
Model Checker Aided Design of a

Controller for a Wafer Scanner

Martijn Hendriks1† Barend van den Nieuwelaar2? Frits Vaandrager1†

1University of Nijmegen, The Netherlands

2Eindhoven University of Technology, The Netherlands

?ASML, Veldhoven, The Netherlands

†Supported by EC project IST-2001-35304 (AMETIST)

1

Introduction

ASML builds wafer scanners

• Very complex lithographic machines used in the semiconductor

manufacturing process

. Machine is regarded as Task-Resource system (flexibility)

. Scheduling in real-time (many things can go wrong)

. Throughput is one of the main performance characteristics

. Deadlock should be avoided at all costs

What is this case-study about?

• Material flow in Extreme Ultra Violet (EUV) machine

. Compute a (least restrictive) deadlock avoidance policy

. Compute schedules (optimal wrt throughput)

Model Checker Aided Design of a Controller for a Wafer Scanner 2

AMETIST

Class of problems considered by AMETIST: Scheduling / planning

/ resource allocation problems

Observation: There are many similar problems in different domains

• Scheduling production lines in factories

• Scheduling computer programs in real-time systems

• Scheduling instructions inside a processor

• Scheduling trains over limited quantities of railroad track

Many approaches (re)-invented in each domain

A unifying framework would be nice. . .

Model Checker Aided Design of a Controller for a Wafer Scanner 3

AMETIST (2)

The AMETIST approach:

• Model as dynamical system with state space and well-defined

dynamics: model generates behavior (the semantics)

• Design activities (verification, synthesis etc) explore and modify

system structure so that behavior is correct, optimal, etc

• Do not let modeling suffer from tools

Timed automaton model as mathematical carrier

AMETIST mission:

. Improve TA model checking tools

. Investigate the applicability of TA tools

. Link to dedicated tools when appropriate

Model Checker Aided Design of a Controller for a Wafer Scanner 4

Contents

Deadlock avoidance

• Material flow in EUV machine

• SMV model

• Avoiding deadlock

• SMV demo

Throughput analysis

• Uppaal model

• Uppaal demo

• Adding heuristics to find optimal schedules

Conclusions

Model Checker Aided Design of a Controller for a Wafer Scanner 5

Material flow in EUV machine

1 chuck
(2 places)

2 robots4 locks

turn

turn

measure

swap

expose

(2 places each)

Model Checker Aided Design of a Controller for a Wafer Scanner 6

Material flow in EUV machine

expose
measure +

1 chuck
(2 places)(2 places each)

2 robots4 locks

• Atomic step: entry / exit /
move / measure-expose of 1
wafer

• Abstract from turning robots
& chuck swap

• Acyclic 1-color material paths
(to prevent ”livelocks”)

• A place is empty between two
material instances

Model Checker Aided Design of a Controller for a Wafer Scanner 7

Material flow in EUV machine

expose
measure +

1 chuck
(2 places)(2 places each)

2 robots4 locks

• Atomic step: entry / exit /
move / measure-expose of 1
wafer

• Abstract from turning robots
& chuck swap

• Acyclic 1-color material paths
(to prevent ”livelocks”)

• A place is empty between two
material instances

Model Checker Aided Design of a Controller for a Wafer Scanner 7

Material flow in EUV machine

expose
measure +

1 chuck
(2 places)(2 places each)

2 robots4 locks

• Atomic step: entry / exit /
move / measure-expose of 1
wafer

• Abstract from turning robots
& chuck swap

• Acyclic 1-color material paths
(to prevent ”livelocks”)

• A place is empty between two
material instances

Model Checker Aided Design of a Controller for a Wafer Scanner 7

Material flow in EUV machine

expose
measure +

1 chuck
(2 places)(2 places each)

2 robots4 locks

• Atomic step: entry / exit /
move / measure-expose of 1
wafer

• Abstract from turning robots
& chuck swap

• Acyclic 1-color material paths
(to prevent ”livelocks”)

• A place is empty between two
material instances

Model Checker Aided Design of a Controller for a Wafer Scanner 7

Material flow in EUV machine

expose
measure +

1 chuck
(2 places)(2 places each)

2 robots4 locks

• Atomic step: entry / exit /
move / measure-expose of 1
wafer

• Abstract from turning robots
& chuck swap

• Acyclic 1-color material paths
(to prevent ”livelocks”)

• A place is empty between two
material instances

Model Checker Aided Design of a Controller for a Wafer Scanner 7

Material flow in EUV machine

expose
measure +

1 chuck
(2 places)(2 places each)

2 robots4 locks

• Atomic step: entry / exit /
move / measure-expose of 1
wafer

• Abstract from turning robots
& chuck swap

• Acyclic 1-color material paths
(to prevent ”livelocks”)

• A place is empty between two
material instances

Model Checker Aided Design of a Controller for a Wafer Scanner 7

Material flow in EUV machine

expose
measure +

1 chuck
(2 places)(2 places each)

2 robots4 locks

• Atomic step: entry / exit /
move / measure-expose of 1
wafer

• Abstract from turning robots
& chuck swap

• Acyclic 1-color material paths
(to prevent ”livelocks”)

• A place is empty between two
material instances

Model Checker Aided Design of a Controller for a Wafer Scanner 7

Material flow in EUV machine

expose
measure +

1 chuck
(2 places)(2 places each)

2 robots4 locks

• Atomic step: entry / exit /
move / measure-expose of 1
wafer

• Abstract from turning robots
& chuck swap

• Acyclic 1-color material paths
(to prevent ”livelocks”)

• A place is empty between two
material instances

Model Checker Aided Design of a Controller for a Wafer Scanner 7

Material flow in EUV machine

expose
measure +

1 chuck
(2 places)(2 places each)

2 robots4 locks

• Atomic step: entry / exit /
move / measure-expose of 1
wafer

• Abstract from turning robots
& chuck swap

• Acyclic 1-color material paths
(to prevent ”livelocks”)

• A place is empty between two
material instances

Model Checker Aided Design of a Controller for a Wafer Scanner 7

Material flow in EUV machine

expose
measure +

1 chuck
(2 places)(2 places each)

2 robots4 locks

• Atomic step: entry / exit /
move / measure-expose of 1
wafer

• Abstract from turning robots
& chuck swap

• Acyclic 1-color material paths
(to prevent ”livelocks”)

• A place is empty between two
material instances

Model Checker Aided Design of a Controller for a Wafer Scanner 7

SMV model

Straightforward modeling:

• Every place is modeled by a state variable which can be empty

(e), red (r), or green (g)

• Every pair of arrows is modeled by an asynchronous process

expose
measure +

1 chuck
(2 places)(2 places each)

2 robots4 locks

Model Checker Aided Design of a Controller for a Wafer Scanner 8

SMV model (2)
module main ()
{
-- the places in the machine:
l : array 03 of {e,r,g};
c : array 01 of {e,r,g};
rb: array 01 of

array 01 of {e,r,g};

-- initialization:
for (i=0; i<4; i=i+1)

init(l[i]):=e;
for (i=0; i<2; i=i+1)

for (j=0; j<2; j=j+1)
init(rb[i][j]):=e;

for (i=0; i<2; i=i+1)
init(c[i]):=e;

-- system dynamics:
for (i=0; i<4; i=i+1)

t2l[i]: process entry_exit(l[i]);

for (i=0; i<4; i=i+1)
for (j=0; j<2; j=j+1)
l2r[i][j]: process move(l[i],rb[(i<2?0:1)][j]);

for (i=0; i<2; i=i+1)
for (j=0; j<2; j=j+1)
for (k=0; k<2; k=k+1)
r2c[i][j][k]: process move(rb[i][j],c[k]);

for (i=0; i<2; i=i+1)
exp[i]: process expose(c[i]);

}

module entry_exit (p)
{

if (p=e)
next(p):=r;

else if (p=g)
next(p):=e;

}

module move (lft,rgt)
{

if (lft=r && rgt=e)
{
next(lft):=e;
next(rgt):=r;

}
else if (lft=e && rgt=g)
{
next(lft):=g;
next(rgt):=e;

}
}

module expose (p)
{

if (p=r)
next(p):=g;

}

Model Checker Aided Design of a Controller for a Wafer Scanner 9

Avoiding Deadlock

3 ways of handling deadlock:

• Deadlock prevention: restrict system such that deadlock is a

priori impossible

• Deadlock detection: detect and resolve deadlocks at runtime

• Deadlock avoidance: dynamically choose control actions to avoid

deadlock

Avoiding Deadlock

3 ways of handling deadlock:

• Deadlock prevention: restrict system such that deadlock is a

priori impossible

• Deadlock detection: detect and resolve deadlocks at runtime

• Deadlock avoidance: dynamically choose control actions to avoid

deadlock

Deadlock avoidance:

• Keep the system in a set of safe states (Dijkstra, 1965)

• Questions:

. What is deadlock and what are safe states?

. How to express deadlock and safety in CTL?

. How to characterize the set of safe states?

Model Checker Aided Design of a Controller for a Wafer Scanner 10

Avoiding Deadlock (2)

Conditions for deadlock:
(Operating systems – internals and design principles, Stallings)

. Mutual exclusion: only one process may use a resource at a time

. Hold and wait: a process may hold allocated resources while awaiting
assignment of others

. No preemption: no resource can be forcibly removed from a process that is
holding it

. Circular wait: a closed chain of processes exists such that each process holds
at least one resource needed by the next resource in the chain

First three items hold in the model; circular wait must be formalized

(there is a choice of which resources to use)

Model Checker Aided Design of a Controller for a Wafer Scanner 11

Avoiding Deadlock (3)

Example:

Formalization of circular wait for a state s

∃Q⊆P Q 6= ∅ ∧ ∀q∈Q (s(q) 6= e ∧ ∅ 6= needss(q) ⊆ Q)

where P is the set of places, and needss(q) gives the set of places of

which one is needed by the wafer that currently is at place q

Model Checker Aided Design of a Controller for a Wafer Scanner 12

(CTL interlude)

SMV builds a transition system over which it interprets CTL

EF(p) EG(p)

AF(p) AG(p)

p

p

p

p

p

p

p p

p

pppp p

p

p

Model Checker Aided Design of a Controller for a Wafer Scanner 13

Avoiding Deadlock (4)

How to encode a circular wait situation in CTL?

• Basic idea: the wafers in a circular wait can never move again;

they are jammed

• Observe: if in our model a transitions s → s′ moves a wafer from

place p to p′, then p is empty in state s′

Avoiding Deadlock (4)

How to encode a circular wait situation in CTL?

• Basic idea: the wafers in a circular wait can never move again;

they are jammed

• Observe: if in our model a transitions s → s′ moves a wafer from

place p to p′, then p is empty in state s′

jammed ≡
∨
p∈P

AG(p is not empty)

Avoiding Deadlock (4)

How to encode a circular wait situation in CTL?

• Basic idea: the wafers in a circular wait can never move again;

they are jammed

• Observe: if in our model a transitions s → s′ moves a wafer from

place p to p′, then p is empty in state s′

jammed ≡
∨
p∈P

AG(p is not empty)

Proposition: s has a circular wait if and only if s is jammed

lemma 1 Circular wait property is stable

lemma 2 If position p is jammed in state s and p′ ∈ needss(p),
then position p′ is also jammed in state s

Model Checker Aided Design of a Controller for a Wafer Scanner 14

Avoiding Deadlock (5)

What are safe states?

• A state is safe iff “all processes can be run to completion”

(Banker’s algorithm, Dijkstra, 1965)

• In our case: the wafers are the processes, and they are “run to

completion” when they exit the machine

Avoiding Deadlock (5)

What are safe states?

• A state is safe iff “all processes can be run to completion”

(Banker’s algorithm, Dijkstra, 1965)

• In our case: the wafers are the processes, and they are “run to

completion” when they exit the machine

safe ≡ EF

 ∧
p∈P

(p is empty)



Avoiding Deadlock (5)

What are safe states?

• A state is safe iff “all processes can be run to completion”

(Banker’s algorithm, Dijkstra, 1965)

• In our case: the wafers are the processes, and they are “run to

completion” when they exit the machine

safe ≡ EF

 ∧
p∈P

(p is empty)


Note:

• jammed =⇒ ¬safe

• but in general NOT: ¬safe =⇒ jammed

Model Checker Aided Design of a Controller for a Wafer Scanner 15

Avoiding Deadlock (6)

What is the connection between safe and jammed states?

• We want to show that safe states really are safe, ie, it is always

possible to avoid deadlock (= circular wait = jammed)

• Furthermore, the set of safe states is the largest set from which

deadlock can always be avoided

Avoiding Deadlock (6)

What is the connection between safe and jammed states?

• We want to show that safe states really are safe, ie, it is always

possible to avoid deadlock (= circular wait = jammed)

• Furthermore, the set of safe states is the largest set from which

deadlock can always be avoided

sinit |= AG (safe ⇐⇒ EG(¬jammed))

Avoiding Deadlock (6)

What is the connection between safe and jammed states?

• We want to show that safe states really are safe, ie, it is always

possible to avoid deadlock (= circular wait = jammed)

• Furthermore, the set of safe states is the largest set from which

deadlock can always be avoided

sinit |= AG (safe ⇐⇒ EG(¬jammed))

Least restrictive deadlock avoidance policy for EUV machine:

• Keep it within the set of safe states!

Model Checker Aided Design of a Controller for a Wafer Scanner 16

Avoiding Deadlock (7)

Characterizing the set of safe states:

set C = true
while sinit 6|= AG(safe ⇐⇒ C) do:

Update C to exclude counterexample (involves thinking)

This case: 4 iterations to get 4 unsafe situations (mod symmetry)

Avoiding Deadlock (7)

Characterizing the set of safe states:

set C = true
while sinit 6|= AG(safe ⇐⇒ C) do:

Update C to exclude counterexample (involves thinking)

This case: 4 iterations to get 4 unsafe situations (mod symmetry)

Note:

• Creative step is not needed: SMV internally builds a BDD repre-

sentation of the set of safe states if you ask whether sinit |= safe

• However, the iterative process gives nice pictures (how to draw

a picture from a BDD?)

Model Checker Aided Design of a Controller for a Wafer Scanner 17

Avoiding Deadlock (8)

Model Checker Aided Design of a Controller for a Wafer Scanner 18

Avoiding Deadlock (9)

Predicate C that exactly characterizes the set of safe states:

~((l[0]=r & l[1]=r & rb[0][0]=g & rb[0][1]=g)
|
(l[2]=r & l[3]=r & rb[1][0]=g & rb[1][1]=g)
|
(~c[0]=e & ~c[1]=e & rb[0][0]=r & rb[0][1]=r & rb[1][0]=r & rb[1][1]=r)
|
(~c[0]=e & ~c[1]=e & rb[0][0]=r & rb[0][1]=r &
((rb[1][0]=r & rb[1][1]=g) | (rb[1][0]=g & rb[1][1]=r)) & l[2]=r & l[3]=r)
|
(~c[0]=e & ~c[1]=e & rb[1][0]=r & rb[1][1]=r &
((rb[0][0]=r & rb[0][1]=g) | (rb[0][0]=g & rb[0][1]=r)) & l[0]=r & l[1]=r)
|
(~c[0]=e & ~c[1]=e & ((rb[0][0]=r & rb[0][1]=g) | (rb[0][0]=g & rb[0][1]=r)) &
((rb[1][0]=r & rb[1][1]=g) | (rb[1][0]=g & rb[1][1]=r)) &
l[0]=r & l[1]=r & l[2]=r & l[3]=r)

)

Model Checker Aided Design of a Controller for a Wafer Scanner 19

SMV demo

Model Checker Aided Design of a Controller for a Wafer Scanner 20

Contents

Deadlock avoidance

• Material flow in EUV machine

• SMV model

• Avoiding deadlock

• SMV demo

Throughput analysis

• Uppaal model

• Uppaal demo

• Adding heuristics to find optimal schedules

Conclusions

Model Checker Aided Design of a Controller for a Wafer Scanner 21

Uppaal model

Adaptation of the SMV model:

• Refine the processes that modify wafers (TrackRobot, 2 Internal

Robot & Chuck processes) to add timing

• Additional processes to model constraints (4 Lock processes)

• Additional Observer process for throughput optimization

Relation with the SMV model:

• There is a stuttering bisimulation between the Uppaal model and

the SMV model Thus, CTL\X formulas are preserved (Browne,

Clarke & Grümberg, 1988)

Model Checker Aided Design of a Controller for a Wafer Scanner 22

Uppaal model (2)

Stuttering bisimulation R

SMV model Uppaal model

Model Checker Aided Design of a Controller for a Wafer Scanner 23

Uppaal model (3)

Throughput optimization

• Observer process (has a local clock x):

L0 L1
unload?
x:=0

unload?
x:=0

• Ask Uppaal whether

sinit |= EG

 Observer.L0 =⇒ Observer.x ≤ H

∧
Observer.L1 =⇒ Observer.x ≤ S



Model Checker Aided Design of a Controller for a Wafer Scanner 24

Uppaal demo

Model Checker Aided Design of a Controller for a Wafer Scanner 25

Adding heuristics

The state space is too large

• Locks can depressurize or pressurize (almost) any time

• Internal robots can turn (almost) any time

• Chuck can swap (almost) any time

• Large differences in time scale: 670 (lock depres) vs 10 (turn)

Solution: add heuristics

• Avoid unsafe material configurations

• Avoid useless transitions (turns, swaps, etc)

• Make some transitions greedy/urgent

Model Checker Aided Design of a Controller for a Wafer Scanner 26

Adding heuristics (2)

Optimal schedule can be found easily:

A B

TrackRobot

L3

L2

L1

L0

R11

R10

R01

R00

C1

C0

C2R
DEPRES
EXPO
L2R
L2T
MEAS
PRES
R2C
R2L
SWAP
SWITCH
T2L
TURN

Model Checker Aided Design of a Controller for a Wafer Scanner 27

Adding heuristics (3)

Optimal schedule for no crossing wafer paths

A B

TrackRobot

L3

L2

L1

L0

R11

R10

R01

R00

C1

C0

C2R
DEPRES
EXPO
L2R
L2T
MEAS
PRES
R2C
R2L
SWAP
SWITCH
T2L
TURN

Model Checker Aided Design of a Controller for a Wafer Scanner 28

Adding heuristics (4)

Some schedule for 2 locks and 1 internal robot:

A B

TrackRobot

L1

L0

R01

R00

C1

C0

C2R
DEPRES
EXPO
L2R
L2T
MEAS
PRES
R2C
R2L
SWAP
SWITCH
T2L
TURN

Model Checker Aided Design of a Controller for a Wafer Scanner 29

Contents

Deadlock avoidance

• Material flow in EUV machine

• SMV model

• Avoiding deadlock

• SMV demo

Throughput analysis

• Uppaal model

• Uppaal demo

• Adding heuristics to find optimal schedules

Conclusions

Model Checker Aided Design of a Controller for a Wafer Scanner 30

Conclusions

Short and exact characterization of safe states (either by iterative

process or by extracting a BDD from SMV)

Synthesis of a schedule that optimizes throughput; analysis of an

alternative configuration and control policy

It took us approx 2 weeks to build the models and to obtain our results

Our work confirms once more that formal modeling and analysis may

help to improve the design process; our work is referred to in a patent

filed by ASML

Scalability?

Model Checker Aided Design of a Controller for a Wafer Scanner 31

