Abstraction in Quantitative Probabilistic Model Checking

Gethin Norman

University of Oxford

Two Decades of Probabilistic Verification (November 2007)
Abstraction – Motivation

• Even employing efficient model checking algorithms, state of the art data structures model checking is hard
• Even more important in the probabilistic setting
 – algorithms more complex
 – require numerical computation
• Required for model checking infinite state systems
• Abstraction is an approach to reduce the complexity of model checking
• A number of different approaches
 – abstract the model/property/satisfaction relation
 – automated/require user interaction
In this talk...

- **Quantitative probabilistic verification**
 - DTMCs, CTMCs and MDPs

- **For simplicity consider reachability probabilities**
 - basis of model checking algorithms for temporal logic
 - results extends to until and globally properties

- **Approaches also extend to reward structures**
 - expected reward cumulated before reaching a target set
 - expected reward at time t/cumulated by time t
 - probability reach a target set before the reward reaches...
Overview

• **Notation**

• **Exact approaches**
 – bisimulation minimisation
 – probabilistic timed automata
 – symmetry reduction/partial order reduction

• **Approximate approaches**
 – algorithm-based
 – model-based
 • models
 • model checking
 • refinement
 • implementations

• **Conclusions**
Notation

• DTMC = (S, P)
 – \(S \) set of states
 – \(P : S \times S \rightarrow [0,1] \) such that \(\sum_{s' \in S} P(s,s') = 1 \) for all \(s \in S \)

• Probabilistic reachability
 – \(F \) set of target states
 – \(p_{DTMC}(s,F) \) probability of reaching \(F \)

• MDP = (S, Steps)
 – \(\text{Steps} : S \rightarrow \text{dist}(S) \)
 – \(\text{Steps}(s) \) set of distributions/choices available in \(s \)

• Minimum/Maximum probabilistic reachability
 – \(p_{MDP}^{\text{min}}(s,F) \) minimum probability of reaching \(F \)
 – \(p_{MDP}^{\text{max}}(s,F) \) maximum probability of reaching \(F \)
Notation

- **CTMC** = \((S,R)\)
 - \(S\) set of states
 - \(R : S \times S \rightarrow \mathbb{R}\) rate matrix

- **Time-bounded reachability probabilities**
 - \(p_{CTMC}(s,t,F)\) probability of reaching \(F\) by time \(t\)
 - \(p_{CTMC}(s,t,F)\) probability of reaching \(F\) by time \(t\)

- **In each case assume where necessary**
 - initial state \(s\)
 - set of atomic propositions \(AP\)
 - labelling function \(L : S \rightarrow AP\)
 - \(L(s)\) is the set of atomic propositions that hold in state \(s\)
Overview

• Notation
• **Exact approaches**
 – bisimulation minimisation
 – probabilistic timed automata
 – symmetry reduction/partial order reduction
• Approximate approaches
 – algorithm-based
 – model-based
 • models
 • model checking
 • refinement
 • implementations
• Conclusions
(Exact) Abstraction

- **Basic idea:** construct a smaller “equivalent” model
 - preserves satisfaction of all/some temporal logic properties
 - e.g. yields same reachability probability
 - e.g. yields same transient/steady state probabilities

- **State-level algorithms**
 - work directly on the states, optimal reduction
 - e.g. bisimulation

- **Model-level algorithms**
 - based on higher-level description, non-optimal reduction
 - e.g. symmetry reduction (based on state representation)

- **Automated techniques** (no user interaction required)
Probabilistic bisimulation

- **Equivalence: (strong) probabilistic bisimulation**
 - also known as lumping
 - applicable to DTMCs, MDPs and CTMCs
 - preserves the satisfaction of PCTL, CSL, LTL, CTL*...
 - optimal for branching time logics
 - states equivalent if and only if they satisfy the same formulae
 - feasible algorithms for computing “smallest” bisimilar model

- **Abstraction: the quotient model**
 - abstract states are the equivalence classes of the relation
Probabilistic bisimulation – DTMCs

• Probabilistic bisimulation (DTMCs) [Larsen & Skou 91]
• The relation \(R \subseteq S \times S \) is a strong bisimulation if for any \((s_1, s_2) \in R \):
 – \(L(s_1) = L(s_2) \) (the same atomic propositions hold)
 – \(P(s_1, C) = P(s_2, C) \) for all \(C \in S/R \)
 (\(S/R \) set of equivalence classes under \(R \))
Probabilistic bisimulation – CTMCs

• Probabilistic bisimulation (CTMCs) [Buchholz 94]
• The relation $R \subseteq S \times S$ is a strong bisimulation if for any $(s_1, s_2) \in R$:
 - $L(s_1) = L(s_2)$ (the same atomic propositions hold)
 - $R(s_1, C) = R(s_2, C)$ for all $C \in S/R$
 (S/R set of equivalence classes under R)

• Also backwards probabilistic bisimulation
 - $R(C, s_1) = R(C, s_2)$ for all $C \in S/R$ (and $R(s_1, S) = R(s_2, S)$)
 - preserves CSL without nested probabilistic/steady state operators [Sproston & Donatelli 04]
Probabilistic bisimulation – MDPs

- Probabilistic bisimulation (MDPs) [Segala & Lynch 94]
- The relation $R \subseteq S \times S$ is a strong bisimulation if for any $(s_1, s_2) \in R$:
 - $L(s_1) = L(s_2)$ (the same atomic propositions hold)
 - for any $\mu_1 \in \text{Steps}(s_1)$ there exists $\mu_2 \in \text{Steps}(s_2)$ such that $\mu_1(C) = \mu_2(C)$ for all $C \in S/R$
 - for any $\mu_2 \in \text{Steps}(s_2)$ there exists $\mu_1 \in \text{Steps}(s_1)$ such that $\mu_2(C) = \mu_1(C)$ for all $C \in S/R$
Bisimulation minimisation – Algorithm

- Basic algorithm (partition refinement) is based on splitting
 - suppose \(P=\{S_1,\ldots,S_n\} \) is some initial partition of \(S \)
 - a splitter for some block \(S_i \) is an element \(S_p \) of the partition such that \(P(s,S_p) \neq P(s',S_p) \) for some \(s,s' \in S_i \)
 - the probability to enter \(S_p \) is not the same for each state of \(S_i \)
 - algorithm splits \(S_i \) into sub-blocks for which probabilities agree
 - i.e. \(P(s,S_p) \) is the same for all states \(s \) in the sub-block
 - repeat until there are no more splitters
- Returns the coarsest bisimulation
 - dependent on the initial partition
 - states not in same set of initial partition will not be equivalent
Bisimulation minimisation – Algorithm

- Complexity for DTMCs and CTMCs
 - as for non-probabilistic bisimulation
 - logarithmic in the number of states
 - linear in the number of transitions

- Complexity for MDPs
 - $O(NM(\log(N)+\log(M))$)
 - N number of states and M number of transitions

- Optimisations
 - exploit compositionality – reduce sub-components separately
 e.g. [Hermanns & Katoen 00]
 - symbolic implementations, e.g. MTBDDs [Derisavi 07]
 - base initial partition on only atomic propositions of interest, use qualitative precomputation algorithms [Katoen et. al. 07]
Probabilistic bisimulation – Summary

• Been shown to be successful in practice
• Limitation: time to construct the bisimulation quotient
 – can exceed the model checking time for the concrete system
 – less true in the probabilistic setting (model checking is harder)
 – reduced if checking a number of properties
• Limitation: requires construction of the concrete system
 – compositional approach (perform abstraction of parallel components separately and then compose)
 – symbolic data-structures (allow representation of larger state spaces)
• Use coarser equivalence to improve reduction?
 – e.g. for LTL use trace distribution equivalence – no feasible algorithms
Weak probabilistic bisimulation

- Equivalent up to “internal” computation (τ actions)
 - for example updating/modifying views in the Gossip protocol
 - preservation of temporal logics without next operator
 - “stuttering equivalent”
 - coarser than probabilistic bisimulation
 - minimisation algorithm more complex
 - requires computation of reachability probabilities

- Complexity
 - DTMCs: cubic in the number of states [Baier & Hermanns 97]
 - MDPs: exponential in the number of states [Cattani & Segala 04]
Probabilistic timed automata

- **Semantics inherently infinite state (real-time)**
 - several verification approaches [Kwiatkowska et al. 99–07]

- **Region graph**
 - preserves PTCTL but prohibitively large for even small examples

- **Digital clocks**
 - restricted to probabilistic/expected reachability
 - efficient (employ finite state model checking techniques)

- **Zones**
 - forwards: bounds on reachability probabilities
 - backwards: PTCTL
 - yields small models but complex operations
 - requires construction of MDP for each quantitative check
Symmetry reduction

- Exploits presence of replication within a model
 - requires models to have a certain structure
 - model level bisimulation
 - cheaper than (state level) bisimulation reduction
 - not necessarily optimal quotient

- Two approaches developed for PRISM
 - both based on component symmetry
 - symbolic [Kwiatkowska et. al. CAV 06]
 - reduction performed on the MTBDD representing the system
 - language level – GRIP tool [Donaldson & Miller ATVA 06]
 - reduction performed on the PRISM language syntax
Component symmetry

- **System of N symmetric components**
 - exchanging a pair of components has no effect on behaviour
 - system states \((s_1,s_2,...,s_n)\) where \(s_i\) local state of component \(i\)

- **Reduction gives (up to) factorially smaller quotient model**
 - for example 4 components each with local states \(\{A,B,C\}\)
 - \((A,A,C,B) = (A,A,B,C) = (C,A,B,A) = \ldots\)

- **Require atomic propositions also “symmetric”**
 - allowed: “some/all/K components have received a request”
 - not allowed: “component i has received a request”

- **Essentially corresponds to counting number of components in the different possible local state**
 - e.g. “population model” used in systems biology
Symmetry Reduction – Summary

• Successful in practice

• Two approach complementary
 – MTBDD level appropriate for models with small number of complex components
 – syntax level appropriate for models with large number of simple components

• Many other forms of symmetry
 – e.g. rotational symmetry for ring networks
Partial order reduction

- State space explosion used by the interleaving of parallel components
Partial order reduction

- State space explosion used by the interleaving of parallel components
Partial order reduction

- State space explosion used by the interleaving of parallel components
 - paths stuttering equivalent

\[C_1 \parallel C_2 \]
Partial order reduction

- State space explosion used by the interleaving of parallel components
 - paths “stuttering” equivalent

\[C_1 \parallel C_2 \]

- Partial order reduction – include only one representative
Partial order reduction

- State space explosion used by the interleaving of parallel components
 - all paths stuttering equivalent

\[C_1 \parallel C_2 \]

- Partial order reduction – include only one representative
 - reduction in state space
Partial order reduction – Probabilistic

- Probabilistic extension for MDP models
 - POR based on interleaving (asynchronous composition) of subcomponents
 - i.e. nondeterministic choice as to which component moves
- Extensions of Peled's ample set method for MDPs
 - linear time [Baier et. al. 04] [D'Argenio & Niebert 04]
 - branching time [Baier et. al. 05]
 - preservation of temporal logical properties without next
- Implemented in the tool LiQuor
- Many different non-probabilistic approaches to investigate/extend
 - e.g. stubborn sets, persistent sets
Exact techniques – Summary

• These techniques have been shown to be very successful in practice, however may still not yield a sufficient gain
 – reductions do not exploit states with “similar” behaviour
 – all states considered equally (do not ignore state which can be reached with a very small probability)
 – reductions may not exploit the single/small set of properties of interest (bisimulation preserves all of PCTL/CSL)
 • e.g. bisimulation minimisation algorithm will preserve all formulae for atomic propositions encoded in the initial partition

• Alternative is to employ approximate abstractions...
Overview

• Notation

• Exact approaches
 – bisimulation minimisation
 – probabilistic timed automata
 – symmetry reduction/partial order reduction

• Approximate approaches
 – algorithm-based
 – model-based
 • models
 • model checking
 • refinement
 • implementations

• Conclusions
Approximate model checking

- Use an approximate model checking algorithm
- Number of different approaches
 - magnifying lens abstraction
 - approximate LTL model checking for MDPs
 - also relevant: sampling based approaches
 - APMC, YMER and VESTA
 - approaches from performance
Magnifying lens abstraction

- Magnifying Lens Abstraction (MLA) [de Alfaro & Roy 07]
 - model checking algorithm for approximating minimum and maximum reachability probabilities of MDPs
 - returns upper and lower bounds on property of interest
 - i.e minimum/maximum probability within the interval \([p_1, p_2]\)

- Magnification:
 - partition state space into regions and analyse region separately
 - analysis examines individual states in “magnified” region
 - (“semi–abstract” since involves analysing concrete states)
Magnifying lens abstraction (MLA)

- Based on the fact the major problem in probabilistic model checking is storing the vector of probabilities for states
 - efficient methods for storing very large transition systems

- Method includes refinement
 - can return interval up to any prescribed degree of accuracy
 - if returned intervals are too large then split regions and compute new intervals

- Approach is based on clustering states based on value
 - different from model based abstraction approaches which are based on transition structure
MLA – Example

• Basic idea is to split into individual regions and analyse separately
MLA – Example

• Basic idea is to split into individual regions and analyse separately
MLA – Example

- Basic idea is to split into individual regions and analyse separately

magnify on region r_1
(abstract other regions)
MLA – Example

- Basic idea is to split into individual regions and analyse separately

magnify on region r_2
(abstract other regions)
MLA – Example

- Basic idea is to split into individual regions and analyse separately

magnify on region r_3

(abstract other regions)
MLA – Algorithm

• Suppose interested in minimum probability of reaching F and partitioned state space into regions r_1, \ldots, r_n

• Pseudo-code for computing lower bound:

 \[
 \text{for } i = 1 \ldots n \\
 \quad \text{– magnify on region } r_i \\
 \quad \text{– abstract each region } r_j (j \neq i) \text{ to single state for which probability of reaching } F \text{ equals lower bound for region } r_j
 \]
MLA – Algorithm

Not F

1 - p_2

p_2

F

1 - p_3

p_3

current lower bound for region \(r_2 \)
MLA – Algorithm

Not F \quad F

1-p_2 \quad p_2

current lower bound for region \(r_3 \)
MLA – Algorithm

calculate minimum probability of reaching F
MLA – Algorithm

- Suppose interested in **minimum probability** of reaching F and partitioned state space into regions r_1, \ldots, r_n

- **Pseudo-code for computing lower bound:**
  ```
  for $i = 1..n$
    - magnify on region $r_i$
    - abstract each region $r_j$ ($j \neq i$) to single state for which probability of reaching $F$ equals **lower bound** for region $r_j$
    - compute for all state in $r_i$ **minimum probability** of reaching $F$
  ```
MLA – Algorithm

• Suppose interested in minimum probability of reaching F and partitioned state space into regions r_1, \ldots, r_n

• Pseudo-code for computing lower bound:

 for $i = 1 \ldots n$

 – magnify on region r_i

 – abstract each region r_j ($j \neq i$) to single state for which probability of reaching F equals lower bound for region r_j

 – compute for all state in r_i minimum probability of reaching F

 – take minimum over all states in r_i as new lower bound for r_i
MLA – Algorithm

• Suppose interested in minimum probability of reaching F and partitioned state space into regions \(r_1, \ldots, r_n \)

• Pseudo-code for computing lower bound:

\[
\text{for } i = 1 \ldots n \\
\quad - \text{magnify on region } r_i \\
\quad - \text{abstract each region } r_j \ (j \neq i) \text{ to single state for which probability of reaching } F \text{ equals lower bound for region } r_j \\
\quad - \text{compute for all state in } r_i \text{ minimum probability of reaching } F \\
\quad - \text{take minimum over all states in } r_i \text{ as new lower bound for } r_i \\
\text{repeat until bounds do not change}
\]
MLA – Algorithm

- Suppose interested in minimum probability of reaching F and partitioned state space into regions r_1, \ldots, r_n
- Pseudo-code for computing lower bound:

```plaintext
for i=1..n
  - magnify on region $r_i$
  - abstract each region $r_j$ (j ≠ i) to single state for which probability of reaching F equals lower bound for region $r_j$
  - compute for all state in $r_i$ minimum probability of reaching F
  - take minimum over all states in $r_i$ as new lower bound for $r_i$

repeat until bounds do not change
```
MLA – Algorithm

- Suppose interested in minimum probability of reaching F and partitioned state space into regions $r_1,...,r_n$
- Pseudo-code for computing upper bound:

  ```
  for $i=1..n$
  - magnify on region $r_i$
  - abstract each region $r_j$ ($j \neq i$) to single state for which probability of reaching $F$ equals upper bound for region $r_j$
  - compute for all state in $r_i$ minimum probability of reaching $F$
  - take maximum over all states in $r_i$ as new lower bound for $r_i$
  repeat until bounds do not change
  ```
MLA – Refinement

- **Refinement**
 - divide any region from which upper and lower bound differ by more than some prescribed error
 - do not divide all regions
 - attempted more complete refinement schemes but during experiments this simple approach worked best

- **How to divide the region?**
 - based on the state variables of the concrete system
 - suppose the variables are ordered
 - first split based on first variable in the order, then second, ...
 - dependent on how the user defines the model
MLA – Complexity

- Approach has limited space complexity since during computation need to store
 - upper and lower bounds for all regions
 - values for all concrete states in current magnified region
 - space requirement \(2 \cdot |R| + \max_{r \in R} |r|\)
 \(O(\sqrt{|S|})\) since \(\max_{r \in R} |r| \geq |S|/|R|\)
- Not applicable to infinite/very large systems
- There is a trade off employing this approach:
 - small number of regions: many states in each region
 - large number of regions: storage of lower and upper bounds
MLA – Summary

• Limitation in space gains
• Appears to work well in limited experiments
• Potentially appropriate for models not amenable to other (model based) abstraction approaches

• Future work
 – extensions, e.g. develop refinement schemes...
 – combine with other approaches?
Approximate LTL semantics for MDPs

• LTL model checking of MDPs is hard
 – doubly exponential in the formula
• PCTL model checking of MDPs is (relatively) easy
 – linear in the formula
• PCTL requires probabilities for “simple” path formulae only
 – reduces to reachability analysis
 – e.g. do not compute probability of \((\phi \cup \psi) \land (\phi' \cup \psi')\)
• Approximate conjunction (and disjunction) [Baier et. al. 99]
Sampling based – Monte Carlo

- **Uses discrete event simulation and Monte Carlo methods**
 - estimates reachability probabilities for DTMCs and CTMCs
 - generates random paths from high-level model
 - number of samples dependent on approximation parameter ε and confidence parameter δ such that
 \[
 \text{Prob}(| \text{ans} - p_{\text{DTMC}}(s,F) | \leq \varepsilon) \geq 1-\delta
 \]
 - probability estimation within ε of answer is at least $1-\delta$
 - number of samples $O(1/\varepsilon,\log(1/\delta))$

- **Only correct for bounded properties**
 - generated path must have a finite depth

- **Introduced in APMC** [Herault. et al. VMCAI 04]
 - also implemented in PRISM
Sampling based – Hypothesis testing

- Based on hypothesis testing [Younes & Simmons CAV 02]
 - checking time bounded until CSL formula for CTMCs
 - requires a probability bound (does not compute an approximate probability instead tests the hypothesis: the probability is above/below a bound)
 - combined with PRISM to verify general CSL formulae
 - extends to general distributions (no increase in complexity)
 - using this approach can quickly learn the result with some error

- Tool support: YMER [Younes & Simmons CAV 02]
 - (formerly called ProVer)

- Similar approach: VESTA [Sen et. al. CAV 04]
Sampling based – Summary

- **Two approaches**
 - hypothesis testing more efficient than Monte Carlo
 - but require a probability bound (cannot return “probability is approximately...” only “yes” or “no”)
 - both can handle infinite state models (samples constructed from high level language description)
 - both amenable to distributed implementations
 - Returns result for a single state

- **Statistical approaches for MDPs?**
 - non-determinism means techniques no longer applicable
 - not one probability space
 - compute “average”?
 - i.e. adversary that makes choices uniformly at random
Overview

• Notation
• Exact approaches
 – bisimulation minimisation
 – probabilistic timed automata
 – symmetry reduction/partial order reduction
• Approximate approaches
 – algorithm-based
 – model-based
 • models
 • model checking
 • refinement
 • implementations
• Conclusions
Model-based abstraction

• Number of approaches based on the non-probabilistic technique of existential abstraction [Clarke et. al. 91]
 – restricted to CTL* without “E” (∃) operator

• Constructs a “conservative” abstraction
 – if a property holds in the abstract model, then it also holds in the concrete system
 – if the property does not holds in the abstract model, then may or may not be false in the concrete system
Existential abstraction

- Technique based on a partition of the concrete state
 - each element of the partition is an abstract state

- Suppose we are given a concrete system $LTS = (S, T)$
 - S set of states
 - $T \subseteq S \times S$ transition relation

- and partition of the state space $P = \{S_1, S_2, ..., S_n\}$

- Abstract transition system $LTS_A = (A, T_A)$
 - $A = \{S_1, S_2, ..., S_n\}$
 - $(a, a') \in T_A$ if and only if $(s, s') \in T$ for some $s \in a$ and $s' \in a'$
Existential abstraction – Simulation

• $R \subseteq S \times A$ is a simulation relation $(s, a) \in R$
 – $L(s) = L(a)$ (states satisfy same atomic propositions)
 – for any $(s, s') \in T$ there exists $(a, a') \in T_A$ such that $(s', a') \in R$

• A concrete state s is simulated by the abstract state containing s
 – anything the concrete system can do the abstract model can simulate (but abstraction may do more)
Existential abstraction – Simulation

- $R \subseteq S \times A$ is a simulation relation $(s,a) \in R$
 - $L(s) = L(a)$ (states satisfy same atomic propositions)
 - for any $(s,s') \in T$ there exists $(a,a') \in T_A$ such that $(s',a') \in R$

- A concrete state s is simulated by the abstract state containing s
 - anything the concrete system can do the abstract model can simulate (but abstraction may do more)

- Consider any concrete path

\[s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4\]
Existential abstraction – Simulation

- \(R \subseteq S \times A \) is a simulation relation \((s,a) \in R\)
 - \(L(s) = L(a) \) (states satisfy same atomic propositions)
 - for any \((s,s') \in T\) there exists \((a,a') \in T_A\) such that \((s',a') \in R\)
- A concrete state \(s\) is simulated by the abstract state containing \(s\)
 - anything the concrete system can do the abstract model can simulate (but abstraction may do more)
- Consider any concrete path

\[
\begin{align*}
\text{s}_1 & \xrightarrow{R(s_1,a_1)} \text{s}_2 \\
\text{s}_2 & \xrightarrow{} \text{s}_3 \\
\text{s}_3 & \xrightarrow{} \text{s}_4 \\
\end{align*}
\]
Existential abstraction – Simulation

- $R \subseteq S \times A$ is a simulation relation $(s,a) \in R$
 - $L(s) = L(a)$ (states satisfy same atomic propositions)
 - for any $(s,s') \in T$ there exists $(a,a') \in T_A$ such that $(s',a') \in R$

- A concrete state s is simulated by the abstract state containing s
 - anything the concrete system can do the abstract model can simulate (but abstraction may do more)

- Consider any concrete path

- $R(s_1, a_1)$
- $R(s_2, a_2)$
Existential abstraction – Simulation

- $R \subseteq S \times A$ is a simulation relation $(s,a) \in R$
 - $L(s) = L(a)$ (states satisfy same atomic propositions)
 - for any $(s,s') \in T$ there exists $(a,a') \in T_A$ such that $(s',a') \in R$

- A concrete state s is simulated by the abstract state containing s
 - anything the concrete system can do the abstract model can simulate (but abstraction may do more)

- Consider any concrete path

![Diagram](attachment:diagram.png)
Existential abstraction – Simulation

- $R \subseteq S \times A$ is a simulation relation $(s,a) \in R$
 - $L(s) = L(a)$ (states satisfy same atomic propositions)
 - for any $(s,s') \in T$ there exists $(a,a') \in T_A$ such that $(s',a') \in R$
- A concrete state s is simulated by the abstract state containing s
 - anything the concrete system can do the abstract model can simulate (but abstraction may do more)
- Consider any concrete path

![Diagram of states and actions](image-url)
Existential abstraction – Simulation

- \(R \subseteq S \times A \) is a simulation relation \((s,a) \in R\)
 - \(L(s) = L(a) \) (states satisfy same atomic propositions)
 - for any \((s,s') \in T\) there exists \((a,a') \in T_A\) such that \((s',a') \in R\)

- A concrete state \(s\) is simulated by the abstract state containing \(s\)
 - anything the concrete system can do the abstract model can simulate (but abstraction may do more)

- Consider any concrete path

\[
\begin{align*}
R(s_1,a_1) \\
R(s_2,a_2) \\
R(s_3,a_3) \\
R(s_4,a_4)
\end{align*}
\]
Existential abstraction – Probabilistic

- Existential abstraction in the probabilistic setting
 - can use probabilistic simulation [Segala & Lynch 94]
- What is the probabilistic abstraction (abstract system)?
 - MDPs, abstract Markov chains or two player stochastic games
- What is the model checking approach?
 - three valued logic ("true", "false", "do not know")
 - “probability bounded by p" or “probability in the interval \([p_1,p_2]\)"
- How to refine when answers inconclusive?
 - what happens when we get “do not know", probability greater than/less than 0/1 or probability within the interval \([0,1]\)
- How to implement?
 - predicate abstraction
Existential abstraction – Probabilistic

- Existential abstraction in the probabilistic setting
 - can use probabilistic simulation [Segala & Lynch 94]
- What is the probabilistic abstraction (abstract system)?
 - MDPs, Abstract Markov chains or two player stochastic games
- What is the model checking approach?
 - three valued logic ("true", "false", "do not know")
 - "probability bounded by p" or "probability in the interval \([p_1, p_2]\)"
- How to refine when answers inconclusive?
 - what happens when we get "do not know", probability greater than/less than 0/1 or probability within the interval \([0,1]\)
- How to implement?
 - predicate abstraction
Rapture

- Extension of existential abstraction [D'Argenio et. al. 02]
 - Reachability analysis of probabilistic transition systems based on reduction strategies
- Both concrete and abstract model are MDPs
 - abstraction introduces more nondeterminism
- MDP = (S, Steps) and partition P = {S_1, S_2, ..., S_n}
- Quotient model MDP_p = (A, Steps_A)
 - A = {S_1, S_2, ..., S_n} (abstract states are elements of the partition)
 - \(\mu_A \in \text{Steps}_A(a) \) if and only if there exists \(\mu \in \text{Steps}(s) \) such that \(s \in a \) and \(\mu_A(a') = \sum \{ \mu(s') | s' \in a' \} \) for all \(a' \in A \)
- Abstract MDP (probabilistically) simulates the concrete MDP
 - extension of non–probabilistic existential abstraction
Rapture – Example

- Partition \{ \{A, C\}, \{B, D\} \}
Rapture – Example

- Partition \{ \{A,C\}, \{B,D\} \}
Rapture – Example

- Partition \{ \{A,C\}, \{B,D\} \}
Rapture – Example

- Partition \{ \{A, C\}, \{B, D\} \}
Rapture – Abstraction

- Concrete model $\text{MDP}=(S, \text{Steps})$, partition P & target states F
- Abstract (quotient) model $\text{MDP}_P=(A, \text{Steps}_A)$
 - for any state $s \in S$, if $s \in a$ then:

\[
p_{\text{MDP}/P}^{\min}(a,F) \leq p_{\text{MDP}}^{\min}(s,F) \\
p_{\text{MDP}}^{\max}(s,F) \leq p_{\text{MDP}/P}^{\max}(a,F)
\]
Rapture – Abstraction

- Concrete model $\text{MDP}=(S,\text{Steps})$, partition P & target states F
- Abstract (quotient) model $\text{MDP}_P=(A, \text{Steps}_A)$
 - for any state $s \in S$, if $s \in a$ then:

 $$p_{\text{MDP}/P}^{\text{min}}(a,F) \leq p_{\text{MDP}}^{\text{min}}(s,F)$$
 $$p_{\text{MDP}}^{\text{max}}(s,F) \leq p_{\text{MDP}/P}^{\text{max}}(a,F)$$

abstract minimum probabilities give lower bounds on minimum reachability probabilities
Rapture – Abstraction

- Concrete model $\text{MDP}=(S,\text{Steps})$, partition P & target states F
- Abstract (quotient) model $\text{MDP}_P=(A, \text{Steps}_A)$
 - for any state $s \in S$, if $s \in a$ then:

 $p_{\text{MDP}/P}^{\text{min}}(a,F) \leq p_{\text{MDP}}^{\text{min}}(s,F)$

 $p_{\text{MDP}}^{\text{max}}(s,F) \leq p_{\text{MDP}/P}^{\text{max}}(a,F)$

- abstract maximum probabilities give upper bounds on maximum reachability probabilities
Rapture – Abstraction

- **Concrete model** $\text{MDP}=(S, \text{Steps})$, partition P & target states F
- **Abstract (quotient) model** $\text{MDP}_P=(A, \text{Steps}_A)$
 - for any state $s \in S$, if $s \in a$ then:

 $$p_{\text{MDP/P}}^{\min}(a,F) \leq p_{\text{MDP}}^{\min}(s,F)$$
 $$p_{\text{MDP}}^{\max}(s,F) \leq p_{\text{MDP/P}}^{\max}(a,F)$$

- no information on the upper/lower bound for minimum/maximum reachability probabilities
Rapture – Abstraction

• Concrete model $\text{MDP}=(S, \text{Steps})$, partition P & target states F
• Abstract (quotient) model $\text{MDP}_p=(A, \text{Steps}_A)$
 – for any state $s \in S$, if $s \in a$ then:

\[
p_{\text{MDP}/P}^{\text{min}}(a,F) \leq p_{\text{MDP}}^{\text{min}}(s,F) \leq p_{\text{MDP}}^{\text{max}}(s,F) \leq p_{\text{MDP}/P}^{\text{max}}(a,F)
\]

 – no information on the upper/lower bound for minimum/maximum reachability probabilities
 – can use abstract minimum probabilities as a lower bound for concrete maximum probabilities (and vice versa) but bounds can be very coarse
 • no reason for minimum and maximum probabilities to be close
Rapture – Abstraction

• Better suited to DTMCs?
 – in such cases have two sided bounds

\[p_{\text{DTMC/P}}^{\min}(a,F) \leq p_{\text{DTMC}}(s,F) \leq p_{\text{DTMC/P}}^{\max}(a,F) \]

 – minimum and maximum probabilities agree in the DTMC
Abstract Markov chains

- **Abstract Markov Chains (AMCs)** [Fecher et. al. 06]
 - abstraction approach for DTMCs
 - “interval valued” DTMCs
 - also considered in [Huth 05]

- **Abstract Markov Chain** $AMC = (S, P^l, P^u)$
 - S set of states
 - $P^l, P^u : S \times S \rightarrow [0, 1]$ lower and upper bounds on transition probabilities such that for any $s, s' \in S$

 \[P^l(s, s') \leq P^u(s, s') \] and \[P^l(s, S) \leq 1 \leq P^u(s, S) \]
Abstract Markov chains – Abstraction

- Given a DTMC = (S, P) and partition P = {S₁,...,Sₙ}
- Abstract DTMC given by the AMCₚ=(A, Pᵢ, Pᵤ) where
 - A = {S₁,...,Sₙ} (abstract states are elements of the partition)
 - for any abstract states a,a' ∈ A
 \[Pᵢ(a,a') = \min \{ \sum \{ P(s,s') \mid s' \in a' \} \mid s \in a \} \]
 \[Pᵤ(a,a') = \max \{ \sum \{ P(s,s') \mid s' \in a' \} \mid s \in a \} \]
Abstract Markov chains – Abstraction

- Given a DTMC = (S, P) and partition P = \{S_1,...,S_n\}
- Abstract DTMC given by the AMC_p=(A, P^l, P^u) where
 - A = \{S_1,...,S_n\} (abstract states are elements of the partition)
 - for any abstract states a,a' \in A
 \[
 P^l(a,a') = \min \{ \sum \{ P(s,s') \ | \ s' \in a' \} \ | \ s \in a \} \\
 P^u(a,a') = \max \{ \sum \{ P(s,s') \ | \ s' \in a' \} \ | \ s \in a \}
 \]
 minimum probability of a state in a reaching the set of states a'
Abstract Markov chains – Abstraction

- Given a DTMC = (S, P) and partition P = {S_1, ..., S_n}
- Abstract DTMC given by the AMC_p=(A, P^l, P^u) where
 - A = {S_1, ..., S_n} (abstract states are elements of the partition)
 - for any abstract states a, a' ∈ A
 - \(P^l(a, a') = \min \{ \sum \{ P(s, s') \mid s' \in a' \} \mid s \in a \} \)
 - \(P^u(a, a') = \max \{ \sum \{ P(s, s') \mid s' \in a' \} \mid s \in a \} \)
 - maximum probability of a state in a reaching the set of states a'
Abstract Markov chains – Example

- Partition \{ \{A,C\}, \{B,D\} \}
Abstract Markov chains – Example

• Partition \{ \{A,C\}, \{B,D\}\}
Abstract Markov chains – Example

• Partition \{ \{A,C\}, \{B,D\} \}
Abstract Markov chains – Example

• Partition \{ \{A,C\} , \{B,D\} \}
Abstract Markov chains – Example

- Partition \{ \{A,B\} , \{B,D\} \}
Abstract Markov chains – Semantics

• Semantics of AMC \((S, P^l, P^u)\) given by MDP \((S, \text{Steps})\) where for any state \(s\) we have \(\mu \in \text{Steps}(s)\) if and only if \(P^l(s, s') \leq \mu(s') \leq P^u(s, s')\) for all \(s' \in S\)
 – probability of reaching any state is within the relevant interval
 – non–trivial intervals yield an infinite number of choices
 – if no non–trivial intervals the AMC is a DTMC

• Sufficient to consider a finite MDP (extremal distributions)
 – try and minimise or maximise reaching each states
 – leads to a MDP possibly exponentially larger than the AMC
Abstract Markov chains – Abstraction

- **Reachability probabilities for AMCs**
 - minimum and maximum probabilities (as for MDPs)
- **Abstract AMC “simulates” the concrete DTMC**
 - gives bounds on probabilities in the concrete DTMC

- **Concrete model** $\text{DTMC} = (S, P)$, partition P & target states F
- **Abstract model** $\text{AMC}_p = (A, P^l, P^u)$
 - for any state $s \in S$, if $s \in a$ then:

\[
p_{\text{AMC}}^{\text{min}}(a,F) \leq p_{\text{DTMC}}(s,F) \leq p_{\text{AMC}}^{\text{max}}(a,F)
\]
Abstract Markov chains – Abstraction

- Reachability probabilities for AMCs
 - minimum and maximum probabilities (as for MDPs)
- Abstract AMC “simulates” the concrete DTMC
 - gives bounds on probabilities in the concrete DTMC

Concrete model $\text{DTMC} = (S, P)$, partition P & target states F

Abstract model $\text{AMC}_p = (A, P^l, P^u)$
 - for any state $s \in S$, if $s \in a$ then:

$$p_{\text{AMC}}^{\min}(a, F) \leq p_{\text{DTMC}}(s, F) \leq p_{\text{AMC}}^{\max}(a, F)$$

- the minimum reachability probability is an lower bound
Abstract Markov chains – Abstraction

- **Reachability probabilities for AMCs**
 - minimum and maximum probabilities (as for MDPs)

- **Abstract AMC “simulates” the concrete DTMC**
 - gives bounds on probabilities in the concrete DTMC

- **Concrete model** $\text{DTMC} = (S, P)$, partition P & target states F

- **Abstract model** $\text{AMC}_p = (A, P^l, P^u)$
 - for any state $s \in S$, if $s \in a$ then:

$$p_{\text{AMC}}^\text{min}(a,F) \leq p_{\text{DTMC}}(s,F) \leq p_{\text{AMC}}^\text{max}(a,F)$$

 - the maximum reachability probability is an upper bound
AMCs vs Rapture (MDPs)

• AMCs lead to “smaller” abstractions
 – states s_i for $i=1,\ldots,n$
 – where $\epsilon_i < \epsilon_{i+1}$ for all $i=1,\ldots,n-1$

• Abstracting states s_1,\ldots,s_n
 – Rapture abstraction will have n different distributions
 – ith distribution gives probability $1-\epsilon_i$ of reaching “good”
AMCs vs Rapture (MDPs)

- **AMCs lead to “smaller” abstractions**
 - states s_i for $i=1,...,n$
 - where $\epsilon_i < \epsilon_{i+1}$ for all $i=1,...,n-1$

- **Abstracting states $s_1,...,s_n$**
 - Rapture abstraction will have n different distributions
 - AMC abstraction is independent of n
 - abstractions will give same results with respect to minimum and maximum probabilities of reaching “good”/”bad” states
AMCs vs Rapture (MDPs)

• AMCs are also less “precise”:

![Diagram of AMCs vs Rapture](image)

• Abstract s and t using the Rapture approach
 – choice between two distributions in the abstract state $\{s,t\}$
 – corresponding to choices in the concrete states s and t
AMCs vs Rapture (MDPs)

• AMCs are also less “precise”:

- Abstract s and t using the Rapture approach
 - choice between two distributions in the abstract state $\{s, t\}$
 - corresponding to choices in the concrete states s and t
 - maximum probability of reaching either s_1 or s_2 is 0.6
 - since probability from s_1 is 0.6 and from s_2 is 0.4
AMCs vs Rapture (MDPs)

- AMCs are also less “precise”:

 \[
 s, \quad s_1, s_2, s_3, s_4
 \]
 \[
 t, \quad s_1, s_2, s_3, s_4
 \]

- Abstract \(s \) and \(t \) using the AMC approach

 \[
 s, t, \quad s_1, s_2, s_3, s_4
 \]
 \[
 [0.1, 0.4], [0.2, 0.3], [0.2, 0.3], [0.1, 0.4]
 \]
AMCs vs Rapture (MDPs)

- AMCs are also less “precise”:

 - Abstract s and t using the AMC approach

 - maximum probability of reaching \(s_1\) or \(s_2\) is now 0.7 not 0.6
AMCs vs Rapture (MDPs) – Summary

• Rapture and AMC abstractions have same abstract states
 – the size of the partition
• AMCs more compact (number of transitions)
• AMCs more abstract (less precise bounds)

• Any practical examples of problems abstracting with MDP?
 – i.e. abstraction blows–up due to the number of transitions
 – otherwise why use a more abstract model?
 – systems constructed from high level language means states will have the same structure?
 – maybe not if one has parametrised distributions
 – need experimental results
Abstract Markov chains – CTMCs

• Extension to AMC approach to CTMCs
 – [Katoen et. al. CAV 07]
• Can express a CTMC as \((S, P, E)\) where
 – \((S, P)\) is a DTMC
 – \(E : S \to \mathbb{R} \) (\(E(s)\) is the exit rate from state \(s\))
• Basic approach first translate to uniformised CTMC
 – the exit rates from all states are the same (adds loops to states)
• Perform abstraction on uniformised CTMC
 – essentially now abstracting a DTMC as all exit rates the same
 – using AMC abstraction approach can compute upper and lower bounds on time–bounded reachability
• Could use rapture approach
 – again will be less compact but more precise
Stochastic games

- Abstraction approach for MDPs based on stochastic two player games [Kwiatkowska et. al. 06]
- Abstraction increases degree of nondeterminism
- Key idea: separate two forms of nondeterminism
 - (a) from abstraction and (b) from original MDP
 - can then generate separate lower/upper bounds for min/max reachability probabilities

- For DTMCs reduces to MDPs (same as RAPTURE)
Stochastic games – Definition

• Simple stochastic games [Condon 02]

• Game $G = ((V,E),(V_1,V_2,V_p), \delta)$
 – (V,E) is a finite directed graph
 – (V_1,V_2,V_p) is a partition of V:
 'player 1', 'player 2', 'probabilistic'
 – $\delta : V_p \rightarrow \text{Dist}(V)$ is a probabilistic transition function

• Execution of G: successor vertex chosen:
 – by player 1/2 for V_1/V_2 vertices
 – at random (δ) for V_p vertices

• MDPs can be thought of as stochastic two–player games with no V_2 vertices and strict alternation between V_1/V_p
Stochastic games – Definition

- Resolution of nondeterminism in a stochastic game
 - is done by a pair of strategies for players 1 and 2: \((\sigma_1, \sigma_2)\)
 - under which the behaviour of the game is fully probabilistic

- Probabilistic reachability of vertex goal set \(F\)
 - \(p_{v,\sigma_1,\sigma_2}(F)\) probability of reaching \(F\) from vertex \(v\) under \((\sigma_1, \sigma_2)\)

- Optimal probabilities for player 1 and player 2
 - \(\sup_{\sigma_1} \inf_{\sigma_2} p_{v,\sigma_1,\sigma_2}(F)\) and \(\sup_{\sigma_2} \inf_{\sigma_1} p_{v,\sigma_1,\sigma_2}(F)\)
 - computable via simple iterative methods, similar to MDPs
Stochastic games – Abstraction

• Abstract MDP is a two-player stochastic game
 – based on a partition P of MDP state space S
 – V_1 vertices are elements of P (subsets of S)
 – V_2 vertices are sets of prob. distributions (“states of MDP”)
 – V_p vertices are single probability distributions (over V_1)
 – strict alternation between V_1, V_2, V_p vertices

• Player 1 controls nondeterminism from abstraction
 – selects a state of the original MDP from a subset of S (in P)

• Player 2 controls nondeterminism from original MDP
 – selects a single probability distribution from a set
Stochastic games – Example

- Player 1 vertices are partition elements (abstract states)
Stochastic games – Example

- (Sets of) distributions are lifted to the abstract state space
Stochastic games – Example

- States with same (sets of) choices form player vertices
Stochastic games – Example

- Complete transformation:
Stochastic games – Abstraction

• For a stochastic game built from an MDP and partition P

• Let $s \in S$ be an MDP state, $v \in V$ the corresponding game vertex (i.e. $s \in v$) and $F \in P$ a set of goal states

• Analysis of game yields lower/upper bounds for MDP:

\[
\inf_{\sigma_1, \sigma_2} p_v^{\sigma_1,\sigma_2}(F) \leq p_s^{\min}(F) \leq \sup_{\sigma_1} \inf_{\sigma_2} p_v^{\sigma_1,\sigma_2}(F)
\]

\[
\sup_{\sigma_2} \inf_{\sigma_1} p_v^{\sigma_1,\sigma_2}(F) \leq p_s^{\max}(F) \leq \sup_{\sigma_1, \sigma_2} p_v^{\sigma_1,\sigma_2}(F)
\]
Stochastic games – Abstraction

- For a stochastic game built from an MDP and partition P
- Let $s \in S$ be an MDP state, $v \in V$ the corresponding game vertex (i.e. $s \in v$) and $F \in P$ a set of goal states
- Analysis of game yields lower/upper bounds for MDP:

$$\inf_{\sigma_1, \sigma_2} p_v^{\sigma_1, \sigma_2}(F) \leq p_s^{\text{min}}(F) \leq \sup_{\sigma_1} \inf_{\sigma_2} p_v^{\sigma_1, \sigma_2}(F)$$

$$\sup_{\sigma_2} \inf_{\sigma_1} p_v^{\sigma_1, \sigma_2}(F) \leq p_s^{\text{max}}(F) \leq \sup_{\sigma_1, \sigma_2} p_v^{\sigma_1, \sigma_2}(F)$$

min/max reachability probabilities for original MDP
Stochastic games – Abstraction

- For a stochastic game built from an MDP and partition P
- Let $s \in S$ be an MDP state, $v \in V$ the corresponding game vertex (i.e. $s \in v$) and $F \in P$ a set of goal states
- Analysis of game yields lower/upper bounds for MDP:

\[
\inf_{\sigma_1, \sigma_2} p_{v}^{\sigma_1, \sigma_2}(F) \leq p_s^{\min}(F) \leq \sup_{\sigma_1} \inf_{\sigma_2} p_{v}^{\sigma_1, \sigma_2}(F)
\]

\[
\sup_{\sigma_2} \inf_{\sigma_1} p_{v}^{\sigma_1, \sigma_2}(F) \leq p_s^{\max}(F) \leq \sup_{\sigma_1, \sigma_2} p_{v}^{\sigma_1, \sigma_2}(F)
\]

optimal probabilities for player 1, player 2 in abstract MDP
Stochastic games – Abstraction

• For a stochastic game built from an MDP and partition P
• Let $s \in S$ be an MDP state, $v \in V$ the corresponding game vertex (i.e. $s \in v$) and $F \in P$ a set of goal states
• Analysis of game yields lower/upper bounds for MDP:

$$\inf_{\sigma_1, \sigma_2} p_v^{\sigma_1, \sigma_2}(F) \leq p_s^{\min}(F) \leq \sup_{\sigma_1} \inf_{\sigma_2} p_v^{\sigma_1, \sigma_2}(F)$$

$$\sup_{\sigma_2} \inf_{\sigma_1} p_v^{\sigma_1, \sigma_2}(F) \leq p_s^{\max}(F) \leq \sup_{\sigma_1, \sigma_2} p_v^{\sigma_1, \sigma_2}(F)$$

like minimum/maximum reachability probabilities on MDPs (but performed on abstract MDP)
Stochastic games – Results

• $N=8$, $M=32$: $MDP = 432,185$ states, game = 881 vertices

• “Maximum probability not configured by time T”
Stochastic games – Summary

• Promising experimental results
 – but limited number of case studies

• Requires transitions to have the same structure
 – similar to comparison between MDPs and AMCs

• Compare with MDPs with intervals?
 – based on AMCs
 – will also separate two forms of nondeterminism
Existential abstraction – Probabilistic

- Existential abstraction in the probabilistic setting
 - can use probabilistic simulation [Segala & Lynch 94]
- What is the probabilistic abstraction (abstract system)
 - MDPs, Abstract Markov chains or two player stochastic games
- **What is the model checking approach?**
 - three valued logic (“true”, “false”, “do not know”)
 - “probability bounded by p” or “probability in the interval \([p_1,p_2]\)”
- How to refine when answers inconclusive?
 - what happens when we get “do not know”, probability greater than/less than 0/1 or probability within the interval \([0,1]\)
- How to implement?
 - predicate abstraction
Model checking the abstract models

- Computing reachability probabilities...
- For MDPs can use value iteration
- For AMCs use algorithm based on value iteration
 - could reduce to MDP model checking but MDP possibly exponential in the size of the AMC
- For stochastic games use methods similar to value iteration
- In each case can reuse existing technology
Model checking the abstract models

- Each model produces approximate results
 - upper and lower bounds on the actual probability
 - for Rapture and AMCs bounds on reachability probability
 - for games bounds on either the minimum or maximum probability reachability
- Suppose the verification problem is:
 - is the (min/max) probability of reaching F greater than p?
- Given a partition P calculate bounds for the abstraction

\[0 \leq p_{lb}(a,F) \leq p_{ub}(a,F) \leq 1 \]
Model checking the abstract models

- Each model produces approximate results
 - upper and lower bounds on the actual probability
 - for Rapture and AMCs bounds on reachability probability
 - for games bounds on either the minimum or maximum probability reachability
- Suppose the verification problem is:
 - is the (min/max) probability of reaching F greater than p?
- Given a partition P calculate bounds for the abstraction

\[
\begin{align*}
\text{p} & \quad \text{0} \quad \text{p}_{lb}(a,F) \quad \text{p}_{ub}(a,F) \quad 1
\end{align*}
\]

- Return “yes”/true (p is smaller than lower bound)
Model checking the abstract models

- Each model produces approximate results
 - upper and lower bounds on the actual probability
 - for Rapture and AMCs bounds on reachability probability
 - for games bounds on either the minimum or maximum probability reachability

- Suppose the verification problem is:
 - is the (min/max) probability of reaching F greater than p?

- Given a partition P calculate bounds for the abstraction

 $0 \, p_{lb}(a,F) \, p \, p_{ub}(a,F) \, 1$

- Return “no”/false (p is larger than upper bound)
Model checking the abstract models

- Each model produces approximate results
 - upper and lower bounds on the actual probability
 - for Rapture and AMCs bounds on reachability probability
 - for games bounds on either the minimum or maximum probability reachability

- Suppose the verification problem is:
 - is the (min/max) probability of reaching F greater than p?

- Given a partition P calculate bounds for the abstraction

- Do not know so...
Model checking the abstract models

• Each model produces approximate results
 – upper and lower bounds on the actual probability
 – for Rapture and AMCs bounds on reachability probability
 – for games bounds on either the minimum or maximum probability reachability

• Suppose the verification problem is:
 – is the (min/max) probability of reaching F greater than p?

• Given a partition P calculate bounds for the abstraction

\[
\begin{array}{c}
0 & \quad p_{lb}(a,F) & \quad p & \quad p_{ub}(a,F) & \quad 1
\end{array}
\]

• Do not know so...
 – use three–valued logic (return “do not know”)
Model checking the abstract models

• Each model produces approximate results
 – upper and lower bounds on the actual probability
 – for Rapture and AMCs bounds on reachability probability
 – for games bounds on either the minimum or maximum probability reachability

• Suppose the verification problem is:
 – is the (min/max) probability of reaching F greater than p?

• Given a partition P calculate bounds for the abstraction

 $0 \leq p_{lb}(a,F) \leq p \leq p_{ub}(a,F) \leq 1$

• Do not know so...
 – or refine the abstraction ...
Existential abstraction – Probabilistic

• Existential abstraction in the probabilistic setting
 – can use probabilistic simulation [Segala & Lynch 94]

• What is the probabilistic abstraction (abstract system)
 – MDPs, Abstract Markov chains or two player stochastic games

• What is the model checking approach?
 – three valued logic ("true", "false", "do not know")
 – “probability bounded by \(p \)” or “probability in the interval \([p_1, p_2]\)"

• How to refine when answers inconclusive?
 – what happens when we get “do not know”, probability greater than/less than \(0/1\) or probability within the interval \([0,1]\)

• How to implement?
 – predicate abstraction
• In the non-probabilistic setting....
 – counterexample-guided abstraction refinement (CEGAR)
Refinement – Probabilistic

• For all approaches a “finer” partition yields tighter bounds

• How to refine?
 – probabilistic model checking algorithms do not return counterexamples

• What is a counterexample?
 – no single path implies probability above/below a bound
 – find paths with largest probability mass
 • time bounded reachability in CTMCs [Aljazzar et. al. 05]
 • reachability in DTMCs (and CTMCs) [Han & Katoen 07]
Refinement – Probabilistic

• In (almost) all cases the upper and lower bounds give us information as to the quality of the abstraction

• This also gives a possible method for refinement
 – exists adversaries which obtain the upper and lower bounds
 – one of these bounds cannot be equal to the correct probability
 – therefore the choices made by ones of these adversaries must be “spurious”
 – such “extremal” adversaries are computed during computation of the probabilities therefore no extra work in finding the adversaries
Refinement – Rapture

• Start with an initial coarse abstraction including
 – the set of initial states and the set of target states
 – sets of states for which minimum/maximum probability is 1/0
 • computed through qualitative precomputation (graph analysis)

• Refinement
 – splitter: set of states with the same abstract transitions

• Heuristics
 – partition based on the control structure
 • e.g. abstract data variables not program counters
 – allow user to specify variables to abstract/not abstract
 – either refine all partitions (fast) or refine one partition at a time
 (smaller models to verify)
Existential abstraction – Probabilistic

- Existential abstraction in the probabilistic setting
 - can use probabilistic simulation [Segala & Lynch 94]
- What is the probabilistic abstraction (abstract system)
 - MDPs, Abstract Markov chains or two player stochastic games
- What is the model checking approach?
 - three valued logic ("true", "false", "do not know")
 - "probability bounded by p" or "probability in the interval \([p_1, p_2]\)"
- How to refine when answers inconclusive?
 - what happens when we get "do not know", probability greater than/less than 0/1 or probability within the interval \([0, 1]\)
- **How to implement?**
 - predicate abstraction
Model-based abstraction – Tools

• Construct abstraction for language level description through predicate abstraction [Graf & Saïdi 97]

• Idea: given set of predicates \{\phi_1,...,\phi_n\}
 – formulas describing properties of system states

• Abstract State Space: tuples of Boolean variables \((b_1,...,b_n)\)
 – representing sets of concrete states
 – \(b_i = \text{true}\) implies all states in the set satisfy \(\phi_i\)

• Galois Connection between concrete and abstract systems
 – concretisation function \(\gamma : A \rightarrow 2^S\) where
 \[\gamma(b_1,...,b_n) = \{ s \in S \mid \phi_1(s)=b_1 \land ... \land \phi_n(s)=b_n \}\]
 – abstraction function \(\alpha : 2^S \rightarrow A\) where for any \(S' \subseteq S\)
 \[\alpha(S') = \{(b_1,...,b_n) \mid S' \subseteq \gamma(b_1,...,b_n)\}\]
Predicate Abstraction

- abstraction function $\alpha : 2^S \rightarrow A$ where for any $S' \subseteq S$
 \[\alpha(S') = \{ (b_1,\ldots,b_n) \mid S' \subseteq \gamma(b_1,\ldots,b_n) \} \]
 - abstraction function approximates a set of concrete states by a set of predicates
Predicate Abstraction

- Abstract transition relation given by
 \[(a,a') \in T_A \text{ if and only if } \exists s, s' \in S. ((s,s') \in T \land \alpha(s)=a \land \alpha(s')=a')\]

- How to construct the abstract transition relation?
- Original approach based on using theorem proving techniques
- More successful approach based on SAT-solvers
 - search for a solution to the formula
 \[\theta(a,a') = \exists s, s' \in S. ((s,s') \in T \land \alpha(s)=a \land \alpha(s')=a')\]
 - find solution \((b,b')\)
 - add \((b,b')\) to the abstract transition relation
 - add \((a \neq b) \land (a' \neq b')\) to the formula \(\theta(a,a')\) and search again
 - repeat until formula is unsatisfiable
Predicate Abstraction – Probabilistic

- **PASS tool** [Wachter, Zhang & Hermanns 07]
 - Predicate Abstraction for Stochastic Systems
- **Combines Rapture approach with predicate abstraction**
 - (i.e. aimed at abstracting DMTCs and MDPs)
- **Abstract high level model description (PRISM language)**
 - map each concrete command to a (set of) abstract command(s)
 - [action] guard → update
 - uses SMT solver (SAT based)
 - SMT = Satisfiability Modulo Theories (extend propositional satisfiability with richer theories e.g. linear integer arithmetic)
- **Promising preliminary results**
 - only one case study (BRP) so far
Predicate Abstraction – AMCs and Games

• Not as straight-forward cannot look at individual commands separately
 – one transition/command of the abstract system cannot be constructed from a single concrete transition/command

• In both cases need to look at how commands “overlap”
 – i.e. when different sets of commands are enabled
 – each combination of enabled commands may lead to different abstract commands
 – over the reachable concrete state space there may be a small number of combinations possible
 – however over the concrete “product state-space” there may be an exponential number of combinations
 – without the concrete state space may get an exponential blow-up in the number of commands
Conclusions

• Need to investigate the difference between the approaches
 – include experimental comparisons

• Exact approaches well studied
 – limited work on MDPs, weak bisimulation and language–level approaches

• Approximate approaches many open questions/problems
 – what is the “best” abstract model?
 – how to refine?
 – what are good counterexamples?
 – extend to language level (both abstraction and refinement)?