0

2(v) = 0 if v ∈ X ′(n0) and it is undefined otherwise. Since both γ′1 and
γ′2 map a subset of nodes to 0, we see that γ0

1 and γ0
2 agree on the intersection

of their domains.

2 |W | = 1. In this case, let (v, γ1) be the unique element of W . Since a witness
for a join node always contains at least two elements, v′ is not a join node. Let
f(v, γ1) = (v, γ2). Then γ1 and γ2 agree on the intersection of their domains.
We consider three subcases:

(a) v ∈ J ∪M ∪ A. Then γ′1 = γ1[v := v + 1]. By Definition 3, (v, γ2) 7→2

(v′, γ′2), where γ′2 = γ2[v := v + 1]. By the definition of relevancy map-
ping, the domain of γ1 equals that of γ′1, and the domain of γ2 equals that
of γ2. Thus, also γ′1 and γ′2 agree on the intersection of their domains.
Thus, if we extend f by defining f(v′, γ′1) = (v′, γ′2) we maintain prop-
erties (A.1) and (A.2). Clearly, f also preserves the (unique) incoming
transitions of (v′, γ′1) and (v′, γ′2).

(b) v ∈ F . Similar to the case v ∈ J ∪M ∪A.

(c) v ∈ C. Similar to the case v ∈ J ∪M ∪A.

3 |W | > 1. In this case v′ is a join node. Let W = {(v1, γ
1
1), · · · , (vn, γn

1)}.
Let f(vi, γ

i
1) = (vi, γ

i
2), for 1 ≤ i ≤ n. Since vi is in the domains of γi

1 and
γi
2, γi

1 and γi
2 agree on the intersection of their domains, and W is a witness,

γ1
2(v1) = · · · = γn

2 (vn). Hence f(W) (defined by pointwise extension) is a
witness for the node instance (v′, γ′2), where γ′2 = ∪n

i=1γ
i
2[vi := vi + 1]. Thus,

if we define f(v′, γ′1) = (v′, γ′2), we preserve nodes and incoming transitions.
The proof (A.2) is left to the reader (use lemma 11).

�

	
	Introduction
	Activity Graphs
	Formal Definition of Activity Graphs
	From Activity Graphs to Task Graphs

	An Approach to Exploit Repetitive Structures in Activity Graphs
	Formalizing the Approach
	Example Application of the Approach

	Conclusions
	 -References
	Appendix: Proofs

