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ABSTRACT

We report on a case study in which the model checker Up-
PAAL is used to formally model parts of Zeroconf, a protocol
for dynamic configuration of IPv4 link-local addresses that
has been defined in RFC 3927 of the IETF. Our goal has
been to construct a model that (a) is easy to understand
by engineers, (b) comes as close as possible to the informal
text (for each transition in the model there should be a cor-
responding piece of text in the RFC), and (c) may serve as
a basis for formal verification. Our conclusion is that Up-
PAAL, which combines extended finite state machines, C-like
syntax and concepts from timed automata theory, is able to
model Zeroconf in a faithful and intuitive manner, using
notations that are familiar to protocol engineers. Our mod-
eling efforts revealed several errors (or at least ambiguities)
in the RFC that no one else spotted before. We also iden-
tify a number of points where UPPAAL still can be improved.
After applying a number of abstractions, UPPAAL is able to
fully explore the state space of an instance of our model with
three hosts.
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1. INTRODUCTION

Our society increasingly depends on the correct function-
ing of modern communication technology. The most impor-
tant and most often used protocols that describe the oper-
ation of this technology are standardized. It is surprising
that protocols that are of such immense importance to our
society are typically written in informal language, with fre-
quent ambiguities, omissions and inconsistencies. They also
fail to state what properties are expected of a network run-
ning the protocol, and what it means for an implementation
to conform to a standard. By now there is ample evidence
that formal (mathematical) techniques and tools may help
to improve the quality of protocol standards (see e.g. [11, 7,
20, 24, 16, 23]). In order to avoid holes and ambiguities in
standards the obvious way to go is to describe critical parts
using programming and/or formal specification languages.
There have been joint attempts of academia and industry to
arrive at formal description languages for protocols. Inter-
estingly — to the best of our knowledge — these languages
have never been used in the authoritative part of proto-
col standards. Apparently, standardization bodies either
did not trust/understand the formal specifications them-
selves or were afraid implementors would misinterpret them.
Some protocol standard have extended finite state machines
(EFSMs) inside, but these are mostly illustrative, not com-
pletely formal, and sometimes contain mistakes. Bruns and
Staskauskas [7] used C to describe the SONET Automatic
Protection Switching (APS) protocol and report that de-
velopers found their C description easy to understand and
superior to that which appeared in the APS standard. The
lack of abstraction mechanisms is an obvious drawback of
C.

The relationships between an (abstract) formal model of
a protocol and the corresponding informal standard is typi-
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cation models to move on, and leave the current stage that
can be characterized as that of model hacking. The ad-hoc
construction of verification models obscures the relationship
between models and the systems that they represent, and
undermines the reliability and relevance of the verification
results that are obtained.”

In this paper, we try to address the above problems and
report on a case study where we use UPPAAL to formally
model parts of Zeroconf, a protocol for dynamic configu-
ration of IPv4 link-local addresses. Our goal has been to
construct a model that (a) is easy to understand by engi-
neers, (b) comes as close as possible to the informal text (for
each transition in the model there should be a correspond-
ing piece of text in the RFC), and (c) may serve as a basis
for formal verification.

UPPAAL[3], available at www.uppaal.com, is an integrated
tool environment for formal specification, validation and ver-
ification of real time systems modeled as networks of timed
automata [2]. The language for the new version UPPAAL 3.6
features a subset of the C programming language, a graph-
ical user interface for specifying networks of EFSMs, and
timed automata syntax for specifying timing constraints be-
tween events. Due to these extensions, the UPPAAL syntax
appears to be sufficiently expressive for the description of
critical parts of protocol specifications.

Zeroconf. We describe and analyze (critical parts of) Zero-
conf [10], a protocol for dynamic configuration of IPv4 link-
local addresses that has been defined by the IETF Network
Working Group in RFC 3927 [9]. There are many situations
in which one would like to use IP for local communication,
for instance in the setting of in home digital networks or to
establish communication between laptops. For these type
of applications it is desirable to have a plug-and-play net-
work in which new hosts automatically configure an 1Pv4
address, without using external configuration servers, like
DHCP and DNS; or requiring users to set up each computer
by hand. The Zeroconf protocol has been proposed by the
IETF to achieve exactly this. It describes how a host may
automatically configure an interface with an IPv4 address
within the 169.254/16 prefix that is valid for communica-
tion with other devices connected to the same physical (or
logical) link. The most widely adopted Zeroconf implemen-
tation is Bonjour from Apple Computer, but several other
implementations are available.

Contribution. The contribution of this paper is, first of all,
a formal model of a critical part of Zeroconf — a protocol
with clear practical relevance — that is easy to understand,
faithful to the RFC, and with an extensive discussion of the
relationship between the model and the RFC. Our efforts
revealed several errors (or at least ambiguities) in the RFC
that no one else spotted before. We also identify several
directions where UPPAAL still can be improved. Finally,
after applying several abstractions we manage to establish
some key correctness properties of an instance of our model
with three hosts.

Related Work Zeroconf involves a number of probabilis-
tic aspects that are not incorporated in our UPPAAL model:
hosts select IP-addresses randomly using a pseudo-random
number generator, and at some point during the protocol
they wait for a random amount of time selected uniformly

from an interval. The probabilistic behavior of Zeroconf has
been studied in [5, 18]. The primary goal of [5] was to in-
vestigate the trade off between reliability and effectiveness
of the protocol using a stochastic cost model. The model
of [5], which only involves a single host, is quite appropri-
ate in capturing the probabilistic behavior of IP address
configuration and conflict handling, but the analysis takes
place at a level that is much more abstract then the RFC.
Based on an earlier version of the present paper, a more
detailed model has been presented in [18] using the prob-
abilistic model checker PRISM [19]. The model checking
results reported in [18] are very interesting, but the precise
relationship between the model and the RFC is unclear (for
instance, in the model of [18] address defense only occurs be-
fore a host is using an IP address). Our motivation for using
UPPAAL instead of PRISM was that the input language of
PRISM is too primitive for our purposes (no GUI, just a few
datatypes, no support of C-like syntax,..). A toolset that
combines the functionality of UPPAAL and PRISM would be
ideal for dealing with the Zeroconf protocol.

2. THE PROTOCOL

‘We now describe the Zeroconf protocol, our UPPAAL model
of it, and the relationship between our model and RFC 3927
[9], the official protocol standard.

A Zeroconf network is composed of a set of hosts on the
same link. Hosts in the Zeroconf network can be devices
that are present at home, office, embedded systems “plugged
together” as in an automobile, or the laptops of three friends
who are writing a joint paper and want to share a file. The
goal of Zeroconf is to enable networking in the absence of
configuration and administration services. The core of RFC
3927 [9] concerns the dynamic configuration of IPv4 link-
local addresses, and this is the part on which we will focus
in this paper.

The basic idea of Zeroconf is trivial and easy to explain.
A host that wants to configure a new IP link-local address
randomly selects an address from a specified range and then
broadcasts a few identical messages to the other hosts, seper-
ated by some delay, asking whether someone is already us-
ing the address. If one of the other hosts indicates that it is
using the other address, the host starts all over again. Oth-
erwise, it may start using the address after waiting a certain
amount of time.

One may view Zeroconf as a distributed mutual exclusion
algorithm in which the resources are IP addresses. A goal
of Zeroconf is to prevent that at any point two different
hosts are using the same IP address. The underlying algo-
rithm used in Zeroconf is similar to Fisher’s mutual exclu-
sion algorithm [1] and makes essential use of timing. How-
ever, whereas Fischer’s algorithm uses a shared variable for
communication between processes, Zeroconf uses broadcast
communication. Within Zeroconf, hosts do not aim at ac-
quiring access to a specific critical section (IP address); it is
enough to obtain access to one of the 65024 available critical
sections (IP addresses).

2.1 Basic Modelling Assumptions

RFC 3927 assumes a set of hosts. This set is not fixed
and host may join and leave while the protocol is running.
Since UPPAAL does not support dynamic process creation,
we assume a fixed number of k hosts. It may take arbitrary
long before a host becomes active in the protocol and one



may argue that in this way creation of new hosts is being
captured. We do not model host failure or termination but
it would be easy to add this. In our model, a host that has
configured an IP address may stop sending messages. From
an observational point of view this is the same as a (stop-
ping) failure. A phenomenon that may occur in practice,
and which we have also not modeled here, is that previously
separate Zeroconf networks are joined.

The behavior of each host is modeled by three timed au-
tomata that are composed in parallel: Config, InputHandler
and Regular. Automaton Config models the configuration
of a new IP address, InputHandler takes care of the in-
coming messages, and Regular is an abstract model of the
activity of all the other processes running on the host. All
three automata are parametrized by the hardware address
of the host they belong to. For convenience, in our model
a hardware address is a natural number in the range 0 to
k — 1. Within UPPAAL, the scalarset type scalar[k] denotes
the set {0,...,k — 1}: typedef scalar[k] HAType

On scalarsets only restricted operations are permitted. As
a consequence, a scalarset is a fully symmetric type and the
behavior of a model is invariant under arbitrary permuta-
tions of the elements of a scalarset [17, 15]. By defining a
scalarset type rather than a subrange, we tell UPPAAL that
all the hardware addresses (and therefore also the hosts)
play a fully symmetric role, which makes it possible to ex-
ploit this symmetry during exploration of the state space.

2.2 The Network

RFC 3927 states the following assumption about the un-
derlying network [page 4, section 1.3]:

“This specification applies to all IEEE 802 Local
Area Networks (LANSs) [802], including Ether-
net [802.3], Token-Ring [802.5] and IEEE 802.11
wireless LANs [802.11], as well as to other link-
layer technologies that operate at data rates of
at least 1 Mbps, have a round-trip latency of at
most one second, and support ARP [RFC826].”

The Address Resolution Protocol (ARP, [22]) is a widely
used method for converting protocol addresses (e.g., IP ad-
dresses) to local network (“hardware”) addresses (e.g., Eth-
ernet addresses). It allows dynamic distribution of the in-
formation needed to build tables to translate protocol ad-
dresses to hardware addresses. Within Zeroconf all messages
are ARP packets. For our model, the relevant information
in an ARP packet consists of (1) a sender hardware address,
(2) a sender IP address, (3) a target IP address, and (4) the
type of the packet, which can be either “request” or “reply”.
Hence, an ARP packet can be defined as a UpPAAL C data
type as follows:

typedef struct{

HAType senderHA; // sender hardware address

IPType senderIP; // sender IP address

IPType targetIP; // target IP address

bool request; // is the packet a Request or a Reply
}ARP_packet;

Here we use the convention that the request field is true
for ARP requests and false for ARP replies. A host that is
looking for the local network address of another host with
IP address x, broadcasts an ARP request packet with the
field targetIP set to x. A host with IP address = will then
return an ARP reply packet with the field senderHA set to
its local network address.

In Zeroconf, all ARP packets are broadcast [page 13, sec-
tion 2.5]:

“All ARP packets (*replies* as well as requests)
that contain a Link- Local ’sender IP address’
MUST be sent using link-layer broadcast instead
of link-layer unicast. This aids timely detection
of duplicate addresses.”

We model the underlying network as a set of n identi-
cal Network automata. Each of these automata takes care
of handling a single ARP request at a time. To express
that all the automata are symmetric, we define a scalar set
NetworkType and parametrize each automaton by an ele-
ment j from this type.

The main reason for having n automata is that this al-
lows us to model round-trip latencies in UPPAAL. Fig. 1
schematically illustrates the operation of a Network automa-
ton. After a request from a host comes in (send_req), this is

Host Host

receive_msg answer

receive_msg

Figure 1: Interaction between Network automaton
and hosts.

broadcast by a Network automaton to all hosts (receive msg).
In case there is a corresponding answer (this may be a re-
ply or a request packet) this is accepted (answer) and also
broadcast to all hosts (receive msg). All these interactions
take place within 1 second. After completing its task the
Network automaton returns to its initial location, ready to
take care of a new request.

To simplify our model, we assume that a host handles
an incoming ARP request in zero time, i.e., we adopt the
synchrony hypothesis that is well-known from synchronous
programming [4].

Before explaining our UPPAAL model of the Network au-
tomaton in detail (in Section 2.5), we now turn our attention
to the core part of RFC 3927, which concerns address con-
figuration.

2.3 Address Configuration

Fig. 2 displays the automaton Config[j], which specifies
how host j configures a new IP address.

Each host starts in location INIT, where it resides until it
has selected an IP address. According to the RFC [page 9,
section 2.1]:

“When a host wishes to configure an IPv4 Link-
Local address, it selects an address using a pseudo-
random number generator with a uniform distri-

bution in the range from 169.254.1.0 to 169.254.254.255



counter<PROBE_NUM &&
x>=PROBE_MIN
send_req!
packet.senderHA:=j,
packet.senderlP:=0,
packet.targetIP:=IP[j],
packet.request:=true,

counter < ANNOUNCE_NUM &&
x== ANNOUNCE_INTERVAL
send_req!

packet.senderHA:=j,
packet.senderl|P:=IP[j],
packet.targetIP:=IP[j],
packet.request:=true,

Cp_uomer++, g?zu&terﬁ,

= UselP[j]:=true
x==ANNOUNCE_WAIT
counter:=0,

. counter==PROBE_NUM ConflictNum:=0,
O MAX urg! x:=ANNOUNCE_INTERVAL
- - x:=0 e {
WAIT PROBE PRE_CLAIM USE

x<=PROBE_WAIT x <= PROBE_MAX

x<=ANNOUNCE_WAIT counter < ANNOUNCE_NUM imply

x<=ANNOUNCE_INTERVAL

reset(j]? reset(j]? reset(j]? reset(j]?
IP[j]:=0, IP[j]:=0, IP[j]:=0, IP[j]:=0,
address:int[1,m] x:=0 x:=0 x:=0 UselP[]:=false
IP[j]:=address,
x:=0
Sror'n‘hctNum < MAX_CONFLICTS COLLISION
g’ x<=RATE_LIMIT_INTERVAL

ConflictNum++

ConflictNum >= MAX_CONFLICTS &&
x==RATE_LIMIT INTERVAL

INIT

Figure 2: Automaton Config.

inclusive. The IPv4 prefix 169.254/16 is regis-
tered with the IANA for this purpose. The first
256 and last 256 addresses in the 169.254 /16 pre-
fix are reserved for future use and MUST NOT
be selected by a host using this dynamic config-
uration mechanism.”

Just to keep the code simple, we abstract sligthly from the
naming of IP addresses. An IP address simply is a number
in the range 0 to m, where m denotes the number of available
link-local addresses: The address 0 corresponds to the all ze-
roes IP address 0.0.0.0, which is used as a special ‘unknown’
or ‘undefined’ value in the protocol, and the addresses 1
to m correspond to the addresses registered with the TANA,
listed in increasing order. Due to the special role of the
address 0, we cannot declare IPType as a (fully symmetric)
scalarset, and thus we declare it as a subrange instead. A
transition from location INIT to location WAIT takes place
when an address has been selected. Via the UPPAAL select
statement address:int[1,m] we nondeterministically bind
identifier address to a value in the interval [1,m]. This
means that there is an instance of the transition for each
number in this interval. In this way, we express that an 1P
address is chosen nondeterministically. The selected address
is stored in state variable IP[j]. The RFC continues [page
11, section 2.2.1]:

“When ready to begin probing, the host should
then wait for a random time interval selected uni-
formly in the range zero to PROBE_WAIT sec-
onds, and should then send PROBE_NUM probe
packets, each of these probe packets spaced ran-
domly, PROBE_MIN to PROBE_MAX seconds
apart.”

The waiting period is modeled by resetting a local clock x

upon entering location WAIT and by bounding the time the
host may stay in WAIT with an invariant x <= PROBE_WAIT.
At any point the host may move to location PROBE, where
it starts sending “probes”. The notion of an ARP Probe is
specified in the RFC as follows:

“A host probes to see if an address is already in
use by broadcasting an ARP Request for the de-
sired address. The client MUST fill in the ‘sender
hardware address’ field of the ARP Request with
the hardware address of the interface through
which it is sending the packet. The ‘sender IP
address’ field MUST be set to all zeroes, to avoid
polluting ARP caches in other hosts on the same
link in the case where the address turns out to
be already in use by another host. The ‘target
hardware address’ field is ignored and SHOULD
be set to all zeroes. The ‘target IP address’ field
MUST be set to the address being probed. An
ARP Request constructed this way with an all-
zero ‘sender IP address’ is referred to as an ” ARP
Probe”.”

Sending ARP Probes is modeled via actions send_req[j]!
that synchronize with the network. The actual packet is
communicated via a global shared variable packet of type
ARP packet: in UPPAAL the assignments in an output (!)
transition are executed before the assignments in a synchro-
nizing input (?) transition, and this allows us to assign a
value to packet in a send_req[j]! transition, which is then
picked up by a corresponding send req[j]? transition by
a Network automaton. The lower and upper bounds of the
probe interval are expressed in our model with a guard x
>= PROBE_MIN on the sending transition and an invariant x
<= PROBE_MAX on location PROBE, respectively. By setting
x to PROBE_MAX in the transition from WAIT to PROBE, we



express that the first probe is sent immediately. A local
variable counter is used to record the number of probes
that have been sent. After the probing phase is successfully
completed, the automaton jumps to location PRE_CLAIM. The
urgent broadcast channel urg ensures that this transition is
taken as soon as it is enabled. As the reader can check, the
translation from the RFC description of the probing phase
to UPPAAL is straightforward.
According to the RFC:

“If, by ANNOUNCE_WAIT seconds after the trans-
mission of the last ARP Probe no conflicting
ARP Reply or ARP Probe has been received,
then the host has successfully claimed the de-
sired IPv4 Link-Local address.”

Clock x is used to ensure that exactly ANNOUNCE WAIT time
units are spent in location PRE_CLAIM. A transition from lo-
cation PRE_CLAIM to location USE is taken to indicate that
the host has successfully claimed an address.

In our model, automaton InputHandler[j] (which will
be explained in Section 2.4) takes care of handling incom-
ing messages. If InputHandler[j] decides that, due to some
conflict, a new address must be configured, it sends a reset [j]
signal to automaton Config[j]. Upon receiving this signal,
Config[j] sets IP[j] to 0 and jumps to location COLLISION.
According to the RFC:

“A host should maintain a counter of the num-
ber of address conflicts it has experienced in the
process of trying to acquire an address, and if the
number of conflicts exceeds MAX_CONFLICTS
then the host MUST limit the rate at which it
probes for new addresses to no more than one
new address per RATE_LIMIT_INTERVAL. This
is to prevent catastrophic ARP storms in patho-
logical failure cases, such as a rogue host that an-
swers all ARP Probes, causing legitimate hosts
to go into an infinite loop attempting to select a
usable address.”

A counter ConflictNum is used in our model to record the
number of conflicts that have occurred during the process
of acquiring an IP address. Depending on the value of
ConflictNum, the automaton returns to location INIT im-
mediately or first waits for RATE_LIMIT_INTERVAL time units.
Again, the correspondence between the RFC text and our
UPPAAL model is straightforward.

In location USE the host announces the new address that
it has just claimed [page 12, section 2.4]:

“Having probed to determine a unique address to
use, the host MUST then announce its claimed
address by broadcasting ANNOUNCE_NUM ARP
announcements, spaced ANNOUNCE_INTERVAL
seconds apart. An ARP announcement is iden-
tical to the ARP Probe described above, except
that now the sender and target IP addresses are
both set to the host’s newly selected IPv4 ad-
dress. The purpose of these ARP announcements
is to make sure that other hosts on the link do
not have stale ARP cache entries left over from
some other host that may previously have been
using the same address.”

The above description is ambiguous/incomplete at 3 points.
First of all, the RFC does not specify upper and lower
bounds on the time that may elapse between sending the
last ARP Probe and sending the first ARP Announcement.
However, according to the protocol designers upper and

response==true
answer!
packet.targetlP:=packet.senderIP,
packet.senderHA:=j,
packet.sender|P:=IP[j]
packet.request:=false

response==true
answer!
packet.senderHA:=j,
packet.sender|P:=IP[j]
y:=DEFEND_INTERVAL + 1 Packet.targetIP:=IP(j],
packet.request:=true,
y:=0

response==false
no_answer!

response==false
reset[j]! no_answer!
@)=

&

y>DEFEND_INTERVAL
receive_msg[j]?
ihandler(true)

receive_msg[j]?
ihandler(false)

conflict==false conflict==true

Figure 3: Automaton InputHandler[j].

lower bound both equal ANNOUNCE_WAIT [8]. Also, the RFC
does not specify whether a host may immediately start using
a newly claimed address (in parallel with sending the ARP
Announcements), or whether it should first send out all an-
nouncements. According to the designers, a host should
send the first ARP Announcement, and then it can imme-
diately start using the address [8]. So the second announce-
ment goes out ANNOUNCE_INTERVAL seconds later, but other
traffic does not need to be held up waiting for that. Fi-
nally, the RFC does not specify the tolerance that is per-
mitted on the timing of ARP Announcements. Since no
physical device can consistently send messages spaced ez-
actly ANNOUNCE_INTERVAL seconds apart, strictly speaking it
is impossible for an implementation to conform to the RFC.
According to the designers, the RFC does not specify accu-
racy requirements, partly because the protocol is robust to
a wide range of variations, so it does not matter [8]. We
decided to follow the RFC and not specify accuracy require-
ments, but if someone wants to use our model for automatic
generation of tests, for instance using the UPPAAL-TRON
toolset [21], he or she will have to modify our model at this
point.

With this additional information, the modeling of the an-
nouncement phase in UPPAAL is straightforward and anal-
ogous to that of the probing phase. After sending the first
announcement, Boolean variable UseIP[j] is set to true.
This enables an automaton Regular[j], to start sending
out regular ARP requests packets with the senderIP field
set to IP[j] and the targetIP field set to an arbitrary link-
local address. However, even when a host is using an IP
address still at any moment a conflict may arise. When this
happens automaton Config[j] returns to its initial location
and UseIP[j] is set to false again.

2.4 Input Handler

Automaton InputHandler [j] receives incoming ARP pack-
ets and decides what to do with them. Input handling is
described at various places in RFC 3937, which makes it
nontrivial to determine the reaction to an arbitrary ARP
packet, also because Zeroconf runs on top of the ARP proto-
col, which it sometimes follows but sometimes overrules. Au-
tomaton InputHandler is displayed in Fig. 3. When a new
packet arrives, that is, when a receive msg[j]7? transition
occurs, the automaton calls a function ihandler to find out
what to do. This function computes two bits, conflict and
response: if conflict==true then some other host is using



or trying to use the IP address the host has selected and
if response==true then a packet will be send in response.
Thus the value of the two bits determines the reaction of
the input handler to the incoming packet:

1. If conflict==true and response==false, a reset[j]
signal is sent.

2. If conflict==true and response==true, an ARP An-
nouncement is broadcast.

3. If conflict==false and response==true, an ARP Re-
ply is broadcast.

4. If conflict==false and response==false, the packet
is ignored.

Clock y is used to measure the time since the last con-
flict. The definition of ihandler is listed in Fig. 4. Func-
tion ihandler has a parameter defend which may be either
false or true. This parameter, which indicates that a host
will defend its IP address in case of a conflicting ARP re-
quest, may be true only if there has been no other conflict
during the last DEFEND_INTERVAL time units. Altogether, the
input handler has to distinguish 9 scenarios (A)-(I). These
scenarios are described in detail in Appendix A. The sys-
tematic classification of these scenarios revealed two more
ambiguities/mistakes in the standard, which are also dis-
cussed in the appendix.

Note that in automaton InputHandler[j] some of the
locations are committed (C). In UPPAAL, when a system
reaches a committed location, the next transition has to
be an outgoing transition from that location. The use of
committed locations here is a modeling trick. When a net-
work automaton delivers a packet to an input handler via
a receive_msg synchronization, the input handler has to
return an answer (if there is one) instantaneously (by the
synchrony hypothesis). But since in general there are many
network automata active, we need to ensure that the answer
is picked up by the right automaton. Introducing separate
channel names for each network automaton or pi-calculus
like private channels would create too much overhead. Our
trick is that a network automaton may only synchronize
on an answer action right after performing a receive msg
action. By making the locations of the input handler fol-
lowing a receive msg transition committed, we ensure that
the reply is picked up by the right network automaton. Es-
sentially, the receive_msg and answer synchronizations take
place in a single atomic transaction. In case the input han-
dler does not generate an answer, it uses a no_answer action
to inform the network automaton about this. This synchro-
nization is an artifact of our model since in reality no signal
is sent.

2.5 The Network Automaton

The Network automaton is shown in Fig. 5. Initially the
automaton is in its IDLE location. As soon as it receives a
packet from a host via send_req, it jumps to the DELIVER
location. Since there is no lower bound on message delivery
time, message delivery may start immediately. A local clock
z is reset to zero and an invariant z < 1 ensures that within 1
second the network broadcasts the packet (and the answer if
there is one) to all hosts. In our model we assume that there
is at most one host that wants to answer any given request,
and that an answer does not induce subsequent answers.

answer?
answer_buffer:=packet

send_req?
send_buffer:=packet,
Z:=

@

IDLE DELIVER  hostHAType

z<=1 sent[host]==false
receive_msg[host]!
sent[host]:=true,
packet:=send_buffer

urg!
all_sent()
init_vars()

no_answer? host:HAType

answer_buffer.senderlP!=0 && replied[host]==false
receive_msg[host]!

replied[host]:=true,

packet:=answer_buffer

Figure 5: The Network automaton.

It is possible to modify the Network automaton so that it
can handle multiple and successive answers, but this re-
quires additional state variables and more complicated data
structures. Our Network automaton has two local buffers:
send buffer stores the packet that was sent by the host
and answer_buffer stores an answer when it arrives. In ad-
dition, Network maintains Boolean arrays sent and replied
to record to which hosts the packets have already been de-
livered. Using the UPPAAL select statement, the automaton
non deterministically selects in which order a packet is de-
livered to the different hosts. A host may return an answer
upon receipt of a request, as explained in Subsection 2.4.
The lower transition labeled with receive msg is enabled as
soon as there is an answer packet in answer_buffer. The
network returns to its IDLE location and resets its buffers,
as soon as all messages have been sent. This is checked by
the Boolean function all_sent. Upon return to the IDLE
location all variables are re-initialized.

2.6 Dimensioning the Complete Model

The RFC [page 25, section 9] specifies the following val-
ues for the different timing constants. These definitions are
copied almost verbatim in the UPPAAL declaration section
of our model.

"PROBE_WAIT 1 sec (initial random delay)

PROBE_NUM 3 (number of probe packets)
PROBE_MIN 1 sec (minimum delay till repeated probe)
PROBE_MAX 2 sec (maximum delay till repeated probe)
ANNOUNCE_WAIT 2 sec (delay before announcing)
ANNOUNCE_NUM 2 (number of announcement packets)

ANNOUNCE_INTERVAL 2 sec (time between announcement packets)
MAX_CONFLICTS 10 (max conflicts before rate limiting)
RATE_LIMIT_INTERVAL 60 sec (delay between successive attempts)
DEFEND_INTERVAL 10 sec (minimum time between defensive ARPs).

A Zeroconf network has 65024 IP addresses available and
it is suitable for up to 1300 hosts [9]. These values are too
big for automatic verification and with 3 hosts and 65024 IP
addresses also the UPPAAL simulator runs out of memory.
A next issue regarding the dimensioning of the model is the
number n of Network automata, i.e., the maximal number of
ARP requests that may be in transit at any given point. In
our model, a host may select an IP address, send a probe,
and return to the initial location via a reset in zero time.
In fact, this behavior may be repeated MAX_CONFLICTS times
in a row in zero time. Once a host is using an IP address,
the number of messages in transit may increase even further
(in fact unboundedly) since there is no lower bound on the
time between successive ARP requests. UPPAAL forces us to
bound the number of Network automata to some number n.



void ihandler(bool defend) {
if (IP[j1==0) // Scenario A: I have not selected an IP address
{response:=false; conflict:=false;}

else if (packet.senderHA==j) // Scenario B: I have sent the packet myself

{response:=false; conflict:=false;}

else if (packet.senderIP==IP[j]) //There is a conflict: somebody else is using my IP address!

{ conflict:=true;
if (not UseIP[j]) // Scenario C: select a new address
response:=false;

else if (defend) // Scenario D: I am going to defend my address

response:=true;
else // Scenario E: I will not defend my address
response:=false; }
else if (not UseIP[jl)
{ response:=false;

if (packet.targetIP==IP[j] && packet.request && packet.senderIP==0) // Scenario F: conflicting probe

conflict:=true;

else //Scenario G: Packet is not conflicting with IP address that I want to use

conflict:=false; }

else // Incoming packet is not conflicting with IP address that I am using

{ conflict:=false;

if (packet.targetIP==IP[j] && packet.request) // Scenario H: answer regular ARP request

response:=true;
else // Scenario I: no reply message required
response:=false; } }

Figure 4: Function ihandler.

3. VERIFICATION

The model described in Section 2 is very close to the RFC
definition of the protocol. However, it is too big for Up-
PAAL to do a complete state space exploration for nontrivial
instances, even when we use symmetry reduction.

The RFC does not specify what properties the protocol
must satisfy. However, it is clear that at least the following
two correctness properties are desirable:!

1. Mutual exclusion, i.e., no two hosts may use same IP
address:

ME = A[] forall (i: HAType) forall (j: HAType)
(UseIP[i] && UseIP[j] && IP[i]==IP[j])
imply i==j.

2. The network has no deadlock, i.e, in each reachable
state a transition is possible: DL = A[] not deadlock.

Using the latest version of UPPAAL (3.6 beta), we only man-
aged to establish ME and DL for the instance with 2 hosts,
1 IP address and 2 network automata. Nevertheless, it is
rather obvious that Zeroconf satisfies the mutual exclusion
property and is free of deadlocks. In the remainder of this
section, we first discuss a manual proof of mutual exclusion
and then outline an abstracted version of our model that
can be fully explored by UPPAAL in the case of 3 hosts and
used to prove mutual exclusion automatically for this in-
stance. We claim that the full model has no deadlocks but
do not present the (long and tedious) proof here. Since the
abstract model overapproximates the full model, absence of
deadlock in the first does not imply absence of deadlock in
the second.

In the full version of our paper, we present a short, man-
ual, operational proof of the mutual exclusion property for

Mutual exclusion will not hold in an extension of our model
in which Zeroconf networks can be merged. In such an ex-
tension the specification should be weakened: mutual exclu-
sion may be violated after a join, but as soon as the violation
is detected (due to an ARP packet) mutual exclusion will be
restored within a specified amount of time (provided mean-
while no further joins occur).

the general model. Inspection of the proof indicates that Ze-
roconf is extremly robust: the protocol has been designed to
handle all kinds of error scenarios (loss of messages, failure
of hosts, merge of networks) which do not occur within our
idealized model. Without these errors, it suffices (for mutual
exclusion) to send out a single probe (PROBE_NUM=1), there is
no need for sending announcements (ANNOUNCE_NUM=0), and
a host may start using an address after waiting any time
longer than the maximal communication delay. For a model
of this simplified protocol with 3 hosts UPPAAL can verify
ME and DE in a few seconds on a standard PC.

To make automatic verification of mutual exclusion pos-
sible for the full protocol in the case with 3 hosts, we had
to apply a combination of several abstractions (on top of
the abstractions that are already applied by UPPAAL): dead
variable reduction, as it has been studied in the PhD the-
sis of Yorav [25], and also overapproximation by weakening
guards or by making an urgent channel non-urgent. We re-
fer to the full version of this paper for details. Also, we
had to make the additional assumption that at any time for
each host there is at most one outgoing message in transit.
This allows us to associate a single network automaton to
each host, which only accepts packets from this host when
empty. Using the combination of the above abstractions, we
were able to prove mutual exclusion for instances of Zero-
conf with 2 hosts and up to 5 IP addresses, and an instance
with 3 hosts and 1 IP address.

We also did some experiments with the use of symmetry
reduction for IP addresses. Since in Zeroconf the IP ad-
dress 0 (i.e., 0.0.0.0) plays a special role, and UPPAAL can
only handle fully symmetric data types, this required some
rewriting of the model. Using symmetry reduction for IP
addresses, we were able to establish mutual exclusion for
a system with 2 hosts and an arbitrary number of IP ad-
dresses. Essentially, this is due to a theorem of Ip and Dill
[17] on data saturation. This theorem (which was proved
in the setting of Murphi but can easily be shown to carry
over to UPPAAL) states that for certain (“data”) scalarsets,
the state graph does not grow any further once the size of
the scalarsets grows beyond the number of scalarset loca-



tions in the system. In the case of 2 hosts, the number of
scalarset locations for IP addresses in the model equals 12 (1
for each Config[j] automaton, 4 for each Network automa-
ton, and 2 for the packet variable). In fact, data saturation
already happens starting from scalarsets of size 5. Actu-
ally, we conjecture that there exists a bisimulation between
a model with n IP addresses, for any n, and the model with
just one (nonzero) IP address, via which a proof of ME for
the general model can be reduced to a proof of ME for the
model with just one address.

4. CONCLUSIONS

Our goal has been to construct a model of Zeroconf that
(a) is easy to understand by engineers, (b) comes as close
as possible to RFC 3927, and (c) may serve as a basis for
formal verification. Did we succeed?

Understandability.Of course, it is not to us to judge whether

our model is understandable for others. The present paper
aims to place the cards on the table as a basis for a discus-
sion. The UPPAAL syntax, which combines extended finite
state machines, C-like syntax and concepts from timed au-
tomata, will certainly be familiar to protocol engineers, ex-
cept maybe for the use of clock variables. However, our ex-
perience is that timed automata notation is easy to explain,
also to people without expertise in theoretical computer sci-
ence. Clocks provide a simple and intuitive means to specify
the various timing constraints in Zeroconf. The automata
Config and InputHandler would be the obvious candidates
for inclusion in a standard. The only elements in these au-
tomata which may be considered less intuitive are the use of
committed locations in the InputHandler and the sending of
a no_reply signal in situations where no reply packet is sent
(this is an artifact of the model since in reality there is no
such signal). However, we can easily remove these elements
from the InputHandler automaton at the price of making
the Network automata (somewhat) more complicated.

There are at least four extensions of the UPPAAL syntax
that would help us to further improve the readability of our
model: (1) A richer syntax for datatypes, for instance per-
mitting us to write 0.0.0.0 for the all zero IP address instead
of 0. (2) The ability to initialize clock variables, allowing us
to eliminate the initial transition in the InputHandler[j]
automaton. (3) The ability to test clocks within the body
of functions, allowing us to move the test on y into the defini-
tion of ihandler, where it belongs conceptually. (4) Urgent
transitions as advocated in [14]. This would allow us e.g.,
to replace the invariant

counter < ANNOUNCE_NUM imply x <= ANNOUNCE_INTERVAL
in automaton Config by an urgency predicate
x <= ANNOUNCE_INTERVAL.

In our opinion urgency predicates are more intuitive than
location invariants. Once these extensions have been imple-
mented, a good case can be made for inclusion of the Config
and InputHandler automata (with the ihandler code) in a
Zeroconf standard. These models definitely help to clarify
the RFC and to prevent incorrect interpretations due to am-
biguity in the textual part. The UPPAAL simulator is also
very useful to obtain insight in the protocol.

Our efforts revealed five places where RFC 3927 [9] is
incomplete/unclear:

1. No upper and lower bounds are given on the time that
may elapse between sending the last ARP Probe and
sending the first ARP Announcement.

2. It is not specified whether a host may immediately
start using a newly claimed address or whether it should
first send out all ARP Announcements.

3. No tolerance is specified on the timing of ARP An-
nouncements.

4. Although Zeroconf requires an underlying network that
supports ARP (RFC 826), we identified some cases
where Zeroconf does not conform to RFC 826.

5. It is not exactly clear in which situations a host may
defend its address.

Faithfulness and TraceabilityWe have shown that Up-
PAAL is able to model Zeroconf faithfully. Basically, for each
transition in the model we can point towards a correspond-
ing piece of text in the RFC. The relationships between our
model and the RFC have been described in great detail in
this paper, including the design choices and abstractions
that we made. Following [6], our aim has been to make the
model construction transparent, so that our model may be
more easily understood and checked by others, making its
quality measurable in (at least) an informal sense.

We see at least three ways in which UPPAAL can be im-
proved to allow for even more faithful/realistic modeling
of Zeroconf and better traceability: (1) An extension with
probabilities, along the lines of PRISM [19], is clearly de-
sirable. (2) UPPAAL supports modeling of systems that are
described as networks of a fized number of automata with
a fired communication structure. This modeling approach
does not fit very well with the highly dynamic structure of
Zeroconf networks where hosts may join and leave, subnet-
works may be joined, etc. (3) To support traceability it
would help to add a feature to UPPAAL by which comments
are displayed when a user clicks on (or points at) a tran-
sition. Items (1) and (2) require a major research effort,
whereas item (3) should be easy to implement.

Complexity and TractabilityThe formal model of Zero-
conf that we presented in Section 2 cannot be analyzed by
UppAAL for interesting instances with 3 or more hosts. The
full version of this paper gives a short manual proof of mu-
tual exclusion for the model that we considered (no message
loss, host failure and merging of networks). In order to verify
a system with 3 hosts, we had to apply some drastic abstrac-
tions. We have argued informally that these abstractions are
sound.

A challenging question for us is to come up with (auto-
matically generated) additional abstractions that allow for
the automated analysis of larger instances of the protocol.
One possibility here would be to try to apply the technique
of counterexample guided abstraction refinement [13, 12].
A basic idea in the design of Zeroconf is that it does not
harm to send additional ARP messages; they have only been
added because they may help to ensure (or restore) mutual
exclusion in the case of faults. Thus far, we have not been
able to come up with abstractions that capture this idea. It
is highly desirable to extend UPPAAL with (semi-)automatic



support for proving correctness of abstractions. Only ab-
stractions can bridge the gap between realistic and tractable
models.

Future Work. We have only modelled/analyzed a few sim-
ple instances of a part of Zeroconf in a restrictive setting
without faulty nodes, merging of subnetworks, etc. So clearly,
there are many directions in which our modeling effort can
be extended. The timing behavior of Zeroconf becomes re-
ally interesting when studied within a setting in which also
the probabilistic behavior is modelled. The performance
analysis of Zeroconf reported in [5, 18] has been carried out
for an abstract probabilistic model of Zeroconf. A challeng-
ing question is whether these results also hold for a (proba-
bilistic extension) of our more realistic model.
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APPENDIX
A. SCENARIOS FOR INPUT HANDLER

Scenario A.Clearly, if a packet comes in when a host has
not yet selected an IP address it should be ignored. This
scenario is not listed explicitly in the RFC but should be
obvious.

Scenario B.Packets that a host has sent itself can be ig-
nored. Also this scenario is implicit in the RFC.

Scenario C.A conflict may arise when another host sends
a packet with the senderIP field set to IP[j]. This occurs
in Scenario C, which is described on [page 11, section 2.2.1]:

“If during this period, from the beginning of the
probing process until ANNOUNCE_WAIT seconds
after the last probe packet is sent, the host re-
ceives any ARP packet (Request *or* Reply) on
the interface where the probe is being performed
where the packet’s ‘sender IP address’ is the ad-
dress being probed for, then the host MUST treat
this address as being in use by some other host,
and MUST select a new pseudo-random address
and repeat the process.”

Scenarios D and Eln the previous scenario, UseIP[j]==false.

The case with UseIP[jl==true is also described in the RFC
[page 12, section 2.5]:

“Address conflict detection is not limited to the
address selection phase, when a host is sending
ARP Probes. Address conflict detection is an on-
going process that is in effect for as long as a host
is using an IPv4 Link-Local address. At any time,
if a host receives an ARP packet (request *or* re-
ply) on an interface where the ‘sender IP address’
is the IP address the host has configured for that
interface, but the ‘sender hardware address’ does
not match the hardware address of that interface,
then this is a conflicting ARP packet, indicating
an address conflict.

A host MUST respond to a conflicting ARP packet
as described in either (a) or (b) below:

(a) Upon receiving a conflicting ARP packet, a
host MAY elect to immediately configure a new
IPv4 Link-Local address as described above, or
(b) If a host currently has active TCP connections
or other reasons to prefer to keep the same IPv4
address, and it has not seen any other conflicting
ARP packets within the last DEFEND_INTERVAL
seconds, then it MAY elect to attempt to defend
its address by recording the time that the con-
flicting ARP packet was received, and then broad-
casting one single ARP Announcement, giving its
own IP and hardware addresses as the sender ad-
dresses of the ARP. Having done this, the host
can then continue to use the address normally
without any further special action. However, if
this is not the first conflicting ARP packet the
host has seen, and the time recorded for the pre-
vious conflicting ARP packet is recent, within DE-
FEND_INTERVAL seconds, then the host MUST
immediately cease using this address and config-
ure a new IPv4 Link-Local address as described
above. This is necessary to ensure that two hosts
do not get stuck in an endless loop with both hosts
trying to defend the same address.

A host MUST respond to conflicting ARP packets
as described in either (a) or (b) above. A host

MUST NOT ignore conflicting ARP packets.”

Case (a) corresponds to our scenario E. This scenario occurs
when the right receive msg? transition in the automaton is
taken, which sets defend to false, Case (b) corresponds to
scenario D. This scenario occurs when the left receive msg?
transition is taken, which sets defend to true.

The interpretation of “and it has not seen any other con-
flicting ARP packets within the last DEFEND_INTERVAL
seconds” in the previous quotation from the RFC is not
clear. Is a host allowed to defend its address if there has
been a recent conflict concerning a different address (but no
previous conflict concerning the current address)? Strictly
speaking, the host has seen a conflicting packet and it may
not defend. However, the conflict concerned a different ad-
dress, and the motivation for recording the time since the
last conflict has been to rule out a scenario in which two
hosts get stuck in an endless loop trying to defend the same
addess. Thus one could also argue that in this situation a
host may defend its address.

To model this interpretation, one would have to add an
assignment y := DEFEND_INTERVAL+1 to the reset transition
of the input handler.

Scenarios F and GThe RFC specifies one more conflict

scenario [page 11, section 2.2.1]:
“In addition, if during this period [from the begin-
ning of the probing process until ANNOUNCE_WAIT
seconds after the last probe packet is sent] the host
receives any ARP Probe where the packet’s ‘tar-
get IP address’ is the address being probed for,
and the packet’s ‘sender hardware address’ is not
the hardware address of the interface the host is
attempting to configure, then the host MUST sim-
ilarly treat this as an address conflict and select a
new address as above. This can occur if two (or
more) hosts attempt to configure the same IPv4
Link-Local address at the same time.”

In the ihandler code, this corresponds to scenario F. Sce-
nario G, which is implicit in the RFC, occurs when the in-
coming packet is not conflicting and the host is not yet using
an IP address. In this case the incoming packet is ignored.

Scenario H and I.The Address Resolution Protocol (RFC
826) [22] specifies that if a host receives an ARP request
packet, it should return an ARP reply packet if it uses an
IP address that equals the target protocol address of this
request. In the reply packet the hardware and protocol field
should be swapped, putting the local hardware and protocol
addresses in the sender fields. Zeroconf (RFC 3927) is not
explicit about conformance to RFC 826, but in our model
we take the view that once a host is using an IP address,
it answers regular ARP requests in agreement with RFC
826 except when (a) the request has been broadcast by the
host itself, or (b) there is a conflict. This is scenario H in
our model. The final Scenario I occurs when the incoming
packet is not conflicting with the IP address that the host
is using, and no reply packet needs to be sent.



