
iTask as a new paradigm
for building GUI applications

Steffen Michels, Rinus Plasmeijer, and Peter Achten

Institute for Computing and Information Sciences
Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

s.michels@science.ru.nl, {rinus, p.achten}@cs.ru.nl

Abstract. The iTask system is a combinator library written in Clean
offering a declarative, domain-specific language for defining workflows.
From a declarative specification, a complete multi-user, web-enabled,
workflow management system (WFMS) is generated. In the iTask para-
digm, a workflow is a definition in which interactive elements are defined
by editors on model values (abstracting from concrete GUI implemen-
tation details). The order of their appearance is calculated dynamically
using combinator functions (abstracting from concrete synchronisation
details). Defining interactive elements and the order of their appeare-
ance are also major concerns when programming GUI applications. For
this reason, the iTask paradigm is potentially suited to program GUI
applications as well. However, the iTask system was designed for a dif-
ferent application domain and lacks a number of key features to make
it suited for programming GUI applications. In this paper, we identify
these key features and show how they can be added to the iTask system
in an orthogonal way, thus creating a new paradigm for programming
GUI applications.

1 Introduction

Workflow management systems (WFMS) are software systems that coordinate,
generate, and monitor tasks performed by human workers and computers. The
iTask system [10] is a combinator library written in Clean, which offers a high-
level, declarative, domain specific language for defining web-based workflows.
Tasks are defined by typed, pure functions, and are dynamically calculated: the
actual work to do can depend on the outcome of previous tasks. One can sequence
tasks, create parallel tasks in all kinds of flavors, tasks can be defined recursively
and can be higher order. User interaction points are editors on model values.

Due to the use of generic programming techniques, an iTask programmer
does not need to worry about boilerplate programming, such as the handling
of the communication between client and server, and the form rendering and
handling of form updates on the browser. Thus, the iTask paradigm allows the
programmer of a workflow to fully concentrate on its logic: the description of
tasks and the dependencies between them.

Programming GUI applications shares many concerns with programming
workflows: user interaction points need to be defined and their order of ap-
pearance needs to be controlled as well. However, existing approaches for pro-
gramming GUI applications are very different from the iTask paradigm (see
Section 5). Earlier experience in using the iTask system to create an interac-
tive application to explore extended state machine specifications [7] suggested
that the iTask paradigm is suited to define GUI applications. However, essen-
tial features for defining GUIs are lacking in the current iTask system. Those
shortcomings emerge from the different nature of normal workflows and GUI
applications. Typically, when the user fills in some form in the iTask system, she
works on local data in a browser, and by pushing a button a value of required
type is returned to the server. An average GUI application offers many more op-
tions for the user to choose from, using GUI elements like buttons, menus, and
dialogs. It offers multiple interactive windows one can work on simultaneously.
Information being modified is no longer local, because doing something in one
window might affect the contents of another.

In this paper we identify the missing key features for GUI programming in the
iTask system and show how they can be added orthogonally, thereby making the
iTask paradigm fit for defining GUI applications. To obtain a GUI specification
which is as declarative as possible, we realised that we had to restrict ourselves
as well. We do not provide the programmer with fine-grained control over the
layout of forms, dialogs, menus, and windows. Such information has to be defined
separately, e.g. in style sheets. We also do not offer primitives for drawing on
canvas but stick to handling forms with generically generated layouts and the
like. The contributions of this paper are:

– We show that the iTask system can be extended to support programming
GUI applications. The result is a new paradigm for programming GUI ap-
plications in a declarative way, i.e., only data and processes (tasks) need to
be defined.

– The extensions are fundamental GUI elements: windows that can be dynam-
ically opened and closed, and user actions that are (dynamically) organized
in buttons and menus.

– In the new system stand-alone web-based GUI applications can be created.
The extensions are orthogonal to the iTask system, i.e. they do not alter
existing workflow applications.

– iTask users can now work simultaneously on GUI tasks which share infor-
mation. A change made by one worker is made visible to others, enabling
new kinds of tasks such as chat or dashboard applications.

The remainder of this paper is organized as follows. First, in Section 2, the iTask
system is introduced using a running example of a text editor. This is a somewhat
unconventional example of a workflow. However, the goal is to illustrate both
that the iTask system is potentially sufficiently powerful to express such kinds
of GUI applications as well as pin-pointing its current shortcomings for that
domain. We introduce the required extensions to the iTask system step-by-step in
Section 3 and apply them in the running example. In Section 4, we demonstrate

that the extensions are orthogonal to iTask and create a multi-user workflow
application that uses the GUI features. Related work is discussed in Section 5.
We conclude and discuss future work in Section 6.

2 Introducing the iTask System

The iTask system is a monadic combinator library for specifying workflows. In
Section 2.1 we give a concise overview of the library. We present in Section 2.2
the running example of a simple text editor. Further, we discuss what kind of
functionality is missing in iTask for programming GUI applications.

2.1 Library Overview

The iTask library consists of basic tasks, representing the atomic actions the user
can take, which can be composed to build complex workflows using combinators.
Basic tasks that are used in the running example are:

updateInformation :: String String a → Task a | iTask a

enterInformation :: String String → Task a | iTask a

enterChoice :: String String [a] → Task a | iTask a

Note that in Clean the arity of functions is shown explicitly by separating argu-
ment types by spaces instead of→. Every task in the system returns a value of ab-
stract type Task a where a is some concrete type. The basic task updateInformation

generates a form for a value of type a. The form is an editor: the user can inspect
and alter the value arbitrarily many times. The programmer provides a short
title and description to inform the user about the purpose of this editor. When
the form is completed in the editor, the information committed by the user is
turned into a value of type a. The iTask system automatically performs the
necessary conversions, using generic functions for serialisation, generating user
interfaces, updating and verifying values included in the type class iTask. The
function enterInformation is the same except that the system generates a form
with blank fields for entering a value of type a. The function enterChoice lets the
user choose a value from a list of options.

Other basic tasks that we need are concerned with reading and writing values
of type a in a database, using typed references of type DBId a:

createDB :: a → Task (DBId a) | iTask a

readDB :: (DBId a) → Task a | iTask a

writeDB :: (DBId a) a → Task a | iTask a

iTask uses the monadic combinators return, >>=, and >>| to combine tasks:

return :: a → Task a | iTask a

(>>=) infixl 1 :: (Task a) (a → Task b) → Task b | iTask a & iTask b

(>>|) infixl 1 :: (Task a) (Task b) → Task b | iTask a & iTask b

Finally, we need a combinator to compose tasks in parallel: -&&- performs both
tasks and returns their combined result when both are terminated. The operator
@: assigns a task to the indicated user:

(-&&-) infixr 4 :: (Task a) (Task b) → Task (a,b) | iTask a & iTask b

(@:) infix 3 :: User (Task a) → Task a | iTask a

The iTask paradigm lets the programmer concentrate on defining the workflow
processes and the data involved. The generic machinery takes care of building
and handling forms, storing intermediate results, and keeping track of the ap-
plication state.

2.2 Running Example: a Simple Text Editor

In order to investigate the suitability of the iTask paradigm for programming
GUI applications, we perform a case study of a typical GUI application, viz. a
single-user text editor. Although iTask was not designed for such a purpose, it
is possible to create such an application. The case study pin-points the short-
comings of the iTask system for programming GUI applications.

First, we define the “global” state of the editor. Since we are dealing with a
pure functional language, this state is explicitly passed from one task to another.
The state consists of the current text and in which file it is stored, if at all:

:: State = State Note FileInfo

:: Note = Note String

:: FileInfo= NotStored | StoredFile FileName

:: FileName :== String

derive class iTask State, FileInfo

initState = State (Note "") NotStored

The current content is of type Note which contains a string. Type Note is prede-
fined and represented in a browser by a multi-line text-area. To keep the example
simple, only one file can be opened at a time. The current content is either stored
in a file with given name or it is not yet stored. For any user defined type used
in the iTask system, such as State and FileInfo, an instantiation of the generic
iTask type class is needed. The compiler can derive them automatically. Initially
the application starts with empty content that is not stored yet.

There are a number of different operations the user can perform on the state.
Examples are: editing the content, replacing substrings, or saving the content.
To let the user choose which action to perform, the task enterChoice (see Section
2.1) is used. The different actions are straightforwardly represented by string
constants:

Edit :== "Edit Content"

New :== "New"

...

allActions= [Edit, New, Open, Save, SaveAs, ...]

To actually perform those actions, enterChoice has to be put in sequence with a
task performing the selected operation:

1 textEditorApplication= performAction initState

2

3 performAction :: State → Task Void

4 performAction state =
5 enterChoice "Choose Action" "Which action to perform?" allActions >>= λaction →
6 case action of
7 New → performAction initState

8 Edit → edit state >>= performAction

9 Open → openFile >>= performAction

10 Save → save state >>= performAction

11 SaveAs → saveAs state >>= performAction

12 Replace → replace state >>= performAction

13 Quit → return Void

First, the user chooses an action (line 5). The resulting GUI is given in Figure 1a.
When finished, the result action is inspected to dynamically determine how to
proceed. If Quit is chosen, performAction terminates and returns Void (line 13). If
the user requests editing a new file (New), performAction is called recursively with
the initial state (line 7). Tasks for other purposes return an updated state which
is used for the next recursion (lines 8–12). Hereafter the user can choose another
action. The file operations are implemented using Clean’s StdFile operations.
Due to space limitations, we do not discuss their implementation, but restrict
ourselves in the remainder of this paper to the edit and replace tasks.

(a) (b)

(c) (d)

Fig. 1: Screenshots of the text editor example and the file menu

The task edit lets the user modify the current content stored inside the state:

edit :: State → Task State

edit (State content file) =

updateInformation "New content" "Update the ..." content >>= λnewContent →
return (State newContent file)

The current content is updated by the user, using the updateInformation task. The
new content is returned in the new state. Figure 1b shows the corresponding
GUI. In order to replace substrings, we need to know the search string and the
replacement string. We derive a GUI for the appropriate type (see Figure 1c for
a screenshot):

:: Replace= { searchFor :: String, replaceWith :: String }
derive class iTask Replace

Given a desired replacement, we can replace substrings in a String, Note, and
State in a straightforward way:

class replSubStr a :: Replace a → a

instance replSubStr String, Note, State

The task to replace substrings first asks the desired parameters, and applies the
replacement function on the current note content of the state:

replace :: State → Task State

replace state =
enterInformation "Replace" "Enter a substring to search for and..." >>= λr →
return (replSubStr r state)

One might want to define conditions under which a certain action is possible.
For instance, choosing Replace only makes sense for non-empty content. Because
the task is dynamically generated at each recursion, this is easily achieved by
making the list of actions depend on the current state:

allActions :: State → [String]
allActions (State (Note cont) _) =

[Edit, New, Open, Save, SaveAs, Quit]
++ if (cont ̸= "") [Replace] []

The case study demonstrates that the iTask language is, in principle, powerful
enough to describe all the functionality of this typical GUI application. However,
the resulting application is an entirely untypical GUI application. Turn and
turn about, the user must select an operation and must complete it fully to
make progress. The user interface (selecting operations, editing text, replacing
substrings) is scattered instead of integrated and being organized using menus
and windows. We want to add menus and windows to iTask without sacrificing
the conciseness and declarative nature of the above specification.

3 Extending the iTask System

We concluded in the previous section that in iTask the user interface is scattered
along the application instead of being integrated and organized using common
GUI elements such as menus and windows. In this section we show how to glue
the scattered pieces in order to obtain a system that is fit for GUI programming.

These extensions are illustrated with the running text editor example to show
their effect. The extensions are a significant design and implementation effort.
For this reason, we break down their discussion into smaller units. We start with
adding the concept of actions, from which the user can choose, to the iTask
editor concept (Section 3.1). The next step is to associate and organize editor
actions with menus (Section 3.2). Before we can introduce multiple windows,
we need to enable editors to listen to each other (Section 3.3). Once this has
been done, we can introduce windows that can be added and closed dynamically
(Section 3.4). The final step is to make menus also dynamic (Section 3.5).

3.1 Giving the User More Choices

The control flow of the text editor in Section 2.2 allowed the user to edit the
text only after invoking a command to do so. It is more natural to regard the
task for editing the content as a central task that offers a number of optional
actions to complete this task. So, instead of offering only the standard ‘commit’
button to an editor, we extend the editing combinators with a list of optional
actions to terminate the editor and commit its value. Here we give the variant
of updateInformation:

updateInformationActions :: String String [TaskAction a] a → Task (Action, a)
| iTask a

A list of task actions of type TaskAction a is included. Besides the updated value
of type a, the selected action of type Action is returned. (Note that if the list
is empty, the user has no way to terminate the editor and can only edit the
value. This proves to be useful after we have taught editors to listen to each
other in Section 3.3). Before we explain the roles of these new types, we show
the improved text editor:

1 textEditorApplication= performAction initState

2

3 performAction (State content file) =
4 edit content >>= λ(action, nContent) →
5 let state = State nContent file

6 in case action of
7 ActionNew → performAction initState

8 ActionOpen → openFile >>= performAction

9 ActionSave → save state >>= performAction

10 ActionSaveAs → saveAs state >>= performAction

11 Action "replace" _ → replace state >>= performAction

12 ActionQuit → return Void

13 where edit = updateInformationActions "Text Editor" "..." allActions

The structure is very similar to the structure of the text editor defined in Sec-
tion 2.2. The available action options are now a parameter of the editing task
(line 4 and 14). This emphasizes the central role of the editor. The result of
the editor task is a tuple of the chosen termination action and updated content
(line 4).

Each time an action is performed the task is called recursively which gener-
ates an entire new user interface. However, the user interface is rendered as a
form inside a browser and can be updated without producing a flickering win-
dow. Starting the same task recursively many times can be avoided by using
grouped tasks running in parallel (see Section 3.4).

The type TaskAction a is defined in the library:

:: TaskAction a :== (Action, Selectable a)
:: Action = Action ActionID ActionLabel | ActionOk | ActionCancel | ...

:: ActionID :== String

:: ActionLabel :== String

:: Selectable a :== (Verified a) → Bool

:: Verified a = Invalid | Valid a

Instead of using only text labels, a list of task actions given to the editor
task updateInformationActions adds an identification (ActionID) and a predicate
(Selectable a) to each label. For convenience, we include a number of frequently
used actions (ActionOk, ActionCancel, . . .). Their appearance is dictated by the
client platform. For custom defined actions, the text label appears in the user
interface, and the action ID is used to identify the selected action. The selected
Action is returned. The Selectable a predicate is a condition that determines
whether an action is enabled or disabled. The condition is checked each time
the value being edited is updated. The library contains a number of predefined
conditions, such as always, ifvalid and ifinvalid. An editor can be in an invalid
state if no value has been provided. The condition commonly depends on the
state of the editor, hence it is parameterized with the value if valid. For instance,
the replace-action is applicable only if the text is not empty. The editor actions
can now be defined as:

allActions :: [TaskAction Note]
allActions= [(ActionNew, always) , (ActionOpen, always) , (ActionSave, always)

, (ActionSaveAs, always) , (ActionQuit, always)
, (Action "replace" "Replace" , notEmpty)]

notEmpty (Valid (Note txt)) = txt ̸= ""

notEmpty _ = False

The result of this step is that optional actions are integrated with the editor
concept without reducing the declarative nature compared to the original spec-
ification.

3.2 Structuring Choices Using Menus

Instead of presenting a long list of buttons representing the optional actions, a
more user-friendly and common solution is to use menus to organize the com-
mands. Conceptually, they act just like buttons. We separate the definition of
optional actions in a particular context from the way they are presented to the
user: either in the shape of a button or as a menu item. The programmer can
define the desired menu layout in a task annotation. By default, a button is gen-
erated for actions in the task not mentioned in the menu declaration. Actions

mentioned in the menu annotation which are not defined in the task, are ignored.
Before explaining the extension, we show how to extend the running example
with menus (Figure 1d illustrates the corresponding menus):

textEditorApplication= performAction initState <<@ StaticMenus menus

menus :: Menus

menus = [Menu "File" [MenuItem ActionNew (hotkey N)
, MenuItem ActionOpen (hotkey O)
, MenuItem ActionSave (hotkey S)
, MenuItem ActionSaveAs (hotkey A)
, MenuSeparator
, MenuItem ActionQuit (hotkey Q)
]

, Menu "Edit" [MenuItem "replace" (hotkey R)]
]

hotkey key = Just {ctrl = True, alt = False, shift = True, key = key}

The overloaded iTask tuning combinator <<@ can be used to annotate arbitrary
tasks, for example to change the initial worker or the priority. It is extended
with an instance for menu annotations, defined as:

:: MenuAnnotation= NoMenus | StaticMenus Menus

The constructor NoMenus is added as a more readable way of using StaticMenus [] .
The menu structure is inherited by all children of that task, but can always be
overridden with another annotation. For example, if a subtask should have no
menus, it can be annotated with NoMenus.

The types available for defining menus are:

:: Menus :== [Menu]
:: Menu = Menu MenuLabel [MenuItem]
:: MenuItem = ∃action: MenuItem action (Maybe Hotkey) & menuAction action

| SubMenu MenuLabel [MenuItem]
| MenuSeparator

:: MenuLabel :== String

:: Hotkey = { key :: Key, ctrl :: Bool, alt :: Bool, shift :: Bool }
:: Key = A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | ...

The type variable action in the MenuItem data constructor is existentially quanti-
fied. The notation & menuAction action means that instances for a class menuAction
are required and available within the data constructor for the existentially quan-
tified action type. In this way, the programmer can choose to use the default
Actions (ActionOk, ActionCancel, . . .), ActionIDs, or a combinations of ActionID and
ActionLabel. For this purpose, instances have been defined for menuAction to map
these items to their corresponding Action:

class menuAction :: a → (ActionID,ActionLabel)
instance menuAction Action, ActionID, (ActionID,ActionLabel)

In the first two cases the label shown in the menu is determined by the action
given to the actual task the menu is built for. The last case is used to define

another label. In this way items generating actions with the same ID but different
labels can be added to the menu. An example how this can be used is given in
Section 3.5.

3.3 A View on Shared State

In this section we discuss how parallel tasks can mutually influence each other.
This is required when constructing applications that handle a dynamic number
of windows. The actual creation of such tasks is discussed in Section 3.4. We il-
lustrate mutual influence by means of the running example: instead of switching
between atomically editing the text and atomically replacing substrings in the
same text, we want both actions available at the same time and in an interleaved
way. While the edit task is running, any update of the text performed by invo-
cations of the replace task (and also any other action) should update the text
within the edit task as well. Hence, these tasks need to share the same state.
Shared state is readily available in iTask by creating a database to the state,
obtaining a typed reference DBId State, and updating this with the derived task
updateDB1. The result is that all editor actions are parameterized with the shared
state instead of the state. In this way, replace can simply update the shared state:

replace :: (DBId State) → Task Void

replace ref =
enterInformationActions "Replace" "Enter..." actions >>= λ(action, r) →
case action of
Action "replaceAll" _ → updateDB ref (replSubStr r) >>| return Void

ActionClose → return Void

where
actions= [(ActionClose, always)

, (Action "replaceAll" "Replace All" , ifvalid)]

updateDB :: (DBId a) (a → a) → Task a | iTask a

updateDB ref f = readDB ref >>= λa → writeDB ref (f a)

To keep the edit task informed of updates to the shared state, we add the well-
known model-view-controller (MVC) concept [8] to iTask . In the case study, the
model is the state, and edit is a view (it is only interested in the text of the
state) on the state. The edit task registers itself as a view on this model in the
following way:

edit :: (DBId State) → Task Void

edit ref = updateShared "Text Editor" "..." [ActionQuit] ref view >>| return Void

where
view :: Bimap State (Display String,Note)
view = (λ(State content info) → (Display (title info) ,content)

, λ(_,newContent) (State _ info) → State newContent info

)

1 The iTask system ensures that all tasks a derived task is composed of is performed
as one atomic operation.

title NotStore = "New Text Document"

title (StoreFile name) = name

The difference with its previous version is that it is applied to a reference of
the state, instead of the state value, and that it describes its view on the state
with a separate bimap, defined by view. Here only the content part of the state is
given as view to the user. Additionally a title is shown, wrapped by the special
constructor Display to make it not editable.

Views are closely related to the theoretical concept of lenses [3]. The type class
SharedVariable contains a new generic function that takes care of the automatic
update of registered views whenever a shared value is modified. This generic
function applies a merging algorithm in case of conflicting values. The signature
of the function to register a viewer to a shared model value is an extension of
the signature of updateInformationActions (Section 3.1):

updateShared :: String String [TaskAction a] (DBId a) (Bimap a v)
→ Task (Event, a) | iTask a & iTask v & SharedVariable a

:: Bimap m v :== (m → v, v m → m)

We have shown how the tasks replace and edit can mutually influence each other.
We have deliberately ignored the issue of creating these tasks in parallel. This
is discussed in the next section.

3.4 Dynamic Task Groups

In general, a GUI application controls zero or more windows, which are dynami-
cally created during the life-cycle of the application. Therefore, we need a means
to identify a group of (windowed) tasks the number of which can vary during
execution. It is convenient to attach a set of global actions to a group which can
be chosen even if no window is opened, in addition to the local actions which
can be attached to each task individually. Before we discuss the details, we first
adapt the running example to use this feature to dynamically create tasks:

1 textEditorApplication=
2 createDB initState >>= λref →
3 dynamicGroup [edit ref] (allActions ref) (doAction ref) <<@ StaticMenus menus

4

5 allActions :: (DBId State) → [GroupAction Void]
6 allActions ref = [(ActionNew, Always) , (ActionOpen, Always) , (ActionSave, Always)
7 , (ActionSaveAs, Always) , (ActionQuit, Always)
8 , (Action "replace" "Replace" , SharedPredicate ref notEmpty)]
9

10 doAction :: (DBId State) Action → DynAction

11 doAction ref action = case action of
12 ActionNew → Extend [new ref]
13 ActionOpen → Extend [openFile ref]
14 ActionSave → Extend [save ref]
15 ActionSaveAs → Extend [saveAs ref]
16 ActionQuit → Stop

17 Action "replace" _ → Extend [replace ref]

The editor application starts initially with one task, the text editing task edit

as presented in Section 3.3, that registers itself as a view on the current state
(line 3). The list of editor actions, allActions, is now promoted to group actions
because they are always available. Because the availability predicate for the
replace task depends on a shared state, this function is parameterised with the
proper reference. The group behaviour is defined with the function doAction. It is
very similar to the case distinction in the earlier examples: the difference is that
the list of chosen tasks given to Extend are dynamically added to the group. A
separate window is created for every task thus created, such that one can work
on all tasks simultaneously. The group, and all tasks in it, terminate when Stop

is chosen. These are all alternatives of the DynAction type. A group is created
with the dynamicGroup combinator:

:: DynAction= Extend [Task Void] | Stop

dynamicGroup :: [Task Void] [GroupAction Void] (Action → DynAction) → Task Void

It is applied to the tasks that initially belong to the group, the group actions,
and the function that handles an action event. The group actions are similar to
task actions, except that conditions on group actions do not depend on an edited
value. Instead, they are either always possible or if a predicate on a shared state
is valid. In the GUI there is a menu bar for the entire group for triggering those
group actions. Optionally, there is also a toolbar for buttons triggering actions
not included in the menu. So group actions are handled in the same way as task
actions.

The final part to discuss is to decide the rendering of the tasks replace and
edit. For this purpose we introduce a new instance for the task annotation op-
erator <<@:

:: GroupedBehaviour= Fixed | Floating | Modal

By annotating a task as Fixed, it displays its content in a fixed window; Floating
tasks can be moved around by the user, and Modal tasks are shown in a modal
dialog, forcing the user the finish this task before any other. Floating tasks inside
the group have their own menu bar and buttons which are generated as usual.
Fixed tasks have no own menu bar. Therefore, buttons are generated for all task
actions. A screenshot illustrating a fixed editor task and a floating replace dialog
is given in Figure 2.

3.5 Dynamic Menus

Sometimes one wants to dynamically extend a menu structure. An example is to
extend the text editor with a menu for re-opening recently opened files. We model
such a dynamic menu structure as a view on a state. The menu annotation (see
Section 3.2) is extended with a third alternative. In this way the entire structure
of the menu is determined dynamically:

:: MenuAnnotation= ... |∃m: DynamicMenus (DBId m) (m → Menus) & iTask m

Fig. 2: A screenshot of the text editor GUI application

As an example, we extend the text editor with the above mentioned menu. We
first extend the state with a history of recently opened file names:

:: State = State Note FileInfo [FileName]

We deploy the (ActionID,ActionLabel) instance of the menuAction class to pass the
correct file name to be opened with an action with ID "openFile":

dynamicMenus ref (λ(State _ _ history) →
[Menu "File" [MenuItem ActionNew (hotkey N)

, MenuItem ActionOpen (hotkey O)
, SubMenu "Recently opened" (recentItems history)
, ...

])
recentItems hs = [MenuItem ("openFile" , fname) Nothing \\ fname←hs]

4 Mixing Workflow and GUI

In the previous section we have presented the new features of iTask that are
concerned with programming GUI applications. We emphasize that this has
been done in an orthogonal way: existing iTask workflow definitions do not
change because of these extensions. However, it is now possible for workflows to
use the extended functionality. For instance, tasks providing views on the same
shared state can be assigned to different users. This approach gives multi-user
functionality for free. To illustrate this, we give an example of a simple chat
program:

1 chat = createDB (Note "" , Note "") >>= λref →
2 (NamedUser "user1" @: updateShared "Chat" "" [(ActionQuit,always)] ref [editor1])
3 -&&-

4 (NamedUser "user2" @: updateShared "Chat" "" [(ActionQuit,always)] ref [editor2])

5 where
6 editor1= view { viewFrom=λ(note1, note2) → (Display note2,note1)
7 , viewTo =λ(_,note1) (_, note2) → (note1, note2) }
8 editor2= view { viewFrom=λ(note1, note2) → (Display note1,note2)
9 , viewTo =λ(_,note2) (note1, _) → (note1, note2) }

There is a shared state containing two separate notes each user can edit (line 1).
Two tasks assigned to different users are started (line 2, 4). Those tasks provide
views on the same state (lines 6–9). The special constructor Display is used to
make sure that one user can only see but not edit the text of the other user. In
this way editing conflicts are prevented. A screenshot of the generated GUI is
given in Figure 3.

Fig. 3: A screenshot of the chat example

5 Related Work

There already exist many proposals and libraries for defining GUIs in a functional
language. A detailed comparison is out of scope of this paper. Instead we choose
a number of approaches that characterize a programming paradigm.

A large number of approaches have adopted the traditional widget-callback
GUI paradigm (e.g. Object I/O [1] and wxHaskell [9]). Here, the programmer is
responsible for the entire life-cycle of the GUI elements: creation, management,
event handling, and destruction. This style of programming mixes up the visu-
alisation, the program logic, the processed data, and the current state of the
application. If we compare these approaches to the enhanced iTask approach,
we conclude that the resulting code of the former approaches is harder to un-
derstand and therefore harder to maintain.

Other approaches make better use of the level of abstraction provided by
functional languages. Programmers compose the user interface in a declarative
way using basic elements and are freed from explicitly managing them. There
are different approaches for realizing interaction between different components.
In Haggis [6] each component is treated as a virtual I/O device. User events are
represented by messages generated by components like buttons. Additionally, a
separation between the user interface and the application, i.e. between the repre-
sentation and the actual value or interaction with the user, is made. Fudgets [4]

uses the model of stream processors to represent GUI elements. They pass mes-
sages and are hierarchically combined to build up the application. There is no ex-
plicitly shared state. State is realised by routing messages between components.
An even more formal model of continuous time-varying signals transformed by
pure signal transformers is used by Fruit [5]. A drawback of the formal model
used by Fruit is that all kinds of I/O must explicitly be added to the input and
output signal. The iData toolkit [11] models web-applications as interconnected
forms. Generic programming techniques [2] are used to automatically generate
forms for editing values for any type. This allows for a way of modelling appli-
cations which abstracts from the visualisation.

With all those approaches the programmer has to handle the application’s
execution state manually. Having the possibility to define the control flow in a
declarative way is a unique advantage of the iTask paradigm.

6 Conclusions and Future Work

We have shown that the workflow-based iTask system can be used as a paradigm
for building GUI applications. Because the iTask system was originally designed
for managing workflows, this involved a significant implementation effort to add
the required features. One reason is that dealing with tasks sharing data gener-
ates extra dependencies between them which required changing the way tasks are
calculated. Also the way the state of parallel tasks is handled had to be changed
since tasks can be added dynamically. A last point is that on each change not
the entire GUI is replaced but update instructions generated by the server are
used to adapt only changed parts (details are explained in [10]). Form fields
being changed by the underlying data model and dynamically added forms also
required extending this mechanism.

One design goal was to retain the level of abstraction as offered by the iTask
system. When defining GUI applications, programmers only have to define the
processed data and the application’s control flow in the same spirit as with
the ‘original’ iTask system. They are freed from manually handling the appli-
cation’s execution state. Dependencies between the application’s state and the
user interface are declaratively defined using predicates and views. The system
automatically creates proper GUIs, stores intermediate results, and keeps track
of the execution state.

Another advantage is that applications are embedded in the web-based iTask
WFMS. All work the user performs is synchronised with a server. The user can
stop working at any moment and continue on any (other) computer. Also, appli-
cations can be used as part of a workflow, and, vice versa: workflow functionality
can be used by GUI applications. In this way implementing multi-user GUI ap-
plications comes for free.

Although generically generated GUIs are very powerful, for some applica-
tions one might want to influence the layout more precisely. One direction for
future work is to develop a way to influence the layout with more fine-grained
annotations in the same spirit as done for menus.

We want to conduct more case studies. Examples are sophisticated GUI com-
ponents, and applications that use huge amounts of data such as spreadsheet
applications. Also, multi-user applications are good candidates since one gets
much functionality from the WFMS for free. Multi-user applications more easily
lead to editing conflicts. A good error reporting and recovery system has to be
explored.

Acknowledgements We would like to thank the anonymous referees and Bas
Lijnse and Thomas van Noort for their valuable comments.

References

1. Peter Achten and Rinus Plasmeijer. Interactive functional objects in Clean. In
Chris Clack, Kevin Hammond, and Tony Davie, editors, Selected Papers of the 9th
International Workshop on the Implementation of Functional Languages, IFL’97,
volume 1467 of LNCS, pages 304–321. Springer-Verlag, September 1998.

2. Artem Alimarine. Generic Functional Programming - Conceptual Design, Imple-
mentation and Applications. PhD thesis, Radboud University Nijmegen, 2005.

3. Aaron Bohannon, Benjamin C. Pierce, and Jeffrey A. Vaughan. Relational lenses:
a language for updatable views. In PODS ’06: Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
338–347, New York, NY, USA, 2006. ACM.

4. M. Carlsson and T. Hallgren. Fudgets - A Graphical User Interface in a Lazy
Functional Language. In FPCA ’93 - Conference on Functional Programming
Languages and Computer Architecture, pages 321–330. ACM Press, June 1993.

5. Antony Courtney and Conal Elliott. Genuinely functional user interfaces. In
Haskell Workshop, pages 41–69, September 2001.

6. Sigbjörn Finne and Simon Peyton Jones. Composing the user interface with Haggis.
In Advanced Functional Programming: Second Interational School, LNCS #1129,
pages 26–30. Springer-Verlag, 1996.

7. Pieter Koopman, Peter Achten, and Rinus Plasmeijer. Validating specifications for
model-based testing. In Hamid Arabnia and Hassan Reza, editors, Proceedings of
the International Conference on Software Research and Practice, SERP’08, pages
231–237, Las Vegas, NV, USA, 14-17, July 2008. CSREA Press.

8. Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model view
controller user interface paradigm in Smalltalk-80. Journal of Object-Oriented
Programming, 1(3):26–49, August-September 1988.

9. Daan Leijen. wxHaskell: a portable and concise gui library for Haskell. In Haskell
’04: Proceedings of the 2004 ACM SIGPLAN workshop on Haskell, pages 57–68,
New York, NY, USA, 2004. ACM.

10. Bas Lijnse and Rinus Plasmeijer. iTasks 2: iTasks for End-users. In Marco Morazán
and Sven-Bodo Scholz, editors, Revised Selected Papers of the International Sym-
posium on the Implementation and Application of Functional Languages, IFL’09,
South Orange, NJ, USA, volume 6041, pages 36–54. Springer-Verlag, 2010.

11. Rinus Plasmeijer and Peter Achten. iData for the world wide web - program-
ming interconnected web forms. In Proceedings Eighth International Symposium on
Functional and Logic Programming (FLOPS 2006), volume 3945 of LNCS, pages
24–26. Springer Verlag, 2006.

