Gossip-based Peer Sampling

Maarten van Steen

vrije Universiteit amsterdam
Introduction

• **Epidemic-based protocols** are popular for communication in large-scale distributed systems:
 – **reliable** in the presence of high churn and network failures
 – **efficient** when it comes to management
 – often **local-only solutions**

• **Applications:**
 – Information dissemination
 – Topology/overlay construction
 – Resource management (node allocation, replica mgt.)
 – Decentralized computations (aggregation, data fusion)
Basics

Assume there are no write–write conflicts:

Anti-entropy: Each replica regularly chooses another replica at random, and exchanges state differences, leading to identical states at both afterwards.

Gossiping: A replica which has just been updated (i.e., has been contaminated), tells a number of other replicas about its update (contaminating them as well).
System Model

- Consider N nodes, each storing a number of objects.
- Each object O has a primary node at which updates for O are always initiated.
- An update of object O at node S is always timestamped; the value of O at S is denoted $val(O,N)$.
- $T(O,N)$ denotes the timestamp of the value of object O at node S.
Anti-Entropy

Basic issue: When a node S contacts another node S^* to exchange state information, three different strategies can be followed:

- **Push:** $T(O,S^*) < T(O,N) \Rightarrow \text{val}(O,S^*) \leftarrow \text{val}(O,N)$
- **Pull:** $T(O,S^*) > T(O,N) \Rightarrow \text{val}(O,N) \leftarrow \text{val}(O,S^*)$
- **Push-Pull:** S and S^* exchange their updates

Observation: if each node periodically randomly chooses another node for exchanging updates, an update is propagated in $O(\log(N))$ cycles.
Analysis

Consider a single source, propagating its update. Let p_i be the probability that a node has not received the update after the i-th cycle.

- With pull, $p_{i+1} = (p_i)^2$: the node was not updated during the i-th cycle and should contact another ignorant node during the next cycle.

- With push, $p_{i+1} = p_i(1 - \frac{1}{N})^N(1-p_i) \approx p_i e^{-1}$ (for small p_i and large N): the node was ignorant during the i-th cycle and no updated node chooses to contact it during the next cycle.
Gossiping

Basic model: A node P with an update contacts other node Q. If Q already knows the update, P stops contacting other nodes with probability $1/k$.

Fraction of ignorant nodes:

$$s = e^{-(k+1)(1-s)}$$

<table>
<thead>
<tr>
<th>k</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.203188</td>
</tr>
<tr>
<td>2</td>
<td>0.059520</td>
</tr>
<tr>
<td>3</td>
<td>0.019827</td>
</tr>
<tr>
<td>4</td>
<td>0.006977</td>
</tr>
<tr>
<td>5</td>
<td>0.002516</td>
</tr>
</tbody>
</table>

Observation: If we have to ensure that all nodes are eventually updated, gossiping alone is not enough.
Observation

So far: Models assume a peer P selects node Q uniformly at random \Rightarrow generally not realistic for large distributed systems:

- Systems can easily consist of 10,000+ nodes
- Nodes join and leave regularly: churn can easily be $>1\%$
- special case: nodes fail and recover

Question: What does it take to build a decent peer-sampling service?

Observation: The service can be built entirely with epidemic-based techniques.
A bit of history...

Note: Nodes will maintain a (changing) list of neighbors, inducing a (directed) communication graph.

- Márk Jelasity and I developed the Newscast protocol (2002)
- Eugster et al. assumed communication graph to be random, developed a nice theoretical framework and got results published in ACM TOCS
A bit of history...

- We had already discovered that the lpbcast (as well as the Newscast) graph was far from being random
- We got a bit frustrated (having only our tech report)...

Issue: If you can’t beat ’em, join ’em...
Collaborators

- Márk Jelasity, University of Szeged (Hungary)
- Spyros Voulgaris, ETH, Zürich
- Rachid Guerraoui, EPFL, Lausanne
- Anne-Marie Kermarrec, INRIA, Rennes
- Maarten van Steen, VU, Amsterdam

BTW: By now, we finally understand why assuming a random graph is never obvious, and should be explicitly validated.
Talk - outline

- Present **framework for peer sampling** that captures many different protocols

- Evaluation of **local randomness**
 (or: why assuming uniformity is **correct**)

- Evaluation of **global randomness**
 (or: why assuming uniformity is **not correct**)

- Conclusions
Framework - overview

Active thread

selectPeer(&Q);
selectToSend(&refs_s);
sendTo(Q, {me,refs_s});

receiveFrom(Q, &refs_r);
selectToKeep(p_view,refs_r);

Passive thread

receiveFromAny(&P, &refs_r);
selectToSend(&refs_s);
sendTo(P, {me,refs_s});
selectToKeep(p_view,refs_r);

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>selectPeer</td>
<td>Select a current neighbor (from partial view).</td>
</tr>
<tr>
<td>selectToSend</td>
<td>Select $c/2$ entries from partial view.</td>
</tr>
<tr>
<td>selectToKeep</td>
<td>Add received entries to partial view. Remove repeated items. Then keep c entries.</td>
</tr>
</tbody>
</table>

Note: We can also exchange data items, or combination of data and references.
Framework - for real

- N nodes, each having an address
- Every node has a **partial view**: a local list of c node descriptors
- Node descriptor $= \langle address, age \rangle$ pair
- Operations on partial view:
 - `selectPeer()` return an item
 - `permute()` randomly shuffle items
 - `increaseAge()` forall items add 1 to age
 - `append(...)` append a number of items
 - `removeDuplicates()` remove duplicates (on same address), keep youngest
 - `removeOldItems(n)` remove n descriptors with highest age
 - `removeHead(n)` remove n first descriptors
 - `removeRandom(n)` remove n random descriptors
do forever
 wait(T time units) // T is called the cycle length
 p ← view.selectPeer() // Sample a live peer from the current view
 if push then // Take initiative in exchanging partial views
 buffer ← ([MyAddress,0]) // Construct a temporary list
 view.permute() // Shuffle the items in the view
 move oldest H items to end of view // Necessary to get rid of dead links
 buffer.append(view.head(c/2)) // Copy first half of all items to temp. list
 send buffer to p
 else // empty view to trigger response
 send (null) to p
 if pull then // Pick up the response from your peer
 receive buffer_p from p
 view.select(c,H,S,buffer_p) // Core of framework – to be explained
 view.increaseAge()
Passive thread (one per node)

do forever
 receive buffer_p from p // Wait for any initiated exchange
 if pull then // Executed if you’re supposed to react to initiatives
 buffer ← ⟨ MyAddress,0 ⟩ // Construct a temporary list
 view.permute() // Shuffle the items in the view
 move oldest H items to end of view // Necessary to get rid of dead links
 buffer.append(view.head(c/2)) // Copy first half of all items to temp. list
 send buffer to p
 view.select(c,H,S,buffer_p) // Core of framework – to be explained
 view.increaseAge()
View selection

Parameters:

c: length of partial view
H: number of items moved to end of list (healing)
S: number of items that are swapped with a peer
buffer_p: received list from peer

method view.select(c, H, S, buffer_p)
view.append(buffer_p) // expand the current view
view.removeDuplicates() // Remove by duplicate address, keeping youngest
view.removeOldItems(min(H,view.size-c)) // Drop oldest, but keep c items
view.removeHead(min(S,view.size-c)) // Drop the ones you sent to peer
view.removeAtRandom(view.size-c) // Keep c items (if still necessary)
Design space – peer selection

selectPeer() returns a live peer from the current view. Essentially, there are three possibilities:

head: pick the address of the youngest descriptor (i.e., with low age) – bad choice, since this is the neighbor the node most recently communicated with \(\Rightarrow\) offers little opportunities for selecting unknown nodes (confirmed by experiments)

rand: pick the address of a randomly selected descriptor

tail: pick the address of the oldest descriptor (i.e., with high age)
Design space – view propagation

push: Node sends descriptors to selected peer

pull: Node only pulls in descriptors from selected peer

pushpull: Node and selected peer exchange descriptors

Note: pulling alone is pretty bad: a node has no opportunity to insert information on itself. Loss of all incoming connections will throw a node out of the network (may actually happen).
Design space – view selection

Note: Critical parameters are H and S in method select(c, H, S, buffer). Assume c is even.

- $[H > c/2] \equiv [H = c/2]$, as minimum view size is always c
- Likewise, $[S > c/2 - H] \equiv [S = c/2 - H]$
- Do random removal (last step) only if $S < c/2 - H$
- Conclusion: consider only $0 \leq H \leq c/2$ and $0 \leq S \leq c/2 - H$

blind: remove($H = 0, S = 0$) — select blindly a random subset
healer: remove($H = c/2, S = 0$) — select freshest items
swapper: remove($H = 0, S = c/2$) — min. loss of descriptors
Local evaluations

- **Essence**: each node is allocated a unique ID from $[0, N - 1]$
- Consider the series of selected IDs by a specific peer
- Series is tested by the “diehard battery of randomness tests.” (see www.stat.fsu.edu/pub/diehard)
- Examined blind, healer, swapper, fixing to tail and pushpull

Conclusion: it is difficult to observe nonrandom local behavior. The **functional** properties of peer sampling are barely affected by the choice of implementation.

Applications will often not see the difference
Global randomness

Issue: Deciding on global randomness is a bit tricky ⇒ focus on structural properties by comparing to random graph (= partial view consists of c uniform randomly chosen peers).

Indegree distribution: has a serious effect on load balancing: hot spots, bottlenecks, but also on the spreading of information.

Fault tolerance: to what extent can the service withstand catastrophic failures and high churn?

Note: concentrate on $N = 10,000$ and $c = 30$. Results are based on simulations and emulations.
Convergence behavior

Consider three starting situations:

Growing: Start with one node X. Before starting a next cycle, add 500 nodes. Each new node knows only about X.

Lattice: Organize all nodes in a ring. Add descriptors of nearest nodes in the ring.

Random: Every view is filled with a uniform random sample of all nodes.

Observation: Pure pushing converges poorly and often leads to partitioned overlays in growing scenario.
Maximal indegree growing scenario

Note: From now on consider only pushpull protocols
Observation: it turns out that the in-degree for each node changes over time. The question is how quickly.

Let \(d_1, \ldots, d_K \) denote in-degree for a fixed node for \(K \) consecutive cycles, and \(\bar{d} \) the average in-degree. Let

\[
r_k = \frac{\sum_{j=1}^{K-k} (d_j - \bar{d})(d_{j+k} - \bar{d})}{\sum_{j=1}^{K} (d_j - \bar{d})^2}
\]

be the correlation between pairs of in-degree separated by \(k \) cycles.
Fluctuation of degree distribution (2/2)

![Graph showing autocorrelation of node degree over time lag (cycles). The graph compares different strategies: tail, blind; rand, blind; tail, swapper; rand, swapper; tail, healer; rand, healer; and includes a 99% confidence band.](image-url)
Clustering coefficient (1/2)

Note: Consider the undirected graph by dropping the direction.

Clustering coefficient indicates to what extent the neighbors of a node X are each other’s neighbors. Let Γ_X denote the graph induced by the neighbors of node X.

$$\gamma(X) = \frac{|E(\Gamma_X)|}{\binom{|V(\Gamma_X)|}{2}}$$

For a graph: take the average over all nodes.
Clustering coefficient (2/2)

- rand, S=0
- tail, S=0
- rand, S=3
- tail, S=3
- rand, S=8
- tail, S=8
- rand, S=14
- tail, S=14
- random graph

clustering coefficient

H

![Graph showing clustering coefficient vs. H for different scenarios with random and tail structures at S=0, S=3, S=8, and S=14.](clustering_coefficient_graph.png)
Scenario: After 300 cycles, remove large fraction of nodes.
Scenario: After 300 cycles, remove 50% of nodes.
Dead links (2/2)

Number of cycles to remove all dead links

- rand, H=1
- tail, H=1
- rand, H=3
- tail, H=3
- rand, H=8
- tail, H=8
- rand, H=14
- tail, H=14

S

number of cycles to remove all dead links
Handling churn: Gnutella traces

![Graph showing REMOVALS and JOINS over cycles]

- REMOVALS and JOINS are plotted over cycles.
- The legend indicates H=0 (blind) and H=1, H=3, H=15 (healer).
- The graph shows the average number of dead links per view cycles.
Conclusions

- Push-pull gossip protocols perform better than only push or pull.
- Discarding old references is good for fault tolerance (but may also be “too” good).
- Swapping references is good for maintaining well-balanced graphs (in-degree \approx out-degree).
- Differences between protocols mainly affect the nonfunctional properties of applications.

Challenge: Can we develop models that capture these nonfunctional properties?