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Abstract

Learning models of machines comes very naturally to humans.
They construct a mental model of the behaviour of machines while
trying out different options. For machines this is much harder. Al-
gorithms have been developed to learn the behaviour of systems and
describe them in state machine models. Once such a model has been
learned it can be used by software engineers to improve their software.
They can simulate and analyse the behaviour of the system, test newer
versions of the system and get insight in legacy systems of which no
documentation exists.

This master thesis describes a case study done at Océ for the
ITALIA project at the Radboud University Nijmegen. The goal of
this research was to find out whether state-of-the-art techniques and
tools for automata learning are powerful enough to learn models of
industrial control software. Specifically whether the LearnLib tool de-
veloped at the University of Dortmund was able to learn a model of
the Engine Status Manager (ESM) developed at Océ.

The ESM controls the transition from one status to another in a
printer. It delegates status requests to the connected hardware com-
ponents and coordinates their responses. Software like the ESM can
be found in many embedded systems in one form or another. Although
such the ESM may seem simple, the many details and exceptions in-
volved make it hard to learn.

A system is learned in two alternating phases: A learning phase
in which a hypothesis model is created, and a testing phase in which
the algorithm searches for a counterexample. This is implemented in
the LearnLib. In order to find counterexamples during the test phase
using less queries novel techniques had to be developed.

Although a correct model of the ESM could not be learnt during
this research novel techniques were developed that greatly reduce the
number of test queries needed.



De schrijver werd door Océ-Technologies B.V. in staat gesteld een on-
derzoek te verrichten dat mede aan dit rapport ten grondslag ligt.

Océ-Technologies B.V. aanvaardt geen verantwoordelijkheid voor de juist-
heid van de in dit rapport vermelde gegevens, beschouwingen en conclusies,
die geheel voor rekening van de schrijver komen.
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1 Introduction

Model-based testing has become important in software engineering. There-
fore many tools and theories have been developed, such as JTorx [Bel10]
which is based on the ioco-testing theory by Tretmans [Tre08]. In order to
use these tools a model of the system under test (SUT) is needed. This model
is constructed manually in most cases but in software engineering projects
the time required to create such a model is not always available. Another
problem can be the lack of documentation and knowledge about the SUT.

In such a situation it is beneficial to automatically learn the behaviour of
the SUT. In some cases it is feasible to do this in a systematic way. A widely
used method is known as automata learning or regular inference developed
by Angluin [Ang87]. This method has been further refined to learn Mealy
machines by Niese [Nie03]. The tool LearnLib [RSBM09] implements this
method.

In practice automata learning can be useful in various ways. The learned
model of a software system can be used to test whether a new version of
the software has the same behaviour (regression testing). A model of a
reference implementation can be learned and an alternative implementation
can be tested using the learned model. Learning models of legacy software
of which no documentation or knowledge exists any more in order to test a
new implementation of this software.

Using the current version of LearnLib it is only feasible to learn a SUT
if it has a small input alphabet. Complex systems such as communication
protocols have very large or infinite input alphabets. To solve this problem
Aarts, Jonsson and Uijen [AJU10] proposed an abstraction mapping tech-
nique. Using this technique it is possible to learn more complex systems
when suitable abstractions can be found.

This master thesis describes a case study done at Océ. The software
system that was studied is called the Engine Status Manager (ESM). The
ESM is responsible for controlling the status of a printer. It was chosen
because it is used in many Océ printers. The ESM is very stable and has
been in use for 10 years. It is also well documented and an extensive test
suite exists. This makes it easy to understand the ESM and its interfaces.
The purpose of this case study is to investigate if it is feasible to learn typical
software systems developed at Océ. The research is carried out in the context
of the ITALIA project [ITA] at the Radboud University Nijmegen.

The ESM has also been studied in other research projects. Ploeger [Plo05]
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modelled the ESM and other related managers and verified properties based
on the official specifications of the ESM. Graaf and van Deursen [GvD07]
have checked the consistency of the behavioural specifications defined in the
ESM against the state chart definition of the ESM.

This research tries to answer the following research question:

Research question: Can automata learning successfully be applied to in-
dustrial control software?

Industrial software can be defined as software, specifically control soft-
ware, developed in an industrial setting for example in aeroplanes, cars, satel-
lites and printers.

To define the research question more clearly it is divided into the following
subquestions:

• How can a model of the ESM be learned using LearnLib?
• Does the learned model conform to the specification?
• How can structure be inferred in the learned model?

The research described in this master thesis is divided in two parts. Dur-
ing the first part an interface between ESM and LearnLib is created which
is used to learn the ESM. This answers the first subquestion. During the
second part a model is created manually in order to verify the correctness
of the learned model, which answers the second subquestion. It was quickly
discovered that more time than available was required in order to answer
the third subquestion. Although this subquestion was initially part of this
master thesis it was not answered in detail.

Section 2 describes the ESM in detail. Section 3 describes the learning
techniques used. Section 4 describes the first part of the research. Section 5
describes the first part of the research. Future research and the conclusion
are discussed in section 6.

2



2 Engine Status Manager

The focus of this master thesis is the Engine Status Manager (ESM). This
manager is used within many Océ products to manage the status of the engine
of the printer or copier. In this section the overall structure and context of
the ESM will be explained.

2.1 ESRA

The requirements and behaviour of the ESM are defined in a software ar-
chitecture called Embedded Software Reference Architecture (ESRA). The
components defined in this architecture are reused in many of the products
developed by Océ and form an important part of these products. This ar-
chitecture is developed for cut-sheet printers or copiers. The term cut-sheet
refers to the use of separate sheets of paper as opposed to a continuous feed
of paper.

An engine refers to the printing or scanning part of a printer or copier.
Other products can be connected to an engine that pre- or postprocesses the
paper for example a cutter, folder, stacker or stapler.

Figure 1: Global overview of the engine software
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Figure 1 shows an overview of the software in a printer or copier. The
controller communicates the required actions to the engine software. This
includes transport of digital images, status control, print or scan actions and
error handling. The controller is responsible for queueing, processing the ac-
tions received from the network and operators and delegating the appropriate
actions to the engine software.

The managers communicate with the controller using the external inter-
face adapters. These adapters translate the external protocols to internal
protocols. The managers manage the different functions of the engine. They
are divided by the different functionalities such as status control, print or scan
actions or error handling they implement. In order to do this the manager
may communicate with other managers and functions.

A function is responsible for a specific set of hardware components. The
functions translate commands from the managers to the function hardware
and report the status and other information of the function hardware to
the managers. This hardware can for example be the printing hardware or
hardware that is not part of the engine hardware such as a stapler.

Other functionalities such as logging and debugging are orthogonal to the
functions and managers.

2.2 ESM and connected components

The ESM is responsible for the transition from one status of the printer or
copier to another. It coordinates the functions to bring them in the correct
state according to the requested status. Moreover, it informs all its connected
clients (managers or the controller) of status changes. Finally, it handles
status transitions when an error occurs.

Figure 2 shows the different connections to the ESM. The Error Handling
Manager (EHM), Action Control Manager (ACM) and other clients request
engine statuses. The ESM decides whether a request can be honoured im-
mediately, has to be postponed or ignored. If the requested action is pro-
cessed the ESM requests the functions to go to the appropriate status. The
EHM has the highest priority and its requests are processed first. The EHM
can request the engine to go into the defect state. The ACM has the next
highest priority. The ACM requests the engine to switch between running
and standby mode. The other clients request transitions between the other
states, such as idle, sleep, standby and low power. All the other clients have
the same lowest priority.
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Figure 2: Overview of the managers and clients connected to the ESM

The Top Capsule instantiates the ESM and communicates with it dur-
ing the initialisation of the ESM. The Information Manager provides some
parameters during the initialisation.

There are more managers connected to the ESM but they are of less
importance and are thus not mentioned here.

2.3 Rational Rose Real Time

The ESM has been implemented using Rational Rose Real Time (RRRT). In
this tool so-called capsules can be created. Each of these capsules defines a
hierarchical state diagram. Capsules can be connected with each other using
structure diagrams. Each capsule contains a number of ports that can be
connected to ports of other capsules by adding connections in the associated
structure diagram. Each of these ports specifies which protocol should be
used. The protocol defines which messages may be send to and from the
port. Transitions in the state diagram of the capsule can be triggered by
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arriving messages on a port of the capsule. Messages can be sent to these
ports using the action code of the transition. The transitions between the
states actions and guards are defined in C++ code. From the state diagram,
C++ source files are generated.

RRRT is heavily based on UML [Obj04]. Many of the semantics defined
in UML are used in RRRT. One important semantic used in RRRT is the run-
to-completion execution model. This means that when a received message is
processed, the execution cannot be interrupted by other arriving messages.
These messages are placed in a queue to be processed later.

2.4 The ESM state diagram

Figure 3: Top states and their transitions in the ESM

Figure 3 shows the top states of the ESM state diagram. The states that
can be requested by the clients and managers are grey. The other states are
so called transitory states. In transitory states the ESM is waiting for the
functions to report that they have moved to the corresponding states. Once
all functions have reported this the ESM moves to the corresponding state.

The idle state indicates that the engine is done starting up but that it
is still cold (uncontrolled temperature). The standby state indicates that
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the engine is warm and ready for printing or scanning. The running state
indicates that the engine is printing or scanning.

The transition from the border to the goingToSleep and goingToDefect

states indicates that it is possible to move to the sleep or defect state from
any state. In some cases it is possible to awake from sleep mode in other
cases the main power is turned off.

The medium state is designed for diagnostics. In this state the functions
can each be in a different state. For example one function is in standby state
while a other function is in idle state.

The state diagram in figure 3 may seem simple, but it hides many details.
Each of the states has up to 5 nested states. In total there are 70 states that
do not have further nested states. The C++ code contained in the actions
of the transitions is in some cases non-trivial. The possibility to transition
from any state to the sleep or defect state also complicates the learning.
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3 Automata learning

This section will give background information on the learning techniques
used in this research. The section 3.1 will introduce Mealy machines and
their notations. Section 3.2 will introduce a technique to learn such a model
from a SUT.

3.1 Mealy machines

A Mealy machine is defined as a tuple M = 〈I, O,Q, q0, δ, λ〉, where

• I is the finite non-empty set of input symbols also called the input
alphabet.
• O is the finite non-empty set of output symbols also called the output

alphabet.
• Q is the finite non-empty set of states.
• q0 ∈ Q is the initial state.
• δ : Q× I → Q is the transition function.
• λ : Q× I → O is the output function.

An informal description of a Mealy machine can be given as follows. Given
a Mealy machine in a state q ∈ Q when an input i ∈ I is processed an output
λ(q, i) will be given. The Mealy machine will then be in state δ(q, i). This
means that any input into a Mealy machine will always produce an output.
A Mealy machine defined in this way will always be deterministic. Only
deterministic Mealy machines are considered in this research.

A transition of a Mealy machine is denoted as q
i/o−→ q′ meaning δ(q, i) = q′

and λ(q, i) = o. δ and λ can be extended to accept sequences of inputs instead
of only single inputs. This is done by defining

• δ(q, ε) = q
• δ(q, pi) = δ(δ(q, p), i)
• λ(q, ε) = ε
• λ(q, pi) = λ(q, p)λ(δ(q, p), i)

where p ∈ I∗, i ∈ I and q ∈ Q.
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3.2 Learning algorithm

This section explains the automata learning algorithm used in this research
is explained. This technique is also often called regular inference.

The algorithm described here is based on the L∗ algorithm as first pro-
posed by Dana Angluin [Ang87]. The L∗ algorithm is used to infer determ-
inistic finite automata (DFA). Later it was adapted by Niese [Nie03] in order
to also be able to learn Mealy machines. Our description of the adaptation of
the L∗ algorithm by Niese is based on the work of Bohlin [Boh09]. An over-
view of the these algorithms is given by Stefen, Hower and Merten [SHM11].

Figure 4: Learner overview

Figure 4 shows an overview of the algorithm. The learner can ask the
teacher two types of queries: a membership query or an equivalence query. It
is assumed the teacher has a SUT that can be described by a Mealy machine
M = 〈I, O,Q, q0, δ, λ〉 and that it is input complete. A membership query
by the learner is a sequence of input symbols from the alphabet I. The
teacher responds with the query output, a sequence of output symbols from
the alphabet O. The teacher can also perform a reset that returns the SUT
to the initial state. When the learner asks an equivalence query it gives the
teacher a hypothesis model of the SUT and asks if it is equivalent to the SUT.
The hypothesis model is a Mealy machine that represents the best estimate
the learner has about the SUT. If it is equivalent, the teacher responds with
yes, otherwise it responds with no and gives a sequence of input symbols for
which the SUT gives a different output than the hypothesis.
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In practise the equivalence query is approximated by using a model-based
testing (MBT) tool. This tool generates membership queries and tests if there
is a difference in the output given by the SUT and the hypothesis. These
queries are also called test queries. LearnLib implements both the learning
algorithm and the MBT tool.

The learner begins by asking membership queries and constructing a hy-
pothesis model from the outputs. It then asks an equivalence query. When
the teacher responds with a counterexample the learner refines its hypothesis
and tries again. When the teacher responds with yes the learning is done.

In order to create a hypothesis an observation table is used. An obser-
vation table is tuple OT = (S,E, T ). Here S ⊆ I∗ is the non-empty prefix
closed finite set of prefixes, E ⊆ I∗ is the non-empty finite set of suffixes
and T is a function which maps each cell of the table to an output sequence
in O∗. Formally the type of T is defined as T : ((S

⋃
S · I) × E) → O∗.

For every s ∈ S
⋃
S · I and e ∈ E we have T (s, e) = λ(q0, se). For every

s ∈ S
⋃
S · I the function row(s) is defined as row(s)(e) = T (s, e) for every

e ∈ E. The cells of T are filled using membership queries. A reset before
each membership query is used to ensure the SUT is in the initial state.

The elements of S
⋃
S · I are the row labels of the table and elements of

E are the column labels of the table. Informally one can say that each cell
of the table is filled with the output of the Mealy machine when using the
corresponding row label and column label concatenated together as input.
Rows with the labels in the set S can be seen as the states of the Mealy
machine. Rows with labels in the set S · I can be seen as the transitions of
the Mealy machine.

The set S is initialized as {ε}. The set E is initialized as I. In order to
create a hypothesis model from the observation table it must be closed and
consistent.

The observation table is closed if for each s ∈ S · I there exists an s′ ∈ S
such that row(s) = row(s′). Informally one can say that if the observation
table is not closed there is a transition from a state that leads to a unknown
state. The observation table can be closed by adding a new prefix for the
unknown state. The algorithm finds s ∈ S and a ∈ I such that row(sa) 6=
row(s′a) for all s′ ∈ S and adds sa to S and the new cells are filled using the
corresponding membership queries.

The observation table is consistent if for all s, s′ ∈ S, row(s) = row(s′)
implies that row(sa) = row(s′a) for all a ∈ I. Informally this means that if
the observation table is inconsistent there are two states that are equal but
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when a transition a ∈ I is taken in each state they do not end up in the
same state. The inconsistency can be removed by adding a new suffix. The
algorithm finds s, s′ ∈ S, a ∈ I and e ∈ E such that row(s) = row(s′) but
T (sa, e) 6= T (s′a, e) and adds the suffix ae to E.

When the observation table is closed and consistent a hypothesis H =
〈I, OH , QH , qH0 , δ

H , λH〉 can be constructed as follows:

• OH is the set of all the output symbols used in the observation table.
• QH = {row(s)|s ∈ S}
• qH0 = row(ε)
• δH(row(s), a) = row(sa)
• λH(row(s), a) = T (s, a)

The hypothesis is then given to the teacher. If the hypothesis is incorrect
a counterexample w ∈ I∗ will be give such that λ(q0, w) 6= λH(qH0 , w). All
the prefixes of w will then be added to S. The algorithm will extend the
observation table until it is consistent and closed and create a new hypothesis.
This will continue until the teacher declares the hypothesis correct.

Figure 5: Example Mealy machine, with start state q0

In order to demonstrate the learning algorithm the Mealy machine in
figure 5 will be used as SUT. In order to start learning S is initialized to {ε}.
The observation table is filled as shown in table 1. The rows of the prefixes
in S are displayed in the top half. The prefixes in S · I are displayed in the
bottom half.

This table is closed and consistent according to the above definitions.
However the hypothesis constructed from this table only contains a single
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OT1 IA IB
ε OA OB
IA OA OB
IB OA OB

Table 1: Observation table 1

state q0. The sequence IB IB IA is a counterexample. It results in the
output OA in the hypothesis and in OQ in the SUT. All the prefixes of the
sequence IB IB IA are added to S. The table is filled using the new prefixes
of S as shown in 2.

OT2 IA IB
ε OA OB
IB OA OB
IB IB OQ OB
IB IB IA OA OB
IA OA OB
IB IA OA OB
IB IB IA IA OA OB
IB IB IA IB OQ OB
IB IB IB OQ OB

Table 2: Observation table 2

This table is closed, but it is not consistent. Row IB and row ε are equal
but the rows IB and IB IB are not. The suffix IA gives a different output.
We can thus add the suffix IB IA to resolve the inconsistency. This results
in table 3. The hypothesis constructed from this table is equivalent to the
SUT.

OT3 IA IB IB IA
ε OA OB OA
IB OA OB OQ
IB IB OQ OB OQ
IB IB IA OA OB OQ
IA OA OB OA
IB IA OA OB OA
IB IB IA IA OA OB OA
IB IB IA IB OQ OB OQ
IB IB IB OQ OB OQ

Table 3: Observation table 3
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4 Learning the ESM

4.1 Learning set-up

In order to learn the behaviour of the ESM it was connected to the LearnLib
tool [MSHM11]. LearnLib is developed at the University of Dortmund and
implements the learning algorithms described in section 3.2.

LearnLib needs to send an input query and receive the output sequence.
Before each input query is sent, the SUT needs to be in its initial state. This
means that LearnLib needs a way to reset the SUT.

A clear interface to the ESM has been defined in RRRT. The ESM defines
ports from which it receives a predefined set of inputs and to which it can
send a predefined set of outputs. However this interface can only be used
within RRRT. In order to communicate with the LearnLib software a TCP
connection is used. An extra capsule is created in RRRT which connects
to the ports defined by the ESM. This capsule creates a TCP connection to
LearnLib, inputs and outputs are translated to and from a string format and
sent over the connection.

The inputs and outputs sent to and from the ESM have parameters. The
parameters are enumerations (of statuses) or integers bounded by the number
of functions connected to the ESM. Currently LearnLib cannot handle inputs
with parameters. One input of each combination of input and parameter is
generated for the input alphabet used by LearnLib.

In order to reduce the number of inputs some are grouped together. When
learning the ESM using 1 function 83 inputs can be grouped. When using
2 functions 126 inputs can be grouped. A new input input I is added to
the alphabet to represent a group of inputs. When I needs to be sent to
the ESM, one input of the represented group is randomly selected. This is a
valid abstraction because all the inputs in the group have exactly the same
behaviour in any state of the ESM. This has been verified by doing code
inspection. No other abstractions were found during the research. After the
inputs are grouped a total of 82 inputs remain when learning the ESM using
1 function. 105 inputs remain when using 2 functions.

The ESM also cannot be modelled by a directly Mealy machine. Some
inputs may produce no or more than one output. In order to compensate for
this we first tried to use a technique described by Aarts and Vaandrager [AV10]
was used. A learning purpose, that fits the run-to-completion execution
model used by RRRT, was used. This means that no new input is sent be-
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fore the SUT is quiescent. The learning purpose that fits this has two states.
In the initial state only inputs may be sent or a quiescence output received.
When an input is received the second state is reached and only outputs may
be received. When a quiescence output is received the initial state is reached
again.

This approach works well in general but as also noted by Aarts and
Vaandrager [AV10] the technique may cause LearnLib to ask unnecessary
queries. For each state where an output is expected all the inputs that are
not allowed by the learning purpose are also tried. In order to optimize this
the learning purpose is removed and a direct translation is made. When an
input is sent all the outputs are collected until quiescence is detected. All
the outputs are concatenated and viewed as a single output. This allows us
to view the ESM as a Mealy machine. This is only possible because of the
run-to-completion execution model used in RRRT.

Normally quiescence is detected by waiting for a fixed timeout period.
However this causes the system to be mostly idle while waiting for the
timeout, which is very inefficient. In order to detect quiescence immedi-
ately the run-to-completion execution model used by RRRT is exploited.
The ESM was modified to respond to a special input with a single special
output. This special input is sent after each input with a low priority. Only
when the original input is processed and all the outputs are sent will the
special input be processed and the special output be sent back.

4.2 Test selection strategies

The ESM was learned using the set-up described in section 4.1. In this
case study the most challenging problem was finding counterexamples for
the hypotheses constructed during learning.

In order to find these counterexamples, LearnLib implements several al-
gorithms one of which is a random walk algorithm. The random walk al-
gorithm works by first selecting the length of the test query. This is done by
starting with the lower bound of the length. The length is increased using
a while loop until it is equal to the upper bound or a random boolean vari-
able evaluates to true. Each of the input symbols in the test query is then
randomly selected from the input alphabet I from a uniform distribution.

Normally, LearnLib uses a fixed upper bound for the maximum number
of test queries executed after the previous counterexample has been found.
It was however quickly discovered that it is hard to judge what this upper
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bound should be. At the beginning of the research LearnLib was left running
without upper bound on the number of test queries. The human operator
judged whether LearnLib should be terminated. The observations of the
various runs during this research lead to the following heuristic: If n test
queries are needed to find the last counterexample, then n ∗ 10 test queries
will be executed before terminating LearnLib.

In order to find counterexamples a specific sequence of input symbols
is needed to arrive at the state in the SUT that differentiates it from the
hypothesis. The upper bound for the size of this search space is |I|n where
|I| is the size of the alphabet used and n the length of the counterexample
that needs to be found. If this sequence is long the chance of finding it is
small. Because the ESM has many different input symbols to choose from,
finding the correct one is hard. When learning the ESM with 1 function
there are 82 possible input symbols. If for example the length of the counter
example needs to be at least 6 inputs to identify a certain state. The upper
bound on the number of test queries would then be 30, 4 ∗ 1011. An average
test query takes 5 milliseconds, thus it would take about 48,2 years to execute
these test queries.

In order to find all counterexamples needed to learn the correct model of
the ESM, the standard random search used in LearnLib was altered. Four
different techniques were added. These techniques greatly improve the ex-
pected time that is needed to find counterexamples. Each of the techniques
will be explained in this section and empirical data will be presented in order
to show the improvements.

4.2.1 Random prefix selection

The learned model of the ESM has many states that have a long access
sequence. This can be seen in figure 6. Most access sequences have a length
between 15 and 23 inputs and the average length is 18,22 inputs.

Using the random walk test selection, states with a shorter access se-
quence are visited more often than states with a long access sequence. Some
counterexamples may only be found after visiting certain states. If these
states have a lower chance of being visited counterexamples will be harder
to find.

In order to solve this problem a state from the current hypothesis is
randomly selected from a uniform distribution. The access sequence of the
selected state is then used as prefix for the test query. The rest of the test
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Figure 6: Number of states per access sequence length

query is selected using the random walk algorithm.
The intuition for this technique is that all the states have a roughly equal

chance of being visited by a test query. In order to show this more rigorously
one could for example use MRMC [KZH+11]. This is however beyond the
scope of this thesis.

4.2.2 Subalphabet selection

The random prefix selection technique was used at the beginning of this
research. During attempts at learning the ESM it was observed that using
this technique some counterexamples were still too hard to find. For example
approximately 36 million test queries were needed to find one counterexample
and it took more than 2 days to find it.

This prompted a search for a better way to generate test queries. This
begins by analysing the reason why the large number of test queries was
needed. It was observed that when a counterexample is hard to find the
suffix of this counterexample is large. Using random prefix selection there
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is a higher chance to find the correct prefix. However for the suffix there is
still a large search space. The upper bound for the size of this search space
is |Σ|n where |Σ| is the size of the alphabet used and n the size of the suffix
that needs to be found.

In order find counterexamples with fewer test queries a possible solution
is to lower |Σ|. This was accomplished by dividing the input alphabet Σ in
to n subalphabets Σ1 . . .Σn. The union of all these alphabets is again Σ.

The intuition is that for many systems it is possible to reach a large subset
of the states using only a small subset of inputs. For example a remote control
might have a set of buttons to control the TV and another set of buttons to
control the DVD player.

The subalphabets Σ1 . . .Σn are chosen before the learning begins. This
can be done based on knowledge about the SUT, by an algorithm or some
combination of this. In order to use these subalphabets the testing phase
must be changed. The testing phase is now divided into n parts, one subphase
for each subalphabet. In each of these subphases test queries are generated
as in random walk but the inputs are selected from subalphabet Σn instead
of Σ.

In order to decide whether to move from one subphase to the next sub-
phase some heuristic needs to be used. The heuristic that was used during
this research is: If qcurrent > max(q1, . . . , qm) ∗ 10 and qcurrent > qlowerbound

then the next subphase is started. Where qcurrent is the current number of
test queries executed after the last counterexample was found, q1 . . . qm are
the number of queries used to find the previous counterexamples in this sub-
phase, and qlowerbound is some fixed minimum lower bound on the number of
test queries that needs to be executed. The factor 10 used in this heuristic
is based on observations done during the research.

The biggest problem using this technique is finding an effective set of
subalphabets. Finding an algorithm that will find an effective set of subal-
phabets is non trivial. Due to time restrictions no such algorithm was created
during this research.

In this case study the subalphabets were chosen by hand. The alphabet
Σ was divided into 14 disjoint fragments. These were then composed in order
to create 43 subalphabets. The fragments were chosen based on knowledge
about the ESM. Each of these 14 fragments represents a functionality of the
ESM. By functionality we mean for example changing to a different status
(idle, standby, running, defect, etc). For most of these functionalities other
functionalities are needed. For example to move to running status the idle
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Figure 7: Subalphabets used when learning the ESM

and standby status have to be reached first.
The subalphabets used during the learning of the ESM are shown in figure

7. The vertexes of the tree represent the subalphabets. The root of the tree
represents the empty subalphabet. This subalphabet is obviously not used.
Each directed edge between two vertexes means that the subalphabet at
the target vertex is the subalphabet at the source vertex with the indicated
fragment added to it.
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4.2.3 Random suffix selection

Another solution for the problems mentioned in the previous section was
found. During the learning of the ESM it was observed that the suffix of
a counterexample often ends with a suffix found with a previous counter-
example.

This observation can be used to find counterexamples using less test quer-
ies. When testing begins the set of distinguishing suffixes is extracted from
the current hypothesis. This set is maintained during the learning of the
model as described in section 3.2. The prefix of the test query is generated
using random walk test selection that is build into LearnLib, but a randomly
selected suffix from the set of distinguishing suffixes is appended to it.

If this strategy is combined with the random prefix strategy it is basically
a variant of the well-known W-method by Chow [Cho78] and Vasilevskii[Vas73].
The test queries are of the form puw, where p is the prefix, w the suffix and
u a random sequence of inputs. The difference with the W-method is that
p u and w are chosen randomly whereas the W-method generates a list of
possible values for p u and w. However this list would be infeasibly large
when testing the ESM.

4.2.4 Evolving hypothesis selection

The evolving hypothesis technique described by Howar et al. [HSM10] was
used during this research. It is based on the idea that not only the current
hypothesis should be used but also all the previous hypotheses.

The proposed algorithm allows LearnLib to refine the hypothesis after
each counterexample is found. This means that states and transitions keep
the same identity from one hypothesis to the next. During the process of
refining the hypothesis states and transitions will be added and deleted.

Using this evolving hypothesis a new test selection strategy can be cre-
ated. In their paper Howar et al. suggest a blocking strategy. This means
randomly choosing a transition from the hypothesis. Then a random suf-
fix is generated. The concatenation of the selected prefix and suffix forms
the test query. The selected transition is then blocked from further selec-
tion. If all transitions are blocked the algorithm resets by unblocking all the
transitions again. The random suffix is generated using the random walk
algorithm. Note that the because the hypothesis is refined instead of re-
constructed every time a counterexample is found the transitions that are
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blocked stay blocked. The result is that new transitions are selected more
frequently then existing transitions.

In their paper Howar et al. also suggest a weighted strategy for select-
ing the transition. A weight for each transition is increased every time the
transition is selected. A transition is selected with a probability inversely
proportional to the weight. This strategy was however not used because it
is more complicated to implement and takes a lot of time each time a test
query is generated. During the ZULU competition the blocking and weighted
strategies are also shown to need a similar number of test queries.

4.3 Experiments

Experiments were done in order to find out to which extent the strategies
discussed above reduce the number test queries needed during learning.

The same set-up as was used for learning the ESM was used to run these
experiments. However the process of learning the entire ESM takes too long
for experiments to be run with various different test selection strategies.
Instead only a partial model of the ESM was learned. This partial model is
learned by reducing the input alphabet.

Choosing a suitable partial model of the ESM to learn in these exper-
iments turned out to be difficult. Because all the discussed test selection
strategies use randomness the variance in the test results is high. In order
to produce meaningful statistics a lot of samples are needed. This poses a
restriction on the time used for each run of the experiment. If the chosen
partial model of the ESM is too large some counterexamples can not be found
within these time constraints. If the chosen partial model is too small some
of the selection strategies can not fully show their usefulness.

The restricted input alphabet was that chosen contains the inputs needed
for the initialisation and error behaviour. In total this restricted alphabet
contains 16 inputs and the model learned from this has 34 states. When
using the subalphabet selection strategy the relevant subalphabets are used.
They are the same as the subalphabets used when learning the ESM. Each
of these subalphabets is a superset of the previous one each adding 5 or 3
inputs.

Even with this restricted alphabet it is hard to learn the model using
only random walk in a reasonable time. Because of this the prefix selection
strategy is used in each of the experiment set-ups.

The following experiment set-ups were used:
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Prefix Only prefix selection strategy.
Suffix Prefix and suffix selection strategies.
Alpha Prefix and subalphabet selection strategies.
EH Prefix and evolving hypothesis selection strategies.
All All of the selection strategies.

For each of these set-ups the model was learned 250 times taking on
average about 1,5 minutes per run. Afterwards for each of these runs it was
verified that the correct model was learned.

MQ TQ no CE found TQ CE found
Prefix 14.384 255.748 100,0% 24.001 100,0%
Suffix 14.316 233.566 91,3% 21.537 89,7%
Alpha 14.180 400.000 156,4% 116 0,5%
EH 14.309 231.314 90,4% 20.943 87,3%
All 14.143 400.000 156,4% 177 0,7%

Table 4: Experiment data using Rivest splitter. MQ stands for member
queries. TQ stands for test queries. CE stands for counterexample

Table 4 shows the data of these experiments. In the second column shows
the average number of member queries. The third and fourth column shows
the average number of test queries that did not find a counterexample and
the percentage compared to the prefix set-up. The fifth and sixth column
shows the average number of test queries that did find a counterexample and
the percentage compared to the prefix set-up.

The heuristic discussed in section 4.2.2 is used in these experiments to
decide when the learning should be stopped. When using the subalphabet
selection strategy this heuristic is used when learning using each of the 4
subalphabets. This heuristic leads to the division in test queries that do an
do not find a counterexample.

From this data it can be concluded that when using suffix, subalphabet
and evolving hypothesis selection strategy the number of test queries needed
to find counterexamples is reduced significantly compared to when only using
prefix selection strategy. In case of subalphabet selection strategy a reduction
by 2 orders of magnitude can be seen.

However when looking at the test queries needed that do not find a
counterexample the subalphabet selection strategy performs worse. These
numbers depend on the minimal number of test queries needed after the last
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counterexample is found when testing with each of the 4 subalphabets. In
these experiments this number was 100.000. This is the same number as used
when learning the whole ESM.

When all the strategies are combined the number of test queries needed
is not significantly different from the number of test queries needed when
using the subalphabet and prefix strategies. This is because of the necessary
simplicity of the model that was learned. After the subalphabet strategy is
used the other strategies do not add significant speed up when learning the
simplified model.

MQ TQ no CE found TQ CE found
Prefix 9.949 417.559 100,0% 64.910 100,0%
Suffix 9.961 245.950 58,9% 28.882 44,5%
Alpha 9.781 400.000 95,8% 434 0,7%
EH 9.937 355.120 85,0% 55.309 85,2%
All 9,785 400,000 95,8% 506 0,8%

Table 5: Experiment data using Kearns splitter. MQ stands for member
queries. TQ stands for test queries. CE stands for counterexample

These 2 experiments were also ran using the Kearns splitter instead of
the standard Rivest splitter. This data is shown in table 5. Instead of adding
the suffix that is found globally the Kearns splitter only adds the suffix to
the table of the corresponding state. This leads to a reduction of the number
of member queries needed by 69,3%.

The data also shows that the number of test queries needed is increased
when using a Kearns splitter. This is because some counterexamples that
are found may be applicable to multiple states. Using a Rivest splitter the
counterexample is automatically learned in all states. Using a Kearns splitter
the counterexample is only learned for one state. More test queries then have
to be spend to find a similar counterexample for other states.

Using the suffix selection strategy this seems to be less of a problem. Only
34,1% more test queries are needed as opposed to 170,4% more when using
prefix selection strategy. The reason for this is that once a counterexample
is found for one state the counterexamples for the other states are easier to
find because the chance of selecting the correct distinguishing suffix is much
higher then when using only prefix selection strategy.
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4.4 Results

Using the learning set-up discussed in section 4.1 and all the test selection
strategies discussed in section 4.2 a model of the ESM using 1 function with
4252 states could be learned. However due to time constraints this model is
not correct. During the verification of this model some additional counter-
examples were found.

Figure 8 shows the learned model. As can be seen in the figure the number
of states and transitions between the states makes it hard to visualise the
model. The visualisation was made using Gephi [BHJ09].

In this visualisation the states are coloured according to the strongly
connected components they belong to. The edges are coloured based on the
inputs and outputs they represent. If multiple transitions from one state to
a other state exist this is represented by the thickness of the edge.

The three arms at the top of the figure are three deadlocks in the model.
These deadlocks are present in the ESM by design. When the ESM is in such
a state it will remain there until the main power supply is turned off. The
cluster of states in the top of the figure is the initialisation of the ESM. This
is done only once during the execution of the ESM and thus only transitions
from this cluster to the main body of states are present.

The following list gives the most important statistics gathered during the
learning:

• The learned model has 4252 states.
• The total time needed for learning was 287 hours, 18 minutes and 42

seconds.
• 64,4% of the time was spent executing test queries. The rest was spent

executing member queries.
• The total number of member queries was 84.219.652
• The total number of test queries was 131.435.188

During the research and when analysing the experiments it became clear
that the number of test queries needed to find a specific counterexample has
a lot of variance. However when using a heuristic to decided when to stop
executing test queries it is important that the values on which the limit is
based don’t have a lot of variance.

For example consider a situation where a counterexample would on av-
erage need 1.000 test queries to find and it is found after 2.000 test queries.
This would mean another 20.000 extra test queries would be needed when
on average 10.000 test queries would have been enough.
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Figure 8: Learned model of the ESM
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5 Verification

In order to verify that the correct model was learnt using LearnLib a model
was created by hand.

The ESM is created using RRRT, as described in section 2, and is thus
already in a state chart format. This format is however not suitable to prove
it equivalent to the learned model. During the research a suitable format to
encode the ESM in was searched for.

Any suitable format or tool for this research would need to be able to
transform the hand made encoding of the ESM to a label transition system
(LTS) or something similar. This can then be compared to the learned result
to conclude whether they are equivalent or not.

Some possible candidates for a usable formalism have been found. The
first one was hierarchical timed automata (HTA) [DMY02]. Although a tool
is available that uses the formalism described in the paper it is hard to
translate the output of this tool to something that could be compared to the
learned model. Another formalism developed by Hansen et al. [HKL+10] was
also considered. Although a tool is also available for use it missed some essen-
tial features, for example the ability to assign state variables on transitions.
This tool is still under development but could not be used during this re-
search. A formalism called object-oriented action systems (OOAS) [KSA09]
has also been described in the literature, but no tools to use this system
could be found.

Finally it was decided to create a model and interpret it using our own
semantics. The model was created in the UML drawing tool PapyrusUML
[LTE+09].

5.1 Model semantics and transformations

In order to model the ESM a model semantic needed to be defined. This
semantic needed to be efficient. This efficiency is measured in the number of
states and transitions used to define the ESM.

During previous research by the ITALIA project [ITA] the Uppaal [BDL+06]
GUI was used as an editor for extended finite state machines (EFSM).
Uppaal is a well known model checker that can be used to create timed-
automata [AD94] and to check logical properties of these automata.

An EFSM could not be used directly to model the ESM because it is
not efficient. The reason for this is that the ESM makes heavy use of
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UML [Obj04] state machine concepts such as state hierarchy and transitions
from composite states. This leads to a duplication of many transitions and
states when modelled using a EFSM.

Instead a hierarchical EFSM (HEFSM) was used. The semantics of a
HEFSM have been designed to match the semantics used by the ESM. These
semantics are a subset of the semantics used in UML state machines on which
the execution model of RRRT is based. Many elements used in UML state
machines are left out because they are not needed for modelling the ESM
and complicate the transformation process.

The model is transformed to the Uppaal format used in the ITALIA
project. Using existing tools within the ITALIA project this transformed
model is then transformed again in to a Lotos model. This Lotos model is
then compared to the learned model of the ESM using bisimulation available
in CADP [GLMS11].

This section will explain the semantics of the HEFSM model created.
There will be no formal description of these semantics, this is outside the
scope of this research. Instead of the transformation used to transform the
HEFSM model to an EFSM model will be explained using examples. The
transformation is divided in the following steps and are executed in this order:

• Combine transitions without input or output signal.
• Transform supertransitions.
• Transform internal transitions
• Add input signals that do not generate an output signal.
• Replace invocations of the next function.

In order to make the model more readable and to make it easy to model
if and switch statements in the C++ code the HEFSM model allows for
transitions without a signal. These transitions are called empty transitions.
An empty transition can still contain a guard and an assignment. However
these kinds of transitions are only allowed on states that only contain empty
outgoing transitions. This was done to make the transformation easy and
the model easy to read.

In order to transform a state with empty transitions all the incoming
and outgoing transitions are collected. For each combination of incoming
transition a and outgoing transition b a new transition c is created with the
source of a as source and the target of b as target. The guard for transition
c evaluates to true if and only if the guard of a and b both evaluate to true.
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The assignment of c is the concatenation of the assignment of a and b. The
signal of c will be the signal of a because b cannot have a signal. Once all the
new transitions are created all the states with empty transitions are removed
together with all their incoming and outgoing transitions.

Figure 9: Example of empty transition transformation. On the left the ori-
ginal version. On the right the transformed version

Figure 9 shows an example model with empty transitions and its trans-
formed version. Each of the outgoing transitions from the state B are com-
bined with each of the incoming transitions. This results into two new trans-
itions. The old transitions and state B are removed.

The RRRT model of the ESM contains many transitions originating from
a composite state. Informally this transition can be taken in in each of
the substates of the composite state if the guard evaluates to true. These
transitions are called supertransitions. In order to model the ESM efficiently
supertransitions are also supported in the HEFSM model.

In RRRT transitions are evaluated from bottom to top. This means
that first the transitions from the leaf state are considered then transitions
from it’s parent state and then from it’s parent’s parent state, etc. Once a
transition for which the guard evaluates to true and the correct signal has
been found it is taken.

In order to transform a supertransition all the states are processed be-
ginning at the top state and recursively going down to its child states. The
supertransitions that can be taken in the parent states of a state are collec-
ted. If the current state contains a transition a that has the same signal as a
supertransition b the guard of b has to be modified because supertransition
b may only be taken if transition a cannot be taken. Thus the negation of
the guard of a is added to the guard of b.

Once a leaf state is reached all the collected supertransitions are added
as outgoing transitions of the leaf state.
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Figure 10: Example of supertransition transformation. On the left the ori-
ginal version. On the right the transformed version

Figure 10 shows an example model with supertransitions and its trans-
formed version. The supertransition from state A can be taken at each of A’s
leaf states B and C. The transformation removes the original supertransition
and creates a new transition at states B and C using the same target state.
For leaf state C this is easy because it does not contain a transition with the
input signal IP. In state B the transition to state C would be taken if a signal
IP was processed and the state variable a equals 1. The super transition
can only be taken if the other transition cannot be taken. This is why the
negation of other the guard is added to the new transition. If the original
supertransition is an internal transition the model needs further transform-
ation after this transformation. This is described in the next paragraph. If
the original supertransition is not an internal transition the new transitions
will have the initial state of A as target.

The ESM model also makes use of internal transitions in RRRT. Using
such a transition the current state does not change. If such a transition is
defined on a composite state it can be taken from all of the substates and
return to the same leaf state it originated from. If defined on a composite
state it is thus also a supertransition.

This is also possible in the HEFSM model. In order to transform an
internal transition it is first seen as a supertransition and the above trans-
formation is applied. Then the target of the transition is simply set to the
leaf state it originates from.

An example can be seen in figure 10. If the supertransition from state A is
also defined to be an internal transition the transformed version on the right
would need another transformation. The new transitions that now have the
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target state A would be transformed to have the same target state as their
current source state.

In order to reduce the number of transitions in the HEFSM model quies-
cent transitions are added automatically. For every state all the transitions
for each signal are collected in a set T . A new self transition a is added for
each signal. The guard for transition a evaluates to true if and only if none
of the guards of the transactions in T evaluates to true. This makes the
HEFSM input complete without having to specify all the transitions.

In RRRT it is possible to write the guard and assignment in C++ code.
It is thus possible that the value of a variable changes while an input signal
is processed. In the HEFSM however all the assignments only take effect
after the input signal is processed. In order simulate this behaviour the next
function is used. This function takes a variable name and evaluates to the
value of this variable after the transition.

5.2 Results

Using the techniques described in the previous section a model was created
by hand. This model was compared to the learned model of the ESM. The
counterexamples that were found by CADP were given to LearnLib in order
to correct the learned model.

Although the entire ESM was modelled some parts may not be entirely
correct. The medium state and a small part of the rest of the model could not
be verified due to time constraints and technical difficulties using CADP. The
technical difficulties could not be resolved in time. However the model that
was constructed can still be used in other research to improve the learning
time of the ESM.

In order to give an indication of the remaining work the manually created
model and the learned model were compared. For each the medium state

was removed and the hand crafted model was transformed to a Mealy ma-
chine. The learned model has 3.386 states while the hand crafted model has
4.048. This means that 83,6% of the states were learned.

During the construction of the model the code of the RRRT model was
thoroughly inspected. This resulted in the discovery of missing behaviour
in one transition of the ESM. An Océ software engineer confirmed that this
behaviour was not as expected and has to be analysed further.
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6 Conclusion and future work

This research aimed to find out if automata learning is useful in an industrial
setting, specifically if it is useful for Océ. In order to investigate this a case
study was done. The behaviour of the ESM was learned using LearnLib.

It was expected that learning a correct model of the ESM would be non-
trivial but feasible in the available time. However much more time then
expected was required in order to find counterexamples.

One reason for this is the size of the input alphabet of the ESM. The
large number of possible inputs makes the ESM hard to learn. To solve this
the abstracton mapping technique use by Aarts, Jonsson and Uijen [AJU10]
could be used. However while studying the ESM no usable abstractions were
found.

Another reason is the complexity of the counterexamples that need to
be found. Most of the time required to learn the ESM was spent trying to
find counterexamples. When this problem was investigated it was discovered
that a number of different techniques reduced the number of test queries
needed. Some of these techniques such as the subalphabet selection strategy
and suffix selection strategies are novel and do not appear in other research
that we know of. Data was gathered to show that these techniques indeed
reduce the number of test queries needed to find counterexamples. Although
these new techniques significantly reduced the testing time it was not enough
to learn all the behaviour of the ESM within the available time.

It would be interesting to see how the test techniques used in this re-
search perform when applied to other case studies. The subalphabet selec-
tion strategies described in this thesis could be improved by developing an
algorithm to select the subalphabets.

In order to show that the correct model was learned a model of the ESM
was created by hand. A tool was created in order to transform the model
into a Lotos model. This Lotos model could then be compared with the
learned model. Although a large part of the learned model of the ESM has
been proven correct the work could not be finished in time.

There are several interesting possibilities for future research. The ESM
has proven to be an interesting research subject. No correct model of the
ESM using one function has been learned yet. In order to reach this goal
the time needed to learn the ESM needs to be reduced. Using an obfuscated
version of the model created by hand this research can be continued outside
of Océ. The model can also be used as a benchmark for other research groups
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to compare different learning and model-based testing techniques.
There are some other opportunities for research within Océ. A model of

the ESM using more than 1 function could also be learned. Another inter-
esting possibility is to learn models of the EHM, ACM and other managers
connected to the ESM. Using these models some of the properties discussed
by Ploeger [Plo05] could be verified at a more detailed level.

We conclude that LearnLib cannot learn a correct model of the ESM. This
is not a problem related to the learning algorithms implemented in LearnLib
but rather the inability to find counterexamples using model-based testing
algorithms. The main contribution of this research are the novel test selection
techniques which greatly improve the ability to find counterexamples for the
incorrect hypothesis of the ESM. The case study described in this thesis can
serve as a benchmark for the automata learning and model-based testing
community.
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