
Learning Register Automata with
Fresh Value Generation?

Fides Aarts, Paul Fiterău-Broştean, Harco Kuppens, and Frits Vaandrager

Institute for Computing and Information Sciences, Radboud University,
P.O. Box 9010, 6500 GL Nijmegen, the Netherlands

Abstract. We present a new algorithm for active learning of register
automata. Our algorithm uses counterexample-guided abstraction refine-
ment to automatically construct a component which maps (in a history
dependent manner) the large set of actions of an implementation into a
small set of actions that can be handled by a Mealy machine learner. The
class of register automata that is handled by our algorithm extends pre-
vious definitions since it allows for the generation of fresh output values.
This feature is crucial in many real-world systems (e.g. servers that gen-
erate identifiers, passwords or sequence numbers). We have implemented
our new algorithm in a tool called Tomte.

1 Introduction

Model checking and model learning are two core techniques in model-driven en-
gineering. In model checking [16] one explores the state space of a given state
transition model, whereas in model learning [32, 19, 7] the goal is to obtain such
a model through interaction with a system by providing inputs and observing
outputs. Both techniques face a combinatorial blow up of the state-space, com-
monly known as the state explosion problem. In order to find new techniques to
combat this problem, it makes sense to follow a cyclic research methodology in
which tools are applied to challenging applications, the experience gained during
this work is used to generate new theory and algorithms, which in turn are used
to further improve the tools. After consistent application of this methodology
for 25 years model checking is now applied routinely to industrial problems [18].
Work on the use of model learning in model-driven engineering started later [29]
and has not yet reached the same maturity level, but in recent years there has
been spectacular progress.

We have seen, for instance, several convincing applications of model learning
in the area of security and network protocols. Cho et al. [15] successfully used
model learning to infer models of communication protocols used by botnets.

? Fiterău-Broştean is supported by NWO project 612.001.216: Active Learning of Se-
curity Protocols (ALSEP). Aarts, Kuppens and Vaandrager have been supported
by STW project 11763: Integrating Testing And Learning of Interface Automata
(ITALIA). Some results from this paper appeared previously in the PhD thesis of
Aarts [1]. An earlier version of this paper appeared as [6].

Model learning was used for fingerprinting of EMV banking cards [5]. It also
revealed a security vulnerability in a smartcard reader for internet banking that
was previously discovered by manual analysis, and confirmed the absence of this
flaw in an updated version of this device [14]. Fiterau et al. [17] used model
learning to demonstrate that both Linux and Windows implementations violate
the TCP protocol standard. Using a similar approach, Verleg [33] showed that
implementations of the Secure Shell (SSH) protocol violate the standard. In [30],
model learning is used to infer properties of a network router, and for testing
the security of a web-application (the Mantis bug-tracker). Model learning has
proven to be an extremely effective technique for spotting bugs, complementary
to existing methods for software analysis.

A major theoretical challenge is to lift learning algorithms for finite state
systems to richer classes of models involving data. A breakthrough has been the
definition of a Nerode congruence for a class of register automata [10, 11] and the
resulting generalization of learning algorithms to this class [21, 22]. Register au-
tomata [25, 10] are a type of extended finite state machines in which one can test
for equality of data parameters, but no operations on data are allowed. Recently,
the results on register automata have been generalized to even larger classes of
models in which guards may contain arithmetic constraints and inequalities [13].

A different approach for extending learning algorithms to classes of models
involving data has been proposed in [4]. Here the idea is to place an intermediate
mapper component in between the implementation and the learner. This map-
per abstracts (in a history dependent manner) the large set of (parametrized)
actions of the implementation into a small set of abstract actions that can now
be handled by automata learning algorithms for finite state systems. In [2], we
described an algorithm that uses counterexample-guided abstraction refinement
to automatically construct an appropriate mapper for a subclass of register au-
tomata that may only store the first and the last occurrence of a parameter
value.

Existing register automaton models [10, 11, 2] do not allow for the generation
of fresh output values. This feature is technically challenging due to the resulting
nondeterminism. Fresh outputs, however, are crucial in many real-world systems,
e.g. servers that generate fresh identifiers, passwords or sequence numbers. The
main contribution of this article is an extension of the learning algorithm of [2]
to a setting with fresh outputs.

We have implemented the new learning algorithm in our Tomte tool, http:
//tomte.cs.ru.nl/. As part of the LearnLib tool [27, 31], a learning algorithm
for register automata without fresh outputs has been implemented. In [3], we
compared LearnLib with a previous version of Tomte (V0.3) on a common set of
benchmarks (without fresh outputs), a comparison that turned out favorably for
Tomte. This paper presents an experimental evaluation of the new Tomte 0.41.
Due to evolution of the algorithm, Tomte 0.41 significantly outperforms Tomte
0.3. Similar to the 0.4 version introduced in [6], Tomte can learn models for new
benchmarks involving fresh outputs, only now it can also use and benefit from
TTT [24], a state of the art Mealy Machine learning algorithm which significantly

2

reduces the number of learning queries. We compare Tomte 0.41 to RALib[12],
the successor of LearnLib, on a series of benchmarks.

2 Register Automata

In this section, we define register automata and their operational semantics in
terms of Mealy machines. In addition, we discuss to technical concepts that
provide insight in the behavior of register automata, and that play a key role
in the technical development of this paper: right invariance and symmetry. For
reasons of exposition, the notion of register automaton that we define here is a
simplified version of what we have implemented in our tool: Tomte also supports
constants and actions with multiple parameters.

2.1 Definition

We postulate a countably infinite set V of variables, which contains two special
variables in and out. An atomic formula is a boolean expression of the form true,
false, x = y or x 6= y, with x, y ∈ V. A formula ϕ is a conjunction of atomic
formulas. Let X ⊆ V be a set of variables. We write Φ(X) for the set of formulas
with variables taken from X. A valuation for X is a function ξ : X → Z. We
write Val(X) for the set of valuations for X. If ϕ is a formula with variables from
X and ξ is a valuation for X, then we write ξ |= ϕ to denote that ξ satisfies ϕ.
We use symbol ≡ to denote syntactic equality of formulas.

Definition 1 (Register automaton). A register automaton (RA) is a tuple
R = 〈I,O, L, l0, V, Γ 〉 with

– I and O finite, disjoint sets of input and output symbols, respectively,
– L a finite set of locations and l0 ∈ L the initial location,
– V is a function that assigns to each location l a finite set V (l) ⊆ V \{in, out}

of registers, with V (l0) = ∅.
– Γ ⊆ L × I × Φ(V) × (V 9 V) × O × L a finite set of transitions. For

each transition 〈l, i, g, %, o, l′〉 ∈ Γ , we refer to l as the source, i as the input
symbol, g as the guard, % as the update, o as the output symbol, and l′ as the
target. We require that g ∈ Φ(V (l)∪{in, out}) and % : V (l′)→ V (l)∪{in, out}.
We write l

i,g,%,o−−−−→ l′ if 〈l, i, g, %, o, l′〉 ∈ Γ .

Example 1. As a first running example of a register automaton we use a FIFO-
set with capacity two, similar to the one presented in [22]. A FIFO-set is a queue
in which only different values can be stored, see Figure 1. Input Push tries to add
the value of parameter in to the queue, and input Pop tries to retrieve a value
from the queue. The output in response to a Push is OK if the input value can
be added successfully, or NOK if the input value is already in the queue or if the
queue is full. The output in response to a Pop is Return(out), with as parameter
the oldest value from the queue, or NOK if the queue is empty. Each input has
parameter in and each output has parameter out. However, we omit parameters

3

l0start l1 l2

Push(in)/OK
v:=in

Pop/NOK

in 6= v
Push(in)/OK
w:=in

in = v
Push(in)/NOK

out = v
Pop/Return(out)

out = v
Pop/Return(out)
v:=w

Push/NOK

Fig. 1: FIFO-set with a capacity of 2 modeled as a register automaton

that do not matter and for instance write Pop instead of Pop(in) since parameter
in does not occur in the guard and is not touched by the update. We also do not
list the sets of variables of locations explicitly, as they usually can be inferred
from the context.

2.2 Semantics

The operational semantics of register automata is defined in terms of (infinite
state) Mealy machines.

Definition 2 (Mealy machine). A Mealy machine is defined to be a tuple
M = 〈I,O,Q, q0,→〉, where I and O are disjoint sets of input and output
actions, respectively, Q is a set of states, q0 ∈ Q is the initial state, and →⊆
Q × I × O × Q is the transition relation. We write q

i/o−−→ q′ if (q, i, o, q′) ∈→,

and q
i/o−−→ if there exists a state q′ such that q

i/o−−→ q′. A Mealy machine is input

enabled if, for each state q and input i, there exists an output o such that q
i/o−−→.

We say that a Mealy machine is finite if the sets Q, I and O are finite.

A partial run ofM is a finite sequence α = q0 i0 o0 q1 i1 o1 q2 · · · in−1 on−1 qn,

beginning and ending with a state, such that for all j < n, qj
ij/oj−−−→ qj+1. A run

ofM is a partial run that starts with q0. The trace of α, denoted trace(α), is the
finite sequence β = i0 o0 i1 o1 · · · in−1 on−1 that is obtained by erasing all the
states from α. We say that β is a trace of state q ∈ Q iff β is the trace of some
partial run that starts in q, and we say that β is a trace of M iff β is a trace
of q0. We call two states q, q′ ∈ Q equivalent, notation q ≈ q′, iff they have the
same traces. Let M1 and M2 be Mealy machines with the same sets of input
actions. We say that M1 and M2 are equivalent, notation M1 ≈ M2, if they
have the same traces. We say that M1 implements M2, notation M1 ≤M2, if
all traces of M1 are also traces of M2.

The operational semantics of a register automaton is a Mealy machine in
which the states are pairs of a location l and a valuation ξ of the state variables.
A transition may fire for given input and output values if its guard evaluates to
true. In this case, a new valuation of the state variables is computed using the
update part of the transition.

4

Definition 3 (Semantics register automata). Let R = 〈I,O, L, l0, V, Γ 〉 be
a RA. The operational semantics of R, denoted [[R]], is the Mealy machine 〈I ×
Z, O× Z, Q, q0,→〉, where Q = {(l,Val(V (l))) | l ∈ L}, q0 = (l0, ∅), and relation
→ is defined inductively by the rule

l
i,g,%,o−−−−→ l′

ι = ξ ∪ {(in, d), (out, e)} ι |= g ξ′ = ι ◦ %

(l, ξ)
i(d)/o(e)−−−−−→ (l′, ξ′)

(1)

If transition (l, ξ)
i(d)/o(e)−−−−−→ (l′, ξ′) can be inferred using rule (1) then we say that

it is supported by transition l
i,g,%,o−−−−→ l′ of R, and that transition l

i,g,%,o−−−−→ l′ fires.
We call R input enabled if its operational semantics [[R]] is input enabled.

A run or trace of R is just a run or trace of [[R]], respectively. Two register
automata R1 and R2 are equivalent if [[R1]] and [[R2]] are equivalent. We call R
input deterministic if for each reachable state (l, ξ) and input action i(d) at most
one transition may fire. An input deterministic register automaton has the nice
property that for any trace β there exists a unique run α such that trace(α) = β.

In this paper, we present an algorithm for learning input enabled and input
deterministic register automata. Our algorithm solves this problem by reducing it
to the problem of learning finite deterministic Mealy machines, for which efficient
algorithms exists. We recall the definition of a deterministic Mealy machine. We
call a register automaton deterministic if its semantics is a deterministic Mealy
machine.

Definition 4 (Deterministic Mealy machine). A Mealy machine M =
〈I,O,Q, q0,→〉 is deterministic if for each state q and input action i there is

exactly one output action o and exactly one state q′ such that q
i/o−−→ q′. A de-

terministic Mealy machine M can equivalently be represented as a structure
〈I,O,Q, q0, δ, λ〉, where δ : Q × I → Q and λ : Q × I → O are defined by:

q
i/o−−→ q′ ⇒ δ(q, i) = q′ ∧ λ(q, i) = o. Update function δ is extended to a

function from Q× I∗ → Q by the following classical recurrence relations:

δ(q, ε) = q,

δ(q, i u) = δ(δ(q, i), u).

Similarly, output function λ is extended to a function from Q× I∗ → O∗ by

λ(q, ε) = ε,

λ(q, i u) = λ(q, i) λ(δ(q, i), u).

Example 2. The register automaton of Figure 1 is input deterministic but not
deterministic. For instance, as there are no constraints on the value of out for
Push-transitions, an input Push(1) may induce both an OK(1) and an OK(2)
output (in fact, the output parameter can take any value). Note that for Push-
transitions the output value does not actually matter in the sense that out occurs

5

neither in the guard nor in the range of the update function. Hence we can easily
make the automaton of Figure 1 deterministic, for instance by strengthening the
guards with out = in for transitions where the output value does not matter.

Example 3. Our second running example is a register automaton, displayed in
Figure 2, that describes a simple login procedure. If a user performs a Register-

l0start l1 l2

Register/OK(out)
pwd:=out

in = pwd
Login(in)/OK

in 6= pwd
Login(in)/NOK

Logout/OK

ChangePassword(in)/OK
pwd:=in

Fig. 2: A simple login procedure modeled as a register automaton

input then the automaton produces output symbol OK together with a password.
The user may then proceed by performing a Login-input together with the pass-
word that she has just received. After login the user may either change the
password or logout. We can easily make the automaton input enabled by adding
self loops i/NOK in each location, for each input symbol i that is not enabled.
It is not possible to model the login procedure as a deterministic register au-
tomaton: the very essence of the protocol is that the system nondeterministically
picks a password and gives it to the user.

2.3 Symmetry

A key characteristic of register automata is that they exhibit strong symmetries.
Because no operations on data values are allowed and we can only test for equal-
ity, bijective renaming of data values preserves behavior. The symmetries can
be formally expressed through the notion of an automorphism. In the remainder
of this section, we present the definition of an automorphism and explore some
basic properties that will play a key role later on in this article.

Definition 5. An automorphism is a bijection h : Z→ Z.

Let X be a set of variables. Then we lift an automorphism h to valuations ξ
for X by pointwise extension, that is, h(ξ) = h ◦ ξ. Since formulas in Φ(X) only
assert that variables from X are equal or not, satisfaction of these formulas is
not affected when we apply an automorphism to a valuation.

Lemma 1. Let h be an automorphism, X be a set of variables, ξ ∈ Val(X) and
ϕ ∈ Φ(X). Then ξ |= ϕ iff h(ξ) |= ϕ.

Proof. By structural induction on ϕ.

6

We also lift automorphisms to the states, actions and transitions of a register
automaton R by pointwise extension. The transition relation of R is preserved
by automorphisms.

Lemma 2. Let h be an automorphism and let R be a register automaton. Then

(l, ξ)
i(d)/o(e)−−−−−→ (l′, ξ′) is a transition of R iff (l, h(ξ))

i(h(d))/o(h(e))−−−−−−−−−→ (l′, h(ξ′)) is
a transition of R.

Proof. Use Lemma 1.

Next, we lift automorphisms to runs by pointwise extension.

Lemma 3. Let h be an automorphism and let R be a register automaton. Then
α is a (partial) run of R iff h(α) is a (partial) run of R.

Proof. Use Lemma 2 and the fact that h trivially preserves the initial state.

Finally, we lift automorphisms to traces by pointwise extension.

Lemma 4. Let h be an automorphism, let R be a register automaton and let α
be a partial run of R. Then trace(h(α)) = h(trace(α)).

Proof. Use Lemma 3.

Corollary 1. Let h be an automorphism and let R be a register automaton.
Then β is a trace of R iff h(β) is a trace of R.

We call two states, actions, transitions, runs or traces equivalent if there
exists an automorphism that maps one to the other.

2.4 Constants and multiple parameters

Tomte also supports constants and actions with multiple parameters. These fea-
tures are convenient for modelling applications, but do not add any expressivity
to the basic model of register automata.

Suppose R is a register automaton in which we would like to refer to distinct
constants c1 and c2. Then we may extend R with a sequence of two transitions,
illustrated in Figure 3, starting from location l′0 which is the initial location
of the extended automaton. The first transition initializes c1, which becomes a

l′0start l′1 l0

Initialize(in)/OK
c1:=in

in 6= c1
Initialize(in)/OK
c2:=in

Fig. 3: Encoding of constants

variable in our encoding, and similarly the second transition initializes c2. After

7

performing the initializations we enter the initial state l0 of R. Constants c1
and c2 are added as variables to all the locations of R, and they may be tested
in transitions. The encoding introduces an auxiliary input symbol Initialize and
output symbol OK. If desired, the register automaton can be made input enabled
by adding a trivial Initialize-loop to each location ofR, and an Initialize-loops with
guard in = c1 to l′1. Note that in an actual run of the automaton, c1 and c2 may
be assigned arbitrary (distinct) values, different from the specific values for these
constants that we had in mind originally. However, because of the symmetries
of register automata this does not matter, and we may always rename constants
to their intended values via an appropriate automorphism.

Tomte also supports multiple parameters for input and output actions, like in
the simple login model shown in Figure 4. This model describes a system in which
a user can register by providing a user id and a password, and then login using
the credentials that were used for registering. What we can do here is to split

l0start l1 l2

Register(in1, in2)/OK
usr:=in1

pwd:=in2

in1 = usr
in2 = pwd
Login(in1, in2)/OK

in1 6= usr ∨ in2 6= pwd
Login(in1, in2)/NOK

Register/NOK

Login/NOK

Register/NOK

Fig. 4: A simple login system with inputs that carry two parameters

a transition with multiple input parameters into a squence of transitions with a
single parameter. The transition from l0 to l1, for instance, can be translated to
the pattern shown in Figure 5.

l0start l′0 l1

Register(in)/OK
usr:=in

Register(in)/OK
pwd:=in

Fig. 5: Encoding of multiple parameters

The implementation in Tomte involves several optimizations and does not
use the above encodings. Nevertheless, the encoding show how constants and
multiple parameters can be handled conceptually.

3 Restricted Types of Register Automata

Cassel et al [11] introduce the concept of a right invariant register automaton
and provide a canonical automaton presentation of any language recognizable

8

by a deterministic right invariant register automaton. Also in the present article
the notion of right invariance plays an important role. In this section, we discuss
the formal definition of right invariance and prove some key results.

Definition 6. Let R = 〈I,O, L, l0, V, Γ 〉 be a register automaton. Then R is

right invariant if, for each transition l
i,g,%,o−−−−→ l′ in Γ ,

1. guard g does not imply x = y or x 6= y for distinct x, y ∈ V (l), and
2. the combined effect of guard g and assignment % does not imply x = y for

distinct x, y ∈ V (l′) (note that inequalities may be implied).

Right invariance says that in guards we may compare input and output values
with registers, but we are not allowed to test for (in)equality of distinct registers.
Also, we are not allowed to duplicate values in assignments.

Example 4. The FIFO-set model of Figure 1 and the login model of Figure 2
are right invariant. Figure 6 shows an example of a register automaton that
is not right invariant. This register automaton models a simple slot machine.

l0start l1 l2

button/reel(out)
v:=out

button/reel(out)
w:=out

v 6= w
button/lose

v = w
button/win

Fig. 6: A simple slot machine modeled as a register automaton

By pressing a button a user may stop a spinning reel to reveal a value. If two
consecutive values are equal then the user wins, otherwise he loses. The model
is not right invariant, since in location l2 we test for equality of registers v and
w.

The next lemma provides an equivalent characterization of right invariance.

Lemma 5. R is right invariant iff for all transitions l
i,g,%,o−−−−→ l′:

1. guard g is equivalent to a formula of the form gin ∧ gout with
– gin ≡ in = x, with x ∈ V (l), or gin ≡

∧
x∈W in 6= x, with W ⊆ V (l),

– gout ≡ out = x, with x ∈ V (l) ∪ {in}, or gout ≡
∧
x∈W out 6= x, with

W ⊆ V (l) ∪ {in},
(by convention the conjunction over the empty index set is true)

2. % is injective,
3. if gin ≡ in = x then there are no y, z ∈ V (l′) with %(y) = in and %(z) = x,

9

4. if gout ≡ out = x then there are no y, z ∈ V (l′) with %(y) = out and %(z) = x.

Lemma 5 implies that each outgoing transition from a location l of R is
enabled in each state (l, ξ) of [[R]], provided we choose the right input and output
values. This has as an important consequence that a location l is reachable in R
iff a state (l, ξ) is reachable in [[R]], for some ξ.

Corollary 2. Let R be a right invariant RA with a transition l
i,g,%,o−−−−→ l′. Let

ξ ∈ Val(V (l)). Then [[R]] has a transition (l, ξ)
i(d)/o(e)−−−−−→ (l′, ξ′) that is supported

by l
i,g,%,o−−−−→ l′.

Proof. We may assume that g is of the form gin ∧ gout described in Lemma 5. If
gin of the form in = x, for some x ∈ V (l), then choose d = ξ(x). Otherwise, let
d be equal to some arbitrary fresh value outside the range of ξ. Similarly, pick a
value for e. Then with ι = ξ ∪ {(in, d), (out, e)} we have ι |= g by construction,

and thus (l, ξ) enables a transition that is supported by l
i,g,%,o−−−−→ l′.

Another restriction on register automata that plays an important role in our
work is unique-valuedness. Intuitively, this means that registers are required to
always store unique values.

Definition 7. Let R = 〈I,O, L, l0, V, Γ 〉 be a register automaton. Then R is
unique-valued if, for each reachable state (l, ξ) of [[R]], valuation ξ is injective,
that is, two registers can never store identical values.

Example 5. The FIFO-set model of Figure 1 and the login model of Figure 2 are
both unique-valued. The slot machine model of Figure 6 is not unique-valued,
since in location l2 registers v and w may contain the same value. Figure 7
presents a variation of the FIFO-set model that is right invariant but not unique-
valued. This register automaton, which represents a FIFO-buffer of capacity 2,
is not unique-valued since in location l2 registers v and w may contain the same
value.

l0start l1 l2

Push(in)/OK
v:=in

Pop/NOK Push(in)/OK
w:=in

out = v
Pop/Return(out)

out = v
Pop/Return(out)
v:=w

Push/NOK

Fig. 7: FIFO-buffer with a capacity of 2 modeled as a register automaton

10

Even though right invariance and unique-valuedness are strong restrictions
it is possible to construct, for each register automaton, an equivalent register
automaton that is both right invariant and unique valued. Figure 8, for example,
shows a right invariant and unique-valued register automaton that is equivalent
to the register automaton of Figure 6.

l0start l1 l2

l3

button/reel(out)
v:=out

out = v
button/reel(out)

out 6= v
button/reel(out)

button/lose

button/win

Fig. 8: Slot machine modeled as a right invariant register automaton

In order to prove that such a construction is always possible, we need to
introduce several technical definitions and lemmas concerning partitions, char-
acteristic formulas for partitions, and bisimulations.

Definition 8 (Partitions). A partition P of a set S is a set of pairwise disjoint
non-empty subsets of S whose union is exactly S. Elements of P are called
blocks. If s ∈ S then [s]P denotes the unique block of P that contains s. We write
Π(S) for the set of partitions of S. If P ∈ Π(S) and T ⊆ S then P dT ∈ Π(S\T)
denotes the partition obtained from P by removing elements from T , that is,
P dT = {B \ T | B ∈ P and B \ T 6= ∅}. If f : S → S′ and P ∈ Π(S′) then
f−1(P) ∈ Π(S) denotes the inverse image of P under f , that is, f−1(P) =
{f−1(B) | B ∈ P and f−1(B) 6= ∅}. Each set S induces a trivial partition
Part(S) = {{s} | s ∈ S}, and each function f : S → S′ induces a partition
Part(f) ∈ Π(S) in which two elements of S are equivalent iff f assigns the same
value to them: Part(f) = f−1(Part(S′)).

Below we consider partitions of finite sets of variables W that are induced
by valuations. Since in formulas we can only talk about equality or inequality of
variables, valuations that induce the same partition satisfy the same formulas.

Lemma 6. Suppose ξ, ξ′ ∈ Val(W) with Part(ξ) = Part(ξ′) and let g ∈ Φ(W).
Then ξ |= g ⇔ ξ′ |= g.

Proof. By induction on the structure of g.

We assume some well founded ordering on the universe of variables V, providing
us with a canonical representative min(W) in each nonempty set of variables

11

W ⊆ V. For convenience, we assume out is the smallest element of V, and in is
the one but smallest element. Using representatives, we can describe partitions
compactly using formulas. As an example, consider the following partition:

P = {{x1}, {x2, x4}, {x3, x5, x6}}

Formula φx,P describes the relations of variable x to the rest of P . If x is con-
tained in a singleton block then φx,P says that x is different from the represen-
tatives of all the other blocks:

φx1,P ≡ x1 6= x2 ∧ x1 6= x3.

Otherwise φx,P asserts that x is equal to the representative of the remaining
variables in the block:

φx2,P ≡ x2 = x4.

Now partition P can be described by a formula that is constructed inductively:
we pick the minimal variable x and conjoin φx,P with the formula for the parti-
tion obtained by removing x from P :

φP ≡ (x1 6= x2 ∧ x1 6= x3) ∧ (x2 = x4) ∧ (x3 = x5) ∧ (x4 6= x5) ∧ (x5 = x6) ∧
true ∧ true.

The next definition formalizes the construction and associates a characteristic
formula to each partition.

Definition 9 (Characteristic formula). Let W ⊆ V be a finite set of vari-
ables, ξ ∈ Val(W) and P ∈ Π(W). Then

φP ≡
{

true if W = ∅
φmin(W),P ∧ φPd{min(W)} otherwise

where, for x ∈W and B = [x]P ,

φx,P ≡
{∧

C∈P−{B} x 6= min(C) if B is a singleton

x = min(B \ {x}) otherwise

Lemma 7 (Characteristic formula). Let W ⊆ V be a finite set of variables,
ξ ∈ Val(W) and P ∈ Π(W). Then ξ |= φP ⇔ P = Part(ξ).

Proof. By induction on the number of elements of W .

Below we recall the concept of a bisimulation. We will use bisimulations as
a proof technique to prove equivalence between a register automaton and an
associated right invariant register automaton.

Definition 10 (Bisimulations). Consider two Mealy machines with a com-
mon set I of input symbols,M1 = 〈I,O1, Q1, q

0
1 ,→1〉 andM2 = 〈I,O2, Q2, q

0
2 ,→2

〉. Then we say that M1 and M2 are bisimilar if there exists a bisimulation be-
tween their sets of states, that is, a relation U ⊆ Q1 ×Q2 such that (q01 , q

0
2) ∈ U

and, whenever (q1, q2) ∈ U ,

12

1. q1
i/o−−→1 q

′
1 implies there exists a transition q2

i/o−−→2 q
′
2 such that (q′1, q

′
2) ∈ U ,

2. q2
i/o−−→2 q

′
2 implies there exists a transition q1

i/o−−→1 q
′
1 such that (q′1, q

′
2) ∈ U .

It is easy to see that if M1 and M2 are bisimilar they are equivalent, that is,
they have the same traces. Two register automata R1 and R2 are bisimilar if
[[R1]] and [[R2]] are bisimilar.

We are now prepared to prove the first main result of this section.

Theorem 1. For each register automaton R there exists a right invariant and
unique-valued register automaton R such that R and R are bisimilar.

Proof. Let R = 〈I,O, L, l0, V, Γ 〉 be a RA. We have to construct a register
automaton R that is bisimilar to R. The basic idea behind our construction is
to add to each location l ∈ L a partition P that puts two variables of V (l) in
the same block exactly when they have the same value. The registers of R are
then the minimal registers of the blocks of P . Formally, R = 〈I,O, L, l0, V , Γ 〉,
where

– L = {(l, P) | l ∈ L and P ∈ Π(V (l))},
– l0 = (l0, ∅),
– V (l, P) = {min(B) | B ∈ P},
– whenever l

i,g,%,o−−−−→ l′ is a transition of Γ and Z ∈ Π(V (l) ∪ {in, out}) such

that φZ implies g, then Γ contains a transition (l, P)
i,g,%,o−−−−→ (l′, P ′), where

• P = Zd{in, out},
• P ′ = %−1(Z),
• g ≡ φin,Zd{out} ∧ φout,Z , and

• for x ∈ V (l′, P ′), %(x) = min([%(x)]Z).
(the reader may check that g ∈ Φ(V (l, P)) and %(x) ∈ V (l, P) ∪ {in, out})

We verify that R is right invariant by checking the conditions of Lemma 5. By
Definition 9, guard g is already in the restricted form of Lemma 5, so condition
1 holds. In order to check that % is injective (condition 2), pick x, y ∈ V (l′, P ′).
We infer

%(x) = %(y)⇔ (definition %)

min([%(x)]Z) = min([%(y)]Z)⇔ (representatives equal iff their blocks equal)

[%(x)]Z = [%(y)]Z ⇔ (use P ′ = %−1(Z))

[x]P ′ = [y]P ′ ⇔ (representatives equal iff their blocks equal)

x = y.

For condition 3, suppose that φin,Zd{out} ≡ in = x, with x ∈ V (l). Then, by
Definition 9, in and x are in the same block of Z. But since % maps variables
in V (l′, P ′) to representatives of blocks of Z, this means it is impossible that %
maps one variable in V (l′, P ′) to in and another to x. Using a similar argument
we may prove that condition 4 holds.

13

Let U be the relation between states of [[R]] and [[R]] defined as follows:

((l, ξ), ((l, P), ξ)) ∈ U ⇔ (P = Part(ξ) ∧ ∀x ∈ V (l, P) : ξ(x) = ξ(x)).

We claim that U is a bisimulation relation. Since the sets of variables of the initial
states ofR andR are empty, the initial states of [[R]] and [[R]] are trivially related
by U .

For the first bisimulation transfer property, suppose that ((l, ξ), ((l, P), ξ)) ∈
U and (l, ξ)

i(d)/o(e)−−−−−→ (l′, ξ′). Then this transition is supported by a transition

l
i,g,%,o−−−−→ l′ of Γ . Hence, if ι = ξ ∪ {(in, d), (out, e)} then ι |= g and ξ′ = ι ◦ %.

Let Z = Part(ι). Then P = Zd{in, out}. We claim that φZ implies g. Because
suppose ι′ |= φZ , for some valuation ι′. Then, by Lemma 7, Z = Part(ι′). Since
also Z = Part(ι) and ι |= g, we may conclude ι′ |= g by Lemma 6, as required. Let
P ′ = %−1(Z), g ≡ φin,Zd{out}∧φout,Z , and, for x ∈ V (l′, P ′), %(x) = min([%(x)]Z).

Then, by definition, Γ contains a transition (l, P)
i,g,%,o−−−−→ (l′, P ′). Let ι = ξ ∪

{(in, d), (out, e)}. By Lemma 7, ι |= φZ . Since φZ implies g (here we benefit
from our assumption that out and in are minimal variables), ι |= g. Now observe
that ι is just the restriction of ι to the minimal elements of its blocks together
with {(in, d), (out, e)}. Since these are the only variables that occur in g, we

conclude ι |= g. Let ξ
′

= ι ◦ %. Then, by Definition 3, [[R]] has a transition

((l, P), ξ)
i(d)/o(e)−−−−−→ ((l′, P ′), ξ

′
). We check that ((l′, ξ′), ((l′, P ′), ξ

′
)) ∈ U :

1. By the definitions of P ′ and Z, P ′ = %−1(Z) = %−1(Part(ι)). By Definition 8,
%−1(Part(ι)) = %−1(ι−1(Part(Z))) = (ι ◦ %)−1(Part(Z)) = Part(ι ◦ %). By the
definition of ξ′, Part(ι ◦ %) = Part(ξ′), as required.

2. Let x ∈ V (l′, P ′). Then ξ
′
(x) = ι◦%(x) = ι(min([ρ(x))]Z). Now the definition

of partition Z says that two variables in the same block are evaluated the
same by ι, and it does not matter whether we take a minimal or any other
element from the block. Thus ι(min([ρ(x))]Z) = ι(ρ(x)). By definition of ξ′,

ι(ρ(x)) = ξ′(x). Thus ξ
′
(x) = ξ′(x), as required.

For the second bisimulation transfer property, suppose ((l, ξ), ((l, P), ξ)) ∈ U
and ((l, P), ξ)

i(d)/o(e)−−−−−→ ((l′, P ′), ξ
′
). Then this transition is supported by some

transition (l, P)
i,g,%,o−−−−→ (l′, P ′) and, with ι = ξ ∪{(in, d), (out, e)}, we have ι |= g

and ξ
′

= ι ◦ %. By definition of R, Γ contains a transition l
i,g,%,o−−−−→ l′ and there

exists a partition Z ∈ Π(V (l) ∪ {in, out}) such that

– φZ implies g,
– P = Zd{in, out},
– P ′ = %−1(Z),
– g ≡ φin,Zd{out} ∧ φout,Z , and

– for x ∈ V (l′, P ′), %(x) = min([%(x)]Z).

Since ((l, ξ), ((l, P), ξ)) ∈ U , P = Part(ξ). By Lemma 7, ξ |= φP . Let ι =
ξ ∪ {(in, d), (out, e)}. Then also ι |= φP . Since ((l, ξ), ((l, P), ξ)) ∈ U , ξ is an

14

extension of ξ, and thus also ι is an extension of ι. Thus, since ι |= g also ι |= g.
But since P = Zd{in, out}, we may use φZ ≡ g ∧ φP to obtain ι |= φZ . Hence,

since φZ implies g, ι |= g. Let ξ′ = ι ◦ %. Then by Definition 3, (l, ξ)
i(d)/o(e)−−−−−→

(l′, ξ′). We check that ((l′, ξ′), ((l′, P ′), ξ
′
)) ∈ U :

1. Since ι |= φZ , Lemma 7 gives Z = Part(ι). Thus P ′ = %−1(Z) = %−1(Part(ι)).
By Definition 8, %−1(Part(ι)) = Part(ι ◦ %). By definition of ξ′, Part(ι ◦ %) =
Part(ξ′). Thus P ′ = Part(ξ′), as required.

2. Identical to item (2) above.

In order to see that R is unique-valued, suppose that ((l, P), ξ) is a reachable
state of [[R]]. Since U is a bisimulation relation we may prove, by induction on
the length of the path to ((l, P), ξ), that there exists a state (l, ξ) of [[R]] such
that ((l, ξ), ((l, P), ξ)) ∈ U . Now suppose that x, y ∈ V (l, P) and ξ(x) = ξ(y).
Then, using the definition of U , we may infer that ξ(x) = ξ(y) and thus x and y
are contained in the same block of P . But since V (l, P) consists of the minimal
variables of all the blocks of P , this means that x and y are in fact equal. We
conclude that ξ is injective, as required.

Cassel et al [11] established that right invariant register automata can be
exponentially more succinct than unique-valued register automata. The second
main result of this section is that (arbitrary) register automata in turn can be
exponentially more succinct than right invariant register automata.

Theorem 2. There exists a sequence of register automata R1, R2,.. such that
the number of locations of Rn is O(n), but the minimal number of locations of
a right invariant register automaton that is equivalent to Rn is Ω(2n).

Proof. The idea is to let Rn encode a binary counter with n bits. The register
automatonRn has input symbols Init and Tick, output symbols OK and Overflow,
n+2 locations l0, l1, c1, . . . , cn, and n+2 registers zero, one, xn, . . . , x1. Figure 9
shows the transitions ofRn. We view Tick as the default input symbol, OK as the
default output symbol, and do not display these default symbols in the diagram.

Mealy machine [[Rn]] has runs in which repeatedly location c1 is visited.
The first time all the variables xn, . . . , x1 equal zero, which encodes a binary
counter with value 0, with x1 representing the least significant bit. Then, for
each subsequent visit to c1, the value of the counter is incremented by one. When
the counter overflows all the bits become zero again and an output Overflow is
generated. Since each cycle from c1 to itself takes at least one transition, it takes
at least 2n transitions before an output Overflow occurs. By Theorem 1, we know
that there exists a right invariant register automaton that is equivalent to Rn.
Let R′n be such a right invariant register automaton with a minimal number of
locations. Then R′n has a transition with output symbol Overflow, starting from
a location l that is reachable with a cycle free path of transitions in R′n. Due to
Corollary 2, the number of transitions in this path is at least 2n (otherwise [[R′n]]
would be able to produce an Overflow prematurely). Hence R′n contains at least
2n locations.

15

l0start

l1

c1 c2 c3 cn

Init(in)
zero, xn, . . . , x1 := in

in 6= zero
Init(in)
one := in

x1 = one
x1 := zerox1 = zero

x1 := one

x2 = one
x2 := zero

x2 = zero
x2 := one x3 = zero

x3 := one

xn = one
xn := zero
Overflow

xn = zero
xn := one

Fig. 9: Encoding a binary counter as a register automaton

In this article, we will present an algorithm for learning input enabled, input
deterministic, right invariant register automata. The following lemma states that
such automata have a very specific form:

Lemma 8. Suppose R is an input enabled, input deterministic, right invariant
register automaton and assume w.l.og. that the guards of R satisfy the restric-
tions of Lemma 5. Suppose l is a location that is reachable in R. Then:

1. l does not have two different outgoing transitions with gin ≡ in = x, for any
x,

2. if l has two different outgoing transitions with gin ≡ in = x and gin ≡ in = y,
for distinct x and y, then ξ |= x 6= y, for each reachable state (l, ξ) of [[R]],

3. l has exactly one outgoing transition of the form gin ≡
∧
x∈W in 6= x, with

x ∈W iff l has an outgoing transition with gin ≡ in = x.

Proof. By input determinism and input enabledness of R.

4 Model Learning

Algorithms for active learning of automata have originally been developed for
inferring finite state acceptors for unknown regular languages [7]. Since then
these algorithms have become popular with the testing and verification commu-
nities for inferring models of black box systems in an automated fashion. While
the details change for concrete classes of systems, all of these algorithms follow

16

basically the same pattern. They model the learning process as a game between
a learner and a teacher. The learner has to infer an unknown automaton with
the help of the teacher. The learner can ask three types of queries to the teacher:

Output Queries ask for the expected output for a concrete sequence of inputs.
In practice, output queries can be realized as simple tests.

Reset queries prompt the teacher to return to its initial state and are typically
asked after each output query.

Equivalence Queries check whether a conjectured automaton produced by
the learner is correct. In case the automaton is not correct, the teacher pro-
vides a counterexample, a trace exposing a difference between the conjecture
and the expected behavior of the system to be learned. Equivalence queries
can be approximated through (model-based) testing in black-box scenarios.

A learning algorithm will use these three kinds of queries and produce a sequence
of automata converging towards the correct one in a finite number of steps. We
refer the reader to [32, 23] for introductions to active automata learning.

4.1 The Nerode congruence

Most of the learning algorithms that have been proposed in the literature aim to
construct an approximation of the Nerode congruence based on a finite number
of observations of the SUL (output queries). The famous Myhill-Nerode theorem
[28] for Deterministic Finite Automata (DFA) provides a basis for describing (a)
how prefixes traverse states (equivalence classes), and (b) how states can be
distinguished (by suffixes). Below we present a straightforward reformulation of
the Myhill-Nerode theorem for deterministic Mealy machines.

Definition 11. An observation over a set of inputs I and a set of outputs O
is a finite alternating sequence i0o0 · · · in−1on−1 of inputs and outputs that is
either empty, or begins with an input and ends with an output. Let S be a set of
observations over I and O. Then S is

– prefix closed if β i o ∈ S =⇒ β ∈ S,

– behavior deterministic if β i o ∈ S ∧ β i o′ ∈ S =⇒ o = o′, and

– input complete if β ∈ S ∧ i ∈ S =⇒ ∃o ∈ O : β i o ∈ S.

Two observations β, β′ ∈ S are equivalent for S, notation β ≡S β′, iff for all
observations γ over I and O, βγ ∈ S ⇔ β′γ ∈ S. We write [β] to denote the
equivalence class of β with respect to ≡S.

Theorem 3 (Myhill-Nerode). Let S be a set of observations over a finite sets
of inputs I and outputs O. Then S is the set of traces of some finite, deterministic
Mealy machineM iff S is nonempty, prefix closed, behavior deterministic, input
complete, and ≡S has only finitely many equivalence classes (finite index).

17

Proof. “⇒”. Let M be a finite, deterministic Mealy machine and let S be its
set of traces. Then it is immediate from the definitions that S is a nonempty
set of observations that is prefix closed and input complete. Since each trace of
M leads to a unique state and M is deterministic, it follows that S is behavior
deterministic. Since all observations that lead to the same state are obviously
equivalent and since M is finite, equivalence relation ≡S has finite index.

“⇐”. Suppose S is nonempty, prefix closed, behavior deterministic, input
complete, and ≡S has finite index. We define the finite, deterministic Mealy
machine M = 〈I,O,Q, q0, δ, λ〉 as follows:

– Q is the set of classes of ≡S .

– q0 is given by [ε].

– Let β ∈ S and i ∈ I. Then, since S is both input complete and behavior
deterministic, there exists a unique o ∈ O such that β i o ∈ S. We define
δ([β], i) = [β i o] and λ([β], i) = o.

It is straightforward to verify thatM is a well-defined finite, deterministic Mealy
machine whose set of traces equals S.

The equivalence relation ≡S induced by the set of traces S of a register
automaton does not have a finite index. However, as observed by [10, 11], by
using the inherent symmetry of register automata we may define a slightly dif-
ferent equivalence relation ≡aut

S that does have a finite index and that may serve
as a basis for a Myhill-Nerode theorem for register automata. The equivalence
relation ≡aut

S on S is defined by

β ≡aut
S β′ ⇔ ∃ automorphism h ∀γ : (βγ ∈ S ⇔ β′h(γ) ∈ S)

Proposition 1. Let R be an input deterministic register automataton and let
S be its set of traces. Then ≡aut

S has a finite index.

Proof. Since R is input deterministic, there exists for each trace of R a unique
corresponding run. Let β and β′ be traces of R and let (l, ξ) and (l′, ξ′) be the
final states of the corresponding runs. Assume that l = l′ and Part(ξ) = Part(ξ′).
Then there exists an automorphism h from ξ to ξ′. By Lemma 3, α is a partial
run starting in (l, ξ) iff h(α) is a partial run starting in (l′, ξ′). Moreover, by
Lemma 4, trace(h(α)) = h(trace(α)). Hence, β ≡aut

S β′. Since R has a finite
number of locations, since each location has a finite set of registers, and since
there are only finitely many partitions of a finite set, this implies that ≡aut

S has
a finite index.

Whereas [21, 22] presents a learning algorithm for register automata that
is based on a variant of the Myhill-Nerode theorem for ≡aut

S , the idea of our
approach is to learn register automata by constructing an abstraction of the set
of traces that has a finite index according to the original definition of ≡S .

18

4.2 Architecture of Tomte

Figure 10 presents the overall architecture of our learning approach, which we
implemented in the Tomte tool. At the right we see the teacher or system under
learning (SUL), an implementation whose behavior can be described by an (un-
known) input enabled and input deterministic register automaton. At the left we
see the learner, which is a tool for learning finite deterministic Mealy machines.
In our current implementation we use LearnLib [27, 31], but there are also other
libraries like libalf [8] that implement active learning algorithms. In between the
learner and the SUL we place three auxiliary components: the determinizer, the
lookahead oracle, and the abstractor. First the determinizer eliminates the non-
determinism of the SUL that is induced by fresh outputs. Then the lookahead
oracle annotates events with information about the data values that should be
remembered because they play a role in the future behavior of the SUL. Finally,
the abstractor maps the large set of concrete values of the SUL to a small set of
symbolic values that can be handled by the learner.

The idea to use an abstractor for learning register automata originates from
[2] (based on work of [4]). Using abstractors one can only learn restricted types
of deterministic register automata. Therefore, [1, 3] introduced the concept of
a lookahead oracle, which makes it possible to learn any deterministic register
automaton. In this paper, we extend the algorithm of [1, 3] with the notion of a
determinizer, allowing us to also learn register automata with fresh outputs.

Learner Abstractor
Lookahead

Oracle
Determinizer

Teacher
(SUL)

Fig. 10: Architecture of Tomte

4.3 Mappers

Below we recall relevant parts of the theory of mappers from [4]. In order to
learn an over-approximation of a “large” Mealy machine M, we may place a
transducer in between the teacher and the learner, which translates concrete
inputs to abstract inputs, concrete outputs to abstract outputs, and vice versa.
This allows us to reduce the task of the learner to inferring a “small” Mealy
machine with an abstract alphabet. As we will see, the determinizer and the
abstractor of Figure 10 are examples of such transducers.

The behavior of a transducer is fully specified by a mapper, a deterministic
Mealy machine in which concrete actions are inputs and abstract actions are
outputs.

Definition 12 (Mapper). A mapper is a deterministic Mealy machine A =
〈I ∪O,X ∪ Y,R, r0, δ, λ〉, where

19

– I and O are disjoint sets of concrete input and output actions,
– X and Y are disjoint sets of abstract input and output actions, and
– λ : R× (I ∪O)→ (X ∪ Y), referred to as the abstraction function, respects

inputs and outputs, that is, for all a ∈ I∪O and r ∈ R, a ∈ I ⇔ λ(r, a) ∈ X.

A mapper A translates any sequence β ∈ (I ∪ O)∗ of concrete actions into a
corresponding sequence of abstract actions given by

αA(β) = λ(r0, β).

A mapper also allows us to abstract a Mealy machine with concrete actions in
I and O into a Mealy machine with abstract actions in X and Y . Basically,
the abstraction of Mealy machine M via mapper A is the Cartesian product of
the underlying transition systems, in which the abstraction function is used to
convert concrete actions into abstract ones.

Definition 13 (Abstraction). Let M = 〈I,O,Q, q0,→〉 be a Mealy machine
and let A = 〈I∪O,X∪Y,R, r0, δ, λ〉 be a mapper. Then αA(M), the abstraction
ofM via A, is the Mealy machine 〈X,Y ∪{⊥}, Q×R, (q0, r0),→〉, where ⊥6∈ Y
is a fresh output action and → is given inductively by the rules

q
i/o−−→ q′, r

i/x−−→ r′
o/y−−→ r′′

(q, r)
x/y−−→ (q′, r′′)

6 ∃i ∈ I : r
i/x−−→

(q, r)
x/⊥−−−→ (q, r)

The first rule says that a state (q, r) of the abstraction has an outgoing x-

transition for each transition q
i/o−−→ q′ of M with λ(r, i) = x. In this case, there

exist unique r′, r′′ and y such that r
i/x−−→ r′ and r′

o/y−−→ r′′. An x-transition in
state (q, r) then leads to state (q′, r′′) and produces output y. The second rule in
the definition is required to ensure that the abstraction αA(M) is input enabled.
Given a state (q, r) of the mapper, it may occur that for some abstract input x
there does not exist a corresponding concrete input i with λ(r, i) = x. In this
case, an input x triggers the special “undefined” output action ⊥ and leaves the
state unchanged.

Lemma 9. Let A be a mapper and let M be a Mealy machine with the same
concrete input and output actions I and O. If β is a trace of M then αA(β) is
a trace of αA(M).

Proof. Straightforward, see also Lemma 4 of [4].

A mapper describes the behavior of a transducer component that we can
place in between a Learner and a Teacher. Consider a mapper A = 〈I ∪O,X ∪
Y,R, r0, δ, λ〉. The transducer component that is induced by A records the cur-
rent state, which initially is set to r0, and behaves as follows:

– Whenever the transducer is in a state r and receives an abstract input x ∈ X
from the learner, it nondeterministically picks a concrete input i ∈ I such
that λ(r, i) = x, forwards i to the teacher, and jumps to state δ(r, i). If there
exists no such input i, then the component returns output ⊥ to the learner.

20

– Whenever the transducer is in a state r and receives a concrete answer o
from the teacher, it forwards λ(r, o) to the learner and jumps to state δ(r, o).

– Whenever the transducer receives a reset query from the learner, it changes
its current state to r0, and forwards a reset query to the teacher.

From the perspective of a learner, a teacher for M and a transducer for A
together behave exactly like a teacher for αA(M). (We refer to [4] for a formal-
ization of this claim.) In [4], also a concretization operator γA(H) is defined.
This concretization operator is the adjoint of the abstraction operator: for a
given mapper A, the corresponding concretization operator turns any abstract
Mealy machine H with actions in X and Y into a concrete Mealy machine with
actions in I and O. As shown in [4], αA(M) ≤ H implies M≤ γA(H).

5 The Determinizer

The login example of Figure 2 shows that input deterministic register automata
may exhibit nondeterministic behavior: in each run the automaton may generate
different output values (passwords). This is a useful feature since it allows us
to model the actual behavior of real-world systems, but it is also problematic
since learning tools such as LearnLib can only handle deterministic systems. In
this section, we show how this type of nondeterminism can be eliminated by
exploiting symmetries that are present in register automata.

As a first step, we show that each trace is equivalent to a ‘neat’ trace in
which fresh values are selected according to some fixed rules.

Definition 14 (Fresh and neat). Consider a trace β of register automaton
R:

β = i0(d0) o0(e0) i1(d1) o1(e1) · · · in−1(dn−1) on−1(en−1) (2)

Let Sj be the set of values that occur in β before input ij, and let Tj be the
set of values that occur before output oj, that is, S0 = ∅, Tj = Sj ∪ {dj} and
Sj+1 = Tj ∪ {ej}. An input value dj is fresh if it has not occurred before in
the trace, that is, dj 6∈ Sj. Similarly, an output value ej is fresh if it has not
occurred before, that is, ej 6∈ Tj. We say that β has neat inputs if each fresh
input value dj is equal to the largest preceding value (including 0) plus one, that
is, dj ∈ Sj ∪ {max(Sj ∪ {0}) + 1}. Similarly, β has neat outputs if each fresh
output value is equal to the smallest preceding value (including 0) minus one,
that is, for all j, ej ∈ Tj ∪ {min(Tj ∪ {0}) − 1}. A trace is neat if it has neat
inputs and neat outputs, and a run is neat if its trace is neat.

Observe that in a neat trace the n-th fresh input value is n, and the n-th
fresh output value is −n.

Example 6. Trace i(1) o(3) i(7) o(7) i(3) o(2) is not neat, for instance because
the first fresh output value 3 is not equal to −1. Also, the second input value 7
is fresh but different from 4, the largest preceding value plus 1. An example of
a neat trace is i(1) o(−1) i(2) o(2) i(−1) o(−2).

21

The next proposition implies that in order to learn the behavior of a register
automaton it suffices to study its neat traces, since any other trace is equivalent
to a neat trace. In order to prove this result, we need the following technical
definition, which extends any finite one-to-one relation to an automorphism.

Definition 15. For each finite set S ⊆ Z, let EnumCompl(S) be a function that
enumerates the elements in the complement of S, that is, EnumCompl(S) : N→
(Z \ S) is a bijection. Then, for any finite one-to-one relation r ⊆ Z × Z, r̂ is
the automorphism given by:

r̂ = r ∪ {(EnumCompl(dom(r))(k),EnumCompl(ran(r))(k)) | k ∈ N}.

Here dom(r) denotes the domain of r and ran(r) denotes the range of r.

Proposition 2. For every trace β there exists a zero respecting automorphism
h such that h(β) is neat.

Proof. Let β, Sj and Tj (j = 0, . . . , n − 1) be as in Definition 14. Inductively,
we define relations sj , tj ⊆ Z× Z (for j = 0, . . . , n− 1) as follows

s0 = ∅

tj =

{
sj ∪ {(dj ,max(ran(sj) ∪ {0}) + 1)} if dj is fresh
sj otherwise

sj+1 =

{
tj ∪ {(ej ,min(ran(tj) ∪ {0})− 1)} if ej is fresh
tj otherwise

By induction, we can prove the following assertions, for all j: (1) dom(sj) =
Sj and dom(tj) = Tj , (2) sj and tj are injective. By construction, tn−1(β) is
neat. Then h = t̂n−1 is an automorphism such that h(β) is neat.

Example 7. Consider the trace i(1) o(3) i(7) o(7) i(3) o(2) from Example 6. This
non neat trace can be mapped to the neat trace i(1) o(−1) i(2) o(2) i(−1) o(−2)
by the automorphism h that acts as the identity function except that it permutes
some values: h(3) = −1, h(−1) = 7, h(7) = 2, h(2) = −2, and h(−2) = 3.

Corollary 3. For every run α of R there exists an automorphism h such that
h(α) is neat.

Proof. Let α be a run of R. Then β = trace(α) is a trace of R. Therefore,
by Proposition 2, there exists an automorphism h such that h(β) is neat. By
Lemma 3, h(α) is a run of R and by Lemma 4, trace(h(α)) = h(β). Since h(β)
is neat and a run is neat if its trace is neat, h(α) is neat as well.

Whereas the learner may choose to only provide neat inputs, we usually
have no control over the outputs generated by the SUL, so in general these
will not be neat. In order to handle this, we place a component, called the
determinizer, in between the SUL and the learner. The determinizer renames
the outputs generated by the SUL and makes them neat. The behavior of the

22

determinizer is specified by the mapper D defined below. As part of its state D
maintains a finite one-to-one relation r describing the current renamings, which
grows dynamically during an execution (similar to the functions sj and tj in the
proof of Proposition 2). We write r̂ for an automorphism that extends r (we
may construct r̂ using the construction described in the proof of Proposition 2).
Whenever the SUL generates an output n that does not occur in dom(r), this
output is mapped to a value m one less than the minimal value in ran(R), and
the pair (n,m) is added to r. Whenever the learner generates an input m, the
mapper concretizes this value to n = r̂−1(m) and forwards n to the SUL. If n
does not occur in dom(r), then r is extended with the pair (n,m).

Definition 16 (Determinizer). Let I and O be finite, disjoint sets of input
and output symbols. The determinizer for I and O is the mapper D = 〈(I×Z)∪
(O × Z), (I × Z) ∪ (O × Z), R, r0, δ, λ〉 where

– R = {r ⊆ Z× Z | r finite and one-to-one},
– r0 = ∅,
– for all r ∈ R, i ∈ I, o ∈ O and n ∈ Z,

λ(r, i(n)) = i(r̂(n))

λ(r, o(n)) =

{
o(r(n)) if n ∈ dom(r)
o(min(ran(r) ∪ {0})− 1) otherwise

δ(r, i(n)) =

{
r if n ∈ dom(r)
r ∪ {(n, r̂(n))} otherwise

δ(r, o(n)) =

{
r if n ∈ dom(r)
r ∪ {(n,min(ran(r) ∪ {0})− 1)} otherwise

Proposition 3. Let R be a register automaton with inputs I and outputs O, let
D be the determinizer for I and O, and let β be a trace of αD([[R]]). Then β has
neat outputs and is equivalent to a trace of R.

Proof. Let α be a run of αD([[R]]) with trace β. We claim that α does not contain
any transitions with output ⊥, that is, transitions generated by the second rule
in Definition 12. This because, for any state r of mapper D and any ‘abstract’
input i(d), there exists a ‘concrete’ input i(d′) such that λ(r, i(d′)) = i(d). In
fact, since r̂ is an automorphism, we can just take d′ = r̂−1(d). Hence run α
takes the form

α = ((l0, ξ0), r0) i0(d0) o0(e0) ((l1, ξ1), r1) i1(d1) o1(e1) ((l2, ξ2), r2) · · ·

· · · in−1(dn−1) on−1(en−1) ((ln, ξn), rn).

Since the transitions in run α have been derived by repeated application of the
first rule in Definition 12, there exist d′j , e

′
j and r′j such that [[R]] has a run α′

of the form

α′ = (l0, ξ0) i0(d′0) o0(e′0) (l1, ξ1) i1(d′1) o1(e′1) (l2, ξ2) · · ·

23

· · · in−1(d′n−1) on−1(e′n−1) (ln, ξn),

and D has a run

r0 i0(d′0) i0(d0) r′0 o0(e′0) o0(e0) r1 i1(d′1) i1(d1) r′1 o1(e′1) o1(e1) r2 · · ·

· · · in−1(d′n−1) in−1(dn−1) r′n−1 on−1(e′n−1) on−1(en−1) rn.

From Definition 16 we may infer that, for all j < n, (d′j , dj) ∈ r′j , (e′j , ej) ∈ rj+1,
rj ⊆ r′j and r′j ⊆ rj+1. Now let h = r̂n. Then h is an automorphism satisfying, for
all j < n, h(d′j) = dj and h(e′j) = ej . Let β′ be the trace of α′. Then h(β′) = β
and thus traces β and β′ are equivalent.

Let Sj be the set of values that occur in β before input ij , and let Tj be the
set of values that occur in β before output oj . Then it follows by induction that
Sj = ran(rj) and Tj = ran(r′j). According to Definition 14, β has neat outputs if
ej ∈ Tj ∪ {min(Tj ∪ {0})− 1}, that is, if ej ∈ ran(r′j)∪ {min(ran(r′j ∪ {0}))− 1}.
But this is implied by Definition 16.

Proposition 4. Any trace of R with neat outputs is also a trace of αD([[R]]).

Proof. Let α be a run of [[R]] with trace β. Then run α takes the form

α = (l0, ξ0) i0(d0) o0(e0) (l1, ξ1) i1(d1) o1(e1) (l2, ξ2) · · ·

· · · in−1(dn−1) on−1(en−1) (ln, ξn).

αD([[R]]) has a corresponding run α′ of the form

α′ = ((l0, ξ0), r0) i0(d′0) o0(e′0) ((l1, ξ1), r1) i1(d′1) o1(e′1) ((l2, ξ2), r2) · · ·

· · · in−1(d′n−1) on−1(e′n−1) ((ln, ξn), rn)

and D has a run

r0 i0(d0) i0(d′0) r′0 o0(e0) o0(e′0) r1 i1(d1) i1(d′1) r′1 o1(e1) o1(e′1) r2 · · ·

· · · in−1(dn−1) in−1(d′n−1) r′n−1 on−1(en−1) on−1(e′n−1) rn.

Let Sj be the set of values that occur in β before input ij , and let Tj be the
set of values that occur in β before output oj . Then it follows by induction that
Sj = dom(rj) and Tj = dom(r′j). Since β has neat outputs, ej ∈ dom(r′j) ∪
{min(dom(r′j) ∪ {0}) − 1}. Let Id denote the identity function on Z, that is,
Id = {(n, n) | n ∈ Z}. Observe that for any finite one-to-one relation r ⊆ Id ,
r̂ = Id . By induction on j, we may now prove that rj , r

′
j ⊆ Id . It follows that

dj = d′j and ej = e′j , for all j. Thus β is a trace of αD([[R]]), as required.

Corollary 4. R and αD([[R]]) have equivalent traces.

Proof. Immediate from Propositions 2, 3 and 4.

24

Example 8. The determinizer does not remove all sources of nondeterminism.
The login model of Figure 2, for instance, is not behavior deterministic, even
when we only consider neat traces, because of neat traces Register(1) OK(1) and
Register(1) OK(−1). This nondeterminism may be considered ‘harmless’ since the
parameter value of the OK-output is not stored and the behavior after the differ-
ent outputs is the same. The slot machine model of Figure 6, however, has nonde-
terminism that is real in the sense that traces button(1) reel(−1) button(1) reel(−2)
and button(1) reel(−1) button(1) reel(−1) lead to states with distinct output
symbols in the outgoing transitions.

The slot machine of Example 8 nondeterministically select an output which
‘accidentally’ may be equal to a previous value. We call this a collision.

Definition 17. Let β be a trace of register automaton R. Then β ends with a
collision if (a) the last output value is not fresh, and (b) the sequence obtained
by replacing this value by some other value is also a trace of R. We say that β
has a collision if it has a prefix that ends with a collision.

Example 9. Trace button(3) reel(137) button(8) reel(137) of the slot machine
model of Figure 6 has a collision, because the last output value 137 is not fresh,
and if we replace it by 138 the result is again a trace.

In many protocols, fresh output values are selected from a finite but large
domain. TCP sequence and acknowledgement numbers, for instance, comprise 32
bits. The traces generated during learning are usually not so long and typically
contain only a few fresh outputs. As a result, chances that collisions occur during
learning are typically negligible. For these reasons, we have decided to consider
only observations without collisions. Under the assumption that the SUL will
not repeatedly pick the same fresh value, we can detect whether an observation
contains a collision by simply repeating experiments a few times: if, after the
renaming performed by the determinizer, we still observe nondeterminism then
a collision has occurred. By ignoring traces with collisions, it may occur that the
models that we learn incorrectly describe the behavior of the SUL in the case
of collisions. We will, for instance, miss the win-transition in the slot machine
of Figure 6. But if collisions are rare then it is extremely difficult to learn those
types of behavior anyway. In applications with many collisions (for instance when
fresh outputs are selected randomly from a small domain) one should not use the
approach in this article, but rather an algorithm for learning nondeterministic
automata such as the one presented in [34].

Our approach for learning register automata with fresh outputs relies on the
following proposition.

Proposition 5. The set S of collision free neat traces of an input deterministic
register automaton R is behavior deterministic.

Proof. Let R = 〈I,O, L, l0, V, Γ 〉 be an input deterministic register automaton
and let S be the set of collision free neat traces of R. Suppose that β i(d) o(e)
and β i(d) o′(e′) are traces in S. Our task is to prove that o(e) = o′(e′). Since

25

R is input deterministic, there is a unique run α of [[R]] with trace β. Let (l, ξ)
be the last state of this run. Since β i(d) o(e) and β i(d) o′(e′) are traces of R,

[[R]] has transitions (l, ξ)
i(d)/o(e)−−−−−→ (l1, ξ1) and (l, ξ)

i(d)/o′(e′)−−−−−−→ (l′1, ξ
′
1). Since R is

input deterministic, there is a unique transition that supports both transitions
of [[R]] and thus o = o′. We consider two cases. If both values e and e′ are fresh
then, since traces β i(d) o(e) and β i(d) o′(e′) are neat, e and e′ are both equal
to the smallest preceding value minus one and thus e = e′. Now assume that at
least one value, say e, is not fresh. Then, since β i(d) o(e) is collision free, no
sequence obtained from β i(d) o(e) by replacing e by some other value can be a
trace of R. Thus e = e′ also in this case. We conclude o(e) = o′(e′), as required.

Our learning approach works for those register automata in which, when a
fresh output is generated, it does not matter for the future behavior whether or
not this fresh output equals some value that occurred previously. This is typically
the case for real-world systems such as servers that generate fresh identifiers,
passwords or sequence numbers. The slot machine example of Figure 6 is an
example of a register automaton that we cannot learn.

Proposition 6. Let R1 and R2 be two input deterministic right invariant reg-
ister automata in which out does not occur negatively in guards. Then R1 and
R2 are equivalent iff they have the same sets of collision free traces.

6 The Lookahead Oracle

The main task of the lookahead oracle is to compute for each trace of the SUL
a set of values that are memorable after occurrence of this trace. Intuitively, a
value d is memorable if it has an impact on the future behavior of the SUL:
either d occurs in a future output, or a future output depends on the equality
of d and a future input.

Definition 18. Let R be a register automaton, let β be a trace of R, and let
d ∈ Z be a parameter value that occurs in β. Then d is memorable after β iff
there exists a witness for d, that is, a sequence β′ such that β β′ is a trace of R
and if we replace each occurrence of d in β′ by a fresh value f then the resulting
sequence β (β′[f/d]) is not a trace of R anymore.

Example 10. In the example of Figure 1, the set of memorable values after trace
β = Push(1) OK Push(2) OK Push(3) NOK is {1, 2}. Values 1 and 2 are memo-
rable, because of the witness β′ = Pop Return(1) Pop Return(2). Sequence β β′

is a trace of the model, but if we rename either the 1 or the 2 in β′ into a fresh
value, then this is no longer the case. In the example of Figure 2, value 2207 is
memorable after Register OK(2207) because Register OK(2207) Login(2207) OK
is a trace of the automaton, but Register OK(2207) Login(1) OK is not.

The next theorem gives a state based characterization of memorable values: a
value d is memorable after a run of a deterministic register automaton iff the final

26

state of that run is inequivalent to the state obtained by replacing all occurrences
of f by a fresh value. Thus we can also say that a value d is memorable in a
state of a register automaton.

Theorem 4. Let R be a deterministic register automaton, let α be a run of M
with trace(α) = β, let (l, ξ) be the last state of α, let d ∈ Z, and let f 6= d be a
fresh value that does not occur in α. Let swapd,f be the automorphism that maps
d to f , f to d, and acts as identity for all other values. Then d is memorable
after β iff (l, ξ) 6≈ (l, swapd,f (ξ)).

Proof. Suppose d is memorable after β. Then there exists a witness for d, that is,
a sequence β′ such that β β′ is a trace of R and β swapd,f (β′) is not a trace of R.
Since R is deterministic, α is the unique run ofM with trace(α) = β. Therefore,
since β β′ is a trace of R, there exists a partial run α′ that starts in (l, ξ) such
that trace(α′) = β′. Moreover, since β swapd,f (β′) is not a trace ofR, swapd,f (β′)
is not a trace of (l, ξ). By Lemma 3, swapd,f (α′) is a partial run ofR that starts in
(l, swapd,f (ξ)). By Lemma 4, trace(swapd,f (α′)) = swapd,f (β′). Thus swapd,f (β′)
is a trace of (l, swapd,f (ξ)), which in turn implies (l, ξ) 6≈ (l, swapd,f (ξ)).

For the other direction, suppose (l, ξ) 6≈ (l, swapd,f (ξ)). Then there exists a
sequence β′ that is a trace of (l, ξ) but not of (l, swapd,f (ξ)). We claim that β′

is a witness for d. Clearly, β β′ is a trace of R. Now suppose β swapd,f (β′) is
a trace of R. Then, since R is deterministic, swapd,f (β′) is a trace of (l, ξ). By
Lemmas 3 and 4, swapd,f (swapd,f (β′)) is a trace of (l, swapd,f (ξ)). Therefore,
since swapd,f is its own inverse, β′ is a trace of (l, swapd,f (ξ)), and we have
derived a contradication. Thus our assumption was wrong and β swapd,f (β′) is
not a trace of R.

The above theorem reduces the problem of deciding whether a value is mem-
orable to the problem of deciding equivalence of two states in a register automa-
ton. It is not hard to see that conversely the problem of deciding equivalence of
states can be reduced to the problem of deciding whether a value is memorable.
The problem of finding a witness for a memorable value is thus equivalent to the
problem of finding a distinguishing trace between two states.

Consider the architecture of Figure 10. Whenever the Lookahead Oracle re-
ceives an input from the Abstractor, this is just forwarded to the Determinizer.
However, when the Lookahead Oracle receives a concrete output o from the
Determinizer, then it forwards o to the Abstractor, together with a list of the
memorable values after the occurrence of o. The ordering of the memorable val-
ues in the list determines in which registers the values will be stored by the
Abstractor. Different orderings are possible, and the choice of the ordering af-
fects the size of the register automaton that we will learn (similar to the way in
which the variable ordering affects the size of a Binary Decision Diagram [9]).
Within the Tomte tool we have experimented with different orderings. A simple
way to order the values, for instance, is to sort them in ascending order. An
ordering that works rather well in practice, and on which we elaborate below, is
the order in which the values occur in the run.

27

Let R be the input deterministic register automaton that we want to learn,
and let β be a trace of R. Then, since R is input deterministic, it has a unique
run

α = (l0, ξ0) i0(d0) o0(e0) (l1, ξ1) i1(d1) o1(e1) (l2, ξ2) · · ·

· · · in−1(dn−1) on−1(en−1) (ln, ξn).

such that trace(α) = β. For j ≤ n, we define rj ∈ Z∗ inductively as follows:
r0 = ε and, for j > 0, rj is obtained from rj−1 by first appending dj−1 and/or
ej−1 in case these values do not occur in the sequence yet, and then erasing all
values that are not memorable in state (lj , ξj). Then the task of the Lookahead
Oracle is to annotate each output action of β with the list of memorable values
of the state reached by doing this output:

OracleR(β) = i0(d0) o0(e0r1) i1(d1) o1(e1r2) · · · in−1(dn−1) on−1(en−1rn).

In order to accomplish its task, the Lookahead Oracle stores all the traces of
the SUL observed during learning in an observation tree.

Definition 19. An observation tree is a pair (N ,MemV), where N is a finite,
nonempty, prefix-closed set of collision free, neat traces, and function MemV :
N → Z∗ associates to each trace a finite sequence of distinct values which are
memorable after running this trace.

In practice, observation trees are also useful as a cache for repeated queries on
the SUL. Figure 11 shows two observation trees for our FIFO-set example. For
each trace βj a list of memorable values is given.

β0

〈〉

β1

〈〉

β3

〈〉

Push(2)/OK

β4

〈〉

Pop/Return(1)

Push(1)/OK

β2

〈〉

.

.

.

Pop/NOK

β0

〈〉

β1

〈1〉

β3

〈〉

Push(2)/OK

β4

〈〉

Pop/Return(1)

Push(1)/OK

β2

〈〉

.

.

.

Pop/NOK

Fig. 11: Observation trees for FIFO-set without and with Pop lookahead trace

Whenever a new trace β is added to the tree, the oracle computes a list
of memorable values for it. For this purpose, the oracle maintains a list L =
〈σ1, . . . , σk〉 of lookahead traces. These lookahead traces are run in sequence
after β to explore the future of β and to discover its memorable values.

28

Definition 20. A lookahead trace is a sequence of symbolic input actions of the
form i(v) with i ∈ I and v ∈ {p1, p2, . . .} ∪ {n1, n2, . . .} ∪ {f1, f2, . . .}.

Intuitively, a lookahead trace is a symbolic trace, where each parameter refers to
either a previous value (pj), or to a fresh input value (nj), or to a fresh output
value (fj). Within lookahead traces, parameter p1 plays a special role as the
parameter that is replaced by a fresh value. Let σ be a lookahead trace in which
parameters P refer to previous values, and let ζ be a valuation for P . Then
σ can be converted into a concrete trace on the fly, by replacing each variable
pj ∈ P by ζ(pj), picking a fresh value for each variable nj whenever needed, and
assigning to fj the j-th fresh output value. If trace γ is a possible outcome of
converting lookahead trace σ, starting from a state (l, ξ) with valuation ζ, then
we say that γ is a concretization of σ.

The following lemma implies that a finite number of lookahead traces will
suffice to discover all memorable values of all states in an observation tree. The
idea is that if a concretization of a lookahead trace is a witness that a value is
memorable in some state, the same lookahead trace can also be used to discover
that a corresponding value is memorable in any symmetric state.

Lemma 10. Let R be a register automaton and let (l, ξ) be a state of [[R]]. Let
σ be a lookahead trace in which parameters P = {p1, . . . , pl} refer to previous
values, and let ζ be a valuation that assigns to each parameter in P a distinct
memorable value of (l, ξ). Suppose γ is a concretization of σ starting from (l, ξ)
with valuation ζ, and suppose γ is also a witness showing that ζ(p1) is memorable
in state (l, ξ). Let h be an automorphism and suppose γ′ is a concretization of
σ starting from state h(l, ξ) with valuation h ◦ ζ. Then γ′ is a witness showing
that h(ζ(p1)) is memorable in state h(l, ξ).

If M is an overapproximation of the set of memorable values after some state
(l′, ξ′) then, by concretizing lookahead trace σ for each injective valuation in
P → M , Lemma 10 guarantees that we will find a witness in case there exists
an automorphism h from (l, ξ) to (l′, ξ′).

Instances of all lookahead traces are run in each new node to compute mem-
orable values. At any point in time, the set of values that occur in MemV (β) is
a subset of the full set of memorable values of node β. Whenever a memorable
value has been added to the observation tree, we require the tree to be lookahead
complete. This means every memorable value has to have an origin, that is, it
has to stem from either the memorable values of the parent node or the values
in the preceding transition:

β′ = β i(d) o(e)⇒ values(MemV (β′)) ⊆ values(MemV (β)) ∪ {d, e},

where function values returns the set of elements that occur in a list. We em-
ploy a similar restriction on any non-fresh output parameters contained in the
transition leading up to a node. These too have to originate from either the
memorable values of the parent, or the input parameter in the transition. Herein
we differentiate from the algorithm in [1] which only enforced this restriction on
memorable values at the expense of running additional lookahead traces.

29

The observation tree at the left of Figure 11 is not lookahead complete since
output value 1 of action Return(1) is neither part of the memorable values of the
node β1 nor is it an input in Pop. Whenever we detect such an incompleteness,
we add a new lookahead trace (in this case Pop) and restart the entire learning
process with the updated set of lookahead traces to retrieve a lookahead complete
observation tree. The observation tree at the right is constructed after adding
the lookahead trace Pop. This trace is executed for every node constructed, as
highlighted by the dashed edges. The output values it generates are then tested
if they are memorable and if so, stored in the MemV set of the node. When
constructing node β1, the lookahead trace Pop gathers the output 1. This output
is verified to be memorable and then stored in MemV (β1). We refer to [1] for
more details about algorithms for the lookahead oracle.

7 The Abstractor

The task of the abstractor is to rename the large set of concrete values of the
SUL to a small set of symbolic values that can be handled by the learner.

Let w0, w1, . . . be an enumeration of the set V \ {in, out}. If the SUL can
be described by a register automaton in which each location has at most n
variables, then the abstract values used by the abstractor will be contained in
{w0, . . . , wn−1,⊥}. We define a family of mappers AF , which are parametrized
by a function F that assigns to each input symbol a finite set of variables
from V \ {in, out}. Intuitively, w ∈ F (i) indicates that it is relevant whether
the parameter of input symbol i is equal to w or not. The initial mapper is
parametrized by function F∅ that assigns to each input symbol the empty set.
Using counterexample-guided abstraction refinement, the sets F (i) are subse-
quently extended.

The states of AF are injective sequences of values (that is, sequences in
which each value occurs at most once), with the initial state being equal to the
empty sequence. A sequence r = d0 . . . dn−1 ∈ Z∗ represents the valuation ξr for
{w0, . . . , wn−1} given by ξr(wj) = dj , for all j. Note that r is injective iff ξr is
injective. The abstraction function of mapper AF leaves the input and output
symbols unchanged, but modifies the parameter values. The actual value of an
input parameter is replaced by the variable in F (i) that has the same value, or by
⊥ in case there is no such variable. Thus the abstract domain of the parameter
of i is the finite set F (i)∪{⊥}. Likewise, the actual value of an output parameter
is not preserved, but only the name of the variable that has the same value, or
⊥ if there is no such variable. The (injective) sequence r′ of memorable values
that has been added as an annotation by the lookahead oracle describes the new
state of the mapper after an output action. The abstraction function replaces
r′ by an update function % that specifies how r′ can be computed from the old
state r and the input and output values that have been received. Upon receipt
of a concrete output o(e r′) from the lookahead oracle, the abstraction function
replaces e by a variable that is equal to e, or to ⊥ if no such variable exists.

Definition 21. We define AF = 〈I ′ ∪O′, X ∪ Y,R, r0, δ, λ〉 where

30

– I ′ = I × Z,
– O′ = {o(d r) | o ∈ O ∧ d ∈ Z ∧ r ∈ Z∗ injective},
– X = {i(a) | i ∈ I ∧ a ∈ F (i) ∪ {⊥}},
– Y = {o(a, %) | o ∈ O∧a ∈ V∪{⊥}∧% ∈ V 9 V injective with finite domain},
– R = {r ∈ Z∗ | r injective},
– r0 = ε,
– δ(r, i(d)) = d r,
– δ(r, o(e r′)) = r′,
– Let r ∈ R and i(d) ∈ I ′. Then

λ(r, i(d)) =

{
i(ξ−1r (d)) if d ∈ ran(ξr) and ξ−1r (d) ∈ F (i)
i(⊥) otherwise

Let r = d s ∈ R and o(e r′) ∈ O′. Let ιi be the valuation that is equal to ξs
if d ∈ ran(ξs) and equal to ξs ∪ {(in, d)} otherwise. Similarly, let ιio be the
valuation equal to ιi if e ∈ ran(ιi) and equal to ιi∪{(out, e)} otherwise. Then
ιio is injective and ran(ιio) = ran(r) ∪ {e}. Suppose ran(r′) ⊆ ran(r) ∪ {e}.
Then % = ι−1io ◦ ξr′ is well-defined and injective, and

λ(r, o(e r′)) =

{
(o(ι−1i (e)), %) if e ∈ ran(ιi)
(o(⊥), %) otherwise

In the degenerate case r = ε or ran(r′) 6⊆ ran(r)∪{e}, we define λ(r, o(e r′)) =
(o(⊥), ∅).

Example 11. Consider an SUL that behaves as the FIFO-set model of Figure 1.
As a result of interaction with mapper AF∅ , the learner may succeed to construct
the abstract hypothesis shown in Figure 12. This first hypothesis is incorrect

l0start l1 l2

Push(⊥)/OK
w1:=in

Pop/NOK Push(⊥)/OK
w2:=in

Pop/Return(w1) Pop/Return(w1)
w1:=w2

Push(⊥)/NOK

Fig. 12: First hypothesis for FIFO-set

since it does not check if the same value is inserted twice. This is because the
Abstractor only generates fresh values during the learning phase. Based on the
analysis of a counterexample (to be discussed in the next section), Tomte will
discover that it is relevant whether or not the parameter of Push is equal to
the value of w1. Consequently F (Push) is set to {w1} and Tomte constructs a
next hypothesis, for instance the one shown in Figure 13. Note that, as the list

31

l0start l1 l2

Push(⊥)/OK
w1:=in

Pop/NOK

Push(w1)/⊥

Push(⊥)/OK
w2:=in

Pop/Return(w1)
Push(w1)/NOK

Pop/Return(w1)
w1:=w2

Push(w1)/NOK

Push(⊥)/NOK

Fig. 13: Second hypothesis for FIFO-set

of memorable values in the initial state is empty, there is no concrete action
Push(d) that is abstracted to action Push(w1) in l0. By the second rule from
Definition 13, an abstract output ⊥ is generated in this case.

Theorem 5. Let R be an input deterministic register automaton with input
symbols I and output symbols O such that each location has at most n registers.
Let S be the set of collision free neat traces of R, and let T = {OracleR(β) | β ∈
S}, that is the set of traces from S in which each output action is annotated with
a list of memorable values of the corresponding target state. Let F be a function
that assigns to each input symbol a subset of {w0, . . . , wn−1}. Then U = αAF

(T)
is nonempty, prefix closed, input complete and ≡U has finite index. If moreover
F (i) = {w0, . . . , wn−1}, for all i ∈ I, then U is behavior deterministic.

In order to show that an hypothesis is incorrect, we first need to concretize
it. Using the theory of [4] we get a concretization operator for free, but this
concretization operator produces unique-valued register automata in which each
output is annotated with the list of memorable values in the target state. Since
unique-valuedness leads to a loss of succinctness (and we no longer need the list
of memorable values), we have implemented in Tomte an alternative procedure
to concretize an abstract deterministic Mealy machine model to a right invariant
register automaton:

1. Omit all transitions with output ⊥ (e.g. the Push(w1)-loop in location l0 of
Figure 13).

2. Whenever, for some location l and input symbol i, there are transitions

l
i(⊥)/o(d),%−−−−−−−→ l′ and l

i(wj)/o(d),%−−−−−−−−→ l′, then omit the i(wj)-transition (e.g. the
Push(w1)-loop in location l2 of Figure 13; apparently it does not matter
whether or not the parameter of Push is equal to the value of w1).

3. If, for some location l and input symbol i, there are outgoing i(w)-transitions
for each w ∈W then add input guard

∧
w∈W in 6= w to the i(⊥) transition.

4. If a transition has input label i(wj) then add input guard in = wj .
5. If a transition has output label o(⊥) then add output guard true.
6. If a transition has output label o(wj) then add output guard out = wj .
7. Replace input labels i(d) by i, output labels o(d) by o, and leave all the

updates % unchanged.

32

Example 12. If we apply the above procedure to the Mealy machine of Figure 12,
then we obtain the register automaton of Figure 7 (modulo variable renaming),
and if we apply it to the Mealy machine of Figure 13, then we obtain the register
automaton of Figure 1 (again modulo variable renaming).

In case function F assigns the maximal number of abstract values to each
input, the above concretization operator will produce a unique-valued register
automaton that is equivalent to the register automaton produced by the con-
cretization operator of [4] (if we forget the lists of memorable values in output
actions). In cases where F is not maximal, our concretization operator will typ-
ically produce register automata that are not unique-valued. In the next section
we will show how, when a flaw in the hypothesis is detected during the hypoth-
esis verification phase, the resulting counterexample can be used for abstraction
refinement.

8 The Analyzer

During equivalence testing, a test generation component uses the abstract hy-
pothesis to generate abstract test input sequences. This approach allows us to
use standard algorithms for FSM conformance testing such as Random Walk or
a variation of the W-Method [26]. These test sequences are then concretized,
run on both the SUL and the concretized hypothesis, and the resulting outputs
are compared. The result is either a concrete counterexample or or increased
confidence that the hypothesis model conforms to the SUL.

Parameter values in the abstract model can either be ⊥ or a variable name.
If an abstract value is a variable name then the corresponding concrete value is
uniquely determined. In contrast, an abstract value ⊥ allows for infinitely many
concretizations and suggests that the SUL behaviour is independent of the value
picked. By testing we can verify that this is the case. If testing produces a
counterexample then this may be used to refine the abstraction and introduce
additional abstract values. To more quickly discover such refinements, we test
by concretizing ⊥ to different memorable values.

As example, consider the login model of Figure 4. Figure 14 depicts the hy-
pothesis built after the first iteration of learning this system. Using the testing

l0start l1
Register(⊥,⊥)/OK

Login(⊥,⊥)/NOK

Register(⊥,⊥)/NOK

Login(⊥,⊥)/NOK

Fig. 14: Initial abstract hypothesis for login system

approach described, Tomte will eventually find a concrete counterexample trace,
say Login(9,9) NOK Register(9,9) OK Register(12,12) NOK Login(9,9) OK. This

33

sequence is a valid trace of the SUL but not of the hypothesis, since according
to the hypothesis the last output should be NOK. Tomte applies heuristics to
reduce the length of the counterexample, in order to simplify subsequent analysis
and thus to improve scalability. Two reduction strategies are used: (1) remov-
ing loops, and (2) removing single transitions. The first strategy tries to remove
parts of the trace that form loops in the hypothesis. These may also form loops
in the system and thus not effect the counterexample. The second strategy tries
to remove single transitions from the counterexample. The idea behind this is
that often different parts of the system are independent of each other, so tran-
sitions from the part not causing the counterexample can be removed. Applied
to the login case, Tomte first removes loops from the concrete counterexample,
which results in the reduced counterexample Register(9,9) OK Login(9,9) OK.
Tomte then tries to eliminate each transition, but as the resulting traces do not
form counterexamples, this heuristics fails. As a final processing step, the coun-
terexample is made neat, thus becoming Register(0,0) OK Login(0,0) OK. This
is done solely to improve the counterexample’s readability.

disambiguate CE

find missing mem. values

refine abstractions

reduced CE

disambiguated CE

decorated CE
with all mem.

succ. = newAbs.notEmpty() or
newLts.notEmpty()

new lts

Abstraction Refinement

succ.

yes/no

no

form abstract CE

abstract CE

give CE to
learner

yes
restart

new
abstractions

Fig. 15: Counterexample analysis in Tomte

The reduced counterexample is then analyzed by the process depicted in
Figure 15. The counterexample is first resolved by abstraction refinement. If
no refinement can be done, then an abstracted form of the counterexample is

34

sent to the Mealy Machine learner, which uses it to further refine the abstract
hypothesis.

Abstraction refinement means finding the concrete input parameters that are
abstracted to ⊥ but nevertheless form ’relevant’ relations with previous parame-
ters. We say that a relation between two parameters is relevant if breaking it also
breaks the counterexample. Consequently, the concrete value of these parameters
no longer fits ⊥, as they can only take a specific value for the counterexample to
hold. Based on relevant relations, we then update the lookahead oracle and con-
struct refined abstractions, that would better fit these parameters. Initially, all
parameters values are abstracted to ⊥. This changes as more refined abstractions
are created.

A first step to refining is disambiguation, by which any relations between two
parameters present that are not relevant for the counterexample, are broken by
replacing the latter parameter of the relation with a fresh value. In our running
example the trace Register(0,0) OK Login(0,0) OK is changed to Register(0,1)
OK Login(0,1) OK, by virtue of the irrelevant equality between the username
and password. Breaking relations further would change the observed behavior
into one with which the concrete hypothesis would agree.

The disambiguated trace is then sent to the next process, which looks for
any missing memorable values and adapts the lookahead oracle so these can
all be discovered. The current memorable values are obtained by running the
counterexample through the lookahead oracle, which then decorates the trace
by placing memorable value lists at the start and after each transition. Such a
trace for the login case would be ε Register(0, 1) OK ε Login(0, 1) OK ε. Notice
that all the sequences are empty, since initially the lookahead oracle does not
find any memorable values. For the last output to be OK, the SUL requires that
values 0 and 1 are reused in the Login-input, meaning that the SUL should have
remembered them, hence these values should have been found memorable by the
lookahead oracle. We say that the lookahead oracle ‘misses’ these values. In more
concrete terms, we say that a parameter value is missing if it is equal to a value
from a previous transition, but not contained in the list of memorable values
that directly precedes the transition. For the login example, we notice that both
0 and 1 appear as missing values in Login(0,1), since they first emerged in the
Register action but they were not included in the memorable set before Login.

The process iterates over the input actions of the decorated trace. Once it
passes by an input parameter whose value is judged to be missing, it builds a
symbolic lookahead trace that would allow the lookahead oracle to uncover this
value. The counterexample is then re-decorated through the augmented looka-
head oracle and iteration continues with the next parameter. The end result is
a decorated trace which contains no missing values. For the login case, the pro-
cess updates the lookahead oracle and re-decorates the trace for each of Login’s
parameters. The end result is the decorated trace where both 0 and 1 are no
longer missing: ε Register(0, 1) OK [0, 1] Login(0, 1) OK ε.

A trace decorated with all memorable values is then sent to the next process,
which further decorates the trace so that each concrete value is paired with its

35

corresponding abstract value. This is achieved by running the counterexample
through both the mapper (which adds the abstractions) and the lookahead oracle
(which adds the memorable values). In the login example, as initially ⊥ is the
only abstract value available, decoration results in the trace ε Register(0 :⊥, 1 :⊥
) OK [0, 1] Login(0 :⊥, 1 :⊥) OK ε. This trace is then iterated and whenever
(1) a concrete value is equal to a memorable value, and (2) the corresponding
abstraction is ⊥, a new abstract value is created for the corresponding input
symbol and the mapper is updated accordingly. Equality with a memorable value
results in an abstraction which simply points to an index in the memorable value
list after the previous transition. In the login example, the new abstraction values
for the Login-action are w1 for the first parameter, respectively w2 for the second,
transforming the decorated trace into ε Register(0 :⊥, 1 :⊥) OK [0, 1] Login(0 :
w1, 1 : w2) OK ε.

The mechanisms of uncovering missing memorable values and new abstrac-
tions are closely tied to proper disambiguation of the counterexample. Both
these steps consider any equalities between two parameters as relevant to the
counterexample. Applying the same process on an ambiguous counterexample
might result in resolution of false relations or missing relations which are con-
founded as was in the login case. Without disambiguation, the counterexample
Register(0, 0) OK Login(0, 0) OK would have yielded only one missing value in
0, which would have lead to different refined abstractions. One such abstraction
would imply that it is relevant if the second Register parameter is equal to the
first, which is clearly not the case.

The final step of the counterexample analysis is a simple check if new looka-
head traces or new abstract values have been discovered during the last pass.
If so, learning is restarted from scratch. Note that memorable values discovered
by newly added lookahead traces can have corresponding abstract values which
have already been created as a result of a previous refinements. Or the abstract
values found might expose relations with previous input values. Similarly, it may
happen that the lookahead oracle has already discovered all memorable values,
yet for some of these values new abstract values are defined. Learning needs to
be restarted as LearnLib currently does not accept on the fly changes to the in-
put alphabet. Moreover, some of the answers to queries from the learning phase
might be invalidated by the discovery of new memorable values.

If no new lookahead traces or abstract values have been discovered during a
pass, then an abstract version of the counterexample is forwarded to the Mealy
machine learner. Obtaining an abstract counterexample involves just running the
counterexample through the mapper and lookahead oracle and only collecting
the abstracted messages. As an optimization, we also perform this step before
abstraction refinement, as it is a considerably cheaper yet just as likely.

According to Figure 15, counterexample analysis in Tomte has three possible
outcomes: (1) a new lookahead trace is forwarded to the Lookahead Oracle and
learning is restarted, (2) a new abstract value is forwarded to the Abstractor
and learning is restarted, or (3) a counterexample is forwarded to the learner.
By Lemma 10, step (1) may only occur a finite number of times. Since the

36

number of input symbols and the number of abstract values are both finite, also
step (2) may only occur a finite number of times. If there are no more steps of
type (1) or type (2) then, by Theorem 5 and Theorem 3, the set of abstract
traces that can be observed by the learner equals the set of traces of some finite,
deterministic Mealy machine. By correctness of the Mealy machine learner, the
learner will produce a correct hypothesis after a finite number of queries. Thus
we may conclude that our algorithm for learning register automata terminates.

9 Evaluation and Comparison

In this section, we compare Tomte 0.41 to other learning tools on a series of
benchmarks including the Session Initiation Protocol (SIP), the Alternating Bit
Protocol, the Biometric Passport, FIFO-Sets, and a multi-Login system. Apart
from the last one, all these benchmarks have already been used in [3] for the
comparision of Tomte 0.3, a previous version of Tomte, and LearnLibRA. In [6],
we compared Tomte 0.4 with LearnLibRA and Tomte 0.3, concluding that Tomte
0.4 performed best in all but two benchmarks. Since then, RALib[12] has been
released, a learner building LearnLibRA, adding several optimizations as well as
enabling support for theories other than equality. This made RALib a strong
competitor, reporting better numbers for a number of benchmarks. Tomte itself
was also improved and can now work with TTT [24], a new and fast algorithm
for learning Mealy Machines. We focus our evaluation efforts on the more novel
Tomte 0.41 and RALib. Readers are referred to [3] and [6] for benchmarking
of the 0.3 and 0.4 versions of Tomte and LearnLibRA. Tomte 0.41 generally
replicates the numbers obtained by version 0.4 in those benchmarks.

Each experiment consists of learning a simulation of a model implementing
a benchmark system or, as in the case of the multi-login system, learning of
an actual implementation. Whenever possible we verified the learned model by
performing an equivalence check against the simulated model. For the multi-
login system we ran a thorough suite of tests. For the FIFO-Set models, we
checked the models manually by analyzing the number of states and guards in
the learned model.

Tomte 0.41 can now be configured to work with different Mealy Machine
learners. Traditionally, we have used the Observation Pack algorithm [20], which
is enabled in all versions of Tomte. Recently, we have adapted Tomte 0.41 to
support the new TTT algorithm [24]. Similarly, RALib adopts a series of op-
timizations. We enable all these optimizations apart from the one exploiting
parameter typing (unlike in [12]), since all benchmarks used are not typed.

Table 1 provides benchmarks for Tomte 0.41 using each of TTT and Ob-
servation Pack, and RALib with the optimizations mentioned. Results for each
model are obtained by running each learner configuration 10 times with 10 dif-
ferent seeds. Over these runs we collect the average and standard deviation for
number of reset queries and inputs applied during learning (denoted learn res
and learn inp), counterexample analysis (denoted ana res and ana inp) and
testing (denoted test res and test inp). The numbers for testing do not include

37

Tomte 0.4 TTT Tomte 0.4 OP RALib
learn learn test test ana ana learn learn test test ana ana succ learn learn test test

res inp res inp res inp res inp res inp res inp res inp res inp
Alternating Bit Protocol Sender
avg 40 139 24 131 59 172 65 225 8 40 15 29 10/10 824 4621 348 3537
stddev 2 6 6 33 12 57 1 2 3 23 2 4 630 4364 420 4285
Biometric Passport
avg 225 924 3156 31304 156 534 729 2883 1791 17899 31 123 0/10 unsuccessful
stddev 15 70 1927 19354 15 76 1 2 2022 20139 4 28 unsuccessful
Alternating Bit Protocol Channel
avg 20 50 4 12 11 17 37 102 0 0 0 0 10/10 14 25 2 7
stddev 0 1 1 6 3 7 0 0 0 0 0 0 0 1 1 5
Repdigit Palindrome Checker
avg 16 15 18 73 29 27 414 815 18 73 30 27 10/10 1172 2301 2200 21814
stddev 0 0 3 38 1 1 0 0 3 38 1 1 113 226 1679 16618
Session Initiation Protocol
avg 1619 8757 258 2024 322 1196 2526 13918 115 1083 134 573 10/10 883 4868 40 322
stddev 64 388 77 668 42 178 94 555 41 434 20 98 841 6204 11 112
FIFO-Set(2)
avg 37 141 7 17 14 23 53 221 3 14 10 14 10/10 119 719 14 107
stddev 11 49 2 8 1 3 0 0 2 11 0 1 180 1594 7 64
FIFO-Set(7)
avg 520 4651 109 983 155 1077 1803 19291 106 1016 139 1018 10/10 435 3112 22 174
stddev 190 1511 30 319 45 422 5 35 38 402 49 577 47 434 24 214
FIFO-Set(14)
avg 3214 50924 335 15126 1312 24085 19936 388353 307 14995 974 18978 9/10 2212 27686 6 98
stddev 1189 15714 119 5844 774 17365 25 363 119 5825 520 13317 687 8769 3 110
FIFO-Set(30)
avg 25417 815643 96773 9670989 21245 1618024 336175 13276178 96712 9670804 18188 1528670 0/10 unsuccessful
stddev 10229 257573 48456 4838335 10719 1148441 68 2144 48454 4838462 9051 1103288 unsuccessful
Multi-Login(1)
avg 927 3940 216 1987 203 730 4380 20800 210 2078 125 490 8/10 441371 4398178 170 1719
stddev 42 183 171 1737 19 102 3 15 173 1698 11 69 632641 7740248 131 1376
Multi-Login(2)
avg 16756 96291 414 3782 1730 8509 116153 724434 460 4531 891 4503 0/10 unsuccessful
stddev 3117 19032 145 1447 551 3217 14028 86833 201 1961 211 1338 unsuccessful
Multi-Login(3)
avg 1248119 10371807 134359 1341421 14524 98032 6131225 51443730 9945 99566 2751 17592 0/10 unsuccessful
stddev 284200 2065284 48533 484092 1820 11391 1064404 9337282 8562 85479 961 7681 unsuccessful

Table 1: Comparison of Tomte 0.41 using Observation Pack and TTT, and RALib

queries run on the final hypothesis. As RALib does not distinguish counterex-
ample analysis from learning and testing, we exclude statistics for this phase. A
final statistic is success (succ), denoting for each model the number of successful
experiments, that is, experiments which ended with the correct model learned.
Since Tomte 0.41 is always successful, we exclude this statistic from its columns.

For consistency, we use the same equivalence oracle across all learners, namely,
a random walk oracle configured with a maximum test query length of 100 and
an average length of 10, with a maximum of 1000000 tests per equivalence query.
The probability of selecting a fresh value is set to 0.1 . We opted for this algo-
rithm, since it was the only algorithm supported RALib. In contrast, Tomte 0.41
can also use more advanced testing algorithms. When learning FIFO-Set 30 we
increase the average query length to 100, otherwise testing would most likely fail
to find all counterexamples. Similarly, for FIFO-Set 14 we increase it to 50.

We omit running times, as we consider the number of queries to be a su-
perior metric of measuring efficiency, but the reader may find them at http:

//automatalearning.cs.ru.nl/. All models apart from the multi-logins and
large FIFO-Set models are learned in less than one minute. We limit learning
time to 20 minutes.

Results show that TTT significantly brings down the number of learning
queries needed by Tomte 0.41, at the cost of more test and counterexample
analysis queries. This cost is offset for all but the first model benchmarked. The
extent of improvement when we consider the sum of all inputs varies from roughly
a 23 % reduction for the SIP model to a factor of 8 reduction for the Palindrome

38

Checker. We also notice that the gap widens with the growing complexity of the
models. Furthermore, improvement would likely have been greater had a smarter
testing algorithm been used.

RALib beats Tomte 0.41 on several models, particularly SIP and FIFO-Set 7.
Unfortunately, its performance is highly erratic, as shown by the high standard
deviation. Moreover, RALib is only partially successful at learning some models,
while failing completely to learn others. Ultimately, RALib shows promising
numbers for some experiments, while for others it seems to suffer a blow up in its
algorithm. For the larger models, like the FIFO-Set 30, RALib fails completely.

The multi-login system benchmark can only be properly handled by Tomte
0.41. The benchmark generalizes the example of Figure 2 to multiple users, while
adding an additional user ID parameter when logging in and registering. A con-
figurable number of users may register, enabling simultaneous login sessions for
different registered users. Tomte 0.41 was able to successfully learn instantiations
of multi-login systems for 1, 2 and 3 users. RALib struggled to learn configura-
tions with 1 user, while completely failing for those with more users.

That said, Tomte 0.41’s learning algorithm also does not perform nor scale
well for higher numbers of users. This can be ascribed to the high number of
global abstractions. Such a number is owing to not only the large number of
registers, but also to the varying order in which memorable values are found per
state.

A memorable value, be it login id or password, can take one index in one
state, but another index in a different state. As we use global abstractions, the
memorable value would require two distinct abstractions, even though only one
is useful in each state. This leads to a large number of abstractions required to
cover all indexes memorable values can take.

10 Conclusions and Future Work

We have presented a mapper-based algorithm for active learning of register au-
tomata that may generate fresh output values. This class is more general than
the one studied in previous work [10, 11, 2, 1, 3]. We have implemented our ac-
tive learning algorithm in the Tomte tool and have compared the performance
of Tomte using each of the Observation Pack or the novel TTT algorithms, to
that of RALib on a large set of benchmarks. We measured the total number
of inputs required for learning, testing and counterexample analysis. For a set
of common benchmarks, TTT helps in significantly bringing down the number
of queries used overall. RALib proves competitive but cannot reliably learn all
models. In particular, RALib struggles to learn login systems generating fresh
passwords. In contrast, Tomte is able to learn models of register automata with
fresh outputs, including these systems. Our method for handling fresh outputs
is highly efficient and the computational cost of the determinizer is negligible in
comparison with the resources needed by the lookahead oracle and the abstrac-
tor. Our next step will be an extension of Tomte to a class of models with simple
operations on data.

39

References

1. F. Aarts. Tomte: Bridging the Gap between Active Learning and Real-World Sys-
tems. PhD thesis, Radboud University Nijmegen, October 2014.

2. F. Aarts, F. Heidarian, H. Kuppens, P. Olsen, and F.W. Vaandrager. Automata
learning through counterexample-guided abstraction refinement. In D. Gian-
nakopoulou and D. Méry, editors, 18th International Symposium on Formal Meth-
ods (FM 2012), Paris, France, August 27-31, 2012. Proceedings, volume 7436 of
Lecture Notes in Computer Science, pages 10–27. Springer, August 2012.

3. F. Aarts, F. Howar, H. Kuppens, and F.W. Vaandrager. Algorithms for inferring
register automata - A comparison of existing approaches. In T. Margaria and
B. Steffen, editors, Leveraging Applications of Formal Methods, Verification and
Validation. Technologies for Mastering Change - 6th International Symposium,
ISoLA 2014, Imperial, Corfu, Greece, October 8-11, 2014, Proceedings, Part I,
volume 8802 of Lecture Notes in Computer Science, pages 202–219. Springer, 2014.

4. F. Aarts, B. Jonsson, J. Uijen, and F.W. Vaandrager. Generating models of infinite-
state communication protocols using regular inference with abstraction. Formal
Methods in System Design, 46(1):1–41, 2015.

5. F. Aarts, J. de Ruiter, and E. Poll. Formal models of bank cards for free. In
Software Testing Verification and Validation Workshop, IEEE International Con-
ference on, pages 461–468, Los Alamitos, CA, USA, 2013. IEEE Computer Society.

6. Fides Aarts, Paul Fiterău-Broştean, Harco Kuppens, and Frits W. Vaandrager.
Learning register automata with fresh value generation. In Martin Leucker, Camilo
Rueda, and Frank D. Valencia, editors, Theoretical Aspects of Computing - IC-
TAC 2015 - 12th International Colloquium Cali, Colombia, October 29-31, 2015,
Proceedings, volume 9399 of Lecture Notes in Computer Science, pages 165–183.
Springer, 2015.

7. D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,
75(2):87–106, 1987.

8. B. Bollig, J.-P. Katoen, C. Kern, M. Leucker, D. Neider, and D. Piegdon. libalf:
The automata learning framework. In T. Touili, B. Cook, and P. Jackson, editors,
Computer Aided Verification, volume 6174 of Lecture Notes in Computer Science,
pages 360–364. Springer Berlin Heidelberg, 2010.

9. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

10. S. Cassel, F. Howar, B. Jonsson, M. Merten, and B. Steffen. A succinct canonical
register automaton model. In Tevfik Bultan and Pao-Ann Hsiung, editors, Au-
tomated Technology for Verification and Analysis, 9th International Symposium,
ATVA 2011, Taipei, Taiwan, October 11-14, 2011. Proceedings, volume 6996 of
Lecture Notes in Computer Science, pages 366–380. Springer, 2011.

11. S. Cassel, F. Howar, B. Jonsson, M. Merten, and B. Steffen. A succinct canonical
register automaton model. J. Log. Algebr. Meth. Program., 84(1):54–66, 2015.

12. Sofia Cassel, Howar Falk, and Bengt Jonsson. RALib : A LearnLib extension for
inferring EFSMs. In Proceedings International Workshop on Design and Imple-
mentation of Formal Tools and Systems, Austin, Texas USA, September 26-27,
2015.

13. Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. Active learning
for extended finite state machines. Formal Asp. Comput., 28(2):233–263, 2016.

14. G. Chalupar, S. Peherstorfer, E. Poll, and J. de Ruiter. Automated reverse engi-
neering using Lego. In Proceedings 8th USENIX Workshop on Offensive Technolo-

40

gies (WOOT’14), San Diego, California, Los Alamitos, CA, USA, August 2014.
IEEE Computer Society.

15. Chia Yuan Cho, Domagoj Babic, Eui Chul Richard Shin, and Dawn Song. Inference
and analysis of formal models of botnet command and control protocols. In E. Al-
Shaer, A.D. Keromytis, and V. Shmatikov, editors, ACM Conference on Computer
and Communications Security, pages 426–439. ACM, 2010.

16. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Cambridge,
Massachusetts, 1999.

17. P. Fiterău-Broştean, R. Janssen, and F.W. Vaandrager. Learning fragments of
the TCP network protocol. In Frédéric Lang and Francesco Flammini, editors,
Proceedings 19th International Workshop on Formal Methods for Industrial Critical
Systems (FMICS’14), Florence, Italy, volume 8718 of Lecture Notes in Computer
Science, pages 78–93. Springer, September 2014.

18. O. Grumberg and H. Veith, editors. 25 Years of Model Checking: History, Achieve-
ments, Perspectives, volume 5000 of Lecture Notes in Computer Science. Springer,
2008.

19. C. de la Higuera. Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, April 2010.

20. F. Howar. Active learning of interface programs. PhD thesis, University of Dort-
mund, June 2012.

21. F. Howar, B. Steffen, B. Jonsson, and S. Cassel. Inferring canonical register au-
tomata. In Viktor Kuncak and Andrey Rybalchenko, editors, Verification, Model
Checking, and Abstract Interpretation, volume 7148 of Lecture Notes in Computer
Science, pages 251–266. Springer Berlin Heidelberg, 2012.

22. Falk Howar, Malte Isberner, Bernhard Steffen, Oliver Bauer, and Bengt Jonsson.
Inferring semantic interfaces of data structures. In Tiziana Margaria and Bern-
hard Steffen, editors, Leveraging Applications of Formal Methods, Verification and
Validation. Technologies for Mastering Change, volume 7609 of Lecture Notes in
Computer Science, pages 554–571. Springer Berlin Heidelberg, 2012.

23. Malte Isberner, Falk Howar, and Bernhard Steffen. Learning register automata:
from languages to program structures. Machine Learning, 96(1-2):65–98, 2014.

24. Malte Isberner, Falk Howar, and Bernhard Steffen. The ttt algorithm: A
redundancy-free approach to active automata learning. In Borzoo Bonakdarpour
and Scott A. Smolka, editors, Runtime Verification: 5th International Conference,
RV 2014, Toronto, ON, Canada, September 22-25, 2014. Proceedings, pages 307–
322, Cham, 2014. Springer International Publishing.

25. Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput.
Sci., 134(2):329–363, 1994.

26. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines
— a survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

27. M. Merten, B. Steffen, F. Howar, and T. Margaria. Next generation LearnLib. In
P.A. Abdulla and K.R.M. Leino, editors, TACAS, volume 6605 of Lecture Notes
in Computer Science, pages 220–223. Springer, 2011.

28. A. Nerode. Linear automaton transformations. Proceedings of the American Math-
ematical Society, 9(4):541–544, 1958.

29. Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking. In
Jianping Wu, Samuel T. Chanson, and Qiang Gao, editors, Proceedings FORTE,
volume 156 of IFIP Conference Proceedings, pages 225–240. Kluwer, 1999.

30. H. Raffelt, M. Merten, B. Steffen, and T. Margaria. Dynamic testing via automata
learning. STTT, 11(4):307–324, 2009.

41

31. H. Raffelt, B. Steffen, T. Berg, and T. Margaria. LearnLib: a framework for ex-
trapolating behavioral models. STTT, 11(5):393–407, 2009.

32. B. Steffen, F. Howar, and M. Merten. Introduction to active automata learning
from a practical perspective. In M. Bernardo and V. Issarny, editors, Formal
Methods for Eternal Networked Software Systems, volume 6659 of Lecture Notes in
Computer Science, pages 256–296. Springer, 2011.

33. P. Verleg. Inferring SSH state machines using protocol state fuzzing. Master thesis,
Radboud University, 2016.

34. Michele Volpato and Jan Tretmans. Approximate active learning of nondetermin-
istic input output transition systems. ECEASST, 72, 2015.

42

