Production Scheduling by Reachability Analysis — A Case Study”

Gerd Behrmann
Aalborg University, Aalborg, Denmark
behrmann@cs.auc.dk

Ed Brinksma

University of Twente, Enschede, The Netherlands

H.Brinksma@ewi.utwente.nl

Martijn Hendriks
Radboud University, Nijmegen, The Netherlands
M.Hendriks@cs.ru.nl

Angelika Mader
University of Twente, Enschede, The Netherlands
mader@cs.utwente.nl

Abstract

Schedule synthesis based on reachability analysis of
timed automata has received attention in the last few years.
The main strength of this approach is that the expressive-
ness of timed automata allows — unlike many classical ap-
proaches — the modelling of scheduling problems of very
different kinds. Furthermore, the models are robust against
changes in the parameter setting and against changes in
the problem specification. This paper presents a case study
that was provided by Axxom, an industrial partner of the
AMETIST project. It consists of a scheduling problem for
lacquer production, and is treated with the timed automata
approach. A number of problems have to be addressed for
the modelling task: the information transfer from the indus-
trial partner, the derivation of timed automaton model for
the case study, and the heuristics that have to be added
in order to reduce the search space. We try to isolate the
generic problems of modelling for model checking, and sug-
gest solutions that are also applicable for other scheduling
cases. Model checking experiments and solutions are dis-
cussed.

KEYWORDS: Scheduling, model checking, cost optimiza-
tion, industrial case study.

1. Introduction

Scheduling theory is a well-established branch of op-
erations research, and has produced a wealth of theory

% Supported by the FEuropean Community Project IST-2001-
35304 AMETIST (Advanced Methods for Timed Systems),
http://ametist.cs.utwente.nl/.

and techniques that can be used to solve many practical
problems, such as real-time problems in operating systems,
distributed systems, process control, etc. [11, 12]. Despite
this success, alternative and complementary approaches to
schedule synthesis based on reachability analysis of timed
automata have been proposed in the last few years [1,2,6].
The main motivation of this previous work is the obser-
vation that many scheduling problems can very naturally
be modelled with timed automata. Furthermore, the expres-
sivity of timed automata renders the models robust against
changes in parameter settings and small changes in the
problem specification. It has been shown that this approach
is not necessarily inferior to other methods developed dur-
ing the last three decades [2].

The case study presented in this paper is one of the
four industrial case studies of the European IST project
AMETIST, which focusses on the application of advanced
formal methods for the modelling and analysis of complex
distributed real-time systems with dynamic resource alloca-
tion as one of its special topics. The application of timed
reachability analysis to this problem is one of the main sub-
jects of the project. Technical material related to this case
study, and different approaches to its solution can be re-
trieved from the AMETIST website [4].

The remainder of this paper is organized as follows. The
principles of the derivation of schedules by reachability
analysis are sketched in Section 2. Section 3 contains a de-
scription of the case study. Modelling issues and the use of
heuristics are discussed in Sections 4 and 5. An extension
of the case study deals with a cost-optimization problem
rather than a feasibility problem and is presented in Section
6. The results of our model-checking experiments are col-
lected and discussed in Section 7. Section 8 evaluates the
model checking approach to the case study and concludes

the paper.

2. Scheduling With Timed Automata

The synthesis of schedules using timed automata can be
seen as a special case of control synthesis [10], and was first
introduced by [6], and by [2]. In general, a model class that
provides the possibility to represent system events as well
as timing information is suitable for real-time control syn-
thesis. In this paper, the timed automata of Alur and Dill
are used for modelling [3]. These timed automata extend
the traditional model of finite automata with real-valued
clock variables whose values increase with the rate of the
progress of time. Clock variables can be reset to zero and
they can be used in guards for discrete transitions as well
as in guards for the elapse of time (this is used to ensure
progress). In general, timed automata models have an in-
finite state space. The region automaton construction, how-
ever, shows that this infinite state space can be mapped to an
automaton with a finite number of equivalence classes (re-
gions) as states [3]. Finite-state model checking techniques
can then be applied to the reduced, finite region automaton.
A number of model checkers for timed automata is avail-
able, for instance, KRONOS [13] and UPPAAL [8].

Schedule synthesis using timed automata works as fol-
lows. First, a model of the unscheduled system is con-
structed. In our case, this model consists of the paral-
lel composition of a number of timed automata (each au-
tomaton models one specific job). The non-determinism
that is present in the parallel composition reflects the open
scheduling choices. Second, feasibility is formulated as a
reachability property, for instance, “It is possible that the
production is finished by Friday evening”. Third, the model
checker exhaustively searches the reachable state space in
order to check whether the property holds. If this is the
case, then the model checker can provide a trace that proves
the property. In our example, this is a trace from the ini-
tial state to a state in which the production is finished and it
is not later than Friday evening. The information contained
in such a trace suffices to extract a feasible schedule, which
is the final step of our approach.

The advantage of this approach is its (modelling) robust-
ness against changes in the parameter settings and small
changes in the problem specification. The disadvantage lies
in the well-known state space explosion problem: the reach-
able state space is far too large to handle within a practical
amount of time for many interesting cases. The approach
that is used in this paper is to add heuristics and features of
schedules that reduce the reachable state space to a size that
can be searched more easily. We argue that these heuristics
are quite general and applicable in many cases.

3. Description of the Case Study

The case study deals with of a problem that is almost
a job-shop problem [11], extended by parallel use of re-
sources and additional timing restrictions between process-
ing steps. Lacquers can be produced according to one of
three recipes, for the lacquer types uni, metallic or bronce.
A recipe specifies the processing steps, the resources needed
for a processing step, processing time, and timing con-
straints between processing steps. See Figure 1 for a graph-
ical description of the recipes. There is a restricted amount
of resources available, such as mixing vessels, dose spin-
ners, filling lines, etc. The problem is to schedule a number
of lacquer orders. Each order is specified by a lacquer type
(i.e. recipe to use), earliest starting time, and a due date.

As mentioned above, the problem has a lot in common
with job-shop scheduling. The main differences are (i) there
are additional timing restrictions between production steps
(e.g., there must be at most 4 hours between the end of the
first production step and the start of the second production
step for uni lacquers), and (ii) an order must use resources
in parallel (every lacquer needs a mixing vessel during its
production in parallel with other resources).

There are two additional features of the case study that
need explanation. First, an availability factor is associated
with every resource. This factor models the fraction of the
time that a resource is available due to the working hours of
the personnel. E.g., if a resource is operated by personnel
that works in two 8 hour shifts from Monday 6 am to Fri-
day 10 pm (i.e., 16 x 5 hours per week), then the availability
factor of that resource equals 18—6%. This availablility factor is
used to take the working hours constraints into account by
extending the processing times: if a processing step needs
processing time pt and the resource needed has an availabil-
ity factor af, then the processing time is extended to 5—t,

for the example above that would be ”tg—(lfss. The use of
the availability factor is intended for approximation in long-
term scheduling, i.e. the question how many orders can be
done within the next half year. For daily scheduling the ac-
tual working hours have to be modelled, which is subject
to an extension of the case. Second, a performance factor is
associated with every resource. This factor models the frac-
tion of the time that a resource is unavailable due to break-
downs or maintenance. The performance factor is used in
the same way as the availability factor to extend the pro-
cessing times.

Note that both, availability factors and performance fac-
tors are given by the case study provider, as well as the
mechanism to extend processing times. The question to
what extent this approach is reasonable goes beyond this pa-
per, but is treated in further work. For the moment we accept
the conditions given to us and want to investigate whether
we can compete with the method and tools of the case study

provider.

Three different versions of the case study have been ex-
amined:

Basic case study. The performance factors are left out,
but the availability factors are considered. Various instances
(with 29 jobs, 72 jobs and 219 jobs) have been analyzed to
check scalability of the approach.

Extended case study. The performance factors are left
out. Storage and delay costs are added to quantify the
feasability of schedules. There are two instances: a version
with the availability factors and a version in which the avail-
ability factors are replaced by an exact model of the work-
ing hours constraint. Furthermore, the model of some re-
sources has been made more exact (for instance to model
setup times between processing steps).

Stochastic case study. This case study concerns the per-
formance factors and has been addressed in a seperate pa-
per ([5]), which is very briefly discussed in Section 6.

Section 4 explains the modelling with timed automata of
the basic and extended case study, and Section 5 presents
some experimental results for these versions. As mentioned
above, Section 6 summarizes previous work concerning the
stochastic case study.

4. Modelling
4.1. Information Transfer from Industry

A substantial amount of the time spent on the case study
went into the modelling activities. The most difficult part
here was the information transfer from the industrial part-
ner to the academic partners. In the first place, there was a
language problem regarding the domain specific interpreta-
tion of terminology. For this purpose we compiled an ini-
tial dictionary in which relevant terms used are explained
in natural language. This dictionary served as an agreement
with the industrial partner on the main, basic facts. Addi-
tionally, there was a documentation problem, regarding the
(implicit) knowledge that always exists beyond any writ-
ten specification. This problem remained even after agree-
ing on the dictionary. This suggests that, beyond a dictio-
nary, additional validation of the basic facts would be desir-
able.

Another difficulty was caused by the format that the in-
dustrial partner used for the recipies, which was neither
standard, nor intuitive. A better (from the computer science
perspective, at least) representation had to be devised, re-
sulting in Figure 1. This new notation also helped to detect
other gaps in the case description.

Finally, the industrial partner Axxom is not working on
lacquer production, but develops tools for value chain man-
agement. The case description they provided is to some ex-
tent the description of their own model of the original case.

metallic bronce

[6,6] | 11.75| |[5-88
17.63 [26.44

17.63 0.4]

|

518 [] Bl

| ,

5.18

= | - 1102
7.35 5.18

6.58 48.98

22.04 27.73
23.95
[24] |
22.04 25.69
2411 2.4
I:l mixing vessel metal l:l bronce mixer l:l mixing vessel uni
. dose spinner D dose spinner bronce - disperser
l:' lab - disperging line | wait
B iling station arbitrary,
_if nohsge_cmed
synchronize

Figure 1. An alternative graphical representa-
tion for the three recipes.

Making our timed automata models we faced the problem
that we were remodelling another model, tailored for an-
other tool, rather than the original case. One example in
point are the occurrence of very high delay costs. In the
Axxom tool they are needed to simulate hard deadlines by
using (soft) due dates. In timed automata hard deadlines can
be modelled directly.

4.2. Timed Automaton Models

The lacquer production case is very similar to the job
shop scheduling problem, involving just a few additional
timing constraints, and the basic modelling by timed au-
tomata roughly follows [2]. Each processing step can be
mapped to a sequence of three locations in a timed automa-
ton (fragment), see Figure 2, where the transition between
the first two locations claims the resource, the second loca-
tion represents the processing period, and the transition to
the last location frees the resource.

The sequential and interleaved composition of the au-
tomaton fragments follows the descriptions and timing re-
strictions in the recipes. For each recipe there is a timed
automaton (template) with free parameters for earliest start
date and due date. Five resources are modelled as counters,
and the remaining resources are modelled as small automata
(since these resources need their own clock). There are alto-
gether 29 (resp. 73 and 219) instantiations of the recipe au-

time<=processing_time

O—0O—0

resource>0 time==processing_time
resource:=resource-1 resource:=resource+1
time:=0

Figure 2. A single processing step modelled
as timed automaton fragment.

tomata with the example data for orders. The parallel com-
position of the instantiated automata and the resource au-
tomata forms the system model.

When looking for feasible schedules we checked the
reachability property “all orders (automata representing an
order) reach their final state”, where a guard in the model
only allowed to enter the final state if the due date has not
passed already.

4.3. Modelling Heuristics

The heuristics we used are more or less standard in oper-
ations research, and are thus not specific for this case study.
For instance, the “non-laziness” heuristic as explained be-
low is the same as considering only “active” schedules [11].
The modelling of these heuristics can be seen as standard
patterns that can be re-used for similar cases.

Each heuristic reduces the search space. We distinguish
two kinds of heuristics. First, there are “nice” heuristics,
for which we know that for each good schedule that was
pruned away there is a schedule in the remaining search
space that is at least as good. Second, there are “cut-and-
pray” heuristics for which there is no such guarantee (i.e.,
the optimal schedule may be lost). Below we describe each
of the heuristics we used, and show our modelling into the
timed-automaton framework.

Non-overtaking. This heuristic is applied within each
group of orders following the same recipe. It says, that an
order started earlier also will get critical resources earlier
than an order started later. This heuristics makes sense if for
every two orders it holds that if the start time of the first or-
der is smaller than the start time of the second order, then
the end time of the first order is smaller than the end time of
the second order. It is easy to see that for two orders follow-
ing the same recipe, a non-overtaking schedule can be con-
structed from a schedule with overtaking. This can be done
if at each moment when a resource is assigned to the later
order (overtaking moment), we give it instead to the ear-
lier order. This obviously is also a “nice” heuristic, if the
time-spans have the same length.

Technically, we divided an order in phases that roughly
reflect the processing steps and that are numbered from 1

time<=processing_time

Q———0——Q
id==0 or phasefid-1]>=k time==processing_time
resource>0

resource:=resource+1
resource:=resource-1

phase[id]:=phase[id]+1
time:=0

Figure 3. A timed automaton fragment for tak-
ing a resource with non-overtaking.

upwards. Non-overtaking was realized by counters keeping
track of the phase in which an order is. When a phase (pro-
cessing step) is entered and a resource is taken the counter is
increased. A restriction for entering a phase is that the pre-
vious order has already entered this phase before. For this
purpose we have indexed counters phase[id], one for each
order having the number id. Note, that the sequence of iden-
tification numbers id reflects the sequence of starting times
(and due dates, because the maximal production periods are
the same). The order with identification number O is the first
and may enter new phases without restriction. In Figure 3
we extended the basic timed-automaton fragment of Fig-
ure 2 by the counter construction; the original fragment is
grey, the extensions are black. There the constant Kk repre-
sents the kth phase of the order. Note also that we have an
indexed counter for each set of orders following one of the
three recipes (i.e., an order for metallic lacquer may over-
take an order for a uni lacquer).

Non-laziness. In operations research non-lazy schedules
are called active. The following behaviour is excluded: a
process needs a resource that is available, but it does not
take the resource. Instead, the resource remains unused,
no other process takes it. Then, after a period of waiting
the process decides to take the resource. (And we regard
this waiting time as wasted, which is only true if there are
no timing requirements for starting moments of subsequent
processes.) This is a “nice” heuristic.

Technically, we extended the basic timed automaton
fragment of Figure 2 by an extra location that is entered if
the resource is available, but not taken as depicted in Figure
4; again, the original timed automaton fragment is grey, the
additional construction for non-laziness is black. The new
location can only be left, if there is another order taking the
resource. If for processing time the resource has not been
taken, a deadlock is caused, which has the effect of back-
tracking and searching for other solutions. The intuition is,
that if the resource has not been taken for processing time
the actual order could have taken it without being in the way
for another order. Note that we use urgent communication
on channel urgent so that some transitions are taken imme-
diately if their guards become true, or pre-empted immedi-

time<processing_time

resource>0 resource==|
time:=0 urgent!

time<=processing_time

~() ~()

resource>0 time==processing_time
urgent! resource:=resource+1
resource:=resource-1

time:=0

Figure 4. A timed automaton fragment for tak-
ing a resource with nonlaziness.

ately by another enabled transition, if it exists. To make this
work an automaton continuously offering synchronization
on the urgent channel by a simple selfloop in its only loca-
tion is part of the model. In the initial location of the au-
tomaton of Figure 4, therefore, when a resource becomes
available it is either taken immediately or the idling state is
reached immediately.

Greediness. This is a “cut-and-pray” heuristic. If there
is a process step that needs a resource that is available,
then the process step claims this resource immediately. By
this it excludes possibly better schedules where some other
(more important, because closer to deadline) process would
claim the same resource shortly later. Note, that greediness
is stronger than non-laziness, i.e. every greedy schedule is
also a non-lazy one.

time<=processing_time

O ——

o

resource>0 time==processing_time
urgent! resource:=resource+1
resource:=resource-1

time:=0

Figure 5. A timed automaton fragment for tak-
ing a resource with greediness.

The modelling of greediness in a timed automaton is
easy: the requirement is that a resource has to be taken as
soon as it is available. The communication via an urgent
channel forces to take the transition as soon as the guard
resource>0, is true.

Reducing active orders. When not restricting the num-
ber of active orders (i.e. the orders that are processed at a
certain moment), it often happens that many processes fight
for the same resources, and block other resources while they

wait. In our example the dose spinners (2 instances of these
available) have to be used by each process twice, which
makes them the most critical resource. Restricting the over-
all number of active orders avoids analysis of behaviour that
is likely to be ineffective. This heuristic was very powerful,
but belongs to the “cut-and-pray” type.

Technically, we realized this heuristics by a global vari-
able that is increased when an order starts and decreased
when an order is finished. A start condition for an order is
that the counter has not reached its upper bound.

Increasing the earliest starting time of orders. This is
a very simple heuristic that we use in the models that in-
clude costs. Ideally, an order is finished right on its dead-
line: it then has no storage and no delay costs. Thus, when
many orders are finished too early, their starting times can
be increased to reduce the costs.

4.4. Modelling the Extended Case Study

Some constraints have been approximated in the basic
case study to simplify the problem. In this section we dis-
cuss the extension of the model to cope with the full con-
straints. We begin with an informal explanation of these
constraints.

First, there are setup times and costs. The filling lines
must be cleaned between two consecutive orders if those
orders are not of the same type. Thus, additional cleaning
time (5 — 20 hours) is needed and there is a certain cost
involved with cleaning. Modelling this constraint poses no
problems. Instead of modelling the filling lines by an inte-
ger variable, they are now each modelled by an automaton
that keeps track of the type of the order that has last been
processed by it.

Second, there are delay and storage costs. The happiness
of a customer decreases linearly with the lateness of his or-
der. Thus, each order has a delay cost, which is a “penalty”
measured in euros per minute. Similarly, if an order is fin-
ished too early, then it has to be stored and this also costs
a certain amount of euros per minute. In the initial prob-
lem, the costs are approximated by requiring that every or-
der must be finished before its deadline. A more refined cost
model enables us to prefer an order that is five minutes late
above an order that is weeks early. UPPAAL CORA ! is a ver-
sion of UPPAAL for cost optimal reachability analysis in /in-
early priced timed automata. UPPAAL CORA enables us to
model delay and storage costs in a natural way [7]. It allows
the representation of costs as affine functions of the clock
variables. For instance, Figure 6 depicts how delay costs
are modeled. Every order has a delay cost factor (dcf) that
gives the cost per timeunit when the order is too late. Fur-
thermore, every job with id id has a bit mlate[id] that is O

1 http://www.cs.aau.dk/ behrmann/cora/

when the due date of the order has not yet passed, and 1 oth-
erwise. Every location of the order automaton in which the
order is not yet finished then is equipped with a specification
of the time-derivative of the cost: cost’==mlate[id[*dcf. A
similar strategy is followed for modelling the storage costs.

time<=processing_time
cost'==mlate[id]*dcf cost'==mlate[id]*dcf cost'==mlate[id]*dcf

Q -0 -0

resource>0 time==processing_time
resource:=resource-1 resource:=resource+1
time:=0

Figure 6. A timed automaton fragment for
costs.

Third, there is the working hours constraint. The lacquer
production is overseen by personnel that works in two or
three shifts, depending on the machine they operate. Fur-
thermore, the production is interrupted in weekends. Note
that this constrained is approximated in the initial problem
by the availability factor of machines. Another complicat-
ing factor is that some production steps may only be in-
terrupted for 12 hours. Modelling the working hours con-
straint proved to be quite involved. A separate automaton
was added that computes the effective processing time e,
given the current time and the net processing time c. For
instance, if the current time and c are such that the pro-
cessing must be interrupted, then e = ¢ + B, where B
equals the length of the interruption. The additional automa-
ton is rather big and laborious to produce, but quite logical
in structure.

5. Model Checking Experiments

In Table 1 we collected models and model checking ex-
periments for the feasibility analysis. The results were ob-
tained using UPPAAL 3.5.3 with a 2.6GHz Intel P4 Xe-
ron processor and 2.5GB of memory running Linux kernel
2.4.22.

Initial experiments revealed scalability problems in the
models and in UPPAAL. Some of these problems where
caused by the very large number of clocks used in the mod-
els. The heuristic limiting the number of active jobs also
provides a limit on the number of clocks needed (one per
active job instead of one per job); and the non-overtaking
heuristic provides an easy way of uniquely assigning shared
clocks to jobs since the starting order of jobs of a particu-
lar type is fixed. This change reduced the number of clocks
to 3+ A+ 3, where A is the maximum number of active jobs.

£ o
©n =
s |2y | 2| £
E |E|5 |4 E
g 2| 2 E| £
29 - - - -
29 - nl - 0.47
29 - nlno | - 0.45
29 - g - 0.47
29 - gno - 0.45
29 av | nl - 11.0
29 av | nlno | - 17.8
29 av | g - 10.9
29 av | gno | - 17.8
29 av | nlno | 4 0.1
73 - - - -
73 - nl - 565
73 - nlno | - 162
73 - nlno | 3 0.46
73 - nlno | 4 1.40
73 - g - 565
73 - gno | - 162
73 - gno 3 0.47
73 - gno | 4 1.42
73 av | nl - —
73 av | nlno | - —
73 av | nlno | 3 —
73 av | nlno | 4 0.40
73 av | g - —
73 av | gno | - —
73 av | gno | 3 —
73 av | gno 4 0.40
73 av | gno | 5 0.74

[219]- [gno [4] 346 |

Table 1. Characteristics of models and ex-
periments. Abbreviations in the “working
hours” column are: -:no modelling and
av:availability factors. Abbreviations in the
“heuristics” column are: g:greedy, nl:non-
lazy, and no:non-overtaking. The “-” in the
“termination time” column expresses that
the search was stopped after 10 minute. All
measurements were done using depth-first
search.

In particular, these changes had a huge effect on the perfor-
mance of the 219 job model and on the scalability of our
approach.

The results show, that even for the case of 29 jobs the
use of the heuristics is essential. The non-overtaking heuris-
tic does not seem to make much of a difference in the case
without availability factors, whereas in the case with avail-
ability factors the performance gets worse. This might be at-
tributed to the fact, that although non-overtaking reduces the
search space, we do not actually search the complete search
space. Thus non-overtaking introduces deadlocks (due to
the pruning) which force UPPAAL to backtrack even though
any of these paths might result in feasible schedules. This
changes when we go to 73 orders. Here non-overtaking does
indeed improve the speed dramatically. Limitting the num-
ber of active jobs increases the speed by several orders of
magnitude (partially due the possibility to reuse clocks).
The experiments also show that the good upper bound for
the number of active jobs can vary in different settings and
can only be determined during experimentation.

Experiments have been performed also for the ex-
tended version of the case study using UPPAAL CORA. It
should be noted that for the extended case study (due to
the introduction of storage and delay costs) non-laziness,
non-overtaking, and greediness are cut-and-pray heuris-
tics. Three different models of working hours were used:
One without any working hours, one with availability fac-
tors, and one with an exact model. In case of the exact
working hour model, the greediness heuristic is not im-
plementable, but this is due to a limitation in UPPAAL
CORA. For the experiments, a randomised best-depth-first
search with a randomised backtracking algorithm were
used. For the models with the exact working hour mod-
els, limiting the number of active jobs is crucial for
finding good schedules. All other heuristics are too re-
strive as they prune good solutions from the search. For the
other two models, neither heuristic made much of a dif-
ference. For the model with the exact working hour
models, we found schedules competitive with those pro-
vided by the industrial partner. In some cases, we find
schedules at half the cost, although this requires run-
ning UPPAAL CORA several times as the search is ran-
domised. Due to the enormous size of the state space,
however, we are not able to tell whether this is the low-
est possible cost.

6. Stochastic Analysis

As explained earlier, so-called performance factors are
used to indicate the percentage of time that a resource is
unavailable due to maintenance and break-downs. The way
in which the industrial partner deals with this information
is that the processing time on each resource is extended by

the corresponding factor. E.g., if a machine only is available
half of the time, the processing time for each processing step
using this resource is doubled. Schedules are derived as-
suming that the process durations are extended in this way.
This raised the question on the interpretation of the sched-
ules derived with the extended processing times. Stochastic
analysis [5] showed that the schedules derived in this way
have less chance to reach the due dates than schedules with-
out extended times. The interpretation roughly is as follows:
if we reserve time for break-down when a resource is actu-
ally available, this time is simply wasted. Later, when the
resource really breaks down, there will be too little time left
to reach the due date. A conclusion is that extending pro-
cessing times may give a useful indication how many or-
ders can probably be done within a long time interval, but it
does not help for daily fine-tuned scheduling.

7. Evaluation and Conclusion

We have shown that feasible schedules for a lacquer
production case can be derived doing real-time reachabil-
ity analysis with the timed automata model checker Up-
PAAL. We could treat instances with 29, 73 in less than
one second (given the right heuristics) and 219 orders in
less than 4 seconds. To deal with the full set of constraints
of the original problem we had to introduce costs into the
model, viz. setup-costs for filling stations, storage costs for
orders that are produced too early, and delay costs for or-
ders that are too late. This transformed the problem into
a cost-optimization problem, which was treated using UP-
PAAL CORA, a cost-optimal version of UPPAAL.

A further extension of the model was needed to deal with
the so-called working-hours constraints, which increased
the size and complexity of the model significantly. Yet, also
for this case competitive schedules could be derived using
UprPAAL CORA.

On the one hand, it is clear that this application of model
checking techniques to this kind of production scheduling is
not (yet) push-button technology: to obtain results our mod-
els had to be constructed with care, and the right heuristics
had to be identified. On the other hand, it is resonable to as-
sume that many production scheduling problems have sim-
ilar ingredients and that modelling techniques and patterns
for typical plant processes and heuristics can be reused. Fur-
ther experiments have to be carried out to identify a useful
core collection of such modelling patterns.

Of course, there still are a number of open issues. One
important question is the extent to which our approach
scales up. A crucial factor is the number of clocks in the
model. We limited the number of clocks to 3 - A + 3,
where A is an upper bound for active jobs. For our ex-
amples A = 3 and A = 4 gave best results. This bound
is determined by the number of resources. Informally, for

a given set of resources there is a maximal number of or-
ders that can make optimal use of. Having more active or-
ders increases the number of conflict situations (and there-
fore deadlocks and backtracking in the reachability analy-
sis). Increasing the number of jobs with the same amount
of resources does not increase the number of clocks. Here,
more experiments are needed. Currently, we are working on
a case involving some two thousand orders.

The use of the performance and availability factors leads
to questions of interpretation. Extending the processing
times by these factors can be used to analyse how many or-
ders should be feasible on a longer time scale. However,
the stochastic analysis in [5] has shown that using perfor-
mance and availability factors to obtain concrete schedules
increases the probability to miss deadlines. The use of per-
formance and availability factors thus makes models inher-
ently approximative, and it does not seem very useful to
include finer information about exact working hours and
penalties, such as setup and cleaning costs, into the model,
as is the case now. It is unclear what modelling assumptions
are best suitable for the derivation of concrete short-term
schedules, where storage costs have to be minimized and
delay costs to be avoided. An idea that we want to explore
is that of using a form of schedule refinement taking rough
long-term schedules as a basis for obtaining precise sched-
ules for concrete short-term. A transformation approach to
scheduling, although in a different context, was successfully
used in another case study of the AMETIST project, viz. the
Cybernetix case [9]. Another idea that will be investigated
is that of searching for schedules in reverse time, starting
from the due dates of orders; valid schedules obtained this
way avoid storage and delay costs by construction.

The case study also raised a number of pragmatic ques-
tions concerning the modelling process. It turned out to be
nontrivial to obtain all relevant information from our indus-
trial partner. In spite of our efforts to create a dictionary
and better graphical representations, the models had to be
changed substantially in an advanced stage of the project, as
initially provided requirements turned out to be overspeci-
fied. The experience suggests that beyond a dictionary, there
should have been some joint activity to certify the informal
explanations. A related aspect is that the problem descrip-
tion of AXXOM was strongly influenced by the capabilities
of their own planning tool. This implies that in some places
we may have been remodelling the AXXOM model, rather
than modelling the original problem.

Summarizing, we can say that our experience with the
AXXOM case study shows the application of model check-
ing techniques for production scheduling is very promis-
ing. Still, considerable further work on modelling methods,
reusability of modelling patterns, identification and evalua-
tion of heuristics, all in the context of case studies of greater
orders of magnitude, is needed to develop it into a readily

applicable standard technique for scheduling synthesis.

Acknowledgement

We would like to acknowledge the essential role played
by Dagmar Ludewig and Sonja Loeschmann of AXXOM,
who were always willing to provide the answers to our
many questions concerning this case study.

References

[1] Y. Abdeddaim, A. Kerba, and O. Maler. Task graph schedul-
ing using timed automata. In 8th International Workshop on
Formal Methods for Parallel Programming: Theory and Ap-
plications (FMPPTA’03), 2003.

[2] Y. Abdeddaim and O. Maler. Job-Shop Scheduling using
Timed Automata. In /3th Conference on Computer Aided
Verification (CAV’01), 2001.

[3] R. Alur and D. Dill. A theory of timed automata. Theoretical
Computer Science, 126(138):183-235, 1994.

[4] European Community Project IST-2001-35304
AMETIST (Advanced Methods for Timed Systems).
http://ametist.cs.utwente.nl/.

[5] H. C. Bohnenkamp, H. Hermanns, R. Klaren, A. Mader, and
Y. S. Usenko. Synthesis and stochastic assessment of sched-
ules for lacquer production. In Ist Int. Conf. on Quantita-
tive Evaluation of Systems (QEST), pages 28-37, Enschede,
The Netherlands, Sep 2004. IEEE Computer Society Press,
Los Alamitos, California.

[6] A.Fehnker. Scheduling a Steel Plant with Timed Automata.
In Sixth International Conference on Real-Time Comput-
ing Systems and Applications (RTCSA’99), pages 280-287.
IEEE Computer Society Press, 1999.

[7]1 K. G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker,
T. Hune, P. Pettersson, and J. Romijn. As cheap as possi-
ble: Efficient cost-optimal reachability for priced timed au-
tomata. In G. Berry, H. Comon, and A. Finkel, editors, CAV
2001, number 2102 in LNCS, pages 493-505. Springer—
Verlag, 2001.

[8] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nut-
shell. International Journal on Software Tools for Technol-
ogy Transfer, 1(1/2):134-152, 1997.

[9] A. Mader. Deriving schedules for a smart card personalisa-
tion system. Technical report TR-CTIT-04-05, Centre for
Telematics and Information Technology, Univ. of Twente,
The Netherlands, Jan 2004.

[10] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of
discrete controllers for timed systems. In Proceedings of
STACS’95, volume 900 of LNCS. Springer, 1995.

[11] M. Pinedo. Scheduling: Theory, Algorithms and Systems.
Prentice Hall, 2002.

[12] M. Pinedo and X. Chao. Operations Scheduling with Appli-
cations in Manufacturing Systems. McGraw-Hill, 1999.

[13] S. Yovine. KRONOS: a verification tool for real-time sys-
tems. International Journal on Software Tools for Technol-
ogy Transfer, 1(1/2):123-133, 1997.

