
Submission for PEPM ’11

iTasks for a Change
Type-safe run-time change in dynamically evolving workflows

Rinus Plasmeijer1 Peter Achten1 Pieter Koopman1

Bas Lijnse1,2 Thomas van Noort1 John van Groningen1

1 Institute for Computing and Information Sciences, RadboudUniversity Nijmegen
P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands

2 Faculty of Military Sciences, Netherlands Defence Academy
P.O. Box 10000, 1780 CA, Den Helder, The Netherlands

{rinus, p.achten, pieter, b.lijnse, thomas, johnvg}@cs.ru.nl

Abstract
Workflow management systems (WFMS) are software systems that
coordinate the tasks human workers and computers have to per-
form to achieve a certain goal based on a given workflow descrip-
tion. Due to changing circumstances, it happens often that some
tasks in a running workflow need to be performed differently than
originally planned and specified. Most commercial WFMSs cannot
deal with the required run-time changes properly. These changes
have to be specified at the level of the underlying Petri-Net based
semantics. Moreover, the implicit external state has to be adapted
to the new task as well. Such low-level updates can easily lead to
wrong behaviour and other errors. This problem is known as the
dynamic change bug. In theiTask WFMS, workflows are specified
using a radically different approach: workflows are constructed in a
compositional style, using pure functions and combinatorsas self-
contained building blocks. This paper introduces a change concept
for the iTask system where self-contained tasks can be replaced
by other self-contained tasks, thereby preventing dynamicchange
bugs. The static and dynamic typing system furthermore guarantees
that these tasks have compatible types.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages

Keywords type-safe run-time change, combinators, workflow

1. Introduction
Workflow management systems (WFMS) are software systems that
coordinate, generate, and monitor tasks performed by humanwork-
ers and computers. Such systems are interesting to study because
they are nontrivial representatives of how contemporary distributed
software systems are manufactured. A concrete workflow ensures
that essential actions are performed in the right order. Workflows
have potentially long running times (in the order of months and

[Copyright notice will appear here once ’preprint’ option is removed.]

years) during which many workers and computers can be involved.
It is well known from literature (Van der Aalst, 2001) that during its
life-cycle, a workflow needs to adapt to handle changing require-
ments, ad-hoc situations, evolutionary concerns, and so on. It also
illustrates that adapting a running workflow system easily leads to
incorrect behaviour. This phenomenon is known as the dynamic
change bug (Ellis et al., 1995). Most traditional WFMSs are af-
fected by this issue because their semantics is based on Petri Nets.
Changes are made on the level of individual places and transitions,
which is a too low level of abstraction. Making an arbitrary change
in a Petri Net while the tokens are moving around often leads to
errors. Moreover, the tasks have an implicit external statewhich
is often stored in a database. This state has to be adapted to the
changed task without corrupting the state of other tasks stored in
the same database.

The iTask system (Plasmeijer et al., 2007) distinguishes itself
from traditional WFMSs. First,iTask is actually a monadic combi-
nator library in the pure and lazy functional programming language
Clean. It defines a WFMS, embedded inClean where the com-
binators are used to combine tasks. Tasks are defined by higher-
order functions which are pure and self contained. Second, most
WFMSs take a workflow description specified in a workflow de-
scription language (WDL) and generate a partial workflow applica-
tion that still requires substantial coding effort. AniTask specifica-
tion on the other hand denotes a full-fledged, web-based, multi-user
workflow application. It strongly supports the view that a WDL
should be considered as a complete specification language rather
than a partial description language. Third, despite the fact that an
iTask specification denotes a complete workflow application, the
workflow engineer is not confronted with boilerplate programming
(data storage and retrieval, GUI rendering, form interaction, and
so on) because this is all dealt with using generic programming
techniques. Fourth, aniTask workflow evolves dynamically, de-
pending on user-input and results of subtasks. Fifth, in addition
to the host language features, theiTask system adds higher-order
tasks (workflow units that create and accept other workflow units)
and recursion to the modelling repertoire of workflow engineers.
Sixth, in contrast with the large catalogue of common workflow
patterns (Van der Aalst et al., 2002),iTask workflows are captured
by means of a small number of core combinator functions.

In this paper we show how type-safe run-time changes are in-
corporated iniTask. Together with the compositionality and self-
containedness of tasks, this prevents dynamic change bugs.Type-
safe run-time change is challenging for several reasons. First, an
iTask workflow dynamically evolves. This implies that the set of

1 2010/10/21

edit :: String a → Task a | iTask a
(@:) infixr 5 :: p (Task a) → Task a | property p

& iTask a
return :: a → Task a | iTask a
(>>=) infixl 1 :: (Task a) (a → Task b) → Task b | iTask b
(-||-) infixr 3 :: (Task a) (Task a) → Task a | iTask a
(-&&-) infixr 4 :: (Task a) (Task b) → Task (a, b)

| iTask a & iTask b

Figure 1. The iTask core combinator functions.

tasks that may require replacement is not known in advance and
that a change must take both the current workflow state into ac-
count as well as its future. Second, all tasks are typed and include
context restrictions for ad-hoc polymorphic and generic functions.
This implies that a single change is really about changing a set of
functions. Third,iTask workflows are constructed using combina-
tors. We show that we can handle all changes by modifying only
one single combinator drastically. For the sake of clarity,we em-
phasize that in this paper we concentrate on the change mechanism
and its semantics. There are still many challenging research ques-
tions to be answered with respect to validation and formal reason-
ing of changes, but this remains future work.

This paper is organized as follows. First, we describe the core
iTask system and explain its usage by means of a running example,
a paper review workflow (Section 2). Next we explain the concept
of change functions and illustrate how it is used to alter thepa-
per review workflow (Section 3). We capture the semantics by first
giving a reference implementation of the core combinator func-
tions (Section 4) after which we extend it with type-safe run-time
changes (Section 5). Finally, we compare our approach with related
work (Section 6) and conclude and discuss future work (Section 7).

2. The iTask core system
In this section we give a brief overview of theiTask system. We re-
strict ourselves, without loss of generality, to the core combinator
functions (Section 2.1), which we then use in the running exam-
ple (Section 2.2). The actualiTask system offers a couple of addi-
tional combinators for advanced task structures, workflow process
management, and exception handling. The change mechanism is
orthogonal to these features.

2.1 The core combinator functions

The core combinator functions of theiTask system are displayed
in Figure 1. (Note that inClean the arity of functions is shown
explicitly by separating argument types by spaces instead of→.) A
task has an opaque typeTask a: the type parametera is the type of
the result value that is committed once the task finishes.

One primitive task concerns editors: an editor is created with
edit prompt va. When applied to an initialva of some typea, it cre-
ates a GUI in which the worker can inspect and alter the given value
arbitrarily many times. An editor can create and handle sucha GUI
for any first-order typea. It uses a set of generic functions (hence
the context restrictioniTask a) which are derived by the compiler
automatically. TheiTask system guarantees that only values of type
a are created. This continues until the worker decides to commit
the value to the workflow, which terminates the taskedit prompt va.
Theprompt argument provides the worker with information about
the purpose of this task.

Tasks can be assigned several properties using the@: combina-
tor. For now, we restrict the properties to an identificationlabel and
the user who has to work on the task (of the opaque typesLabel and
User respectively). Ifu :: User andl :: Label, thenu @: ta, l @: ta,
and(u, l) @: ta sets the worker, label, and both respectively of task

ta. In general, properties that can be set are captured by the type
classproperty, which will be discussed later in Section 3.1. We call
the @:-annotated tasksmain tasks. As we will see later on, such
tasks will be subject to change once the workflow is running.

To compose tasks sequentially, the monadic combinatorsreturn

and>>= (Wadler, 1990) are provided. The taskreturn va succeeds
immediately and emits its valueva. In ta >>= atb, the taskta is
evaluated first. When this task returns its value, sayva, it is passed
toatb to compute the next task to be executed.

To compose tasks in parallel, the combinators-||-and-&&- are
provided. A task constructed using-||- is finished as soon as either
one of its subtasks is finished, returning the result of that task. The
combinator-&&- is finished as soon as both subtasks are finished,
and pairs their results.

2.2 Running example: a paper review workflow

In this section we illustrate the use of theiTask system by designing
a workflow for reviewing papers that can be part of a conference
management system.

We start with defining the types that determine the universe
of discourse. For conciseness, we use very simple types: a paper
is represented by some opaque typePaper for which two access
functions are available to display the title and full content:

:: Paper
title :: Paper→ String
full :: Paper→ String

We define two label-generating functions, using a constructor func-
tionlabel :: String → Label, to identify the tasks for reviewing and
bidding for papers:

reviewLabel :: Paper→ Label
reviewLabel p= label ("review " + title p)

bidLabel :: Paper→ Label
bidLabel p= label ("bid " + title p)

The chair and other members are synonyms of the opaque typeUser:

:: Chair :==User
:: PC :== [Reviewer]
:: Reviewer :==User

Programme committee members bid for papers to review, and for
those papers that they are in charge of, they make a decision.A
decision is either toReject, Discuss, orAccept a paper:

:: Bid :== (Reviewer, [Paper])
:: Review :== (Paper, (Reviewer, Decision))
:: Decision = Reject | Discuss | Accept

This settles the universe, we proceed with the tasks. First we design
a task that lets all programme committee members bid for papers.
We proceed in a bottom-up fashion and first create another main
task to ask a programme committee member whether she would
like to review a specific paper (the valueTrue is the default value):

choosePaper :: Paper→ Task Bool
choosePaper p= bidLabel p @: edit (title p) True

We present the choice for each paper and obtain the selected papers
using a parallel list comprehension that filters the chosen papers:

choosePapers :: [Paper] → Task [Paper]
choosePapers ps= all (map choosePaper ps) >>=λds →

return [p \\ p←ps & True←ds]

The functionall guarantees that all tasks in the list are evaluated to
completion, and collects and returns their results:

all :: ([Task a] → Task [a]) | iTask a
all= foldr (λta tas→ ta -&&- tas >>=λ(va, vas) →

return [va:vas]) (return [])

2 2010/10/21

Next, we ask the bid of all programme committee members:

assignPapers :: PC [Paper] → Task [Bid]
assignPapers pc ps= all [member @: (choosePapers ps >>=λs →

return (member, s))
\\ member←pc
]

The resulting list tells us which papers the programme committee
members want to review. In a real system, the chair verifies the
number of reviewers per paper, which is not modelled here dueto
limited space.

Now we design a single paper review for some reviewer, identi-
fied by the title of the paper. The reviewer either reviews thepaper
or delegates the task to another reviewer. Hence, this task is mod-
eled as a choice between two alternatives:

reviewPaper :: Paper Reviewer → Task Review
reviewPaper p r= reviewLabel p @:

(plainReview p r -||- delegateReview p r)

A plain review of a paper shows the paper to the reviewer, who
decides to reject, discuss (the initial value), or accept the paper:

plainReview :: Paper Reviewer → Task Review
plainReview p r= edit (full p) Discuss >>=λd →

return (p, (r, d))

Alternatively, a reviewer may decide to delegate the reviewof a
paper to another reviewer. Hence,reviewPaper is an example of a
recursive workflow. The original reviewer remains responsible for
reviewing the paper, which explains why she is still passed as an
argument to the recursivereviewPaper:

delegateReview :: Paper Reviewer → Task Review
delegateReview p r= edit "Delegate review" r >>=λother→

other @: reviewPaper p r

Given this assignment, we ask all members to perform their tasks:

reviewPapers :: [Bid] → Task [Review]
reviewPapers bids= all [r @: reviewPaper p r

\\ (r, ps)←bids, p←ps
]

The entire workflow of first making a selection of papers, followed
by reviewing all papers by all reviewers, is a simple succession:

reviews :: PC [Paper] → Task [Review]
reviews pc ps= assignPapers pc ps >>= reviewPapers

A conference management system can use this result to automati-
cally separate all clear cases (i.e., all reject and all accept) from the
papers that require discussion.

The final step is to turn this specification into an executableap-
plication. The main function inClean is calledStart and must ac-
cept and return a unique*World value in order to interact with the ex-
ternal world. The type attribute* is due toClean’s uniqueness typ-
ing (Barendsen and Smetsers, 1993) to ensure single-threaded use
of the corresponding object, which allows us to model side-effects
in a pure functional language. The library functionstartEngine takes
a list of workflow specifications, using the constructor function
workflow that are made available to the workers:

Start :: *World → *World
Start world= startEngine [workflow "Review" reviewWF] world

reviewWF :: Task [Review]
reviewWF= getUsersWithRole "chair" >>=λchairs →

getUsersWithRole "reviewer" >>=λpc →
readDB "papers" >>=λpapers →
(hd chairs, label "reviews") @: reviews pc papers

To complete the example, the proper workers and papers need to
be loaded. TheiTask system supports several functions to obtain
information about its workers. The library functiongetUsersWithRole
takes a role and yields all currently registered workers whohave
that role,readDB takes an identifier and reads the information from
the corresponding database. Finally, we assign the main review
tasksreviews to the chair with the label"reviews".

3. Type-safe run-time change
The iTask system includes many features to define workflows.
Despite this expressive power, it is cumbersome to anticipate on
every possible future way of working in a workflow specification.
Moreover, it is too much work to anticipate on all changes that
can happen simply because the workflow would become much too
complicated. The ability to make changes at run time helps tokeep
workflow specifications concise. When specifying the workflow,
we define the current way of working. At run time it is determined
when and where a change in the way of working is needed.

In order to keep the system simple, we only allow main tasks
to be changed, meaning, tasks explicitly labelled using the@: com-
binator. This is not a fundamental restriction since any task can be
promoted to a main task. Moreover, other combinators can be made
aware of changes in the same fashion.

In the remainder of this section we first explain what prop-
erties of a task are (Section 3.1) and what a change function
is (Section 3.2). We create an API for often occurring change
patterns (Section 3.3). Next we use this API in the running ex-
ample (Section 3.4) to demonstrate a number of changes.

3.1 Properties

As alluded to in Section 2.1, tasks can have several properties.
These are captured by the opaque typeProperties. The type class
property defines the properties that can be set and get:

classproperty p where
setProperty :: p Properties → Properties
getProperty :: Properties → p

instanceproperty Label, User

Instances for the typesLabel andUser are used in this paper.

3.2 Dynamic change

A workflow under execution consists at any time of at least one
main task. The mechanism of change that we propose in this paper
is as follows. A change is a function that is applied to a main task if
it fits the properties and type of that task. Based on the properties of
the main task to be changed, the change function decides whether
or not to change the properties, the entire main task, and also how
to continue changing in the future. This is performed for allcurrent
main tasks, as well as for future main tasks in the workflow. A
change that alters main tasks of typeTask a is a function of type
Change a:

:: Change a :==Properties (Task a) (Task a)
→ (Maybe Properties

, Maybe (Task a)
, Maybe ChangeContinuation
)

Its arguments are the current propertiesp of the main task, the
expression corresponding to the current taskcurrent of typeTask a,
and the original description of the taskoriginal, also of typeTask a.

If the change function yields new propertiesnp, these are used
instead of the current propertiesp. Such a change establishes for
instance that a specific task is moved from one worker to another.

If the change function yields a new tasknew, the old taskcurrent
is aborted and replaced bynew. Naturally, new has to be of the

3 2010/10/21

same type ascurrent. It can be constructed from the taskcurrent,
representing the task possibly under current evaluation, as well as
the original task descriptionoriginal, representing the same task
before people were working on it. So, we can either constructa
complete new task, or continue with the work but let it for example
be followed by a supervising task inspecting its result, or restart the
main task from scratch if necessary. By changing the task, a worker
might be faced with the fact that her work is no longer needed or
that something else has to be performed. TheiTask system informs
the user about such issues.

If the change function yields a continuation (Just cf), the type
of which is discussed below, then the change function wants to
alter another main task, but now it will use functioncf to make
the change. This allows the change function to alter its behaviour,
making use of the knowledge it obtained from inspecting the main
tasks so far. If there are no more current main tasks in the workflow,
then the change function needs to be memorized in order to be
applied to future main tasks. If the change function yields no
continuation (Nothing), then the change is said to beexhausted, and
it is removed from theiTask system.

The type of theChangeContinuation deserves special attention.
The typeChange a is too restrictive since only main tasks of the same
type can be changed. Returning a change of type∀a: Change a is too
liberal, with this type we cannot limit changes to tasks of a specific
type. The dynamic typing system ofClean (Pil, 1999) solves this
problem. A change continuation is a dynamic that contains the
change continuation function of the desired type:

:: ChangeContinuation :== Dynamic

The dynamic value contains a change continuation function of type
Change b. The iTask system can only apply this function to a main
task of typeTask a if the typesa andb can be unified at run time, as
we will see in Section 5.3. Values of a different type will simply be
ignored.

Finally, all nonexhausted change functions are memorized in
their order of appearance in order to be applied to any futuremain
task that is created by the workflow under execution. If a change
function becomes exhausted, it is removed from the memorized
queue. Authorized users can also remove changes from this queue,
for instance when a change is no longer appropriate.

3.3 Change combinators

For convenience, we define a set of change combinators to create
proper change functions, as shown in Figure 2. We give examples
of their use in Section 3.4.

The initial changechange0 terminates change handling imme-
diately and alters neither properties nor tasks. Changes that only
concern properties, tasks, or the change continuation are expressed
preferably as functions overProperties, Task, and Change func-
tions. These functions are lifted to change functions withnewProps,
newTask, andnewChange respectively. A useful variant issetChange ncf,
which forces the change continuation to always becomencf.

Switching between two alternative change functionstf andef
is achieved byswitch cond tf ef, using a predicatecond on the
properties of the main task. Two frequently occurring patterns are
expressed in terms ofswitch: the functionwhen cond cf applies its
change only whencond holds, andonce cond cf applies its change
exactly once to the first task that satisfiescond and terminates.

A change function is applied to exactly one task, and then
determines how to proceed by returning a change continuation
function. Iteration of the same change is captured withrepeat cf,
which makes sure thatcf is applied from now on.

Sometimes it is desirable to overrule the result of a main task,
depending on its current properties. We introduce two overruling

functions:overruleOne cond vf overrules the first task that satisfies
the predicatecond, andoverruleAll cond vf overrules all of them.

3.4 Running example: changing the paper review workflow

We use the change combinators of Figure 2 to construct change
functions for the paper reviewing workflow example.

Suppose that reviewerr1 is no longer able to perform her duties,
and the symposium chair decides that all her work must be handed
over to reviewerr2. This is realized by the change functionhandOver:

handOver :: Reviewer Reviewer → Change a | iTask a
handOver r1 r2= repeat (delegate r1 r2)

delegate :: Reviewer Reviewer → Change a | iTask a
delegate r1 r2= newProps changeProp change0
where changeProp p | getProperty p == r1= setProperty r2 p

| otherwise = p

A slightly more involved example is to delegate the work of the
member to a list of members[pc1 . . .pcn] in round-robin order:

distribute :: Reviewer [Reviewer] → Change a | iTask a
distribute r [] = change0
distribute r [pc:pcs] = setChange (distribute r (pcs++ [pc]))

(delegate r pc)

As another example, suppose that the symposium chair decides
that a reviewing task has to be supervised by someone identified
assuper. The result of a completed taskta is offered tosuper, who
decides to edit this result and commit it or redo the entire task:

check :: String Reviewer (Task a) (Task a) → Task a | iTask a
check s super ta t0= ta >>=λva → super @: (edit s va -||- t0)

The symposium chair can now conditionally supervise tasks:

supervise :: (Properties → Bool) String Reviewer → Change a
| iTask a

supervise cond s super= repeat (when cond (newTask (check s super)
change0))

Such kind of overruling can be performed to the extreme: suppose
that the symposium chair decides that the result of a certainmain
task (e.g., a review) must be a specific value. If the chair knows the
label of the task, then this action is formalized as:

overrule :: Label a → Change a | iTask a
overrule l x= overruleOne (λps → getProperty ps == l) (const x)

Suppose that a late paperp arrives and the programme chair decides
to enter this paper in the reviewing workflow. She needs to extend
the main workflow, identified by the label"reviews" as used in
Section 2.2, with a new instance of an entire review for the single
paperp:

late :: PC Paper→ Change [Review]
late pc p= once (λps → getProperty ps==label "reviews") add
where add= newTask

(λta _ → ta -&&- reviews pc [p] >>=λ(old, new) →
return (old++ new))

change0

Conversely, suppose that an author withdraws her paper. In that
case, programme committee members should stop bidding or re-
viewing that particular paper. Such tasks are identified by their
bidLabel andreviewLabel:

noBid :: Paper→ Change Bool
noBid p= overruleAll (λps → getProperty ps == bidLabel p)

(const False)

noReview :: Paper→ Change Review
noReview p= overruleAll (λps → getProperty ps == reviewLabel p)

(λps → (p, (getProperty ps, Reject))

4 2010/10/21

change0 :: Change a
change0 =λp ta t0 → (Nothing, Nothing, Nothing)

newProps :: (Properties → Properties) (Change a) → Change a | iTask a
newProps fp cf =λp ta t0 → casecf p ta t0 of (Nothing, nta, ncf) → (Just (fp p) , nta, ncf)

(Just np, nta, ncf) → (Just (fp np) , nta, ncf)

newTask :: ((Task a) (Task a) → Task a) (Change a) → Change a | iTask a
newTask fta cf =λp ta t0 → casecf p ta t0 of (np, Nothing, ncf) → (np, Just (fta ta t0) , ncf)

(np, Just nta, ncf) → (np, Just (fta nta t0) , ncf)

newChange :: ((Change a) → Change a) (Change a) → Change a | iTask a
newChange fcf cf =λp ta t0 → casecf p ta t0 of (np, nta, Just (ncf :: Change a^)) → (np, nta, Just (dynamic (fcf ncf)))

(np, nta, ncf) → (np, nta, ncf)

setChange :: (Change a) (Change a) → Change a | iTask a
setChange ncf cf =λp ta t0 → casecf p ta t0 of (np, nta, _) → (np, nta, Just (dynamic ncf))

switch :: (Properties → Bool) (Change a) (Change a) → Change a | iTask a
switch cond tf ef =λp → i f (cond p) (tf p) (ef p)

when :: (Properties → Bool) (Change a) → Change a | iTask a
when cond cf = switch cond cf change0

once :: (Properties → Bool) (Change a) → Change a | iTask a
once cond cf = switch cond cf (setChange (once cond cf) change0)

repeat :: (Change a) → Change a | iTask a
repeat cf = setChange (repeat cf) cf

overruleOne :: (Properties → Bool) (Properties → a) → Change a | iTask a
overruleOne cond vf= once cond (λp → newTask (λ_ _ → return (vf p)) change0 p)

overruleAll :: (Properties → Bool) (Properties → a) → Change a | iTask a
overruleAll cond vf= repeat (when cond (λp → newTask (λ_ _ → return (vf p)) change0 p))

Figure 2. The iTask change combinators.

After the manager has applied these two change functions to the
workflow, every bid is converted to not selecting it, and a review is
changed to reject it. As a consequence, the programme committee
members do not perform redundant work.

The above functions are all examples of change functions. They
can be stored and loaded as dynamic values in arbitraryClean pro-
grams. To actually apply such a change function to aniTask work-
flow, an authorized user loads such a dynamic change function,
identifies it with a label, and inserts it in the workflow. The label
is required to allow the user to remove the change function atany
later time.

With these examples, we demonstrate that realistic changescan
be modelled concisely with a set of combinators. Each of these
changes could have been anticipated within the original workflow,
but this would have resulted in an unwieldy workflow specification.

4. The iTask core reference implementation
In this section we first capture the semantics of theiTask core
system as defined in Section 2. Change handling as described in
Section 3, is treated in Section 5. As we will see, change handling
is defined in such a way that it only affects the@: combinator. The
semantic definitions of all other combinators remain the same.

We express the semantics in terms of a reference implementa-
tion, usingClean as modeling language. There are several advan-
tages to this approach. First, using a strongly typed programming
language with an expressive type system gives static type checking
of the semantic model for free. Second, it allows the model tobe
executed to verify if it behaves as expected. Execution of a carefully
designed set of unit tests appeared to be crucial in order to validate

various versions of the semantics. Third, use ofClean creates no
artificial gap between the modeling language and actual implemen-
tation, which would occur had we used Agda, Coq, or other means.

The semantic description we present here for theiTask core sys-
tem is different from an earlier version (Koopman et al., 2009). The
main goal of that work was to establish an initial semantics and in-
vestigate its properties using model-based testing. In that approach,
we make use of an algebraic datatype to model combinators andare
forced to use a closed universe of task types. Here we define the se-
mantics of the combinators using semantic functions; thereare no
restrictions on the types being used. Instead of semantic functions,
the use of generalised algebraic data types (Peyton Jones etal.,
2006) would have been an alternative approach, but this requires
an integration with dynamic types (Van Noort et al., 2010a).

The signatures of the semantic functions correspond closely to
the original signatures of the modeled combinator functions. The
semantic function of a combinator function of typeTask a has type
STask a (Section 4.1) and describes a one-step reduction of a task
given a worker event and current state of the workflow.

In the reference implementation we abstract from all details that
involve boilerplate programming, such as data storage and retrieval,
GUI rendering, form interaction, and so on. For this reason,the
semantic functions do not include theiTask context restriction, but
do requireDynamic to handle input of arbitrary type.

Although workers are assumed to work in a distributed setting,
the events they produce are collected and sequentially offered to
the iTask system. It handles events one by one in a big event-
handling loop (Section 4.2) such that we do not have to worry about
concurrency. The reduction of tasks with respect to event sequences

5 2010/10/21

describes a term-rewriting system. It is a fixed-point computation
that eventually may lead to a task in normal form. The effect of
one reduction step is a reduced term which, if the fixed point is
not reached, is capable of handling the next event. Additionally, the
set of next possible input events is calculated, which is used by the
real iTask system to generate proper feedback and a GUI for the
workers.

4.1 Semantic types

A semantic function performs a one-step reduction based on the
current identification and properties of the task, as well asthe
worker event and state of the system. Its type is defined as follows:

:: STask a :==TaskId Properties Event State→ *(Reduct a, State)

As a notational convention, these functions use the formal parame-
tersλi p e s → Next, we explain the individual components of
theSTask type.

Stable task identifiers Several workers can work on tasks at the
same time. Since each worker has her own GUI, the state of the
workflow system can be changed by someone else while a worker
is still working on a task. Meanwhile, new tasks can be created
while others are no longer needed. Hence, we have to guarantee
that a task someone is working on is uniquely identified and that
this identification remains the same over time under all conditions.
To enforce such stable unique task identifiers, we impose an iden-
tification scheme that encodes the path from the root of the task
expression to the given combinator function by a list of integers:

:: TaskId :== [Int]

taskId0 :: TaskId
taskId0 = [0]

We usetaskId0 as the initialTaskId. A combinator with unique
identificationi identifies its subexpressions uniquely as[0 : i] ,
[1 : i] , . . . , as specified bysubIds:

subIds :: TaskId → [TaskId]
subIds i= [[n : i] \\ n← [0 ..]]

Properties As described earlier in Section 3.1, tasks can have
several properties. Hence, the semantic function of a task takes such
properties. The initial properties are defined byprops0, which we do
not define in this paper sinceProperties is opaque.

Events The generic foundation of theiTask system permits us to
abstract from GUI programming, and instead refer to GUI elements
in terms of the value of their editors. The value of an editor can be
any type, hence we use a dynamic to store its value.

A worker who terminates an editor, emits aCommit tid event. A
worker who manipulates the GUI that is generated by anedit task
with identification valuetid, updates a newvalue of corresponding
type and emits anUpdate tid (dynamic value) event. Not all worker
events are related to editor tasks: examples of other eventsare when
a worker signs in into the system or asks to refresh (part of) the
GUI:

:: Event = Commit TaskId | Update TaskId Value | Refresh
:: Value:==Dynamic

Reductions of subtasks (e.g.,return) can cause further reduction
which needs to be triggered as well. We model this behaviour also
with Refresh.

State The combinator library of theiTask system is a monadic
state transformer. The unique state consists of two components: the
states of all currently active, nonterminated editors, andthe unique
external world that links theiTask workflow with its environment:

:: *State = {es :: [EditorState] , world :: *World}
:: EditorState :== (TaskId, User, Value)

While handling an event, every nonterminated editor accumulates
its current state in the collection of editor states. As a result, after
the workflow has entirely handled the event, the state has an exact
and complete record of the states of all currently active editors. The
presence of the external world in the state demonstrates that the
workflow engineer can, in principle, create custom tasks with side-
effects. It should be noted that we do not discuss this further in this
paper. In addition, it makes the connection between the workflow
and the external world explicit, using two semantic functions:

showGUI :: State→ State
getNextEvent :: State→ (Event, State)

The functionshowGUI renders the states of the current active editors
(which are collected in thees field of the state), and displays them
in the external world. The functiongetNextEvent retrieves an event
from the external world. Their definitions are not relevant to this
paper. Finally, the initial state is created withstate0:

state0 :: *World → State
state0 world= {world= world, es= []}

Reducts The reduction semantics describes the reduction be-
haviour for each combinator of theiTask system with a seman-
tic function. A task combinator expression reduces to either task
normal form or to a new task combinator expression:

:: Reduct a= NF a | Redex (STask a)

A task is in normal form when it is terminated and has committed
its finalvalue, its reduct isNF value. Note that the committedvalue
is lazy like any other value inClean and hence not necessarily in
normal form. The reduct of a task that is not yet terminated, is a new
task expression. Such a valuenta has typeSTask a, and the reduct
has valueRedex nta.

4.2 Task normalization

The evaluation of a combinator expression is defined by the func-
tion normalize which is a fixed-point computation that terminates
when a normal form is reached:

1 normalize :: (STask a) *World → (a, *World)
2 normalize ta world= toNF (startTask ta Refresh (state0 world))
3

4 toNF :: (Reduct a, State) → (a, *World)
5 toNF (NF va, s) = (va, s.world)
6 toNF (Redex ta, s) = toNF (reduce ta (getNextEvent (showGUI s)))
7

8 reduce :: (STask a) (Event, State) → (Reduct a, State)
9 reduce ta (e, s)

10 | valid e s.es= startTask ta e s
11 | otherwise = (Redex ta, showError "Invalid event" e s)
12

13 startTask :: (STask a) Event State→ (Reduct a, State)
14 startTask ta e s= ta taskId0 props0 e {s & es= []}

All current editor states that are accumulated in the state are offered
to the workers usingshowGUI. They either update or commit an
arbitrary editor with an arbitrary (but type-preserving) new value
which generates an event that is collected usinggetNextEvent. Only
valid events cause a reduction of the workflow (line 10). When
evaluating a new event, the task is provided with the proper initial
values of task identification, properties, and an empty accumulator
of editor states, as defined bystartTask (lines 13-14).

Invalid events can be generated by workers who are looking at
old versions of the workflow in their GUI and who generate events
corresponding to tasks which are no longer needed. Due to the

6 2010/10/21

consistent naming of tasks, we can determine if an event belongs
to an editor who is still active by comparing its identifier tothe
identifiers of active editors collected in the state:

valid :: Event [EditorState] → Bool
valid (Commit tid) es= isMember tid [j \\ (j, _, _)←es]
valid (Update tid _) es= isMember tid [j \\ (j, _, _)←es]
valid _ _ = True

In case of an invalid event, an error message is shown using the
helper functionshowError (line 11).

4.3 Combinator semantics

We now define the semantic functions for theiTask core system
shown in Figure 1. Each occurrence ofTask is replaced bySTask in
the original signatures.

We start with theedit combinator, which is the only semantic
function that inspectsCommit andUpdate events:

1 edit :: String a → STask a | Dynamic a
2 edit _ va=λi p e s →
3 casee of
4 Commit tid
5 | tid==i → (NF va, s)
6 Update tid (nva :: a^)
7 | tid==i → (Redex (edit nva) , addES i p nva s)
8 _ → (Redex (edit va) , addES i p va s)
9

10 addES :: TaskId Properties a State→ State | Dynamic a
11 addES i p va s= {s & es= [(i, getProperty p, dynamic va) : s.es]}

An event matches an editor if the task identification values are equal
(lines 5 and 7). Although we know that the type of an updated
value is identical to the type of the value of an editor, we need
to guarantee this (line 6). Here we make use of a type-dependent
dynamic pattern match ofClean (Pil, 1999). In the pattern match
it is checked whether the event valuenva stored in a dynamic is of
the same typea as this particular editor. The three kinds of events,
as defined earlier in Section 4.1, each inflict different behaviour of
edit. First, if the worker has terminated the task editor, the task
reduces to task normal form with the current value stored in the
editor (line 5). Second, if the worker has changed the current value
of the task editor tonva (line 6), then the task editor reduces to a
task editor with thenva value (line 7). In any other case the current
value of the task editor is not changed (line 8). Except when the
task normal form is reached, the current editor state is accumulated
in the workflow state.

The semantic function of@: assigns a new property to the given
task. This is achieved straightforwardly by updating the old prop-
erties with the new property as long as this combinator is a redex:

(@:) infixr 5 :: p (STask a) → STask a | property p
(@:) np ta =λi p e s →

caseta i (setProperty np p) e s of
(Redex nta, s) → (Redex (np @: nta) , s)
reduct → reduct

The new properties set bynp @: ta are inherited by all subtasks
within ta until overruled by another occurrence of@:.

The monadic combinators arereturn and>>= :

1 return :: a → STask a
2 return va=λi p e s → (NF va, s)
3

4 (>>=) infixl 1 :: (STask a) (a → STask b) → STask b
5 (>>=) ta atb=λi p e s →
6 caseta (subIds i !! 0) p e s of
7 (NF va, s) → setTaskId (λi → subIds i !! 1) (atb va)
8 i p Refresh s
9 (Redex nta, s) → (Redex (nta >>= atb) , s)

The semantic function ofreturn immediately emits its argument
value as normal form without modifying the state (line 2). The se-
mantic function of>>= is the bind operator of a state monad. In
ta >>= atb, ta is reduced one step first (line 6). (The expression
xs !! i selects theith element ofxs.) If a task normal form is
reached (line 7), then the committed valueva of that task is applied
to the second argument of>>= (line 8). A Refresh event is applied
to the newly created task in order to collect its events in thestate.
If the task is still a redex, then a new redex is constructed (line 9).
Note that caution is advised in numbering subexpressions since the
one-step reduction can change the shape by transformingta >>= atb

to atb va, whereva is the task normal form value ofta. The func-
tion setTaskId is used to warrant the correct identification of new
subtasks:

setTaskId :: (TaskId → TaskId) (STask a) → STask a
setTaskId fi ta=λi p e s →

caseta (fi i) p e s of
(Redex nta, s) → (Redex (setTaskId fi nta) , s)
reduct → reduct

When given a function that generates a correct task identification
value,setTaskId will always start numbering with this identification
value. In case of>>=, the second subtask needs to receive the second
subidentification value at index 1 (line 7).

The semantic function of-||- is defined as follows:

1 (-||-) infixr 3 :: (STask a) (STask a) → STask a
2 (-||-) ta ua=λi p e s →
3 caseta (subIds i !! 0) p e s of
4 (NF va, s) → (NF va, s)
5 (Redex nta, s) →
6 caseua (subIds i !! 1) p e s of
7 (NF wa, s) → (NF wa, s)
8 (Redex nua, s) → (Redex (nta -||- nua) , s)

When reduction of the left subtaskta yields a normal form, the cor-
responding value is the result of this expression (line 4). Otherwise
the right task,ua, is reduced. If that yields a normal form the entire
reduction is also finished (line 7). When neither subtask is finished
a new instance of the combinator is constructed using the updated
subtasks (line 8). The semantic function of-&&- is defined similarly:

1 (-&&-) infixr 4 :: (STask a) (STask b) → STask (a, b)
2 (-&&-) ta tb=λi p e s →
3 let (reducta, s1) = ta (subIds i !! 0) p e s
4 (reductb, s2) = tb (subIds i !! 1) p e s1
5 in case (reducta, reductb) of
6 (NF va, NF vb) → (NF (va, vb) , s2)
7 (NF va, Redex ntb) → (Redex (return va -&&- ntb) , s2)
8 (Redex nta, NF vb) → (Redex (nta -&&- return vb) , s2)
9 (Redex nta, Redex ntb) → (Redex (nta -&&- ntb) , s2)

First, the left subtask,ta, is reduced. Then, the right subtask,tb is
reduced using the state of the first reduction. When both tasks are
in normal form, reduction is finished and the results are paired and
returned (line 6). Otherwise, a new instance of the combinator is
constructed using the updated tasks (lines 7-9). If only oneof the
subtasks is in normal formNF va, the trivial redexreturn va is used.

5. Change handling reference implementation
In this section, we discuss what it takes to extend the reference
implementation of theiTask core system with change handling.
We first describe the changes to the elements of the semantic
types (Section 5.1). We then proceed with task normalization (Sec-
tion 5.2) and show how changes that enter a workflow during re-
duction are memorized and can be removed. Handling current and
pending changes is performed only by the change-aware@: combi-
nator (Section 5.3).

7 2010/10/21

5.1 Semantic types

The type of a semantic function remains the same (we repeat itfor
easy reference), only events and state are altered:

:: STask a :==TaskId Properties Event State→ *(Reduct a, State)

Events As discussed in Section 3.4, authorized users can add and
remove changes. This is captured by two new worker events to add
(AddChange) and remove (RemoveChange) changes:

:: Event = Commit TaskId | Update TaskId Value | Refresh
| AddChange LabeledChange
| RemoveChange (ChangeLabel → Bool)

:: LabeledChange :== (ChangeLabel, ChangeContinuation)
:: ChangeLabel :==String

State The state is extended with change administration:

:: State = { es :: [EditorState] , world :: *World
, cc :: Maybe LabeledChange
, cq :: Queue LabeledChange
}

:: Queue a :== [a]

Changes are stored in the state for two reasons. First, a change
function modifies itself via its change continuation, and weneed to
keep track of its initial and successive values. The currentchange
is stored in thecc field of the state. Second, when all current main
tasks have been changed and we still have a change continuation,
then the change needs to be applied to future main tasks. This
change is appended to the change queuecq. Whenever new tasks
are created this queue of change functions is applied in the same
order as they have been issued. We define several access functions:

setChange :: (Maybe LabeledChange) State→ State
setChange nc s= {s & cc= nc}

queueChange :: (Maybe LabeledChange) State→ State
queueChange (Just c) s= {s & cq= s.cq++ [c]}
queueChange _ s= s

storeChange :: State→ State
storeChange s=:{cc}= setChange Nothing (queueChange cc s)

The functionsetChange updates the current change of the state,
queueChange appends a change function to the queue of pending
changes, andstoreChange moves the current change to the queue
of pending changes.

5.2 Task normalization

As we have seen in Section 4.2, a running workflow is characterized
by the semantic functionsnormalize andreduce. We only need to
adaptreduce to add and remove changes:

1 reduce :: (STask a) (Event, State) → (Reduct a, State)
2 reduce ta (e, s) =
3 casee of
4 AddChange c
5 → let (reduct, s2) = startTask ta Refresh
6 (setChange (Just c) s)
7 in (reduct, storeChange s2)
8 RemoveChange p
9 → (Redex ta, {s & cq= filter (not o p o fst) s.cq})

10 _ | valid e s.es= startTask ta e s
11 | otherwise = (Redex ta, showError "Invalid event" e s)

Nonchange events are handled exactly as before (lines 10-11).
Adding a change causes reduction of the task with the given change
set as current change (lines 5-6). After reduction, the (potentially
updated) change is stored in the queue of pending changes (line
7). Removing a change is a matter of keeping changes that do not
satisfy the removal predicatep (lines 8-9).

5.3 Change-handling semantics

The key challenge is to adapt the@: combinator to make it aware
of changes. This is a complex operation for several reasons.First,
whennp @: t0 is reduced,t0 is the initial subtask description that is
required as third argument of any matching change function.As a
consequence,t0 needs to be memorized during further reductions.
Second, as soon as a new main task is created, all pending changes
need to be applied to it in the order of their occurrence. Thisalso
requires memorization because each matching change can alter the
properties and the task. When the task changes, we change the
identification value of the subtask (by incrementing its index in
the list of subidentification values that is generated withsubIds,
see Section 4.1). Third, any matching change produces either a
continuation which should be used next time or it is exhausted.

For clarity of presentation, we have collected the necessary def-
initions in Figure 3. In contrast to the earlier semantic function def-
initions, the reduction behaviour of the@: combinator that includes
changes consists of two stages. First, all pending changes are han-
dled exactly once (line 3). Naturally, if this results in a task in task
normal form, we are done (line 5). Otherwise, the second stepis to
reduce to the internal combinator ((nn, np, t0) @:+ nta) (line 4). It
keeps track of the correct subtask identification index, properties,
and the initial task, together with the result of the earlierreduction.
The internal combinator@:+ (lines 7-13) keeps rewriting to itself as
long as its subtask is not in task normal form (line 10). Note that
the initial taskt0 remains constant. If there is a current change, it is
handled as described bydoOneChange (line 12). If there is no current
change, we only need to reduce its subtask (line 13).

Handling pending changes one by one amounts to folding
doOneChange over the queue of pending changes. This is expressed
concisely bydoPendingChanges (line 18-19).

The functiondoOneChange (lines 21-32) handles a change if it
matches the given task. It should not matter whether this change
is a pending change or a new change. The only difference is that
a pending change, if not exhausted, needs to be restored in the
queue of pending changes, whereas a current change needs to be
restored as current change. Hence,doOneChange is parameterized
with a restore function of typeRestoreChange (line 16) that restores
the altered change function in the state. In case of@:+ this is the
functionsetChange and in case of pending changes this is function
queueChange (both functions were introduced earlier in Section 5.1).

Finally, doOneChange is the pivotal function that actually applies
the change to a task. To make it suited for handling pending changes
as well as current changes, it alters a structure of typeChangeResult a

(line 15) which keeps track of the subtask identification index,
properties, task – as a redex –, and state. Required additional in-
formation is passed as the first three arguments: the initialtask de-
scription, the current subtask identification index, and the means
to restore the change continuation function in the state (line 22).
A change can be applied without compromising type safety when
either its type can be unified with the type of the task (line 24) or if
the change function itself is sufficiently generic to handlethe task
(line 25). Both cases require extensions to standard dynamic typ-
ing: type-dependent patterns (Pil, 1999), and ad-hoc polymorphic
functions in dynamics (Van Noort et al., 2010b). If the checks fail,
then we only need to restore the change function in the state (line
26). Handling a matching change is described by thechange func-
tion (lines 27-32). We apply the change to the required arguments
(line 29) and obtain the next subtask identification index, task, and
change continuation (line 30). (The functionfromJust‘ removes the
Just constructor from its second argument if it has one, and returns
the first argument otherwise.) A new reduct is computed (line32),
the change continuation is restored, and possibly altered subtask
identification index and properties are returned (line 27).

8 2010/10/21

1 (@:) infixr 5 :: p (STask a) → STask a | property p & Dynamic a
2 (@:) np t0=λi p e s →
3 casedoPendingChanges t0 i (setProperty np p) s of
4 (nn, np, (Redex nta, s)) → ((nn, np, t0) @:+ nta) i np e s
5 (_ , _, reduct) → reduct
6

7 (@:+) infixr 5 :: (Int, Properties, STask a) (STask a) → STask a | Dynamic a
8 (@:+) (n, p, t0) ta=λi _ e s →
9 casedoCurrentChange i e s of

10 (nn, np, (Redex nta, s)) → (Redex ((nn, np, t0) @:+ nta) , s)
11 (_, _, reduct) → reduct
12 where doCurrentChange i Refresh s=:{cc= Just c}= doOneChange t0 i setChange (n, p, (Redex ta, {s & cc= Nothing})) c
13 doCurrentChange i e s = (n, p, ta (subIds i !! n) p e s)
14

15 :: *ChangeResult a :== (Int, Properties, *(Reduct a, State))
16 :: RestoreChange :== (Maybe LabeledChange) State→ State
17

18 doPendingChanges :: (STask a) TaskId Properties State→ ChangeResult a | Dynamic a
19 doPendingChanges t0 i np s=:{cq}= foldl (doOneChange t0 i queueChange) (0, np, (Redex t0, {s & cq= [] })) cq
20

21 doOneChange :: (STask a) TaskId RestoreChange (ChangeResult a) LabeledChange → ChangeResult a | Dynamic a
22 doOneChange t0 i restoreChange (n, p, (r, s)) (ci, d) =
23 case (r, d) of
24 (Redex ta, cf :: Change a^) → change ta cf
25 (Redex ta, cf ::∀b: Change b | Dynamic b) → change ta cf
26 (reduct, _) → (n, p, (reduct, restoreChange (Just (ci, d)) s))
27 where change ta cf= (nn, np, (reduct, restoreChange nc s2))
28 where
29 (mbnp, mbnt, mbcf) = cf i p ta t0
30 (np, nta, nc) = (fromJust‘ p mbnp, fromJust‘ ta mbnt, mapMaybe (λcf → (ci, cf)) mbcf)
31 nn = i f (isJust mbnt) (n + 1) n
32 (reduct, s2) = nta (subIds i !! nn) np Refresh s

Figure 3. The change-handling reference implementation of the@: combinator.

6. Related work
There are three kinds of related work. First there are other WFMSs
that recognized the need for dynamic changes of the workflow
executed. Second, there are other constructs to change programs
at run time. Finally, there are programming languages that have
support for dynamic changes of the program executed.

The need for run-time changes in workflow systems has been
recognized early (Ellis and Keddara, 2000; Ellis et al., 1995). These
changes describe dynamic modification of both the specification of
the workflow as well as any running instantiation of this specifi-
cation. Several change patterns have been described (Weberet al.,
2008), classifying types of changes that should be supported by
a WFMS in two categories: adaption patterns and patterns for
changes to predefined regions. The former describes changesto in-
stantiations in which parts are either inserted, deleted, moved, re-
placed, and so on. The latter allows to defer the full specification of
a workflow to run time, by predefining regions which are eligible to
change at run time. Finally, in the untyped imperativeADEPT (Re-
ichert and Dadam, 1998) workflow system, changes can only be
applied if they satisfy preconditions imposed on global parame-
ters or side-effects. Preconditions allow properties to bechecked
other than type correctness as in theiTask system. It is interesting
to investigate how conditions can be added to theiTask system in
general. Each of these approaches are confronted with the dynamic
change bug. The Petri Nets representing the workflow is changed
during its execution. Because these changes directly manipulate the
structure of the Petri Net, this can quickly lead to inconsistencies.
As the described reference implementation shows, a task is apure
function which can only be replaced by another pure functionof
the same type.

The standard approach to changing behaviour at run time is
known as the strategy pattern (Gamma et al., 1995). Here, the
behaviour that can potentially be changed is insulated and the
object possessing this behaviour is equipped with an explicit way to
change it. In the context of this paper this would imply that we have
to equip each task with such a hook. We believe our solution using
change events that replaces a task by a new task is more elegant.

Finally, a number of programming languages offer support for
run-time change.Erlang (Armstrong and Virdin, 1990) supports
hot code swapping which is not type safe.ML (Duggan, 2001;
Gilmore et al., 1997; Walton et al., 1998) offers type-safe dynamic
module swapping. Imperative languages have been the subject of
run-time change as well (Hicks, 2001; Stoyle et al., 2007). Aspect-
oriented programming (Dantas et al., 2008; Kiczales et al.,1997) is
another way to change programs dynamically. All these language-
based approaches complicate the semantics significantly, our sys-
tem possesses a plain rewrite semantics which we expect to make
reasoning about changes considerably easier.

7. Conclusions and future work
In this paper we have demonstrated how running workflows can
be changed type safely. This is a very important feature because
deviations from the standard way of working is very common in
daily practice. Yet, most commercial WFMS do not support making
such changes properly and are subject to dynamic change bugs.
This means that they are not of any help when their help is actually
needed most. Adding the ability to perform type-safe run-time
changes is difficult because their implementation commonlyrelies
on Petri Nets and an implicit external state. Their focus is on control
flow while the flow of information between tasks is realized asa
side-effect storing information in databases.

9 2010/10/21

In the iTask system, tasks are described by typed, pure, and
self-contained functions which explicitly pass information to each
other. Replacing a task means type-safe replacement of one pure
function by another one. The type system ensures that the values
passed between task have the correct type in the initial workflow as
well as after any number of changes in this workflow.

Not only tasks under current execution can be changed type
safely, also tasks generated in the future by the workflow canbe
changed. This is quite powerful, since tasks are evaluated dynam-
ically and it is not known in advance which tasks come into exis-
tence. The change function can use what it has seen so far to decide
how to act in the future.

We have captured the semantics of this powerful construct by
giving a reference implementation inClean. This enabled us to
test its behavior. We have proven the practical applicability of the
new feature by implementing it in the realiTask system, using the
reference implementation as a lead. In the real system, tasks rely on
the availability of generic functions. Hence we needed to beable to
replace ad-hoc polymorphic functions in a type-safe fashion.

There are numerous possibilities for future work. For instance,
the end user needs to be well informed about which work is not
taken place as planned, which alternatives exist, and what their
effects are. We want to investigate how the change concept can be
used to resolve unexpected situations in the context of workflow
support for crisis management. Since crisis situations arevery
unpredictable, it is essential that a WFMS is capable of run-time
change in order to be of any use. Also, we plan to look at how we
can reason more precisely about the effects of changes to a running
workflow.

Acknowledgements
This research is supported by the Dutch Technology Foundation
STW, applied science division of NWO, and the Technology Pro-
gram of the Ministry of Economic Affairs. We thank Jan Martin
Jansen for scrupulously reading earlier versions of the paper.

References
Wil van der Aalst. Exterminating the dynamic change bug: A concrete

approach to support workflow change.Information Systems Frontiers,
3:3:297–317, 2001.

Wil van der Aalst, Arthur ter Hofstede, Bartek Kiepuszewski, and Ana Bar-
ros. Workflow patterns. Technical Report FIT-TR-2002-02, Queensland
University of Technology, Brisbane, Australia, 2002.

Joe Armstrong and Robert Virdin. Erlang - An experimental telephony pro-
gramming language. InProceedings of the 13th International Switching
Symposium, ISS ’90, Stockholm, Sweden, pages 2–7, 1990.

Erik Barendsen and Sjaak Smetsers. Conventional and uniqueness typing
in graph rewrite systems (extended abstract). In Rudrapatna Shyama-
sundar, editor,Proceedings of 13th Conference on the Foundations of
Software Technology and Theoretical Computer Science, FSTTCS ’93,
Bombay, India, volume 761 ofLecture Notes in Computer Science, pages
41–51. Springer, 1993.

Daniel Dantas, David Walker, Geoffrey Washburn, and Stephanie Weirich.
Aspectml: a polymorphic aspect-oriented functional programming lan-
guage.ACM Transactions on Programming Languages and Systems, 30
(3):1–60, 2008.

Dominic Duggan. Type-based hot swapping of running modules. In Pro-
ceedings of the 6th International Conference on FunctionalProgram-
ming, ICFP ’01, Florence, Italy, pages 62–73. ACM Press, 2001.

Clarence Ellis and Karim Keddara. A workflow change is a workflow. In
Wil van der Aalst, editor,Business Process Management, volume 1806
of Lecture Notes in Computer Science, pages 201–217. Springer-Verlag,
2000.

Clarence Ellis, Karim Keddara, and Grzegorz Rozenberg. Dynamic change
within workflow systems. InProceedings of the Conference on Orga-

nizational Computing Systems, COOCS ’95, Milpitas, CA, USA, pages
10–21. ACM Press, 1995.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign patterns: elements of reusable object-oriented software. Addison-
Wesley, 1995.

Stephen Gilmore, Dilsun Kirli, and Christopher Walton. Dynamic ML with-
out dynamic types. Technical Report ECS-LFCS-97-378, University of
Edinburgh, 1997.

Michael Hicks. Dynamic software updating. PhD thesis, University of
Pennsylvania, 2001.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented program-
ming. In Mehmet Aksit and Satoshi Matsuoka, editors,Proceedings
of the 11th European Conference on Object-Oriented Programming,
ECOOP ’97, Jyväskylä, Finland, pages 220–242. Springer-Verlag, 1997.

Pieter Koopman, Rinus Plasmeijer, and Peter Achten. An executable and
testable semantics for iTasks. In Sven-Bodo Scholz, editor, Revised Se-
lected Papers of the 20th International Symposium on the Implemen-
tation and Application of Functional Languages, IFL ’08, Hertford-
shire, UK, volume 5836 ofLecture Notes in Computer Science. Springer-
Verlag, 2009.

Thomas van Noort, Peter Achten, and Rinus Plasmeijer. A typical syn-
ergy - Dynamic types and generalised algebraic datatypes. In Marco
Morazán and Sven-Bodo Scholz, editors,Revised Selected Papers of the
21st International Symposium on the Implementation and Application of
Functional Languages, IFL ’09, South Orange, NJ, USA, volume 6041
of Lecture Notes in Computer Science. Springer-Verlag, 2010a.

Thomas van Noort, Peter Achten, and Rinus Plasmeijer. Ad-hoc polymor-
phism and dynamic typing in a statically typed functional language. In
Bruno Oliveira and Marcin Zalewski, editors,Proceedings of the 10th
Workshop on Generic Programming, WGP ’10, Baltimore, MD, USA,
pages 73–84. ACM Press, 2010b.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. Simple unification-based type inference for GADTs. In
Julia Lawall, editor,Proceedings of the 11th International Conference
on Functional Programming, ICFP ’06, Portland, OR, USA, pages 50–
61. ACM Press, 2006.

Marco Pil. Dynamic types and type dependent functions. In Kevin Ham-
mond, Tony Davie, and Chris Clack, editors,Proceedings of the 10th In-
ternational Workshop on the Implementation of Functional Languages,
IFL ’98, London, UK, volume 1595 ofLecture Notes in Computer Sci-
ence, pages 169–185. Springer-Verlag, 1999.

Rinus Plasmeijer, Peter Achten, and Pieter Koopman. iTasks: executable
specifications of interactive work flow systems for the web. In Ralf
Hinze and Norman Ramsey, editors,Proceedings of the 12th Interna-
tional Conference on Functional Programming, ICFP ’07, pages 141–
152, Freiburg, Germany, 2007. ACM Press.

Manfred Reichert and Peter Dadam. ADEPTflex - Supporting dynamic
changes of workflows without losing control.Journal of Intelligent
Information Systems, 10(2):93–129, 1998.

Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell,and Iulian
Neamtiu. Mutatis Mutandis: safe and predictable dynamic software
updating.ACM Transactions on Programming Languages and Systems,
29(4), 2007.

Philip Wadler. Comprehending monads. InProceedings of the 6th Con-
ference on Lisp and Functional Programming, LFP ’90, Nice, France,
pages 61–77, 1990.

Christopher Walton, Dilsun Kirli, and Stephen Gilmore. An abstract ma-
chine for module replacement. InProceedings of the 1st Workshop on
Principles of Abstract Machines, PAM ’98, Pisa, Italy, 1998.

Barbara Weber, Manfred Reichert, and Stefanie Rinderle-Ma. Change
patterns and change support features - Enhancing flexibility in process-
aware information systems.Data and Knowledge Engineering, 66(3):
438–466, 2008.

10 2010/10/21

