Submission for PEPM "11

ITasks for a Change

Type-safe run-time change in dynamically evolving workow

Rinus Plasmeijér
Bas Lijnsé?

Peter Achteh
Thomas van Noott

Pieter Koopmah
John van Groningén

! Institute for Computing and Information Sciences, RadbdniVersity Nijmegen
P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands

2 Faculty of Military Sciences, Netherlands Defence Academy
P.O. Box 10000, 1780 CA, Den Helder, The Netherlands

{rinus, p.achten, pieter, b.lijnse,

Abstract

Workflow management systems (WFMS) are software systerhis tha
coordinate the tasks human workers and computers have to per

form to achieve a certain goal based on a given workflow descri
tion. Due to changing circumstances, it happens often thiaes
tasks in a running workflow need to be performed differertilyrt
originally planned and specified. Most commercial WFMSaoén
deal with the required run-time changes properly. Thesagtsm
have to be specified at the level of the underlying Petri-Neaed
semantics. Moreover, the implicit external state has todapeed

to the new task as well. Such low-level updates can easity tea
wrong behaviour and other errors. This problem is known as th
dynamic change bug. In th&ask WFMS, workflows are specified
using a radically different approach: workflows are corctzd in a
compositional style, using pure functions and combinassrself-
contained building blocks. This paper introduces a chaogeeapt
for the iTask system where self-contained tasks can be replaced
by other self-contained tasks, thereby preventing dynaménge
bugs. The static and dynamic typing system furthermoreagiiaes
that these tasks have compatible types.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guage§ Language Constructs and Features

General Terms Design, Languages

Keywords type-safe run-time change, combinators, workflow

1. Introduction

Workflow management systems (WFMS) are software systerhis tha
coordinate, generate, and monitor tasks performed by huvog

ers and computers. Such systems are interesting to studyidgec
they are nontrivial representatives of how contemporastritiuted
software systems are manufactured. A concrete workflowreasu
that essential actions are performed in the right order.Kildws
have potentially long running times (in the order of montinsl a

[Copyright notice will appear here once "preprint’ opti@réemoved.]

thomas, johnvg}@cs.ru.nl

years) during which many workers and computers can be iedolv
Itis well known from literature (Van der Aalst, 2001) thatrthg its
life-cycle, a workflow needs to adapt to handle changing iregu
ments, ad-hoc situations, evolutionary concerns, and st afso
illustrates that adapting a running workflow system easidk to
incorrect behaviour. This phenomenon is known as the dymami
change bug (Ellis et al., 1995). Most traditional WFMSs d&re a
fected by this issue because their semantics is based driNee&tr
Changes are made on the level of individual places and tiams;
which is a too low level of abstraction. Making an arbitrahange

in a Petri Net while the tokens are moving around often leads t
errors. Moreover, the tasks have an implicit external sidieh

is often stored in a database. This state has to be adaptée to t
changed task without corrupting the state of other taskedtm
the same database.

The iTask system (Plasmeijer et al., 2007) distinguishes itself
from traditional WFMSs. FirstiTask is actually a monadic combi-
nator library in the pure and lazy functional programminggaage
Clean. It defines a WFMS, embedded {Tiean where the com-
binators are used to combine tasks. Tasks are defined byrhighe
order functions which are pure and self contained. Secomdt m
WFMSs take a workflow description specified in a workflow de-
scription language (WDL) and generate a partial workflowliapp
tion that still requires substantial coding effort. Arask specifica-
tion on the other hand denotes a full-fledged, web-basedi-oaér
workflow application. It strongly supports the view that a WD
should be considered as a complete specification langudiger ra
than a partial description language. Third, despite thetfeat an
iTask specification denotes a complete workflow application, the
workflow engineer is not confronted with boilerplate pragraing
(data storage and retrieval, GUI rendering, form intecactiand
so on) because this is all dealt with using generic progrargmi
techniques. Fourth, aiTask workflow evolves dynamically, de-
pending on user-input and results of subtasks. Fifth, intiaadd
to the host language features, iflask system adds higher-order
tasks (workflow units that create and accept other workfloitsjin
and recursion to the modelling repertoire of workflow engnse
Sixth, in contrast with the large catalogue of common workflo
patterns (Van der Aalst et al., 2002)ask workflows are captured
by means of a small number of core combinator functions.

In this paper we show how type-safe run-time changes are in-
corporated inTask. Together with the compositionality and self-
containedness of tasks, this prevents dynamic change Bbyps-
safe run-time change is challenging for several reasomst, Bin
iTask workflow dynamically evolves. This implies that the set of

2010/10/21

edit :: String a — Task a | iTask a
(@:) infixr 5 :: p (Task a) — Task a | property p

& iTask a
return it a — Task a | iTask a
(>>=) infixl 1:: (Task a) (a — Task b) — Task b | iTask b
(=11-) infixr 3 :: (Task a) (Task a) — Task a | iTask a
(-&&-) infixr 4 :: (Task a) (Task b) — Task (a, b)

| iTask a & iTask b

Figure 1. TheiTask core combinator functions.

tasks that may require replacement is not known in advande an
that a change must take both the current workflow state into ac
count as well as its future. Second, all tasks are typed asidda
context restrictions for ad-hoc polymorphic and generiwfions.
This implies that a single change is really about changingt @t
functions. Third,iTask workflows are constructed using combina-
tors. We show that we can handle all changes by modifying only
one single combinator drastically. For the sake of claritg,em-
phasize that in this paper we concentrate on the change msgha
and its semantics. There are still many challenging rebegues-
tions to be answered with respect to validation and formaéoa-
ing of changes, but this remains future work.

This paper is organized as follows. First, we describe the co

ta. In general, properties that can be set are captured by ffee ty
classproperty, which will be discussed later in Section 3.1. We call
the e:-annotated taskmain tasks As we will see later on, such
tasks will be subject to change once the workflow is running.

To compose tasks sequentially, the monadic combinaseisn
and>>= (Wadler, 1990) are provided. The tagduwrn va succeeds
immediately and emits its value. In ta >>= atb, the taskta is
evaluated first. When this task returns its value,wajt is passed
to atb to compute the next task to be executed.

To compose tasks in parallel, the combinatans and-«&- are
provided. A task constructed using -is finished as soon as either
one of its subtasks is finished, returning the result of tasi.tThe
combinator-&&- is finished as soon as both subtasks are finished,
and pairs their results.

2.2 Running example: a paper review workflow

In this section we illustrate the use of tiieask system by designing
a workflow for reviewing papers that can be part of a confezenc
management system.

We start with defining the types that determine the universe
of discourse. For conciseness, we use very simple typesper pa
is represented by some opaque tyager for which two access
functions are available to display the title and full coriten

:: Paper

iTask system and explain its usage by means of a running example, title :: Paper — String

a paper review workflow (Section 2). Next we explain the cpice
of change functions and illustrate how it is used to alterphe
per review workflow (Section 3). We capture the semanticsrsy fi
giving a reference implementation of the core combinatarcfu
tions (Section 4) after which we extend it with type-safe-timne
changes (Section 5). Finally, we compare our approach wi#ted
work (Section 6) and conclude and discuss future work (8eat).

2. TheiTask core system

In this section we give a brief overview of thiEask system. We re-
strict ourselves, without loss of generality, to the cormbmator
functions (Section 2.1), which we then use in the runningrexa
ple (Section 2.2). The actualask system offers a couple of addi-
tional combinators for advanced task structures, workflooc@ss

full :: Paper — String

We define two label-generating functions, using a constridfanc-
tionlabel :: String — Label, to identify the tasks for reviewing and
bidding for papers:

reviewlLabel :: Paper — Label
reviewLabel p = label ("review " + title p)

bidLabel :: Paper — Label
bidLabel p = label ("bid " + title p)

The chair and other members are synonyms of the opaquespe

:: Chair :==User
:: PC :== [Reviewer]
:: Reviewer :==User

management, and exception handling. The change mechasism i Programme committee members bid for papers to review, and fo

orthogonal to these features.

2.1 The core combinator functions

The core combinator functions of thi€ask system are displayed
in Figure 1. (Note that irClean the arity of functions is shown
explicitly by separating argument types by spaces instéae oA
task has an opaque typssk a: the type parameteris the type of
the result value that is committed once the task finishes.

One primitive task concerns editors: an editor is creatett wi
edit prompt va. When applied to an initiala of some type, it cre-
ates a GUI in which the worker can inspect and alter the giedunev
arbitrarily many times. An editor can create and handle suGtJl
for any first-order type. It uses a set of generic functions (hence
the context restrictioaTask a) which are derived by the compiler
automatically. ThéTask system guarantees that only values of type
a are created. This continues until the worker decides to comm
the value to the workflow, which terminates the tagi¢ prompt va.
Theprompt argument provides the worker with information about
the purpose of this task.

Tasks can be assigned several properties using: tbembina-
tor. For now, we restrict the properties to an identificatadrel and
the user who has to work on the task (of the opaque tiges and
User respectively). Ifa :: User andl :: Label, thenu e: ta, 1 @: ta,
and(u, 1) e: tasets the worker, label, and both respectively of task

those papers that they are in charge of, they make a deci&ion.
decision is either tBeject, Discuss, OF Accept @ paper:

:: Bid :== (Reviewer, [Paper])
:: Review :== (Paper, (Reviewer, Decision))
:: Decision =Reject | Discuss | Accept

This settles the universe, we proceed with the tasks. Fastegign

a task that lets all programme committee members bid forrgape
We proceed in a bottom-up fashion and first create anothen mai
task to ask a programme committee member whether she would
like to review a specific paper (the valtee is the default value):

choosePaper :: Paper — Task Bool
choosePaper p = bidLabel p @: edit (title p) True

We present the choice for each paper and obtain the selempeds
using a parallel list comprehension that filters the chosgrers:
choosePapers :: [Paper] — Task [Paper]
choosePapers ps = all (map choosePaper ps) >>=\ds —

return [p \\ p<—ps & True<—ds]

The functiona11 guarantees that all tasks in the list are evaluated to
completion, and collects and returns their results:

all :: ([Task a] — Task [a]) | iTask a
all = foldr (\ta tas — ta -&&- tas >>=\(va, vas) —
return [va:vas]) (return [])

2010/10/21

Next, we ask the bid of all programme committee members:

assignPapers :: PC [Paper] — Task [Bid]
assignPapers pc ps = all [member @: (choosePapers ps >>=\As —
return (member, s))
\\ member <—pc

]

The resulting list tells us which papers the programme cdtemi
members want to review. In a real system, the chair verifies th
number of reviewers per paper, which is not modelled heretaue
limited space.

Now we design a single paper review for some reviewer, identi
fied by the title of the paper. The reviewer either reviewsytaper
or delegates the task to another reviewer. Hence, this sasiod-
eled as a choice between two alternatives:

reviewPaper :: Paper Reviewer — Task Review
reviewPaper p r — reviewLabel p Q:
(plainReview p r -| |- delegateReview p r)

A plain review of a paper shows the paper to the reviewer, who
decides to reject, discuss (the initial value), or acceptpidper:

plainReview :: Paper Reviewer — Task Review
plainReview p r = edit (full p) Discuss >>=\d —
return (p, (zr, d))

Alternatively, a reviewer may decide to delegate the revidva
paper to another reviewer. HenaeyiewPaper is an example of a
recursive workflow. The original reviewer remains respbiesfor
reviewing the paper, which explains why she is still passedra
argument to the recursiveviewPaper:

delegateReview :: Paper Reviewer — Task Review
delegateReview p r = edit "Delegate review" r >>=\other —
other @: reviewPaper p r

Given this assignment, we ask all members to perform thelsta
reviewPapers :: [Bid] — Task [Review]

reviewPapers bids = all [r @: reviewPaper p r
\\ (r, ps) <+ bids, p<+ps

The entire workflow of first making a selection of papers,daid
by reviewing all papers by all reviewers, is a simple sudoess

:: PC [Paper] — Task [Review]
assignPapers pc ps >>= reviewPapers

reviews
reviews pc ps =

A conference management system can use this result to atitoma
cally separate all clear cases (i.e., all reject and all@yéeom the
papers that require discussion.

The final step is to turn this specification into an executabple
plication. The main function it€Clean is calledstart and must ac-
cept and return a unigugorid value in order to interact with the ex-
ternal world. The type attributeis due toClean’s uniqueness typ-
ing (Barendsen and Smetsers, 1993) to ensure single-tdesed
of the corresponding object, which allows us to model siffiects
in a pure functional language. The library functi®artEngine takes
a list of workflow specifications, using the constructor fim
workflow that are made available to the workers:

Start :: *World — *World
Start world = startEngine [workflow "Review" reviewWF] world

reviewWF :: Task [Review]

reviewWF = getUsersWithRole "chair" >>= \chairs —
getUsersWithRole "reviewer" >>= \pc —
readDB "papers" >>= \papers —
(hd chairs, label "reviews") @: reviews pc papers

To complete the example, the proper workers and papers peed t
be loaded. ThéTask system supports several functions to obtain
information about its workers. The library functigitUsersiithRole
takes a role and yields all currently registered workers Wwaee
that role,readbB takes an identifier and reads the information from
the corresponding database. Finally, we assign the maiewev
tasksreviews to the chair with the labelreviews".

3. Type-safe run-time change

The iTask system includes many features to define workflows.
Despite this expressive power, it is cumbersome to antieipa
every possible future way of working in a workflow specifioati
Moreover, it is too much work to anticipate on all changed tha
can happen simply because the workflow would become much too
complicated. The ability to make changes at run time helpeép
workflow specifications concise. When specifying the workflo
we define the current way of working. At run time it is deteredn
when and where a change in the way of working is needed.

In order to keep the system simple, we only allow main tasks
to be changed, meaning, tasks explicitly labelled usingtfomam-
binator. This is not a fundamental restriction since ani tz be
promoted to a main task. Moreover, other combinators candsem
aware of changes in the same fashion.

In the remainder of this section we first explain what prop-
erties of a task are (Section 3.1) and what a change function
is (Section 3.2). We create an API for often occurring change
patterns (Section 3.3). Next we use this API in the running ex
ample (Section 3.4) to demonstrate a number of changes.

3.1 Properties

As alluded to in Section 2.1, tasks can have several pregerti
These are captured by the opaque typgerties. The type class
property defines the properties that can be set and get:

classproperty p where
setProperty :: p Properties — Properties
getProperty :: Properties — p

instance property Label, User

Instances for the typesabel anduser are used in this paper.

3.2 Dynamic change

A workflow under execution consists at any time of at least one
main task. The mechanism of change that we propose in thex pap
is as follows. A change is a function that is applied to a mask tif
it fits the properties and type of that task. Based on the ptiegeof
the main task to be changed, the change function decidehemhet
or not to change the properties, the entire main task, amdnais
to continue changing in the future. This is performed focalrent
main tasks, as well as for future main tasks in the workflow. A
change that alters main tasks of typek a is a function of type
Change a:
:: Change a:==Properties (Task a) (Task a)
— (Maybe Properties
, Maybe (Task a)
, Maybe ChangeContinuation

Its arguments are the current propertiesf the main task, the
expression corresponding to the current taskent of typeTask a,
and the original description of the tagkginal, also of typefask a.

If the change function yields new propertigs these are used
instead of the current propertigs Such a change establishes for
instance that a specific task is moved from one worker to @noth

If the change function yields a new tagk, the old taskurrent
is aborted and replaced hyw. Naturally, new has to be of the

2010/10/21

same type asurrent. It can be constructed from the taskrent,
representing the task possibly under current evaluatomed as
the original task descriptiobriginal, representing the same task
before people were working on it. So, we can either constauct
complete new task, or continue with the work but let it for rexde

be followed by a supervising task inspecting its resultestart the
main task from scratch if necessary. By changing the taskrkex
might be faced with the fact that her work is no longer needed o
that something else has to be performed. iMfek system informs
the user about such issues.

If the change function yields a continuatiant cf), the type
of which is discussed below, then the change function wamts t
alter another main task, but now it will use functiento make
the change. This allows the change function to alter its tiehg
making use of the knowledge it obtained from inspecting tlagnm
tasks so far. If there are no more current main tasks in th&floar,
then the change function needs to be memorized in order to be
applied to future main tasks. If the change function yields n
continuation fothing), then the change is said to brhaustedand
it is removed from théTask system.

The type of thethangeContinuation deserves special attention.
The typechange ais too restrictive since only main tasks of the same
type can be changed. Returning a change of¥ype&change a is too
liberal, with this type we cannot limit changes to tasks opecific
type. The dynamic typing system Qiean (Pil, 1999) solves this
problem. A change continuation is a dynamic that contaires th
change continuation function of the desired type:

:: ChangeContinuation :== Dynamic

The dynamic value contains a change continuation functioype
Change b. TheiTask system can only apply this function to a main
task of typerask a if the typesa andb can be unified at run time, as
we will see in Section 5.3. Values of a different type will gitjbe
ignored.

Finally, all nonexhausted change functions are memorined i
their order of appearance in order to be applied to any funam
task that is created by the workflow under execution. If a ghan
function becomes exhausted, it is removed from the mentbrize
queue. Authorized users can also remove changes from thiggu
for instance when a change is no longer appropriate.

3.3 Change combinators

For convenience, we define a set of change combinators ttecrea
proper change functions, as shown in Figure 2. We give exasnpl
of their use in Section 3.4.

The initial changechangeo terminates change handling imme-
diately and alters neither properties nor tasks. Changasottly
concern properties, tasks, or the change continuatiorxpressed
preferably as functions ovedroperties, Task, and Change func-
tions. These functions are lifted to change functions wétirops,
newTask, aNdhewChange respectively. A useful variant é&tChange ncf,
which forces the change continuation to always becasne

Switching between two alternative change functiensindef
is achieved byswitch cond tf ef, USing a predicateond on the
properties of the main task. Two frequently occurring pateare
expressed in terms @fritch: the functionwhen cond cf applies its
change only whewrond holds, antbnce cond cf applies its change
exactly once to the first task that satisftesi and terminates.

A change function is applied to exactly one task, and then
determines how to proceed by returning a change continuatio
function. Iteration of the same change is captured wifaat cf,
which makes sure that is applied from now on.

Sometimes it is desirable to overrule the result of a maik, tas
depending on its current properties. We introduce two oVieig

functions:overruletne cond vf overrules the first task that satisfies
the predicateond, andoverruleAll cond vf overrules all of them.

3.4 Running example: changing the paper review workflow

We use the change combinators of Figure 2 to construct change
functions for the paper reviewing workflow example.

Suppose that reviewet is no longer able to perform her duties,
and the symposium chair decides that all her work must bedtand
over to reviewer2. This is realized by the change functigindover:

handOver :: Reviewer Reviewer — Change a | iTask a
handOver rl r2 =repeat (delegate rl r2)

delegate :: Reviewer Reviewer — Change a | iTask a

delegate rl1 r2 = newProps changeProp changeO

where changeProp p | getProperty p == rl = setProperty r2 p
| otherwise =p

A slightly more involved example is to delegate the work df th
member to a list of membefgc; .. .pc,] in round-robin order:

distribute :: Reviewer [Reviewer] — Change a | iTask a

distribute r [] = change0

distribute r [pc:pcs] = setChange (distribute r (pcs H- [pc]))
(delegate r pc)

As another example, suppose that the symposium chair decide
that a reviewing task has to be supervised by someone idehtifi
assuper. The result of a completed task is offered tosuper, who
decides to edit this result and commit it or redo the entis&:ta

check :: String Reviewer (Task a) (Task a) — Task a | iTask a
check s super ta t0 = ta >>=Ava — super @: (edit s va -| |- t0)

The symposium chair can now conditionally supervise tasks:

supervise :: (Properties — Bool) String Reviewer — Change a
| iTask a
supervise cond s super = repeat (when cond (newTask (check s super)
change0))

Such kind of overruling can be performed to the extreme: ssp
that the symposium chair decides that the result of a centaiim
task (e.g., a review) must be a specific value. If the chaingihe
label of the task, then this action is formalized as:

overrule :: Label a — Change a | iTask a
overrule 1 x = overrulelne (\ps — getProperty ps == 1) (const x)

Suppose that a late papsairrives and the programme chair decides
to enter this paper in the reviewing workflow. She needs terekt
the main workflow, identified by the labeteviews" as used in
Section 2.2, with a new instance of an entire review for thglsi

paperp:

late :: PC Paper — Change [Review]
late pc p = once (A\ps — getProperty ps==1abel "reviews") add
where add = newTask
(\ta _ — ta -&&- reviews pc [p] >>=\(old, new) —
return (old H- new))
changeO

Conversely, suppose that an author withdraws her papehaln t
case, programme committee members should stop bidding- or re
viewing that particular paper. Such tasks are identified Hmjrt
bidLabel andreviewLabel:

noBid :: Paper — Change Bool
noBid p = overruleAll (\ps — getProperty ps == bidLabel p)
(const False)

noReview :: Paper — Change Review
noReview p = overruleAll (A\ps — getProperty ps reviewLabel p)
(\ps — (p, (getProperty ps, Reject))

2010/10/21

change0
changeO

:: Change a
=M\p ta t0 — (Nothing, Nothing, Nothing)

newProps
newProps fp cf

:: (Properties — Properties) (Change a) — Change a

| iTask a

=M\p ta t0 — casecf p ta t0 Of (Nothing, nta, ncf) — (Just (fp p), nta, ncf)

(Just np, nta, ncf) — (Just (fp np), nta, ncf)

newTask
newTask fta cf

:: ((Task a) (Task a) — Task a) (Change a) — Change
=M\p ta t0 — casecf p ta t0 of (np, Nothing,

a | iTask a

ncf) — (np, Just (fta ta t0), ncf)

(np, Just nta, ncf) — (np, Just (fta nta t0), ncf)

newChange :: ((Change a) — Change a) (Change a) — Change a
newChange fcf cf =MAp ta tO — casecf p ta t0 of (np, nta, Just (ncf

(np, nta, ncf)
setChange :: (Change a) (Change a) — Change a

setChange ncf cf =M\p ta t0 — casecf p ta t0 of (np, nta, _) — (np,
switch

switch cond tf ef =M\p — if (cond p) (tf p) (ef p)
when

when cond cf

:: (Properties — Bool) (Change a) — Change a
= switch cond cf change0

once
once cond cf

:: (Properties — Bool) (Change a) — Change a
= switch cond cf (setChange (once cond cf) changeO)

repeat :: (Change a) — Change a
repeat cf = setChange (repeat cf) cf
overruleCne :: (Properties — Bool) (Properties — a) — Change a

| iTask a
:: Change a”)) — (np, nta, Just (dynamic (fcf ncf)))
— (np, nta, ncf)

| iTask a
nta, Just (dynamic ncf))

:: (Properties — Bool) (Change a) (Change a) — Change a | iTask a

| iTask a

| iTask a

| iTask a

| iTask a

overruleOne cond vf = once cond (A\p — newTask (_ _ — return (vf p)) changeO p)

overruleAll :: (Properties — Bool) (Properties — a) — Change a

| iTask a

overruleAll cond vf = repeat (when cond (A\p — newTask (_ _ — return (vf p)) changeO p))

Figure 2. TheiTask ch

After the manager has applied these two change functioniseto t
workflow, every bid is converted to not selecting it, and deenis
changed to reject it. As a consequence, the programme cteemit
members do not perform redundant work.

The above functions are all examples of change functionsy Th
can be stored and loaded as dynamic values in arbi@an pro-
grams. To actually apply such a change function toTask work-
flow, an authorized user loads such a dynamic change function
identifies it with a label, and inserts it in the workflow. Ttabél
is required to allow the user to remove the change functiangt
later time.

With these examples, we demonstrate that realistic chazages
be modelled concisely with a set of combinators. Each ofethes
changes could have been anticipated within the originakfhaw,
but this would have resulted in an unwieldy workflow spectfaa

4. TheiTask core reference implementation

In this section we first capture the semantics of ifesk core
system as defined in Section 2. Change handling as described i
Section 3, is treated in Section 5. As we will see, change livand

is defined in such a way that it only affects thecombinator. The
semantic definitions of all other combinators remain theesam

We express the semantics in terms of a reference implementa-

tion, usingClean as modeling language. There are several advan-
tages to this approach. First, using a strongly typed progriag
language with an expressive type system gives static typekaig

of the semantic model for free. Second, it allows the moddieto
executed to verify if it behaves as expected. Execution afefally
designed set of unit tests appeared to be crucial in ordeaaligate

ange combinators.

various versions of the semantics. Third, useCafan creates no
artificial gap between the modeling language and actualkimph-
tation, which would occur had we used Agda, Coq, or other miean

The semantic description we present here foiThek core sys-
tem is different from an earlier version (Koopman et al., 200 he
main goal of that work was to establish an initial semantiosia-
vestigate its properties using model-based testing. tretharoach,
we make use of an algebraic datatype to model combinatorarand
forced to use a closed universe of task types. Here we defreeth
mantics of the combinators using semantic functions; thezeno
restrictions on the types being used. Instead of semaniutifins,
the use of generalised algebraic data types (Peyton Jorels et
2006) would have been an alternative approach, but thisresqu
an integration with dynamic types (Van Noort et al., 2010a).

The signatures of the semantic functions correspond gldeel
the original signatures of the modeled combinator fungticrhe
semantic function of a combinator function of typek a has type
STask a (Section 4.1) and describes a one-step reduction of a task
given a worker event and current state of the workflow.

In the reference implementation we abstract from all detagt
involve boilerplate programming, such as data storageetniéval,
GUI rendering, form interaction, and so on. For this reasba,
semantic functions do not include timask context restriction, but
do requiredynamic to handle input of arbitrary type.

Although workers are assumed to work in a distributed sgttin
the events they produce are collected and sequentiallyeoffe
the iTask system. It handles events one by one in a big event-
handling loop (Section 4.2) such that we do not have to wdroua
concurrency. The reduction of tasks with respect to evenieseces

2010/10/21

describes a term-rewriting system. It is a fixed-point cotapon

that eventually may lead to a task in normal form. The effdct o
one reduction step is a reduced term which, if the fixed paint i
not reached, is capable of handling the next event. Additigrthe

set of next possible input events is calculated, which isl lsethe
realiTask system to generate proper feedback and a GUI for the
workers.

4.1 Semantic types

A semantic function performs a one-step reduction basedcen t
current identification and properties of the task, as welkhas
worker event and state of the system. Its type is defined kil

:: STask a:==TaskId Properties Event State — *(Reduct a, State)

As a notational convention, these functions use the formampe-
ters\i p e s —.... Next, we explain the individual components of
thesTask type.

Stable task identifiers Several workers can work on tasks at the

:: *State = {es :: [EditorState], world :: *World}
:: EditorState :== (TaskId, User, Value)

While handling an event, every nonterminated editor acdates
its current state in the collection of editor states. As altesfter
the workflow has entirely handled the event, the state hasaat e
and complete record of the states of all currently activeoesli The
presence of the external world in the state demonstratégtba
workflow engineer can, in principle, create custom taskh wiite-
effects. It should be noted that we do not discuss this fuithehis
paper. In addition, it makes the connection between the flaovk
and the external world explicit, using two semantic funasio

showGUI
getNextEvent

:: State — State
:: State — (Event, State)

The functionshowGUI renders the states of the current active editors
(which are collected in thes field of the state), and displays them
in the external world. The functiogetNextEvent retrieves an event
from the external world. Their definitions are not relevanmthis

same time. Since each worker has her own GUI, the state of the PaPer. Finally, the initial state is created watateo:
workflow system can be changed by someone else while a Workergiateo :: #World — State

is still working on a task. Meanwhile, new tasks can be cckate
while others are no longer needed. Hence, we have to guarante
that a task someone is working on is uniquely identified ad th
this identification remains the same over time under all tont.

To enforce such stable unique task identifiers, we imposeem i
tification scheme that encodes the path from the root of thle ta
expression to the given combinator function by a list of getes:

:: TaskId:== [Int]

taskIdO :: TaskId
taskId0 = [0]

We usetaskIdo as the initialTaskid. A combinator with unique
identification i identifies its subexpressions uniquely [as: i],
[1 : i],..., as specified byubIds:

subIds
sublds i = [[n :

:: TaskId — [TaskId]

i] \\ n<[0 ..]]

Properties As described earlier in Section 3.1, tasks can have
several properties. Hence, the semantic function of a ta&stsuch
properties. The initial properties are definecbypso, which we do
not define in this paper sineeoperties is opaque.

Events The generic foundation of th&ask system permits us to
abstract from GUI programming, and instead refer to GUI eleis
in terms of the value of their editors. The value of an editor be
any type, hence we use a dynamic to store its value.

A worker who terminates an editor, emitSaamit tid event. A
worker who manipulates the GUI that is generated bydantask
with identification valueid, updates a newalue of corresponding
type and emits abpdate tid (dynamic value) event. Not all worker ,
events are related to editor tasks: examples of other ememtshen 3
a worker signs in into the system or asks to refresh (partha) t 14
GUL:

1
2
3
4
5
6
7
8
9
10
11

:: Event = Commit TaskId | Update TaskId Value | Refresh
:: Value:==Dynamic

Reductions of subtasks (e.geturn) can cause further reduction
which needs to be triggered as well. We model this behavilsor a
With Refresh.

State The combinator library of théTask system is a monadic
state transformer. The unique state consists of two conmisnie
states of all currently active, nonterminated editors, taedunique
external world that links théTask workflow with its environment:

state0 world = {world = world, es =[] }

Reducts The reduction semantics describes the reduction be-
haviour for each combinator of th&ask system with a seman-
tic function. A task combinator expression reduces to eithsk
normal form or to a new task combinator expression:

:: Reduct a =NF a | Redex (STask a)

A task is in normal form when it is terminated and has committe
its final value, its reduct i9F value. Note that the committeehiue

is lazy like any other value i€lean and hence not necessarily in
normal form. The reduct of a task that is not yet terminatee,new
task expression. Such a value has typesTask a, and the reduct
has valugedex nta.

4.2 Task normalization

The evaluation of a combinator expression is defined by the-fu
tion normalize which is a fixed-point computation that terminates
when a normal form is reached:

normalize :: (STask a) *World — (a, *World)
normalize ta world = toNF (startTask ta Refresh (stateO world))

tolF :: (Reduct a, State) — (a, *World)
tolNF (NF va, s) = (va, s.world)
toNF (Redex ta, s) = toNF (reduce ta (getNextEvent (showGUI s)))

reduce :: (STask a) (Event, State) — (Reduct a, State)
reduce ta (e, s)

| valid e s.es = startTask ta e s

| otherwise = (Redex ta, showError "Invalid event" e s)

startTask :: (STask a) Event State — (Reduct a, State)
startTask ta e s = ta taskIdO propsO e {s & es =[]}

All current editor states that are accumulated in the stateféered
to the workers usinghowGUI. They either update or commit an
arbitrary editor with an arbitrary (but type-preservingwnvalue
which generates an event that is collected ugéBextEvent. Only
valid events cause a reduction of the workflow (line 10). When
evaluating a new event, the task is provided with the propéai
values of task identification, properties, and an empty icdator
of editor states, as defined byartTask (lines 13-14).

Invalid events can be generated by workers who are looking at
old versions of the workflow in their GUI and who generate ¢sen
corresponding to tasks which are no longer needed. Due to the

2010/10/21

© © N e U s W NP

e
= o

© ©® N O oA W N R

consistent naming of tasks, we can determine if an evenngslo
to an editor who is still active by comparing its identifier ttee
identifiers of active editors collected in the state:

valid :: Event [EditorState] — Bool
valid (Commit tid) es = isMember tid
valid (Update tid _) es = isMember tid
valid _ = True

[3\N @G o ses]

[IN Gy - ees]

In case of an invalid event, an error message is shown usig th
helper functiorshowError (line 11).

4.3 Combinator semantics

We now define the semantic functions for tifask core system
shown in Figure 1. Each occurrencetefk is replaced byTask in
the original signatures.

We start with thesait combinator, which is the only semantic
function that inspectSommit andupdate events:

edit :: String a — STask a | Dynamic a
edit _va=Aipes —
casee of
Commit tid
| tid==i — (NF va, s)
Update tid (nva :: a”)
| tid==i — (Redex (edit nva), addES i p nva s)
_ — (Redex (edit va), addES i p va s)
addES :: TaskId Properties a State — State | Dynamic a

addES i p va s = {s & es = [(i, getProperty p, dynamic va) : s.es|]}

N N

An event matches an editor if the task identification valuesgual
(lines 5 and 7). Although we know that the type of an updated;
value is identical to the type of the value of an editor, wedhee 7
to guarantee this (line 6). Here we make use of a type-depéndes
dynamic pattern match dflean (Pil, 1999). In the pattern match
it is checked whether the event value stored in a dynamic is of
the same type as this particular editor. The three kinds of events,
as defined earlier in Section 4.1, each inflict different béha of
edit. First, if the worker has terminated the task editor, thdk tas
reduces to task normal form with the current value storechén t
editor (line 5). Second, if the worker has changed the ctirr&ne
of the task editor tawa (line 6), then the task editor reduces to a ,
task editor with thewa value (line 7). In any other case the current »
value of the task editor is not changed (line 8). Except when t s
task normal form is reached, the current editor state israotated 4
in the workflow state.

The semantic function a: assigns a new property to the given
task. This is achieved straightforwardly by updating the mop-
erties with the new property as long as this combinator islexe

© © N o o

(@:) infixr 5 :: p (STask a) — STask a | property p
(6:)npta =Xipes —
caseta i (setProperty np p) e s Of
(Redex nta, s) — (Redex (mp @: nta), s)
reduct — reduct

The new properties set by e: ta are inherited by all subtasks
within ta until overruled by another occurrenceef
The monadic combinators areurn and>>=:

return :: a — STask a
retwrn va=M\i p e s — (NF va, s)

(>>=) infixl 1 :: (STask a) (a — STask b) — STask b
(>>=) taatb=Aipes —
caseta (sublds i !! 0) p e s of
(NF va, s) — setTaskId (\i — subIds i !! 1) (atb va)
i p Refresh s
(Redex nta, s) — (Redex (nta >>= atb), s)

The semantic function afetwrn immediately emits its argument
value as normal form without modifying the state (line 2) eTe-
mantic function of>>=is the bind operator of a state monad. In
ta >>= atb, ta IS reduced one step first (line 6). (The expression
xs 1! i selects theith element ofxs) If a task normal form is
reached (line 7), then the committed valaef that task is applied
to the second argument of= (line 8). ARefresh event is applied
to the newly created task in order to collect its events instiage.

If the task is still a redex, then a new redex is constructiee @).
Note that caution is advised in numbering subexpressiorte $he
one-step reduction can change the shape by transforaing atb

to atb va, whereva is the task normal form value a&. The func-
tion setTaskId is used to warrant the correct identification of new
subtasks:

setTaskId :: (TaskId — TaskId) (STask a) — STask a
setTaskld fi ta=Aipes —
caseta (fi i) p e s of
(Redex nta, s) — (Redex (setTaskId fi nta), s)
reduct — reduct

When given a function that generates a correct task ideatiiic
value,setTaskId will always start numbering with this identification
value. In case of>=, the second subtask needs to receive the second
subidentification value at index 1 (line 7).

The semantic function efi | -is defined as follows:

(=11-) infixr 3 :: (STask a) (STask a) — STask a
Il1-) tava=Xipes—
caseta (subIds i !! 0) p e s of
(NF va, s) — (NF va, s)
(Redex nta, s) —
caseua (sublds i !! 1) pe s of
(NF wa, s) — (NF wa, s)
(Redex nua, s) — (Redex (nta -||-nua), s)

When reduction of the left subtaskyields a normal form, the cor-
responding value is the result of this expression (line 4he@vise
the right taskua, is reduced. If that yields a normal form the entire
reduction is also finished (line 7). When neither subtaskistied

a new instance of the combinator is constructed using thatedd
subtasks (line 8). The semantic functioni- is defined similarly:

(-&&-) infixr 4 :: (STask a) (STask b) — STask (a, b)
(-&&-) tatb=Xipes —
let (reducta, s1) =ta (sublds i !! O)pe s
(reductb, s2) =1tb (sublds i !! 1) p e sl
in case (reducta, reductb) of
(NF va, NFvb) — (NF (va, vb), s2)
(NF va, Redex ntb) — (Redex (return va -&&- ntb), s2)
(Redex nta, NF vb) — (Redex (nta -&&- return vb), s2)
(Redex nta, Redex ntb) — (Redex (nta -&%- ntb), s2)

First, the left subtasksa, is reduced. Then, the right subtaskis
reduced using the state of the first reduction. When botrstask
in normal form, reduction is finished and the results aregoband
returned (line 6). Otherwise, a new instance of the combimiat
constructed using the updated tasks (lines 7-9). If only afrthe
subtasks is in normal formF va, the trivial redexeturn va is used.

5. Change handling reference implementation

In this section, we discuss what it takes to extend the reéere
implementation of théTask core system with change handling.
We first describe the changes to the elements of the semantic
types (Section 5.1). We then proceed with task normalina8®c-

tion 5.2) and show how changes that enter a workflow during re-
duction are memorized and can be removed. Handling curreht a
pending changes is performed only by the change-aatazembi-
nator (Section 5.3).

2010/10/21

© ® N oA W N e

B
» o

5.1 Semantic types

The type of a semantic function remains the same (we repfmat it
easy reference), only events and state are altered:

:: STask a:==TasklId Properties Event State — *(Reduct a, State)

Events As discussed in Section 3.4, authorized users can add an
remove changes. This is captured by two new worker evenddo a
(AddChange) and removeRemoveChange) changes:

= Commit TaskId | Update TaskId Value | Refresh
| AddChange LabeledChange

| RemoveChange (ChangeLabel — Bool)

:: LabeledChange :== (ChangeLabel, ChangeContinuation)

:: Changelabel :==String

:: Event

State The state is extended with change administration:

:: State ={ es :: [EditorState], world :: *World
, cc :: Maybe LabeledChange
, €q :: Queue LabeledChange

:: Queue a:=={a]

Changes are stored in the state for two reasons. First, agehan
function modifies itself via its change continuation, andnged to
keep track of its initial and successive values. The curcbange
is stored in thec field of the state. Second, when all current main
tasks have been changed and we still have a change conimuati

5.3 Change-handling semantics

The key challenge is to adapt the combinator to make it aware
of changes. This is a complex operation for several reasors,
whennp @: t0is reducedto is the initial subtask description that is
required as third argument of any matching change funcisra

gconsequenceo needs to be memorized during further reductions.

Second, as soon as a new main task is created, all pendingeshan
need to be applied to it in the order of their occurrence. algs
requires memorization because each matching change earhalt
properties and the task. When the task changes, we change the
identification value of the subtask (by incrementing itsexdn
the list of subidentification values that is generated witbIds,
see Section 4.1). Third, any matching change producesr&ithe
continuation which should be used next time or it is exhaliste

For clarity of presentation, we have collected the necy sz
initions in Figure 3. In contrast to the earlier semantiaction def-
initions, the reduction behaviour of tke combinator that includes
changes consists of two stages. First, all pending changdwaa-
dled exactly once (line 3). Naturally, if this results in akan task
normal form, we are done (line 5). Otherwise, the secondist&p
reduce to the internal combinatdis, np, t0) @:+ nta) (line 4). It
keeps track of the correct subtask identification indexpertes,
and the initial task, together with the result of the eanéstuction.
The internal combinataz:+ (lines 7-13) keeps rewriting to itself as
long as its subtask is not in task normal form (line 10). Nabit t
the initial taskco remains constant. If there is a current change, it is

then the change needs to be applied to future main tasks. Thishandled as described ByoneChange (line 12). If there is no current

change is appended to the change queu&Vhenever new tasks
are created this queue of change functions is applied inahes
order as they have been issued. We define several accedsrignct

setChange :: (Maybe LabeledChange) State — State
setChange nc s = {s & cc =nc}

queueChange :: (Maybe LabeledChange) State — State
queueChange (Just c¢) s ={s & cq =s.cq+ [c]}
queueChange _ s=s

storeChange :: State — State
storeChange s=:{cc} = setChange Nothing (queueChange cc s)

The functionsetChange updates the current change of the state,
queueChange appends a change function to the queue of pending
changes, andtoreChange moves the current change to the queue
of pending changes.

5.2 Task normalization

As we have seen in Section 4.2, a running workflow is charaeter
by the semantic functionsrmalize andreduce. We only need to
adaptreduce to add and remove changes:

reduce :: (STask a) (Event, State) — (Reduct a, State)
reduce ta (e, s) =
casee of
AddChange c
— let (reduct, s2) = startTask ta Refresh
(setChange (Just c) s)
in (reduct, storeChange s2)
RemoveChange p
— (Redex ta, {s & cq=filter (not o p o fst) s.cq})
_ | valid e s.es = startTask ta e s
| otherwise = (Redex ta, showError "Invalid event" e s)

Nonchange events are handled exactly as before (lines 10-11
Adding a change causes reduction of the task with the givangda
set as current change (lines 5-6). After reduction, theefut@illy
updated) change is stored in the queue of pending changes (li

change, we only need to reduce its subtask (line 13).

Handling pending changes one by one amounts to folding
dolneChange Over the queue of pending changes. This is expressed
concisely bydoPendingChanges (line 18-19).

The functiondotneChange (lines 21-32) handles a change if it
matches the given task. It should not matter whether thiagha
is a pending change or a new change. The only difference is tha
a pending change, if not exhausted, needs to be restorecin th
queue of pending changes, whereas a current change neeés to b
restored as current change. HenégneChange is parameterized
with a restore function of typeestoreChange (line 16) that restores
the altered change function in the state. In case:#othis is the
functionsetChange and in case of pending changes this is function
queueChange (both functions were introduced earlier in Section 5.1).

Finally, dobneChange is the pivotal function that actually applies
the change to a task. To make it suited for handling pendiag@és
as well as current changes, it alters a structure ofdy4geResult a
(line 15) which keeps track of the subtask identificationeid
properties, task — as a redex —, and state. Required addifion
formation is passed as the first three arguments: the itéis#l de-
scription, the current subtask identification index, anel teans
to restore the change continuation function in the states (42).

A change can be applied without compromising type safetyrwhe
either its type can be unified with the type of the task (lingp&4f
the change function itself is sufficiently generic to harttiie task
(line 25). Both cases require extensions to standard dynami
ing: type-dependent patterns (Pil, 1999), and ad-hoc potphic
functions in dynamics (Van Noort et al., 2010b). If the cretl,
then we only need to restore the change function in the dtate (
26). Handling a matching change is described bycHagge func-
tion (lines 27-32). We apply the change to the required asnim
(line 29) and obtain the next subtask identification indagkt and
change continuation (line 30). (The functitmniust' removes the
Just constructor from its second argument if it has one, and metur
the first argument otherwise.) A new reduct is computed @iRg
the change continuation is restored, and possibly altembthsk

7). Removing a change is a matter of keeping changes thattdo no identification index and properties are returned (line 27).

satisfy the removal predicaglines 8-9).

2010/10/21

1
2
3
4
5
6
7
8
9

(@:) infixr 5 :: p (STask a) — STask a | property p & Dynamic a
(@:) nptO=Nipes—
casedoPendingChanges t0 i (setProperty np p) s of
(nn, np, (Redex nta, s)) — ((an, np, t0) @:+nta) inpe s
(-, _, reduct) — reduct
(@:+) infixr 5 :: (Int, Properties, STask a) (STask a) — STask a | Dynamic a
(@:+) (n, p, t0) ta=Xi _es —
casedoCurrentChange i e s Of
(nn, np, (Redex nta, s)) — (Redex ((nn, np, t0) @:+ nta), s)
(., _, reduct) — reduct
where doCurrentChange i Refresh s=:{cc = Just c} = dolneChange tO i setChange (n, p, (Redex ta, {s & cc =Nothing})) c
doCurrentChange i e s = (n, p, ta (subIds i !! n) pe s)

:: *ChangeResult a:== (Int, Properties, *(Reduct a, State))
:: RestoreChange :== (Maybe LabeledChange) State — State

doPendingChanges :: (STask a) TaskId Properties State — ChangeResult a | Dynamic a
doPendingChanges t0 i np s=:{cq} = foldl (doOneChange tO i queueChange) (O, np, (Redex tO, {s & cq=1[]})) cq

doOneChange :: (STask a) TaskId RestoreChange (ChangeResult a) LabeledChange — ChangeResult a | Dynamic a
doOneChange tO i restoreChange (n, p, (r, s)) (ci, d) =
case (r, d) of

(Redex ta, cf :: Change a”) — change ta cf

(Redex ta, cf ::Vb: Change b | Dynamic b) — change ta cf

(reduct, _) — (n, p, (reduct, restoreChange (Just (ci, d)) s))

where change ta cf = (nn, np, (reduct, restoreChange nc s2))
where

(mbnp, mbnt, mbcf) =cf i p ta t0
(np, nta, nc) = (fromJust' p mbnp, fromJust' ta mbnt, mapMaybe (A\cf — (ci, cf)) mbcf)
mn = if (isJust mbnt) (n + 1) n
(reduct, s2) =nta (subIds i !! nn) np Refresh s

Figure 3. The change-handling reference implementation ofeth@ombinator.

6. Related work The standard approach to changing behaviour at run time is
known as the strategy pattern (Gamma et al., 1995). Here, the
behaviour that can potentially be changed is insulated &ed t
object possessing this behaviour is equipped with an ekplay to
change it. In the context of this paper this would imply thathave
to equip each task with such a hook. We believe our solutigrgus
change events that replaces a task by a new task is more elegan
Finally, a number of programming languages offer suppart fo
run-time changeErlang (Armstrong and Virdin, 1990) supports
hot code swapping which is not type safdL (Duggan, 2001;
Gilmore et al., 1997; Walton et al., 1998) offers type-safaainic
module swapping. Imperative languages have been the $uifjec
run-time change as well (Hicks, 2001; Stoyle et al., 200Bpéekct-
oriented programming (Dantas et al., 2008; Kiczales eL8b7) is
another way to change programs dynamically. All these laggu
based approaches complicate the semantics significant\sys-
tem possesses a plain rewrite semantics which we expectke ma
reasoning about changes considerably easier.

There are three kinds of related work. First there are othEM®&s

that recognized the need for dynamic changes of the workflow
executed. Second, there are other constructs to changeapreg

at run time. Finally, there are programming languages thaeh
support for dynamic changes of the program executed.

The need for run-time changes in workflow systems has been
recognized early (Ellis and Keddara, 2000; Ellis et al.,3)9%hese
changes describe dynamic modification of both the spediicaf
the workflow as well as any running instantiation of this sftec
cation. Several change patterns have been described (\&ealer
2008), classifying types of changes that should be supgpdiye
a WFMS in two categories: adaption patterns and patterns for
changes to predefined regions. The former describes chamiges
stantiations in which parts are either inserted, deletem;ed, re-
placed, and so on. The latter allows to defer the full spegtifi of
a workflow to run time, by predefining regions which are eligito
change at run time. Finally, in the untyped imperathREPT (Re-
ichert and Dadam, 1998) workflow system, changes can only be
applied if they satisfy preconditions imposed on globalapae-

ters or side-effects. Preconditions allow properties tatecked 7. Conclusions and future work

other than type correctness as in tfiesk system. It is interesting In this paper we have demonstrated how running workflows can
to investigate how conditions can be added toithek system in be changed type safely. This is a very important feature ussca
general. Each of these approaches are confronted with tiemdy deviations from the standard way of working is very common in

change bug. The Petri Nets representing the workflow is a@thng daily practice. Yet, most commercial WFMS do not support imgk
during its execution. Because these changes directly mitéithe such changes properly and are subject to dynamic change bugs
structure of the Petri Net, this can quickly lead to incotesisies. This means that they are not of any help when their help isaélgtu
As the described reference implementation shows, a tashusea needed most. Adding the ability to perform type-safe rumeti
function which can only be replaced by another pure funcbn changes is difficult because their implementation commogligs
the same type. on Petri Nets and an implicit external state. Their focusisantrol
flow while the flow of information between tasks is realizedaas
side-effect storing information in databases.

9 2010/10/21

In the iTask system, tasks are described by typed, pure, and
self-contained functions which explicitly pass inforneatito each
other. Replacing a task means type-safe replacement of unee p
function by another one. The type system ensures that thieval
passed between task have the correct type in the initialflearlas
well as after any number of changes in this workflow.

Not only tasks under current execution can be changed type

safely, also tasks generated in the future by the workflowl=n
changed. This is quite powerful, since tasks are evaluatadrd-
ically and it is not known in advance which tasks come intsexi
tence. The change function can use what it has seen so fazittede
how to act in the future.

We have captured the semantics of this powerful construct by

giving a reference implementation i@lean. This enabled us to
test its behavior. We have proven the practical appliogbif the
new feature by implementing it in the redlask system, using the
reference implementation as a lead. In the real systens tagkon
the availability of generic functions. Hence we needed taltde to
replace ad-hoc polymorphic functions in a type-safe fashio

There are numerous possibilities for future work. For ins&
the end user needs to be well informed about which work is not
taken place as planned, which alternatives exist, and wieit t
effects are. We want to investigate how the change concepbea
used to resolve unexpected situations in the context of flaovk
support for crisis management. Since crisis situations varg
unpredictable, it is essential that a WFMS is capable oftine-
change in order to be of any use. Also, we plan to look at how we
can reason more precisely about the effects of changes toangu
workflow.

Acknowledgements

This research is supported by the Dutch Technology Foumati
STW, applied science division of NWO, and the Technology- Pro
gram of the Ministry of Economic Affairs. We thank Jan Martin
Jansen for scrupulously reading earlier versions of theipap

References

Wil van der Aalst. Exterminating the dynamic change bug: Aaete
approach to support workflow chang&iformation Systems Frontiers
3:3:297-317, 2001.

Wil van der Aalst, Arthur ter Hofstede, Bartek Kiepuszewskid Ana Bar-
ros. Workflow patterns. Technical Report FIT-TR-2002-02eénsland
University of Technology, Brisbane, Australia, 2002.

Joe Armstrong and Robert Virdin. Erlang - An experimentkdgbony pro-
gramming language. IRroceedings of the 13th International Switching
Symposium, ISS '90, Stockholm, Swegeages 2—7, 1990.

Erik Barendsen and Sjaak Smetsers. Conventional and ureégseyping
in graph rewrite systems (extended abstract). In Rudrap&tiyama-
sundar, editorProceedings of 13th Conference on the Foundations of
Software Technology and Theoretical Computer ScienceTEST93,
Bombay, Indiavolume 761 of.ecture Notes in Computer Scienpages
41-51. Springer, 1993.

Daniel Dantas, David Walker, Geoffrey Washburn, and Stejgh@/eirich.
Aspectml: a polymorphic aspect-oriented functional pangming lan-
guage.ACM Transactions on Programming Languages and Systeétns
(3):1-60, 2008.

Dominic Duggan. Type-based hot swapping of running moduledro-
ceedings of the 6th International Conference on Functidhagram-
ming, ICFP '01, Florence, ltalypages 62—73. ACM Press, 2001.

Clarence Ellis and Karim Keddara. A workflow change is a workfl In
Wil van der Aalst, editorBusiness Process Managemerilume 1806
of Lecture Notes in Computer Scienpages 201-217. Springer-Verlag,
2000.

Clarence Ellis, Karim Keddara, and Grzegorz Rozenberg.abyo change
within workflow systems. IrProceedings of the Conference on Orga-

10

nizational Computing Systems, COOCS '95, Milpitas, CA, U#es
10-21. ACM Press, 1995.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissid2e-
sign patterns: elements of reusable object-oriented soétwAddison-
Wesley, 1995.

Stephen Gilmore, Dilsun Kirli, and Christopher Walton. Rymic ML with-
out dynamic types. Technical Report ECS-LFCS-97-378, &lsity of
Edinburgh, 1997.

Michael Hicks. Dynamic software updating PhD thesis, University of
Pennsylvania, 2001.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chrisdda€ristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-ogdrprogram-
ming. In Mehmet Aksit and Satoshi Matsuoka, editdPspceedings
of the 11th European Conference on Object-Oriented Progmarg,
ECOOP '97, Jyvaskyla, Finlangages 220-242. Springer-Verlag, 1997.

Pieter Koopman, Rinus Plasmeijer, and Peter Achten. Anutable and
testable semantics for iTasks. In Sven-Bodo Scholz, editevised Se-
lected Papers of the 20th International Symposium on thdeimgn-
tation and Application of Functional Languages, IFL '08, iitferd-
shire, UK volume 5836 of ecture Notes in Computer Scien&pringer-
Verlag, 2009.

Thomas van Noort, Peter Achten, and Rinus Plasmeijer. Ac&syn-
ergy - Dynamic types and generalised algebraic datatypesMarco
Morazan and Sven-Bodo Scholz, editdrRgvised Selected Papers of the
21st International Symposium on the Implementation andiégijon of
Functional Languages, IFL '09, South Orange, NJ, USé8lume 6041
of Lecture Notes in Computer Scien&pringer-Verlag, 2010a.

Thomas van Noort, Peter Achten, and Rinus Plasmeijer. Axplotymor-
phism and dynamic typing in a statically typed functionaidaage. In
Bruno Oliveira and Marcin Zalewski, editorBroceedings of the 10th
Workshop on Generic Programming, WGP 10, Baltimore, MDAUS
pages 73-84. ACM Press, 2010b.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Viriand Geoffrey
Washburn. Simple unification-based type inference for GADTIn
Julia Lawall, editor,Proceedings of the 11th International Conference
on Functional Programming, ICFP '06, Portland, OR, US#ages 50—
61. ACM Press, 2006.

Marco Pil. Dynamic types and type dependent functions. InirikKélam-
mond, Tony Davie, and Chris Clack, editoPspceedings of the 10th In-
ternational Workshop on the Implementation of Functionahguages,
IFL '98, London, UK volume 1595 of_ecture Notes in Computer Sci-
ence pages 169-185. Springer-Verlag, 1999.

Rinus Plasmeijer, Peter Achten, and Pieter Koopman. iTasteutable
specifications of interactive work flow systems for the welm Ralf
Hinze and Norman Ramsey, editoRoceedings of the 12th Interna-
tional Conference on Functional Programming, ICFP /Q¥ages 141—
152, Freiburg, Germany, 2007. ACM Press.

Manfred Reichert and Peter Dadam. ADERT - Supporting dynamic
changes of workflows without losing controlJournal of Intelligent
Information Systemd40(2):93-129, 1998.

Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewaid lulian
Neamtiu. Mutatis Mutandis: safe and predictable dynamitwsoe
updating.ACM Transactions on Programming Languages and Systems
29(4), 2007.

Philip Wadler. Comprehending monads. Rmoceedings of the 6th Con-
ference on Lisp and Functional Programming, LFP '90, Nicearfeg
pages 61-77, 1990.

Christopher Walton, Dilsun Kirli, and Stephen Gilmore. Apstract ma-
chine for module replacement. RFroceedings of the 1st Workshop on
Principles of Abstract Machines, PAM '98, Pisa, Italy998.

Barbara Weber, Manfred Reichert, and Stefanie Rinderle-M2hange
patterns and change support features - Enhancing fleyibiliprocess-
aware information systemsata and Knowledge Engineering6(3):
438-466, 2008.

2010/10/21

