
The Coarsest Congruence for Timed Automata with
Deadlines Contained in Bisimulation�

Pedro R. D’Argenio1,�� and Biniam Gebremichael2

1 CONICET – FaMAF, Universidad Nacional de Córdoba,
Ciudad Universitaria, 5000 Córdoba, Argentina

2 Institute for Computing and Information Sciences. Radboud University Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

dargenio@famaf.unc.edu.ar

B.Gebremichael@cs.ru.nl

Abstract. Delaying the synchronization of actions may reveal some hidden be-
havior that would not happen if the synchronization met the specified deadlines.
This precise phenomenon makes bisimulation fail to be a congruence for the par-
allel composition of timed automata with deadlines, a variant of timed automata
where time progress is controlled by deadlines imposed on each transition. This
problem has been known and unsolved for several years. In this paper we give
a characterization of the coarsest congruence that is included in the bisimulation
relation. In addition, a symbolic characterization of such relation is provided and
shown to be decidable. We also discuss the pitfalls of existing parallel composi-
tions in this setting and argue that our definition is both reasonable and sufficiently
expressive as to consider the modeling of both soft and hard real-time constraints.

1 Introduction

Design and specification languages allow to model systems in a modular manner by
linking small modules or components using the language operations —such as the se-
quential composition or the parallel composition— in order to build larger modules.
Hence a desirable requirement is that the language is compositional with respect to its
semantics. By compositional we mean that components can be replaced by behaviorally
equivalent components without changing the properties of the larger model in which
they are embedded. The preservation of such properties can be guaranteed by means
of semantic equivalences or preorders. For example branching bisimulation preserves
CTL∗ [11], language inclusion preserves LTL [22] and, in particular, timed bisimulation
preserves (timed) properties expressed in logics such as TCTL [27]. Hence, composi-
tionality amounts to requiring that relations like these are congruences (or precongru-
ences) for the different operations of the language.

Timed automata [1,18] are used to model real-time systems and have become pop-
ular as modeling language for several model checkers because of its simplicity and
tractability [2,9,10]. Timed automata are automata with the additional ingredients of

� Supported by the EC project IST-2001-35304 AMETIST, URL: ametist.cs.utwente.nl.
�� Also at Formal Methods and Tools, Dep. of Comp. Sci. University of Twente. Supported by

the NWO Vernieuwingsimpuls and the ANPCyT project PICT 11-11738.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 125–140, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

126 P.R. D’Argenio and B. Gebremichael

s1

s2

s0

t2 t3

t1

t0

a

x := 0
b

γ : x ≥ 2
δ : x ≥ 3

T1

a

δ : x = 6

x := 0
b

γ : 4 ≤ x ≤ 6
δ : x ≥ 3
γ : x ≥ 2

c

T2

(a)

x := 0
b

T1 ||a stop

δ : x = 6

x := 0
b

c
γ : 4 ≤ x ≤ 6

T2 ||a stop

(b)

Fig. 1. TAD and compositionality

clocks. Clocks are variables that increase at the same rate in order to register time
progress. Transitions are labeled with constraints on clocks, called guards, that indicate
when such transition may take place. Usually timed automata are used to model real-
time systems with hard constraints. In this cases, timed automata are equipped with
an invariant, which is a constraint on clocks that limits time progress in each control
state [18]: the system is obliged to leave such state before invalidating the invariant.

Because of the nature of invariants, time is allowed to progress in the composed
timed automaton only if time is allowed to progress in all component automata. There-
fore, if one of the automaton fails to meet the deadline imposed by a partner in a syn-
chronisation, then the entire system crashes (which is represented by the so called time
deadlock: the composed system has reached a state where time is blocked forever). This
is the nature of hard deadlines. But it is debatable whether hard deadlines are always
appropriate to model synchronisation in real-time systems. An alternative composition
is, a composition with soft deadlines that allows the fast partner to wait the slow partner
if nothing else is possible. In this case the deadlines can be violated, but the synchroni-
sation is performed urgently whenever possible.

Timed automata with deadlines (TAD for short) [26,7,5,6] were introduced for these
reasons. Parallel compositions with hard and soft deadlines as well as urgency can be
naturally defined in TAD. At the same time, the TAD model ensures, under reasonable
assumption, what is called time reactivity in [6] and time lock freedom in [8], that is,
whenever time progress stops there exists at least one transition enabled. (Note that
time reactivity and hard constraints are not fully compatible.) This model is nowadays
embedded in modeling languages such as IF [10] and MoDeST [16,4], and urgent tran-
sitions in Uppaal [3] can be seen as a particular instance of TAD transitions.

TADs do not have invariants. Instead, a TAD transition has associated a second
clock constraint, called deadline, that indicates in which moment such transition must
be taken. As a consequence, a deadline is required to hold only if the corresponding
guard holds ensuring the transition can be taken after the deadline is reached. In this
sense, the deadline impose an urgency constraint.

Contrary to the traditional timed automata setting, bisimulation in the TAD model is
not preserved by parallel composition [6]. This is illustrated in the following example.
T1 in Fig. 1.(a) depicts a TAD in which circles represent control state and arrows are
control transitions. In particular the small incoming arrow identifies the initial state. T1

performs first an action b at any moment and sets clock x to 0. As time progresses,
the value of x increases and when it takes value 2 action a becomes enabled. This is

The Coarsest Congruence for Timed Automata 127

controlled by guard γ : x ≥ 2. At any point after x takes value 2, this transition may
take place, but as time continues to progress and x takes value 3, the deadline δ : x ≥ 3
obliges the execution of the transition. Notice that T2 shows a similar behavior since
action c cannot be executed: the deadline of a obliges its execution before the guard of
c becomes enabled. In fact, T1 and T2 are timed bisimilar in the sense of [6].

Suppose now that T1 is composed in parallel with the automaton stop requiring
synchronization on action a. (stop is the automaton with a single location and no tran-
sition; hence, it does not do anything but idling.) This blocks the execution of action a
in T1. The resulting automaton T1 ||a stop is depicted in Fig. 1.(b). Similarly, the com-
position of T2 with stop in T2 ||a stop also blocks the execution of a, but in this case
time progresses beyond 3 time units allowing the execution of c after 4 time units (see
Fig. 1.(b)). As a consequence T1 ||a stop and T2 ||a stop are not bisimilar.

To the best of our knowledge there is no characterization of a congruence for parallel
composition on TADs. The only exception is what is called strong congruence in [6],
which is the usual bisimulation applied directly on TADs. This relation is, however, far
too strong as it requires the syntactic equality of guards, deadlines, and clock resets.

In this paper we present a congruence relation for parallel composition and prove
that it is the coarsest congruence included in the bisimulation relation. This new re-
lation, which we call ∇-bisimulation (read “drop-bisimulation”), is in fact the usual
bisimulation on an extended semantics of TAD. Such semantics allows for time pro-
gressing beyond deadlines but carefully accounting the actions whose deadline have
been overruled. We also give a symbolic characterization of ∇-bisimulation, that is,
a relation defined directly on TADs. As a corollary of this characterization we ob-
tain that ∇-bisimulation is decidable. Another particular contribution of this paper is
that the proof of congruence is entirely carried out at symbolic level (i.e., without re-
sorting to the underlying transition system in which ∇-bisimulation is defined). We fi-
nally discuss different kind of parallel compositions on TADs (mostly defined already
in the literature) reporting which of them preserves ∇-bisimulation and which do not
and why.

Related Work. The failure of bisimulation to be a congruence becomes apparent when
soft deadlines are considered, that is actions that may be urgent in isolation are re-
quired to wait if they are intended for synchronization i.e. synchronizing actions need
to be patient. This problem has appeared in the context of stochastic process algebra
where synchronization is required to be patient (e.g. [20,19,14]). It becomes evident (in
a similar manner as above) if bisimulation is considered for the underlying probabilistic
transition system rather than for the finer symbolic model [14]. The problem of compo-
sitionality also showed up in other process algebras for performance behavior [13].

In [21], compositionality is studied on timed automata with urgent actions w.r.t.
simulation. (An urgent action corresponds to an action in TADs for which guard and
deadline are the same.) In this case, it suffices to add a condition of readiness on the ur-
gent actions to achieve precongruence. Recently, [17] defined a variant of TADs where
actions are distinguished between input and output following the model of [25] and for
which bisimulation is a congruence for the parallel composition. This is possible due
to input enabling and to the fact that only output actions are allowed to be urgent (i.e.
to have deadline.) Therefore there is no need to wait for synchronization as it is always

128 P.R. D’Argenio and B. Gebremichael

possible. Though the restrictions imposed by [17] makes the new model much simpler
and tractable, using it to describe soft real-time systems may result in complex models.

In addition to the solution for the compositionality problem, we also give a symbolic
characterization of the congruence. Our work is based on the result of Lin & Yi [23]
who gave a symbolic characterization of the bisimulation for timed automata. In turn,
their result is based on Čerāns’ who determined that bisimulation for timed automata is
decidable [12]. We use also this result to show the decidability of the ∇-bisimulation.

Paper Outline. The paper is organized as follows. Section 2 gives the preliminaries
recalling timed automata with deadlines, its semantics in terms of transition systems,
the definition of bisimulation, and particularly, the definition of parallel composition.
In Section 3 we discuss the pitfalls of the composition and progressively construct the
semantics that leads to the definition of ∇-bisimulation. The symbolic characterization
is provided in Section 4 and shown to be the coarsest congruence in Section 5. We
conclude in Section 6 discussing decidability of ∇-bisimulation and the different kind
of synchronization in parallel composition. A full version of this paper appeared as [15].

2 Preliminaries

Timed Automata with Deadlines. A clock is a non-negative real-valued variable,
which can be reset to zero at the occurrence of an event, and between two resets, its
derivative with respect to time is equal to 1. We denote C = {x1, . . . , xN } to be a finite set
of clocks. A clock constraint F (C) is a conjunction of formula(s) of atomic constraints
in the form of xi �� n or xi − x j �� m, where xi and x j are clocks in C, �� ∈ {<, >,≤,≥,=}
and n,m are natural numbers. The constraints tt and ff are used to denote, respectively,
the atomic constraints which are constantly true and false. We will assume that there is
a global finite set of actionsA for all timed automata with deadlines.

Definition 1. A timed automaton with deadlines [6] (TAD for short) is a structure T =
(L, l0,C, �) where (i) L is a finite set of locations, (ii) l0 ⊆ L is the set of initial
locations, (iii) C is a finite set of clocks, (iv) � ⊆ L× (A×F (C)×F (C)×2C)×L, is a

finite set of edges. If (s, a, γ, δ, x, s′) ∈ � we write s a,γ,δ,x� s′ and require that δ⇒ γ
holds, moreover we assume δ is left-closed (left-closure is formally defined in Def. 2).

The notion s a,γ,δ,x� s′ represents an edge from location s to s′ that executes action
a whenever guard γ becomes true. In addition, deadline predicate δ impose an urgency
condition: the transition cannot be delayed whenever δ is satisfied. When executing the
transition, clocks in x are set to 0.

Parallel Composition of TADs. Parallel composition allows the independent execution
of the activity of the component automata except if they are intended to synchronize.
We assume CSP synchronization in which actions with equal name synchronize if and
only if they belong to a set of synchronizing actions B ⊆ A. Since enabling of actions
is determined by guards, we define the guard on the synchronized transition to be the
conjunction of the guards on the synchronizing transitions. Therefore synchronization
takes place only if both partners are able to execute the same synchronizing action.
(Other compositions of guards are discussed in Sec. 6). Similarly, the deadlines of the

The Coarsest Congruence for Timed Automata 129

synchronizing transitions should affect the deadline of the synchronization. In this case,
we do not fix any particular operation. Instead, we assume a given operator⊗ that, when
applied to guards and deadlines of the synchronizing transitions, returns the deadline of
the synchronization. We require that ⊗ satisfies the following:

1. (δ1, γ1) ⊗ (δ2, γ2)⇒ (γ1 ∧ γ2) whenever δ1 ⇒ γ1 and δ2 ⇒ γ2

2. ⊗ preserves left-closure, that is, if δ1 and δ2 are left closed, so is (δ1, γ1) ⊗ (δ2, γ2)
3. ⊗ distributes with respect to ∨ in all its arguments, that is(∨

i

(
δi

1, γ
i
1

)
⊗
(
δi

2, γ
i
2

))
⇔
(∨

i δ
i
1,
∨

i γ
i
1

)
⊗
(∨

i δ
i
2,
∨

i γ
i
2

)

4. There exists a constraint 0δ such that (0δ, tt) acts as a neutral element for ⊗ in the
following sense: ((δ1, γ1) ⊗ (0δ, tt))⇔ δ1

(δ1, γ1) ⊗ (δ2, γ2) has to imply the guard γ1 ∧ γ2 of the resulting transition in order to
preserve this property on the composed TAD. This is required in 1. Similarly, condi-
tion 2 ensures that deadlines of the composed TAD are left-closed. The distributivity
of 3 is needed to prove congruence (see proof of Theorem 2). As we will see in the next
section, time passage in a location is limited by the complement of the disjunction of
the outgoing deadlines. Therefore condition 3 states compositionality for ⊗, allowing
to represent the deadline of a synchronized action in terms of the deadlines and guards
of the component automata. Constraint 4 is only necessary to show that our definition
is the coarsest congruence included in the bisimulation (see Lemma 6). For operators
not meeting this condition there may exist coarser congruences than ours that are also
bisimulation. Constraint 4 guarantees a way to test the validity of the original dead-
line in a component’s transition by means of a synchronization. In Sec. 6 we discuss
different implementations of ⊗.

Let Ti = (Li, l0i,Ci, �
i), such that C1 ∩ C2 = ∅ for i ∈ {1, 2}, and let B ⊆ A be

a set of synchronizing actions, and ⊗ be an operation for synchronizing deadlines. The
parallel composition T1 ||⊗B T2 is defined by the TAD (L1 × L2, l01 × l02,C1 ∪ C2, �)
where � is defined as the smallest relation satisfying:

si
a,γ,δ,x�

i s′i s j=s′j {i, j}={1, 2} a � B

(s1, s2) a,γ,δ,x� (s′1, s′2)

s1
a,γ1 ,δ2 ,x1�

1 s′1 s2
a,γ2 ,δ2 ,x2�

2 s′2 a ∈ B

(s1, s2) a,γ1∧γ2 ,(δ1 ,γ1)⊗(δ2 ,γ2),x1∪x2� (s′1, s′2)

The rules are fairly standard. Notice, in particular, that the last rule only allows to syn-
chronize guards when both of them are valid. This is a significant restriction w.r.t. [6].
We later argue that this is nevertheless reasonable and discuss the feasibility of compo-
sitions not consider here. From now on, subscripts on edges will be omited.

Transition Systems and Bisimulation. A transition system (TS for short) is a structure
TS = (S, s0, Σ,−−→) where S is an infinite set of states, s0 is the set of initial states, Σ
is a set of labels, and −−→⊆ (S × Σ × S) is a set of transitions. Since we use TSs to
model timed systems, we consider two kind of labels: those representing the execution
of discrete actions and those representing the passage of time. Then Σ = A∪ R≥0.

A bisimulation [24] is a symmetric relation R ∈ S × S such that for all a ∈ Σ,

whenever (p, q) ∈ R and p
a−−→ p′ then q

a−−→ q′ and (p′, q′) ∈ R for some q′. We write
p ∼ q if (p, q) ∈ R for some bisimulation relation R on TS. Given two TSs TS1 and
TS2 with set of initial states s0

1 and s0
2, respectively, we say that they are bisimilar

(notation TS1 ∼ TS2) if there is a bisimulation R in the disjoint union of TS1 � TS2 such

130 P.R. D’Argenio and B. Gebremichael

that s0
j ⊆ R(s0

i) for {i, j} = {1, 2}, i.e. every initial state of TS1 is related to some initial
state of TS2 and vice-versa.

Semantics of TADs. In the following we recall the semantics of TADs in terms of TSs.
A state of the timed system is divided in two parts, one indicating the current control
location in the TAD, and the other the current time values. This last part is represented
by means of a clock valuation which is a function ρ : C → R≥0 mapping to each
clock the time elapsed since the last time it was reset to 0. Given a clock valuation ρ
and d ∈ R≥0 the function ρ + d denotes the valuation such that for each clock x ∈ C,
(ρ + d)(x) = ρ(x) + d. The function ρ{x:=0} denotes the valuation such that for each
clock x ∈ x ∩ C, ρ{x:=0}(x) = 0, otherwise ρ{x:=0}(x) = ρ(x). We first define what it
means for a constraint to be left-closed, followed by the semantics of TADs.

Definition 2. A constraint φ is called left closed if and only if for all valuations ρ,
ρ |= ¬φ ⇒ ∃ε > 0 : ∀ε′ ≤ ε : ρ + ε′ |= ¬φ.

Definition 3. Let T = (L, l0,C, �) be a TAD. Its semantics is given by TS(T) = (L ×
(C �→ R≥0), l0 × (C �→ 0),A∪ R≥0,−−→), where −−→ is the smallest relation satisfying:

A1: discrete transition s a,γ,δ,x� s′ and ρ |= γ implies sρ
a−−→ s′ρ{x:=0}; and

A2: delay transition ∀d′ < d : ρ + d′ |= tpc(s) implies sρ
d−−→ s(ρ + d)

where tpc(s) = ¬∨{δ | ∃a, γ, x, s′ : s a,γ,δ,x� s′} is the time progress condition in s.

Rule A1 states that an edge s a,γ,δ,x� s′ defines a discrete transition in current
location s whenever the guard holds in current valuation ρ. After the transition is taken
clocks in x are set to 0 in the new valuation. According to A2, time can progress in s
only when tpc(s) is true, that is as long as no deadline of an edge leaving s becomes
true. Notice that tpc(s) is required to hold for all d′ < d but not for d itself. Therefore
it is indistinguishable whether tpc(s) holds in the limit or not. For instance, if ρ(x) = 0
both x < 3 and x ≤ 3 hold in all ρ + d′ with d′ < 3. Thus our assumption that deadline
has to be specified as left-closed predicate is not a limitation but a preference to avoid
technical complications which do not contribute to the work.

As a consequence of Def. 3 the notion of bisimulation extends to TADs straightfor-
wardly: two TADs T1 and T2 are bisimilar (notation T1 ∼ T2) if TS(T1) ∼ TS(T2).

Example. Consider automata T1 and T2 of Fig. 1. Using Def. 3 it is routine to check
that relation {(s0{x:=d}, t0{x:=d}) | 0 ≤ d} ∪ {(s1{x:=d}, t1{x:=d}) | 0 ≤ d ≤ 3} ∪
{(s2{x:=d}, t2{x:=d}) | 2 ≤ d} is a bisimulation witnessing T1 ∼ T2. Besides, if stop =
({r}, {r},∅,∅), then T2 ||⊗a stop can execute the trace b 5 c, which is not possible in
(s0, r){x:=0}. Consequently, T1 ||⊗a stop � T2 ||⊗a stop.

3 Towards a Congruence Relation

In the following we discuss different proposals for congruence until finding a satisfac-
tory definition. All proposals are bisimulation relations on different modifications of the
transition system underlying the TAD.

The Coarsest Congruence for Timed Automata 131

x := 0

γ : x ≥ 1
δ : ff

c
γ : x ≥ 2
δ : x ≥ 2

a

b

T3

γ : x ≥ 1
δ : x ≥ 2

c
γ : x ≥ 2
δ : ff

b

x := 0
a

T4

(a)

T′

a

b

T′′

a

b

y := 0

γ : y ≥ 2
δ : y ≥ 2

(composing automata)

x := 0
a

b c

b
γ : x ≥ 1
δ : ff

b
γ : x ≥ 2
δ : x ≥ 2

T5

x := 0
a

b c

δ : x ≥ 2

b
γ : x ≥ 1

b
γ : x ≥ 2
δ : ff

T6

(b)

x := 0
a

b
γ : x = 1
δ : x = 1

b
γ : x ≥ 2
δ : x ≥ 2

T7

x := 0
a

δ : x = 1
γ : x = 1

b b
γ : x ≥ 2
δ : ff

T8

(c)

Fig. 2. (Counter)examples for congruence

The example in Fig. 1 suggests that action c could be distinguished if time would
be allowed to elapse beyond the deadline. Therefore, a first naive proposal would be
to let time progress beyond the time progress condition but this would not be compat-
ible with the bisimulation since TADs with different deadlines but equal guards may
become equated. So, a modification of this semantics could consider separately a po-

tential time progress by adding a new kind of transition: sρ
[d]−−−→ s(ρ + d) for all d ≥ 0.

Though clearly stronger than bisimulation —notice that it would distinguish T1 and T2

in Fig. 1— it fails to be a congruence. This is shown in Fig. 2(a). The relation would
equate T3 and T4, but not their compositions T3 ||⊗B T′ and T4 ||⊗B T′ with B = {a, b, c}. No-
tice that after realization of action a, T3 ||⊗B T′ lets (non-potential) time progress beyond
2 time units while this is not possible in T4 ||⊗B T′ due to the deadline in b.

As a consequence, we may think to consider different potential time progress transi-
tion for each edge in the TAD, but this turns to be too strong (apart from cumbersome).
See automata T5 and T6 in Fig. 2(b) which share some similitude with the previous
example, only that c has been renamed to b. They are expected to be congruent.

The new example suggests that time can potentially progress differently for every
action name since they can be delayed or preempted independently. A possible solution
seems to consider a different kind of potential time progress for each action. Since
time progress is associated to deadlines, we follow a different approach: instead of
considering potential time progress, we consider a new type of discrete action ∇D, D ⊆
A, that indicates that from the moment action ∇D is issued, deadlines of actions in D
would be disregarded. We call this type of action “drop” (since it drops the deadline).
Notice that a drop action can be performed at any moment.

Let A∇ = {∇D | D ⊆ A}. To keep track of which deadlines have to be disregarded,
states also need to book keep the current set of actions whose deadlines were dropped.
The extended semantics of T = (L, l0,C, �) is then given by the TS (L × 2A × (C �→
R≥0), l0×{∅}×(C �→ 0),A∪A∇∪R≥0,−−→), where−−→ is the smallest relation satisfying:

132 P.R. D’Argenio and B. Gebremichael

A1∇: discrete transition s a,γ,δ,x� s′ and ρ |= γ implies (s,D)ρ
a−−→ (s′,∅)ρ{x:=0}

A2∇: delay transition ∀d′<d : ρ+d′ |= ¬dl(s,A− D) implies (s,D)ρ
d−−→ (s,D)(ρ+d)

A3: drop transition (s,D)ρ
∇E−−−→ (s,D ∪ E)ρ

where dl(s, A) is the deadline collected by actions in A ⊆ A in location s and is defined

by dl(s, A) =
∨{δ | s a,γ,δ,x� s′ and a ∈ A for some a, γ, x, s′}. Bisimulation in this new

semantics distinguishes automata in Figs. 1(a) and 2(a), and equates those in Fig. 2(b).
Regarding to the new predicate dl(s, A) notice that for any location s, tpc(s) = ¬dl(s,A).

Notice that once a deadline is dropped, it cannot be observed anymore. Example
in Fig. 2(c) shows that this semantics does not yet yields a congruence. According to
this semantics T7 and T8 are equated. However, under the assumption that deadlines of
synchronizing transitions are arranged in a conjunction (i.e. ⊗ is ∧), the compositions
T7 ||⊗B T′′ and T8 ||⊗B T′′, with B = {a, b}, are distinguished by the usual bisimulation: after
executing action a, T8 ||⊗B T′′ let time progress beyond 2 time units while this is not the
case in T7 ||⊗B T′′ due to the composed deadline (x ≥ 2) ∧ (y ≥ 2) in b.

This phenomenon is due to the fact that after action a is performed, automaton T′′
temporarily disregard the deadline of b during the first 2 units of time, but later it allows
to observe it again. As a consequence, we introduce a new action ∆ (read “undrop”)
which indicates that in the future all deadlines will be consider again.

Definition 4. The extended semantics of T = (L, l0,C, �) is given by TS∇(T) = (L ×
2A× (C �→ R≥0), l0× {∅}× (C �→ 0),A∪A∇∪{∆}∪R≥0,−−→), where −−→ is the smallest
relation satisfying A1∇, A2∇, and A3 above plus

A4: undrop transition (s,D)ρ
∆−−→ (s′,∅)ρ

Notice that the undrop action can be performed at any moment. Notice also that the
execution sequence a∇{b} 2∆ 1 is possible in T8 but not in T7. Hence, a bisimulation in
this setting distinguishes T7 from T8. We define such a relation as follows.

Definition 5 (∇-bisimulation). We say that automata T1 and T2 are ∇-bisimilar, nota-
tion T1 ∼∇ T2, if TS∇(T1) ∼ TS∇(T2). We also say that locations s and t are ∇-bisimilar in
some valuation ρ, notation sρ ∼∇ tρ, if (s,∅)ρ ∼ (t,∅)ρ.

Notice that two ∇-bisimilar automata are also bisimilar. We conclude this section
by stating two basic properties (lemmas) of ∇-bisimulation. They are needed to prove
Theorem 1 which relates ∼∇ to a symbolic bisimulation.

Notice that the ability of dropping all the deadlines, letting time pass, and then un-
dropping the deadlines, ensures that if two locations are∇-bisimilar at a certain moment,
no matter how long the activity is blocked, this two locations will still be ∇-bisimilar.
This is stated in Lemma 1. Moreover, if two locations are ∇-bisimilar at some given
valuation ρ then both satisfy the deadline associated to some action in valuation ρ, or
none of them does. This is easy to check by dropping all the deadlines except those
associated to the action of interest. This is formally stated in Lemma 2.

Lemma 1. If tρ ∼∇ uρ then t(ρ + d) ∼∇ u(ρ + d), for all d ≥ 0.

Lemma 2. If tρ ∼∇ uρ then ρ |= dl(t,D)⇔ dl(u,D), for any D ⊆ A.

The Coarsest Congruence for Timed Automata 133

4 Symbolic Characterization of ∇-Bisimulation

We postpone the proof that ∇-bisimulation is a congruence until Sec. 5 and give first a
symbolic characterization of ∼∇. That is, we give a relation directly in TADs which does
not resort to the underlying transition system and equates exactly the same automata
as ∼∇ does. The symbolic bisimulation we propose works in a similar fashion to that
of [23]. The construction of such relation is based on zone and region manipulation. A
clock region or region for short, is a consistent conjunction of atomic constraints of the
form, ψ ≡ ∧x∈C ψx ∧∧{x,y}⊆C,x�y ψ{x,y} where

– each ψx is either x = n, m < x < m + 1 or x > N, and
– each ψ{x,y} is either x−y = n, m < x−y < m + 1 or x−y > N.

with n,m,N non-negative integers such that 0 ≤ n ≤ N, and 0 ≤ m < N. Regions can
be expressed by constraints as we defined above, and any constraint can be expressed
as a disjunction of regions. Similar to the clock resetting (ρ{x := 0}) and time successor
(ρ+d) of the clock valuation defined earlier, we define below their symbolic counterpart.

Reset: For a constraint φ and a set of clocks x, the reset φ↓x is a predicate such that
for all ρ, ρ |= φ↓x iff ρ = ρ′{x := 0} and ρ′ |= φ for some ρ′

Time successor: For a constraint φ, the time successor φ⇑ is a predicate such that for
all ρ, ρ |= φ⇑ iff ρ = ρ′ + d and ρ′ |= φ for some ρ′ and d ≥ 0

A constraint φ is⇑-closed if and only if φ ⇑⇔ φ is valid (i.e. a tautology). The op-
erations above distribute on disjunction and are expressible in terms of constraints (see
e.g. [28,23].) The following facts can be derived from the definitions or have already
appear elsewhere [28,23].

Fact 1. (1) Let ψ and φ be regions. Let ρ and ρ′ be valuations s.t. ρ |= ψ and ρ′ |= ψ. If
ρ+d |= φ for some d ≥ 0, there exists d′ ≥ 0 s.t. ρ′+d′ |= φ. (2) If φ is a region then, for
any constraint ψ, either φ⇒ ψ is valid or φ∧ψ is a contradiction. (3) If φ is a region, so
does φ↓x. (4) ρ |= φ implies ρ |= φ⇑. (5) φ⇑ is⇑-closed. (6) If φ is⇑-closed then ρ |= φ
implies ρ+ d |= φ for all d ∈ R≥0. (7) If φ1 and φ2 are⇑-closed (resp. left-closed), so are
φ1 ∧ φ2 and φ1 ∨ φ2.

Given a constraint φ, a φ-partition [23] is a finite set of constraints Φ if
∨
Φ ⇔ φ and

for any two distinct ψ, ψ′ ∈ Φ, ψ and ψ′ are disjoint (i.e. ψ ∧ ψ′ is a contradiction). A
φ-partition Φ is called finer than another φ-partition Ψ if Φ can be obtained from Ψ by
decomposing some of its elements. RC(φ) denotes the set of all regions that constitute
φ. Notice that φ⇔ ∨RC(φ) and that RC(φ) is the finest of all φ-partitions.

Lemma 3. Let ψ be a region and ρ be such that ρ |= ψ. For all φ ∈ RC(ψ⇑) exists d ≥ 0
such that ρ + d |= φ.

The definition of symbolic bisimulation we propose is based on Lin & Yi’s defini-
tion [23], which in turns is based on Čerāns’ result [12]. A symbolic bisimulation is
a relation containing tuples (s, t, φ) meaning that locations s and t are related in any
valuation that satisfies constraint φ. Here φ is a constraint over the disjoint union of the
set of clocks of the two automata. In this way, the relation ensures that clocks in both
automata progress at the same rate. In turn, this guarantees that the related locations can
idle the same time until some given deadline becomes true.

134 P.R. D’Argenio and B. Gebremichael

Definition 6 (Symbolic Bisimulation). Let T1 and T2 be two TADs with disjoint set
of clocks C1 and C2 and disjoint set of locations L1 and L2 respectively. A relation
S ⊆ (L1 × L2 ∪ L2 × L1) × F (C1 ∪ C2) (where F (C) denotes the set of all constraints
with clocks in C) is a symbolic bisimulation if for all (t, u, φ) ∈ S ,

(1) (u, t, φ) ∈ S , (2) φ is⇑-closed,

(3) whenever t a,γ,δ,x� t′, there is a (φ ∧ γ)-partition Φ such that for each φ′ ∈ Φ,

u a,γ′,δ′,y� u′, φ′ ⇒ γ′ and (t′, u′, φ′↓xy⇑) ∈ S , for some γ′, δ′, y and u′; and
(4) φ⇒ (dl(t, A)⇔ dl(u, A)) is valid for all A ⊆ A.

We write t ∼φ u if (t, u, φ) ∈ S for some symbolic bisimulation S . We also write T1 ∼φ T2

if for every initial location t of T1 there is an initial location u in T2 such that t ∼φ u,
and the same with the roles of T1 and T2 exchanged.

Property 1 states the symmetric characteristics of a bisimulation. The requirement
that φ is⇑-closed (property 2) ensures that location t and u show an equivalent behavior
any time in the future which is necessary if deadlines are dropped. Property 3 ensures
the transfer properties of discrete transitions. This is similar to [23] except that there is
no invariant to consider. Finally, property 4 states that any possible combination of dead-
lines should match under the assumption that φ holds. This ensures that the time elapsed
until a deadline associated to a given action is the same in both locations. Notice that

T10

δ : y ≥ 4

b
γ : tt

δ : ff

b

δ : x ≥ 4
γ : x ≤ 2

b

T9

γ : x > 2

Fig. 3. T9 ∼x=y T10

property 4 is equivalent to requiring that φ ⇒
(dl(t, {a}) ⇔ dl(u, {a})) for all a ∈ A. This makes
evident that deadlines may be “changed” from one
edge to another as long as both edges are labeled
with the same action (see Fig. 2(b)). Moreover
property 4 is comparable to the property of invari-
ants in [23]. Like in [23], the use of partitioning
allows that one edge is matched by several edges as is the case in Fig. 3 where both
T9 ∼∇ T10 and T9 ∼x=y T10.

The following theorem states that symbolic bisimulation completely captures the
notion of ∇-bisimulation.

Theorem 1. For⇑-closed φ, t ∼φ u iff tρ ∼∇ uρ for any ρ |= φ
Proof (Sketch). From the results exposed above, it follows that if S be a symbolic
bisimulation, then {((t,D)ρ, (u,D)ρ) | ∃φ : ρ |= φ : (t, u, φ) ∈ S and D ⊆ A} is a
bisimulation up to ∼ [24], which proves the “only if”. Moreover, it also follows that
{(t, u, φ)|φ is ⇑ -closed and ∀ψ ∈ RC(φ) : ∃ρ : ρ |= ψ : tρ ∼∇ uρ} is a symbolic bisimu-
lation, which proves the other implication. ��
Corollary 1. Let φ0 ≡ ∧x,y∈C1∪C2

(0 ≤ x = y). T1 ∼φ0 T2 iff T1 ∼∇ T2.

5 The Coarsest Congruence Included in ∼
In this section, we show that ∼φ0 (and hence ∼∇, too) is the coarsest congruence for the
parallel composition included in bisimulation. The first part of the section is devoted to

The Coarsest Congruence for Timed Automata 135

prove that ∼φ0 is a congruence. It is interesting to notice that the proof of congruence is
carried out fully at symbolic level (in contrast to the usual proof using the underlying
transition system). To the best of our knowledge, this is a novel approach. In the second
part we show that ∼∇ is the coarsest congruence included in ∼.

The next two lemmas are required for the proof of congruence. Lemma 4 implies
that a deadline of a set of actions can be decomposed as a disjunction of the deadlines
of each of the actions. Lemma 5 states that if two locations t and u are symbolically
bisimilar under a constraint φ, then a given action a is enabled in t if and only if it is
enabled in u for all valuations that satisfy constraint φ.

Lemma 4. dl(s,D ∪ E)⇔ (dl(s,D) ∨ dl(s, E))

Lemma 5. Define gd(s, a) =
∨{γ | s a,γ,δ,x� s′ for some δ, x, s′}. If S is a symbolic

bisimulation s.t. (t, u, φ) ∈ S , then φ⇒ (gd(t, a)⇔ gd(u, a)) is valid for all a ∈ A.

In particular, these lemmas are needed to check that property 4 of the symbolic bisim-
ulation is preserved in the congruence.

Now, we are in conditions to prove that ∼φ is a congruence for any parallel composi-
tion defined as in Sec. 2. In particular, we notice that the proof does not use constraints 1
and 4 imposed on ⊗.

Theorem 2. Let T j
i = (L j

i , l
0 j

i ,C j
i ,

�), for i, j ∈ {1, 2} such that C j
i ∩Cl

k = ∅ if i � k or
j � l. Then T1

1 ∼φ T1
2 and T2

1 ∼φ T2
2 imply T1

1 ||
⊗
B

T2
1 ∼φ T1

2 ||
⊗
B

T2
2 for all B ∈ A, operation

⊗ and constraint φ.

Proof (Sketch). Let S 1 and S 2 be symbolic bisimulations witnessing T1
1 ∼φ1 T1

2 and
T2

1 ∼φ2 T2
2 , resp. The proof checks that S = {((t1, t2), (u1, u2), φ1∧φ2) | (t1, u1, φ1)∈S 1 and

(t2, u2, φ2)∈S 2} is also a symbolic bisimulation. Properties 1 and 2 in Def. 6 follow easily
since S 1 and S 2 also satisfy them. Property 3 follows from the definitions of parallel
composition and symbolic bisimulation making careful manipulations of constraints,
regions, and partitions using Fact 1. Because of Lemma 4, property 4 is a consequence
of implication (φ1 ∧ φ2) ⇒ (dl((t1, t2), {a})⇔ dl((u1, u2), {a})), which, for a�B, follows
from the definitions. For a∈B, conditions 2 and 3 on ⊗ allow to show that dl((t1, t2), {a})
is equivalent to (dl(t1, {a}), gd(t1, a)) ⊗ (dl(t2, {a}), gd(t2, a)), and similarly for (u1, u2).
Then, by Lemma 5, and since S 1 and S 2 are symbolic bisimulations, dl((t1, t2), {a}) and
dl((u1, u2), {a}) can be proved equivalent. ��
Because of Corollary 1 and Theorem 2, ∼∇ is also a congruence.

The next lemma is core for the proof that ∼∇ is the coarsest congruence included
in ∼. We notice that it does not use constraints 1, 2, and 3 imposed on ⊗. The lemma
exhibits a test automata Tt that distinguish, modulo bisimulation, two automata that are
not ∇-bisimilar. Automata Tt is built by adding extra actions in such a way that, when
composed with an automata T, the composition can mimic in the original semantics the
behavior of T in the extended semantics. In fact, the extra actions are the same drop
(∇D) and undrop (∆) actions of the extended semantics.

Lemma 6. Define the test automata Tt with set of locations Lt = {sD | D ⊆ A},
l0t = {s∅}, set of clocksCt = ∅, set of actionsA∪A∇∪{∆} and, for all D,D′ ⊆ A, a � D,

136 P.R. D’Argenio and B. Gebremichael

define sD
a,tt,0δ,∅� s∅, sD

∇D′ ,tt,ff,∅� sD∪D′ , and sD
∆,tt,ff,∅� s∅. Let T1 and T2 be

TADs with set of locationsL1 andL2 respectively. Suppose that T1 ||⊗ATt ∼ T2 ||⊗ATt. Then,
R = {((t1,D)ρ1, (t2,D)ρ2) | t1 ∈ L1, t2 ∈ L2, sD ∈ Lt, and (t1, sD)ρ1 ∼ (t2, sD)ρ2 } is
a bisimulation relation that witnesses T1 ∼∇ T2.

The proof of the lemma is fairly straightforward except in the case of the delay transi-
tion. Notice that a delay transition from (t,D) is governed by satisfaction of¬dl(t,A−D)
(by A2∇) while in (t, sD), it is governed by tpc(t, sD). To show that both predicates are
equivalent it is necessary that (0δ, tt) is neutral for ⊗.

From Lemma 6, it follows that ∼∇ and ∼φ0 are the coarsest congruence in ∼:

Theorem 3. Fix ⊗ satisfying conditions 1 and 2 in Sec. 2. Then ∼∇ (and hence ∼φ0) is
the coarsest congruence included in ∼ for the family of operators ||⊗

B
, with B ⊆ A.

6 Concluding Remarks

On Deciding ∇-Bisimulation. Our symbolic characterisation is based on [23] and [12].
In particular, [12] states that bisimulation is decidable for timed automata. The same ap-
plies to our relation. Since the number of regions is finite so is the number of (relevant)
constraints (modulo logic equivalence) and as a consequence also the number of rel-
evant⇑-closed constraints. Therefore, any possible symbolic bisimulation relating two
TADs will also be finite. Besides, operations ↓x and⇑ are expressible in terms of con-
straints, and it is possible to decide validity of the constraints on clocks. Following [12],
checking that two TADs T1 and T2 are ∇-bisimilarity is then possible by taking relation
S = {(t, u, φ⇑) | φ ∈ RC(tt)} (which is the finest partition possible since RC(tt) is the set
of all regions) and checking that the transfer rules in Def. 6 hold for all tuples reachable
from some set I ⊆ (S ∩ (ini1 × ini2 × RC(φ0))) such that it relates all initial states of T1

(resp. T2) with some initial state of T2, (resp. T1).

A Remark on Symbolic Bisimulation. The third constraint in the definition of sym-
bolic bisimulation (Def. 6) can be relaxed as follows:

whenever t a,γ,δ,x� t′, there is a (φ∧γ)-partitionΦ s.t. for each φ′∈Φ, u a,γ′,δ′,y� u′,
φ′ ⇒ γ′, φ′↓xy⇑ ⇒ ψ, and (t′, u′, ψ) ∈ S , for some ψ, γ′, δ′, y and u′.

the difference being on the existence of ψ such that φ′↓xy⇑ ⇒ ψ. It is not difficult to
check that the new characterisation is equivalent to the original definition. This modifi-
cation is important since it allows to obtain smaller relations due to the fact that a tuple
(t, u, φ) ∈ S is redundant if there is a different tuple (t, u, φ′) ∈ S such that φ⇒ φ′.

On Synchronising Constraints in Parallel Compositions. In [6] the synchronisation
of guards and deadlines of synchronising actions are defined by two operations which
we call here ⊕ and ⊗ respectively. Some conditions are imposed in ⊕ and the only
condition imposed in ⊗ is that (δ1, γ1) ⊗ (δ2, γ2) ⇒ (γ1 ⊕ γ2) whenever δ1 ⇒ γ1 and
δ2 ⇒ γ2 ([6] also suggest that (δ1, γ1)⊗ (δ2, γ2)⇒ (δ1 ∨ δ2) should hold). We will only
discuss here some particular examples that have recurred on the works of Sifakis et al.
(see, e.g. [7,5,6]). We first focus on the guard:

The Coarsest Congruence for Timed Automata 137

T12

a

T11

γ : ff

T14

a
γ : x ≥ 5

T13

b

a

γ : x ≤ 1

γ : x ≥ 5
a
γ : x ≤ 1

T16

a

T15

y := 0
γ : x ≤ 1

γ : x ≥ 3
c

∧y ≤ 1

T′′′ T′′′′

a
γ : z ≥ 3

a
γ : tt

Fig. 4. T11 ∼∇ T12, T13 ∼∇ T14, and T15 ∼∇ T16

⊕ = ∧. This is the one we use and amounts to check that both guards are enables in
order to enable the synchronised transition.

⊕ = ∨. The synchronised transition can execute if any of the partners can do so.

⊕ = max, where γ1maxγ2 = (γ1∧γ2⇑) ∨ (γ2∧γ1⇑). In this case, a component is willing
to synchronise if the synchronising transition was enabled in the past and the other
component is ready to synchronise now.

⊕ = min, where γ1minγ2 = (γ1∧γ2⇓) ∨ (γ2∧γ1⇓) with⇓ being the time predecessor op-
erator (the dual of⇑). In this case, the synchronised guard anticipates the execution
of the synchronising transitions.

Our congruence relation only works for ∧. It is debatable how reasonable are the other
operations. Synchronisation through ∨ is highly questionable. It is expected that au-
tomata T11 and T12 in Fig. 4 are equivalent under any reasonable criterion. Nevertheless,
the composition T11 ||⊗a T′′′ can perform action a at any moment while T12 ||⊗a T′′′ cannot.

Under min, a component may anticipate the future behaviour of the synchronising
partner. [7] and [6] suggest that the intention of this synchronisation is that the earli-
est synchronising transition makes irrelevant the second one (e.g. a tramway leaves a
crossing and after a while it signals to allow the change of the traffic light though it
may be ignored if the light has already changed [6]). This intuition does not completely
match the behaviour of min which will speed up the slower component allowing it to do
activity otherwise impossible. This is observed when automata T′′′ is composed with
T13 and with T14 synchronising on a (see Fig. 4). Notice that T13 and T14 exhibit an
apparent equal behaviour since action a in T13 is always too late to execute b. However,
the composition T13 ||⊗a T′′′ may hasten the synchronisation on a making b apparent.

Dually, under max, an automata may allow the execution of the synchronising ac-
tion if it was enabled in the past. Notice that T15 and T16 in Fig. 4 exhibit equivalent
behaviour: c cannot be executed in T15 since clock y is always set too early. Instead, the
composition with T′′′′ synchronising on a will delay the execution long enough as to
set y sufficiently late to enable the c transition. The intention behind this form of syn-
chronisation is that the fastest component can always wait for the slowest. This design
choice seems an adequate choice to use with soft deadlines. Notice also that the appear-
ance of new activity is reasonable since it may be important to cope with the occasional
delay. What is debatable is the need of max since this type of synchronisation can eas-
ily be represented using ∧: Notice that the max synchronisation does not allow any test
automata to distinguish between γ and γ ⇑. Hence, it is more reasonable to model this
kind of synchronisation using ∧ instead of max and let all guards be⇑-closed.

138 P.R. D’Argenio and B. Gebremichael

With respect to deadlines, [6] is more liberal. The two type of synchronising dead-
lines that stand out are:

Patient synchronisation: (δ1, γ1) ⊗ (δ2, γ2) = δ1 ∧ δ2 with 0δ = tt, and
Impatient synchronisation: (δ1, γ1) ⊗ (δ2, γ2) = (δ1 ∨ δ2) ∧ (γ1 ∧ γ2) with 0δ = ff.

The nomenclature corresponds to [16] but these definitions are already introduced in
[26] with the names of flexible and stiff respectively. Patient synchronisation allows
to model soft deadlines, in the sense that one of the components is always willing to
wait for the other (as long as its guards remain valid). On the other hand, impatient
synchronisation impose urgency and obliges the execution as soon as both partners
are ready to execute the synchronising transition. Both [26] and [16,4] give a weaker
definition of impatient synchronisation: (δ1, γ1) ⊗ (δ2, γ2) = δ1 ∨ δ2. Taking 0δ = ff,
our result is also valid for this definition. The only problem with it is that it does not
preserve time reactivity, i.e. condition 1 on ⊗ (see Sec. 2) does not hold1.

We finally mention that ∇-bisimulation is still a congruence for ||⊗
B

if condition 4
on ⊗ is dropped. However, it is not the coarsest congruence in ∼ any longer. (This can
easily be seen by taking (δ1, γ1) ⊗ (δ2, γ2) = ff).

Conclusions. We have characterised the coarsest congruence for parallel compositions
of TADs with soft and hard deadline synchronisation that is included in bisimulation.
We also gave a symbolic characterisation of it and show that it is decidable. An aside
novelty in our result is that the proof of congruence was entirely carried out in the sym-
bolic semantics rather than resorting to the underlying transition system. The choice on
this strategy is not fortuitous. It is mainly due to the complexity on defining an equiv-
alent parallel composition on transition systems. To begin with, any possible definition
needs to be tailored for a particular choice of deadline. Besides, it would need complex
bookkeeping to know which possible deadline is blocking the passage of time. Many
other different complications appear depending on the choice of ⊗.

We finally discussed different types of synchronisation in parallel composition and
conclude that our choice is both reasonable and sufficiently expressive as to consider
the modelling of both soft and hard real-time constraints.

Acknowledgments. We thank Frits Vaandrager for his remarks on early drafts that
helped to improve the quality of the paper. Referees are also acknowledged for their
useful remarks.

References

1. R. Alur and D. Dill. A theory of timed automata. TCS, 126:183–235, 1994.
2. G. Behrmann, A. David, K.G. Larsen, O. Möller, P. Pettersson, and Wang Yi. Uppaal –

present and future. In Proc. of 40th IEEE Conf. on Decision and Control. IEEE Press, 2001.
3. J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, and Wang Yi. Uppaal - A tool suite for

automatic verification of real-time systems. In R. Alur, T.A. Henzinger, and E.D. Sontag,
eds., Hybrid Systems III: Verification and Control, LNCS 1066, pp. 232–243. Springer, 1996.

1 To strictly model hard deadlines, this composition requires some modification on the rules in
order to ensure the time-blockage produced when a component is ready to synchronise but the
other cannot do it at all. A possible solution appears in [4].

The Coarsest Congruence for Timed Automata 139

4. H. Bohnenkamp, P.R. D’Argenio, H. Hermanns, and J.-P. Katoen. MoDeST: A composi-
tional modeling formalism for real-time and stochastic systems. CTIT Tech. Rep. 04-46,
University of Twente, 2004. Submitted for publication.

5. S. Bornot and J. Sifakis. On the composition of hybrid systems. In Thomas A. Henzinger and
Shankar Sastry, eds., Hybrid Systems: Computation and Control, First International Work-
shop, HSCC’98, LNCS 1386, pp. 49–63. Springer, 1998.

6. S. Bornot and J. Sifakis. An algebraic framework for urgency. Inf. & Comp., 163:172–202,
2000.

7. S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. In Roever W.-P.
de, H. Langmaack, and A. Pnueli, eds., Compositionality: The Significant Difference, LNCS
1536, pp. 103–129. Springer, 1998.

8. H. Bowman. Modelling timeouts without timelocks. In J.-P. Katoen, ed., Formal Methods for
Real-Time and Probabilistic Systems, 5th International AMAST Workshop, ARTS’99, LNCS
1601, pp. 334–353. Springer, 1999.

9. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A model-
checking tool for real-time systems. In A.J. Hu and M. Vardi, eds., Procs. of 10th CAV, LNCS
1427, pp. 546–550. Springer, 1998.

10. M. Bozga and L. Mounier S. Graf. IF-2.0: A validation environment for component-based
real-time systems. In E. Brinksma and K.G. Larsen, eds., Procs. of 14th CAV, LNCS 2404,
pp. 343–348. Springer, 2002.

11. M.C. Browne, E.M. Clarke, and O. Grumberg. Characterizing finite Kripke structures in
propositional temporal logic. TCS, 59(1,2):115–131, 1988.

12. K. Čerāns. Decidability of bisimulation equivalences for parallel timer processes. In G. von
Bochmann and D.K. Probst, eds., Procs. of 4th CAV, LNCS 663, pp. 302–315. Springer, 1992.

13. F. Corradini. On performance congruences for process algebras. Inf. & Comp., 145(2):191–
230, 1998.

14. P.R. D’Argenio. Algebras and Automata for Timed and Stochastic Systems. PhD thesis,
Department of Computer Science, University of Twente, 1999.

15. P.R. D’Argenio and B. Gebremichael. The coarsest congruence for timed automata with
deadlines contained in bisimulation. Tech. Rep. ICIS-R05015. Radboud University Nijme-
gen, 2005.

16. P.R. D’Argenio, H. Hermanns, J.-P. Katoen, and R. Klaren. MoDeST - a modelling and
description language for stochastic timed systems. In L. de Alfaro and S. Gilmore, eds.,
Procs. of PAPM-PROBMIV 2001, LNCS 2165, pp. 87–104. Springer, 2001.

17. B. Gebremichael and F.W. Vaandrager. Specifying urgency in timed I/O automata. To appear
In Procs. of 3rd IEEE Conference on Software Engineering and Formal Methods, 2005.

18. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-
time systems. Inf. & Comp., 111:193–244, 1994.

19. H. Hermanns. Interactive Markov Chains : The Quest for Quantified Quality, LNCS 2428.
Springer, 2002.

20. J. Hillston. A Compositional Approach to Performance Modelling. Distinguished Disserta-
tion in Computer Science. Cambridge University Press, 1996.

21. H.E. Jensen, K.G. Larsen, and A. Skou. Scaling up Uppaal automatic verification of real-
time systems using compositionality and abstraction. In M. Joseph, ed., Procs. of FTRTFT
2000, LNCS 1926, pp. 19–30. Springer, 2000.

22. L. Lamport. What good is temporal logic? In R.E. Mason, ed., Information Processing 83,
pp. 657–668. North-Holland, 1983.

23. H. Lin and W. Yi. Axiomatizing timed automata. Acta Informatica, 38(4):277–305, 2002.
24. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
25. R. Segala, R. Gawlick, J.F. Søgaard-Andersen, and N.A. Lynch. Liveness in timed and un-

timed systems. Inf. & Comp., 141(2):119–171, 1998.

140 P.R. D’Argenio and B. Gebremichael

26. J. Sifakis and S. Yovine. Compositional specification of timed systems. In Procs. of the
STACS’96, LNCS 1046, pp. 347–359, Grenoble, France, 1996. Springer.

27. S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting bisimulations.
Formal Methods in System Design, 18(1):25–68, 2001.

28. S. Yovine. Model checking timed automata. In G. Rozenberg and F.W. Vaandrager, eds.,
Lectures on Embedded Systems, LNCS 1494, pp. 114–152. Springer, 1998.

	Introduction
	Preliminaries
	Towards a Congruence Relation
	Symbolic Characterization of -Bisimulation
	The Coarsest Congruence Included in
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

