Ad-hoc Polymorphism and Dynamic Typing
in a Statically Typed Functional Language

Thomas van Noort

Peter Achten

Rinus Plasmeijer

Institute for Computing and Information Sciences, Radboud University Nijmegen
P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands

{thomas, p.achten, rinus}@cs.ru.nl

Abstract

Static typing in functional programming languages such as Clean,
Haskell, and ML is highly beneficial: it prevents erroneous be-
haviour at run time and provides opportunities for optimisations.
However, dynamic typing is just as important as sometimes types
are not known until run time. Examples are exchanging values be-
tween applications by deserialisation from disk, input provided by
a user, or obtaining values via a network connection. Ideally, a
static typing system works in close harmony with an orthogonal
dynamic typing system; not discriminating between statically and
dynamically typed values. In contrast to Haskell’s minimal sup-
port for dynamic typing, Clean has an extensive dynamic typing; it
adopted ML’s support for monomorphism and parametric polymor-
phism and added the notion of type dependencies. Unfortunately,
ad-hoc polymorphism has been left out of the equation over the
years. While both ad-hoc polymorphism and dynamic typing have
been studied in-depth earlier, their interaction in a statically typed
functional language has not been studied before. In this paper we
explore the design space of their interactions.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages

Keywords ad-hoc polymorphism, dynamic typing

1. Introduction

Static typing is the cornerstone of functional programming lan-
guages such as Clean, Haskell, and ML. It prevents erroneous be-
haviour at run time by verifying type safety at compile time. Also, it
provides opportunities for optimisations by exploiting either user-
specified or inferred type information statically.

However, sometimes the type of a value is not known until run
time. Typically this is the case when interacting with the ‘outside’
world: exchanging values between applications by deserialisation
from disk, input provided by a user, or obtaining values via a
network connection. In such cases, dynamic typing is required
to defer type unification until run time. Values are wrapped in
a uniform black box, as their type is statically not known, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WGP’10, September 26, 2010, Baltimore, Maryland, USA.

Copyright © 2010 ACM 978-1-4503-0251-7/10/09. .. $10.00

unwrapped by pattern matching and providing a required type.
Although type unification can fail at run time when a dynamic value
presents an unexpected type, the static type system guarantees that
when pattern matching succeeds, the unwrapped value can be used
safely.

While many dispute over choosing either static or dynamic typ-
ing, we agree that the solution lies in the middle (Meijer and Dray-
ton, 2004):

“Static typing where possible, dynamic typing when needed”

We believe that a statically typed language is the starting point,
extended with an escape to type values dynamically. Ideally, the
dynamic typing system is orthogonal to the static typing system,
imposing no restrictions on the value or types that can be consid-
ered dynamic.

Haskell has minimal support for dynamic typing, it only sup-
ports monomorphism (Baars and Swierstra, 2002; Cheney and
Hinze, 2002). Clean, on the other hand, has a rich and mature
dynamic typing system; it adopted ML’s support for monomor-
phism (Abadi et al., 1991; Pil, 1997) and parametric polymor-
phism (Abadi et al., 1994; Leroy and Mauny, 1993). Additionally, it
includes the notion of type dependencies (Pil, 1999). Even generic
functions can be applied to dynamic values (Wichers Schreur and
Plasmeijer, 2005). Though, the quest for an orthogonal dynamic
typing system cannot be completed without proper support for an-
other important concept: ad-hoc polymorphism.

Ad-hoc polymorphism provides an abstraction mechanism to
parameterise values with behaviour. The usual suspects are func-
tions for the equality and ordering of values. Whereas in ML ad-
hoc polymorphism is modelled via the module system (Wehr and
Chakravarty, 2008), Haskell and Clean model ad-hoc polymor-
phism via type classes which is resolved to a dictionary-passing
style at compile time (Peterson and Jones, 1993; Wadler and Blott,
1989). Static type information is crucial in this approach; it is the
driving force behind the translation mechanisms.

Although both ad-hoc polymorphism and dynamic typing have
been studied in-depth earlier, their interaction in a statically typed
functional language has not been explored before. We identify two
sides to their interaction. On the one hand, it involves dynamic typ-
ing in the world of ad-hoc polymorphism. For instance, a sorting
function applied to a list of dynamically typed values that are ob-
tained by deserialisation from disk or provided by a user as input.
Obviously, this poses a challenge since ad-hoc polymorphism is re-
solved at compile time while the type of dynamic values is known
only at run time. Typically, this is solved by enumerating all ex-
pected types by hand. This resolves ad-hoc polymorphism statically
but is cumbersome, prone to errors, and does not scale for evident

reasons. On the other hand, the interaction concerns ad-hoc poly-
morphism in the world of dynamic typing. For example, a sorting
function that is deserialised from disk and applied to some statically
typed value. Here, the challenge is to extend the existing dynamic
typing mechanisms to support ad-hoc polymorphic values.

In this paper we explore the design space of the interactions and
provide a thorough intuition of the issues involved. While there is
a plethora of type class extensions (Peyton Jones et al., 1997), we
first only consider type classes in the style of Haskell 98 (Peyton
Jones, 2003). We set the scene by giving an overview of both
conventional ad-hoc polymorphism via type classes in Clean and
Haskell (Section 2), and dynamic typing in Clean (Section 3). Our
contributions are the following:

e We describe two complementary approaches to dynamic typing
in ad-hoc polymorphism (Section 4): container datatypes and
dynamic dictionary composition.

e We describe two different approaches to ad-hoc polymorphism
in dynamic typing (Section 5): dictionary-passing types and
type code extension.

e We discuss how several type class extensions affect both sides
of the interaction (Section 6).

Finally, we elaborate on related work (Section 7) and conclude
with a brief discussion and future work (Section 8).

The examples given in this paper are defined using Clean syn-
tax. While types in Clean have an explicit arity, we curry the
types for the sake of presentation. An overview of syntactical and
semantical differences between Clean and Haskell is given else-
where (Achten, 2007; Van Groningen et al., 2010).

2. Ad-hoc polymorphism

We give a brief overview of type classes (Section 2.1) and their
translation to dictionary-passing style (Section 2.2).

2.1 Type classes

Consider the following type class for the equality of values:

class Fq a where
eq::a — a— Bool

The type class Eq has one member, the equality function. We
ignore default members for simplicity reasons; these are irrelevant
to our approach and only clutter the examples. We provide several
instances for this type class:

instance Fq Int where
eqry=-eqlnt xy

instance Fq [«] | Eq a where
eq z y = eq (length x) (length y) A and (zipWith eq z y)

instance Eq («,) | Eq a & Eq 3 where
eqzy=-eq (fstz)(fsty) A eq(sndz)(sndy)

We assume that in the instance for integers, a core equality function
eqInt is available. In the instance for lists, we require there to be an
instance for the element type as well since we pairwise compare the
elements. Similarly in the instance for pairs, we require instances
for both element types.

Next, we define a type class for the ordering of values:

class Ord a | Eq o where
It oo = o — Bool

This type class has one member function as well, one that tests if
the first argument is ‘less than’ the second argument. We also see
that the Eq type class is a superclass of the Ord class, denoting

= DictEq oo = {eq :: « — o — Bool }
dictEqlnt :: DictEq Int
dictEqInt = {eq = Az y — eqInt = y}
dictEqList ::¥ « . DictEq o — DictEq [«]
dictEqList da =

{eq = Az y — dictEqInt.eq (length) (length y)

A and (zipWith da.eq x y)}

dictEqPair ::

YV a . DictEq a — DictEq 8 — DictEq (o, B)
dictEqPair da db =

{eq = Az y — da.eq (fst x) (fst y)
A db.eq (snd z) (snd y)}

2 DictOrd o = {1t :: &« — o — Bool
, dictEq :: DictEq o}
dictOrdInt :: DictOrd Int
dictOrdInt = {lt =Xz y — ltInt x y
, dictEq = dictEqlnt }
dictOrdList :: ¥ « . DictOrd a — DictOrd [«
dictOrdList da =
{lt = Az y — dictOrdInt.lt (length z) (length y)
V or (zipWith da.lt z y)
, dictEq = dictEqList da.dictEq}
dictOrdPair ::
YV a B . DictOrd o — DictOrd 3 — DictOrd (o, 3)
dictOrdPair da db =
{lt =Xz y — da.lt (fst z) (fst y)
V db.lt (snd z) (snd y)
, dictEq = dictEqPair da.dictEq db.dictEq}

Figure 1. Dictionary-passing style translation of £q and Ord

that every Ord instance is also an Eq instance. Again, we define
instances for integers, lists, and pairs:

instance Ord Int where
ltexy=Iltntxy

instance Ord [a] | Ord o where
It zy =1t (length z) (length y) V or (zipWith It = y)
instance Ord (o, 8) | Ord a & Ord 8 where
ltzy=1t(fstz) (fst y) VIt (snd z) (snd y)

We assume the presence of a core function /t/nt for the ordering of

integers. Similar to the instance for Eq, the instances for lists and

pairs require instances for their element types. Admittedly, not all

of these instances are useful in practice. Here, they merely serve

the purpose of illustrating the dictionary-passing style translation.
A typical use of the ordering type class is a sorting function:

sort =V a.[a] = [a] | Ord «

For the sake of brevity we leave its definition abstract. The type of
sort reflects that it sorts a list of values, constrained by a context
Ord of the element type. Note that since Ejq is a superclass of Ord,
this makes the [t function as well as the eq function available to the
sorting function.

2.2 Dictionary-passing style

Type classes are translated at compile time to a dictionary-passing
style. Each type class definition translates to a dictionary type that
captures its members and superclasses. Then, each instance is an

instantiation of that dictionary type. For example, in Figure 1 we
see the dictionary-passing style translation of the Fq and Ord type
class and their instances. The Fq type class translates to a record
type DictEq that has one field for its member function eq. The
DictOrd record has a field for its member It and an additional
field for its super class Fq dictionary. Each body of the instances is
visible in the instantiations of the dictionary types. The instances
that require instances for their element types, such as for lists
and pairs, are passed additional dictionaries. In dictEqList and
dictOrdList we also see how a concrete dictionary is used to test
the length of the argument lists.

Then, ad-hoc polymorphic values are translated such that
they receive additional dictionary arguments. For example, the
dictionary-passing type of the sorting function becomes:

sort =V . DictOrd a — [a] = [«]

Any occurrence of the sorting function inserts the appropriate dic-
tionary. For instance, consider the following expression:

let z =[1..10]
in eq
(sort z) x

Resolving the occurrences of eq and sort results in the following
expression in dictionary-passing style:

let z =[1..10]
in (dictEqList dictEqlnt).eq
(sort (dictOrdList dictOrdInt))

Here we see that the equality function is replaced by accessing the
appropriate record in the equality dictionary for a list of integers.
The sorting function is provided an additional argument, namely,
the ordering dictionary for a list of integers.

3. Dynamic typing

Next, we provide a crash course (not to be taken literally) in Clean’s
dynamic typing system, discussing monomorphism (Section 3.1),
parametric polymorphism (Section 3.2), type dependencies (Sec-
tion 3.3), and type codes (Section 3.4).

3.1 Monomorphism

In Clean, dynamic typing allows monomorphic values to be wrapped
together with their type in a uniform package. This is called a dy-
namic, and is obtained using the corresponding keyword, thereby
obtaining a value of the type Dynamic:

wrapInt :: Int — Dynamic
wrapInt © = dynamic z :: Int

Using the :: annotation, we explicate the type of the value that is
wrapped. The annotation is optional and only required when the
type cannot be inferred.

A dynamic value is unwrapped by pattern matching and provid-
ing a required type using the :: annotation, for example to obtain an
integer from a dynamic:

unwrapInt :: Dynamic — Int

unwrapInt (z :: Int) =z
unwrapInt (z :: String) = stringToInt x
unwrapInt _ =1

The first arm pattern matches on integer values, returning the value
itself if that is the case. If the value in the dynamic is a string,
we convert it to an integer. As type unification takes place at run
time and pattern matching can fail, a catch-all arm is required for
totality; either returning a default value or a run-time error message.
For the sake of convenience, we choose to return L for failed
dynamic pattern matches in this paper.

Instead of enumerating every possible type, pattern variables
can be used in the type of a dynamic pattern match. Typically, this is
used to enforce type equality between dynamic values, for instance
in the infamous example of dynamic function application:

dynApp :: Dynamic — Dynamic — Dynamic
dynApp (f ::a — b) (z:: a) = dynamic (f z)
dynApp _ _ =1

Pattern variables, denoted here by roman instead of greek charac-
ters, in a single arm definition share the same scope. Therefore,
the first arm only succeeds once the argument type of the function
matches the type of the argument. Then, the result is wrapped in a
dynamic again.

3.2 Parametric polymorphism

Besides monomorphic values, parametric polymorphic values can
be (un)wrapped as well without any additional effort. For example,
a function that does not change the type of its argument is wrapped
as follows:

wrapFun :: (V a . a — o) — Dynamic
wrapFun f = dynamic f

Analogously to unwrapping integers, a parametric polymorphic
function is unwrapped by specifying the required type in a dynamic
pattern match:

unwrapFun :: Dynamic - (Vo . a — «)
unwrapFun (f :Va.a—a)=f
unwrapFun _ =1

The « as occurring in the type of the function is different from
the same type variable in the dynamic pattern match; both have
different binding sites.

Note that dynamic pattern matches can contain both type vari-
ables (a, S, etc.) as well as pattern variables (a, b, etc.), the dif-
ference being that the former are explicitly bound by a universal
quantifier while the latter are not. Consider the following function
that tries to unwrap a function and apply it to a list:

dynAppList :: ¥ « . Dynamic — [a] — Dynamic
dynAppList (f :V a . [a] = b) z = dynamic (f)
dynAppList _ _=1

Here, the first arm only succeeds if the dynamic contains a function
that transforms any list regardless of the type of its elements, such
as length =V o . [a] — Int, head :: ¥V . [a] — «, but also
concatenation using the operator (+) :: V. [a] = [a] = [a].

3.3 Type dependencies

The previous examples are context independent, in other words,
the process of (un)wrapping values is not determined by the con-
text in which these functions are used. Type dependencies allow the
context to guide the (un)wrapping of values. A straightforward ex-
ample is the following function that wraps any value in a dynamic:

wrap =¥ . o — Dynamic | TC «
wrap r = dynamic x

Here, the function is (ad-hoc) polymorphic in the argument type.
We require the context to provide a so-called type code (i.e., the
value representation of the type) using Clean’s built-in type class
TC, which is stored together with the value. We elaborate later in
Section 3.4 on this type class and type codes.

Similarly, we can unwrap values depending on the context:

unwrap V¥V « . Dynamic — o | TC «
unwrap (z::a”) ==
unwrap — =1

We require the value to be of the function result type by referring
to the binding site of the same type variable using the " annotation,
omitting the universal quantifier from the dynamic pattern match.
This causes the type code from the dynamic to be unified with the
type code obtained from the context, denoted by the 7'C' context.
Therefore, success of the pattern match depends on the context in
which the value is unwrapped.

As another example, we redefine dynApp from Section 3.1 such
that it depends on the context:

dynApp ::V B . Dynamic — Dynamic — Maybe 8| TC B

dynApp (f :a — B") (xa)=fx
dynApp _ _ =1

The function now only succeeds if the return type of the first
argument fits the context, denoted by the type variable S and the
use of the " annotation. Again, the T'C context is required so that
the type code from the context can be compared to the type code
stored in the dynamic.

3.4 Type codes

As alluded to in the previous sections, type codes lie at the heart of
dynamic typing; whenever a value is wrapped in a dynamic, a type
code is included as well. Also, functions with type dependencies
require a type code to unify type information from the context
with type information stored in a dynamic. In Clean, a type code
is obtained via the built-in type class T'C:

class TC a where
typeCode :: TypeCode

It has a single member constant that provides a type code for its
type argument. However, this type class is treated specially: any
instance that is required is generated at compile time. Therefore,
we cannot provide manual instances of this type class. Type codes
are defined by the vanilla datatype TypeCode:

:: TypeCode = Scheme [String] TypeCode
| Con TypeDef
| App TypeCode TypeCode
| Var String

:: TypeDef

A type code represents a universally quantified type with a list of
variables, which is typically empty for monomorphic types. A type
constructor is represented by a type definition, whose definition is
left abstract for the sake of presentation. The definition of a type
must be included since dynamics can be (de)serialised across ap-
plication boundaries. Then, verifying name equivalence during type
unification simply does not suffice. Consequently, type codes can-
not be defined for abstract types, but only for any nonabstract type.
The other alternatives of TypeCode represent type application and
type variables. As an example, the type V v . [a] — Int of the
function length is represented by:

Scheme ["a"]
(App (App (Con funDef)
(App (Con listDef)
(Var "a")))
(Con intDef))

The definition of the function, list, and integer type is left abstract.

4. Dynamic typing in ad-hoc polymorphism

After the overview of both participants, we continue by considering
the first side of their interaction: dynamic typing in the world of
ad-hoc polymorphism. As a running example in this section, we
consider applying the sorting function from Section 2.1 to a list

that is unwrapped from a dynamic value. Naively, such a function
would be defined as follows:

dynSort :: Dynamic — Dynamic
dynSort (z :: [a]) = dynamic (sort z)
dynSort _ =1

Since ad-hoc polymorphism is resolved at compile time, the chal-
lenge here is that critical type information becomes apparent only
at run time. Consequently, it is not known at compile time which
instance must be provided to the sorting function. Alternatively, we
could define a similar function that exposes the result type using
type dependencies and the " annotation from Section 3.3:

dynSort ::V . Dynamic — [a] | TC «
dynSort (z :: [a]) = sort ©
dynSort _ =1

Here, the dynamic type of the elements in the list is related to a
static type. Though, ad-hoc polymorphism still cannot be resolved.
The type code is provided as an abstract argument to this function,
which cannot be used for resolving purposes at compile time.

A straightforward solution would be to define this function
without a pattern variable and enumerate all expected types:

dynSort :: Dynamic — Dynamic

dynSort (z :: [Int]) = dynamic (sort)

dynSort (z :: [[Int]]) = dynamic (sort)

dynSort (z :: [[[Int]]]) = dynamic (sort)

dynSort _ =1
This would resolve ad-hoc polymorphism at compile time since all
required type information is provided manually. Evidently, this ap-
proach is cumbersome, prone to errors, and does not scale: we have
to duplicate the right-hand side of the original function definition
and easily forget an arm. Moreover, there are often an infinite num-
ber of alternatives.

In this section, we specifically consider the situations where re-
solving ad-hoc polymorphism at compile time relies on type infor-
mation that only becomes available at run time via pattern vari-
ables. We describe two complementary approaches to this chal-

lenge: container types (Section 4.1) and dynamic dictionary com-
position (Section 4.2).

4.1 Container datatypes

The first approach makes the producer of a dynamic value responsi-
ble for resolving ad-hoc polymorphism in future uses of this value.
This is modelled by datatypes containing both values and their
available instances, dubbed container datatypes; similar to classes
in object-oriented programming languages. The most well-known
form of container datatypes is existential datatypes (Ldufer and
Odersky, 1994). For example, the following datatype encapsulates
a list value that can be ordered by the type of its elements:

:: EContOrdList = 3. EContOrdList ([a] | Ord «)

The container prohibits the type of its value from escaping, and
only permits ordering operations. Since the notation for datatype
alternatives coincides with Clean’s notation for type class contexts,
we explicitly provide parentheses to denote that there must be an
instance available for the type of the value, instead of a second
alternative for the C'ontOrdList type. A more permissive form of
container datatypes is the following:

i ContOrdList a = ContOrdList ([a] | Ord «)

The existential type is pushed out of the definition such that the
type of the value is exposed by the container. We often need such
exposure to apply other operations than only the ones permitted or

to relate dynamics to each other using pattern variables. Be aware
that the semantics of such container datatypes is different from
Haskell’s analogues definition:

data Ord oo = ContOrdList « = ContOrdList [o]

Here, the context only guarantees that an instance exists, while
Clean’s approach also makes the corresponding instance avail-
able when the constructor is pattern matched. Typically, the lat-
ter behaviour is achieved in Haskell using generalised algebraic
datatypes (Peyton Jones et al., 2006):

data ContOrdList :: ¥ — x where
ContOrdList :: Ord a = [a] — ContOrdList [o]

We use Clean’s container datatypes because generalised algebraic
datatypes are not yet supported and we do not need its full power
to model container datatypes.

4.1.1 Semantics

We define dynSort again; now using the container datatype for
Ord on lists:

dynSort :: Dynamic — Dynamic

dynSort (ContOrdList x :: ContOrdList a) =
dynamic (sort z)

dynSort _ =1

The dynamic pattern match is changed to include the (type) con-
structor of the container datatype. Note that we cannot use the ex-
istential variant here. Otherwise, its hidden element type would es-
cape to the type code included in the resulting dynamic value.

The context that is introduced by the use of sort is statically
fulfilled by the local context that is propagated by pattern match-
ing the container datatype. The semantics are very similar to con-
text introduced by existential datatypes and generalised algebraic
datatypes (Peyton Jones et al., 2010). Concretely, in dictionary-
passing style, the container datatype for Ord carries a dictionary
in an extra field:

i ContOrdList « = ContOrdList] (DictOrd «)

Every construction of a container datatype fills in the appropriate
dictionary, which is accessed by the dynamic sorting function:

dynSort :: Dynamic — Dynamic

dynSort (ContOrdList z da :: ContOrdList a)
dynamic (sort da z)

dynSort _ =1

The obtained dictionary is passed on to the sorting function.

4.1.2 Discussion

The main advantage of container datatypes is that it is more a
static approach than a dynamic approach. It does require additional
plumbing through (type) constructors, but imposes a minimal run-
time overhead. We specify the context beforehand, allowing the
corresponding dictionaries to be inserted at compile time. The
downside is that it requires us to predict all required context in
advance, something which can be hard. Therefore, this approach
is better suited for applications that do not require much flexibility
and are confined to strict interfaces. For instance, when values are
exchanged between applications and the permitted operations need
to be restricted.

A more worrying problem is that ambiguities quickly arise
when multiple container datatypes are used. For example, when
we define a dynamic equality function. First, we define another
container datatype that captures any value with its Ord instance:

:: ContOrd o = ContOrd (o | Ord «)

Then, we define the dynamic equality function as follows:

dynEq :: Dynamic — Dynamic — Bool
dynEq (ContOrd z :: ContOrd a)

(ContOrd y :: ContOrd a) = eq x y
dynEq — _ =1

Here, we statically enforce type equality of the two values by
reusing the pattern variable a. Also, we require both values to be in
a container together with their Ord instance. However, there is no
guarantee that the instance in the first value is semantically equiv-
alent to the instance in the second value. Possibly, these dynamic
values stem from different applications. It is only guaranteed that
both values have an instance available. Also, it is unspecified which
one to choose. The same issues arise when static contexts are mixed
with dynamic contexts:

dynEq ::¥ o . Dynamic — o — Bool | Ord a & TC «
dynEq (ContOrd z :: ContOrd o) y = eq z y
dynEq _ =1

Again, it is unclear whether to choose the instance for Fq obtained
from the container datatype or the context. We believe it is better to
refuse such definitions statically than to implement a complicated
heuristic that solves the ambiguities arbitrarily. A straightforward
manual solution is to remove a container datatype constructor using
a helper function or a context from the function type, depending on
the desired behaviour.

4.2 Dynamic dictionary composition

In contrast to the first approach, the second approach makes the
consumer of a dynamic value responsible for resolving ad-hoc
polymorphism. In other words, the function that pattern matches
a dynamic value has to come up with the appropriate instance.
Since this depends on type information that becomes available at
run time, we have to perform this process dynamically. Instead of
translating the well-known static mechanism completely to their
dynamic counterpart, we keep the quote of Meijer and Drayton
from the introduction in mind and only translate those parts across
the dynamic border that cannot be performed statically. More con-
cretely, only the composition of dictionary definitions needs to oc-
cur at run time.

4.2.1 Semantics

Again, we redefine dynSort; now using an explicit context in the
dynamic pattern match:

dynSort :: Dynamic — Dynamic
dynSort (z :: [a] | Ord a) = dynamic (sort x)
dynSort _ =1

The required context introduced by the use of sort is now fulfilled
by the dynamic pattern match context. The pattern-match semantics
of such contexts in a dynamic pattern match are straightforward:
when there is no instance available at run time for the matched
pattern variable, the pattern match fails. The requirement is in
addition to the original dynamic pattern match semantics; the two-
stage process is explicated in the translated dictionary-passing style
definition of dynSort:

dynSort :: Dynamic — Dynamic
dynSort (z :: [a])
| gda = dynamic (sort da z)
where
(gda, da) = guards (genDictOrd (dynamic L :: a))
dynSort _ = L

The elegance of the translation is that this definition uses conven-
tional dynamic typing mechanisms. In other words, the added con-

text notation is merely syntactic sugar. The context is pushed out
of the dynamic pattern match and turned into a guard that verifies
the presence of the required instance. The corresponding dictionary
is obtained at run time by a generator function, given the type for
which it has to compose one. This function groups the available in-
stances and is mechanically deduced at compile time. We provide
it the matched pattern variable as a value using a trick: we construct
a dynamic value that is L, relying on lazy evaluation, and explic-
itly provide an annotation that this value is of type a. The resulting
dictionary for this type is prepared by the helper function guards
such that we can use the fall-through semantics of the guard:

guards :: ¥ o . Maybe Dynamic — (Bool,«) | TC «
guards (Just (z :: ™)) = (True, x)
guards Nothing = (False, 1)

The second element of the resulting pair is only used when the first
element passes a guard.

There is not necessarily a dictionary available for any type.
Also, because the type of each dictionary is different, the result
of the generator function is wrapped in a dynamic again. Hence, its
type becomes:

genDictOrd :: Dynamic — Maybe Dynamic

Since this type permits almost any argument and result type, we
have to keep correctness by construction in mind. The invariant we
are guarding here is that given a value of type «, a dictionary of type
DictOrd « is returned, if there is one available. Typically, this is
expressed through generalised algebraic datatypes, but Clean does
not support such definitions as mentioned before in Section 4.1.

Recall from Section 2.1 that there are instances of Ord for in-
tegers, lists, and pairs. Each arm of the generator function follows
mechanically from the available instances, each returning the cor-
responding dictionary from Figure 1. The first arm follows from the
instance for integers:

genDictOrd (—:: Int) = Just (dynamic dictOrdInt)

The corresponding Ord dictionary for integers is simply returned.
The arm for lists requires a bit more work, using unwrap as defined
in Section 3.3:

genDictOrd (_::[a]) =
do da <+ genDictOrd (dynamic L :: a)
Just (dynamic (dictOrdList (unwrap da)))

As the instance header for lists dictates, a dictionary for Ord of
the element type is required. Therefore, we match the type using
a pattern variable and generate an Ord dictionary accordingly,
borrowing Haskell’s do notation for the sake of handling Maybe
values conveniently. If this succeeds, we unwrap the result and
construct the final dictionary for Ord of lists. Note that in general,
unwrapping a dynamic value can fail. Here, we rely on correctness
by construction as mentioned earlier. Similarly, the arm for pairs
follows mechanically from its instance:

genDictOrd (—:: (a, b)) =
do da <+ genDictOrd (dynamic L :: a)
db < genDictOrd (dynamic L :: b)
Just (dynamic (dictOrdPair (unwrap da)
(unwrap db)))

We bind the different element types to pattern variables and gener-
ate Ord dictionaries for both element types. Then, if both result in a
dictionary, we unwrap the results and generate a dictionary for Ord
of pairs. Finally, a catch-all arm is defined if the presented type is
none of the above (i.e., there is no instance available for this type):

genDictOrd _ = Nothing

Note that though Eq is a superclass of Ord, we do not have to
consider its dictionary composition since these are already included
in the available dictionaries for Ord. The generator function merely
composes these definitions as dictated by the available instances.

4.2.2 Discussion

Opposite to container datatypes, dynamic dictionary composition is
more a dynamic approach; composition takes place at run time us-
ing a compile-time deduced generator function. Consequently, this
approach is likely to introduce more overhead at both compile time
and run time. On the other hand, we are not confronted with the
additional plumbing of (type) constructors of container datatypes.
But above all, we do not have to know the required contexts in
advance; operations are separated from values. Therefore, this ap-
proach is more suited to applications that require more flexibility
where less assumptions can be made about the purpose of dynam-
ically typed values. For example, when values are obtained from
user input.

Also, this approach does not suffer from the ambiguity prob-
lems that container datatypes introduce. Consider a function for the
equality of dynamic values, now using dynamic dictionary compo-
sition. We include duplicate contexts on purpose in the dynamic
pattern matches:

dynEq :: Dynamic — Dynamic — Bool
dynEq (z::a| Orda) (y::a| Orda)=eqzy
dynEq _ _ =1

The crucial difference with container datatypes is that the contexts
on Ord are part of the dynamic pattern matches, not of the dynamic
values themselves. The same observation holds when the type of
the dynamic value escapes to the context:

dynEq ::¥ o . Dynamic — o — Bool | Ord a & TC «
dynEq (z::a" | Ord a™) y=eqz y
dynEq _ =1

We always refer to the same type class and the same instances.
Therefore, no ambiguities can arise from duplicate contexts.

5. Ad-hoc polymorphism in dynamic typing
Now that we have seen how dynamic typing is included in the
world of ad-hoc polymorphism, we continue by looking at the other
way around: ad-hoc polymorphism in the world of dynamic typing.
We identify two challenges and consider the sorting function from
Section 2.1 as a running example in this section.

Naturally, the sort function is wrapped as follows, using the
wrap function from Section 3.3:

wrappedSort :: Dynamic
wrappedSort = wrap sort

The first challenge is to come up with an appropriate type code, as
dictated by the type of wrap.

One of the possibilities to unwrap values from a dynamic is
by using the unwrap function from Section 3.3. For example, a
function that unwraps and applies a value like wrappedSort is
naively defined as follows:

dynAppOrd :: ¥ o . Dynamic — [a] — [a] | Ord «
dynAppOrd d © = unwrap d

Unfortunately, this definition does not capture the intended be-
haviour. The type inferred for the result of unwrapping the value
is too general; namely V o . [a] — [«]. Since we explicitly desire
an ad-hoc polymorphic function, we have to provide an explicit
type signature as well. In general, unwrapping ad-hoc polymorphic
values always requires an explicit dynamic pattern match:

dynAppOrd :: ¥ o . Dynamic — [a] — [a] | Ord «
dynAppOrd (f =Va.[a] = [a]| Orda) z=f
dynAppOrd _ _=1

This function is ad-hoc polymorphic of its own; it has to propa-
gate the Ord context to the unwrapped function. The first arm now
includes an explicit dynamic pattern match that specifies an ad-
hoc polymorphic type. The syntactic difference with the function
dynSort from Section 4.2.1 is subtle: there we use a pattern vari-
able while here we use a universally quantified type variable. The
semantics of the former is opposite to the latter: there we have to
produce an instance, while here we consume an instance. Here, the
challenge is to extend existing semantics for unwrapping ad-hoc
polymorphic values.

In this section we describe two different approaches to these
challenges: dictionary-passing types (Section 5.1) and type code
extension (Section 5.2).

5.1 Dictionary-passing types

The first approach makes clever use of the dictionary-passing style
translation of type classes. This translation ‘removes’ ad-hoc poly-
morphism from a type, obtaining a parametric polymorphic type.
Consider the dictionary-passing type of the function sort, as given
before in Section 2.2:

sort =V . DictOrd a — [a] = [«]

When wrapping such a value in a dynamic, a type code is required
for its ad-hoc polymorphic type. However, we can make use of
the existing type code mechanisms by requiring a type code for
its dictionary-passing type instead.

Analogously, this approach translates dynamic pattern matches
with an ad-hoc polymorphic type to a dictionary-passing type as
well. For instance, the dynAppOrd function becomes:

dynAppOrd ::V a . DictOrd o« — Dynamic — [a] — [¢]

dynAppOrd da (f =V « . DictOrd a — [a] — [a]) z =
fdazx

dynAppOrd da _

Since the type in the dynamic pattern match is no longer ad-hoc
polymorphic, it only succeeds if it is provided a value that is exactly
ad-hoc polymorphic in Ord: nothing more, nothing less.

=1

5.1.1 Discussion

The advantage of the first approach is that it is lightweight: it is
defined in terms of existing mechanisms. Consequently, the se-
mantics of unwrapping ad-hoc polymorphic values does not take
superclass relations into account. Also, this approach offers a
backdoor. Since it translates dynamic pattern matches to include
a dictionary-passing type, we can obtain the dictionary that is
usually kept hidden from us. For example, when the expression
dynamic (Ada =z — z) is presented as the first argument of
dynAppOrd, the dynamic pattern match succeeds and the variable
da is bound to the hidden internal dictionary. Although we cannot
use the value since its dictionary type remains hidden, it is not very
elegant.

5.2 Type code extension

The second approach relies less on existing mechanisms and ex-
tends these where necessary. As mentioned before, the use of wrap
in the example function wrappedSort requires a type code for the
ad-hoc polymorphic type of sort. The described type code defini-
tion in Section 3.4 extends naturally to include such types. Recall
that we only consider type classes in the style of Haskell 98, where
contexts in type signatures are of the form C avor C (v 71 .. 7n),
where (' is a type class, v a type variable, and 7; is any type.

Then, we add a list of contexts to the Scheme alternative of the
TypeCode type:

it TypeCode = Scheme [String] TypeCode [Context]

2 Context = Context ClassDef Parameter
:: Parameter = Parameter String [Type]
:: ClassDef

:: Type

Similar to type constructors, a context includes a class definition
since name equivalence does not suffice. Also it contains a param-
eter, which is defined by a variable and a list of types. The list is
empty for contexts of the form C' . The definition of class defini-
tions and types is left abstract. Then, the ad-hoc polymorphic type
of sort Vo . [a] — [a] | Ord « is represented as follows:

Scheme ["a"]
(App (App (Con funDef)
(App (Con listDef)
(V(ZT’ ||a||)))
(App (Con listDef)
(Var "a")))
[Context ordDef (Parameter "a" [])]

We leave the definition of the ordering type class, as well as the
function and list type, abstract.

Since this approach extends the existing type code definitions,
we have to extend the semantics for dynamic pattern matches in-
volving such type codes as well. The proposed semantics as de-
scribed before in Section 5.1 is unnecessarily restrictive. To illus-
trate this, we make a brief excursion to a similar phenomenon and
consider rank-2 polymorphism (Odersky and Laufer, 1996; Peyton
Jones et al., 2007). Suppose we define the rank-2 counterpart of
dynAppOrd as follows:

rank2AppOrd ::
Va.Va.l[a] = [a] | Ord a) = [a] = [a] | Ord «
rank2AppOrd f = f x

Here, we choose to lift the type from the first dynamic pattern
match to the type of the function, replacing the occurrence of
Dynamic. The first argument of the function is ad-hoc polymor-
phic and still expects a dictionary, which is provided by the context
of rank2AppOrd. Evidently, we can omit the default case safely
because the function no longer operates on dynamic values but on
one specific lifted type. To gain insight in the desired semantics
of dynamic pattern matches with ad-hoc polymorphic types, we
look at possible arguments to rank2AppOrd. From less general to
more general, we consider functions for sorting, removing dupli-
cates from, and reversing lists:

sort =Va.la] =]a]| Ord «
nub =Va.la] = [a] | Eqa
reverse =V a . [a] = [a]

Clearly, providing the sorting function to rank2AppOrd is well
typed; their types precisely match. Perhaps surprisingly, the dupli-
cate removal function is suited as well; its type is more general than
the sorting function since Fgq is a superclass of Ord. Similarly, the
reversing function poses no problem with the most general type
of the three; it contains no contexts at all. Ideally, dynamic pat-
tern matches with ad-hoc polymorphic types exhibit the same se-
mantics. Then, the first arm of dynAppOrd must succeed for sort,
nub, and reverse as well.

Multi-parameter type classes

Dynamic typing in ad-hoc polymorphism
Container datatypes [
Dynamic dictionary composition)

Ad-hoc polymorphism in dynamic typing
Dictionary-passing types [
Type code extension)

Flexible contexts Flexible instances

O O
[] []
® O
[] O

Figure 2. Overview of the interactions between approaches and type class extensions

5.2.1 Discussion

Opposite to the first approach, this approach is more heavyweight:
it requires an extension of type codes and includes rank-2 poly-
morphism semantics in type unification. On the other hand, this
approach does not provide any back doors and is therefore more
elegant. Moreover, it is more flexible in dynamic pattern matches.
However, it can be desirable to precisely pattern match on con-
texts, not taking superclass relations into account. Luckily, such
behaviour is achieved by enumerating the cases from more gen-
eral to less general. For example, we distinguish the three function
types of sort, nub, and reverse by the following ordering of dy-
namic pattern matches:

distinguish :: Dynamic — ...
distinguish (f =V . [a] = [a]) =...

]
distinguish (f =Va.[a] = [a] | Eqa) =...
distinguish (f =V a.|a] = [a] | Ord o) = ...
distinguish _ =1

The first arm matches only reverse, the second arm matches nub as
well, and the final arm matches all three functions. Consequently, if
we wish to distinguish all n superclasses of a type class, this results
inn 4+ 1 arms.

6. Type class extensions

Until now, we have only considered the realisation of ad-hoc poly-
morphism through type classes in the style of Haskell 98. In this
section we discuss some of the more popular type class exten-
sions (Peyton Jones et al., 1997) in Clean and Haskell: multi-
parameter type classes (Section 6.1), flexible contexts (Section 6.2),
and flexible instances (Section 6.3). We give a brief introduction to
each extension and discuss if and how it affects dynamic typing in
ad-hoc polymorphism, as in Section 4, and ad-hoc polymorphism
in dynamic typing, as in Section 5. Not all of the described ap-
proaches are affected by all extensions though. Figure 2 provides
additional guidance for this section by summarising the interactions
that require discussion.

6.1 Multi-parameter type classes

We assumed in earlier sections that the number of type class param-
eters is restricted to one. The multi-parameter type class extension
lifts the restriction so that a type class can have any number of pa-
rameters, which do not necessarily need to be distinct variables.
Consider the following multi-parameter type class, one that models
an array of type o with elements of type e, with a single member
function that returns the value at the indicated position:

class Array « ¢ where
select :: Int -+ e — €

Then, an instance for lists of integers is defined as follows:

instance Array [] Int where
select i x = ...

The corresponding dictionary type now takes two parameters:

o DictArray o e = {select :: Int — ave — e}

dictArrayListInt :: DictArray [] Int
dictArrayListint = {select = Ai z — ...}

Evidently, also the form of contexts occurring in type signatures
change accordingly. For example in the function that selects the
first element of an array:

selectFirst =¥ ae.ae—e| Array a e
selectFirst = select 0

Since the complete form of type classes is affected by this exten-
sion, dynamic typing in ad-hoc polymorphism as well as ad-hoc
polymorphism in dynamic typing is affected.

6.1.1 Dynamic typing in ad-hoc polymorphism
Similar to dynSort as defined in Section 4, we naively would

define a dynamic function that selects the first element of an array
as follows:

dynSelectFirst :: Dynamic — Dynamic
dynSelectFirst (z :: a e) = dynamic (selectFirst x)
dynSelectFirst _ =1

Again, type information that is required to resolve ad-hoc poly-
morphism only becomes available at run time. We describe how
both container datatypes and dynamic dictionary composition are
extended to support resolving of multi-parameter type classes.

Container datatypes The extension is incorporated naturally in
container datatypes. For instance, when we define a container that
captures values together with their Array instance:

: ContArray o € = ContArray ((a€) | Array a €)

The container datatype now takes two parameters, in contrast to the
similar definition of C'ontOrd from Section 4.1. Then, we adapt the
function to include the constructor of the container datatype:

dynSelectFirst :: Dynamic — Dynamic

dynSelectFirst (ContArray x :: ContArray a e) =
dynamic (selectFirst x)

dynSelectFirst _ =1

As before, the container datatype carries an additional field in
dictionary-passing style:
: ContArray o € = ContArray (o €) (DictArray o €)

Then, the dynSelectFirst function makes the dictionary available
in the dynamic pattern match:

dynSelectFirst :: Dynamic — Dynamic

dynSelectFirst (ContArray z da :: ContArray a e) =
dynamic (selectFirst da x)

dynSelectFirst _ =1

The obtained dictionary is passed on to the selectFirst function.

Dynamic dictionary composition Supporting the extension in dy-
namic dictionary composition requires just a bit more work. As an
example, consider dynSelectFirst where an explicit context is in-
cluded in the dynamic pattern match:

dynSelectFirst :: Dynamic — Dynamic

dynSelectFirst (z::a e | Array a e) =
dynamic (selectFirst)

dynSelectFirst _ =1

As before, this definition translates mechanically to the following:

dynSelectFirst :: Dynamic — Dynamic
dynSelectFirst (z :: a e)
| gda = dynamic (selectFirst da z)
where
(gda, da) = guards (genDictArray (dynamic L :: a)
(dynamic L :: ¢))
dynSelectFirst — = L

Now, the generator function for Array takes two arguments, one
for each of its parameters. Note that the first parameter a of the
generator function is of kind * — *. However, Clean requires such
a type to be of kind *. This is easily solved by fully saturating the
pattern variable with type variables that are universally quantified
locally, giving us the type V « . a «. For the sake of presentation,
we will not saturate higher-kinded argument types of the generator
function explicitly. Due to the two parameters, the type of the
generator function becomes:

genDictArray :: Dynamic — Dynamic — Maybe Dynamic

The instance of Array for lists and integers dictates the following
arm that includes a dynamic pattern match for both parameters:

genDictArray (—:: []) (=:: Int) =
Just (dynamic dictArrayListint)

Similar to before, the first dynamic pattern match contains a type of
kind % — *, while Clean requires it to be of kind *. This is solved in
the same fashion by fully saturating the type in the dynamic pattern
match with type variables, obtaining V « . [«] of the proper kind.
Again, for the sake of presentation, we will not saturate higher-
kinded types in dynamic pattern matches explicitly.

Now that contexts consist of multiple parameters, some of the
types can be known statically while others still depend on dynamic
type information. For example, when the type of the elements in
the array is dictated by the context in which the dynSelectFirst
function is used:

dynSelectFirst :: ¥ e . Dynamic — €| TC €
dynSelectFirst (z:: a " | Array a €") = selectFirst x
dynSelectFirst _ =1

Maybe surprisingly, the illustrated translation still holds. The gen-
erator function is still provided two arguments, where the first is of
type a but where the second is now of type €”; type information
from the " annotation is propagated to the generator function.

6.1.2 Ad-hoc polymorphism in dynamic typing
Wrapping a value like selectFirst remains straightforward:

wrappedSelectFirst :: Dynamic
wrappedSelectFirst = wrap selectFirst

Unwrapping and applying such a value consists of a dynamic pat-
tern match with the corresponding ad-hoc polymorphic type:

dynAppArray ::V o € . Dynamic — o€ — € | Array a e
dynAppArray (f :Vae.ae—e|Arrayae)z=fz
dynAppArray _ =1

Since dictionary-passing types and type code extension rely on the
form of type classes, these have to take the extension into account.

Dictionary-passing types The dictionary-passing types approach
is straightforwardly extended. When a value like selectFirst is
wrapped in a dynamic, a type code for its dictionary-passing type
is included in the dynamic:

selectFirst :: ¥ v e . DictArray a € — o€ — €

Fortunately, type codes already support type constructors applied
to multiple arguments. Also, unwrapping such a value via a pattern
match in the dynAppArray function translates naturally to include
a dictionary-passing type:

dynAppArray ::
Va €. DictArray a e = Dynamic — a € — €
dynAppArray da (f :V ae. DictArray o e — a € — ¢€)
xr=fdazx
dynAppArray da — — = 1

The semantics for the dynamic pattern match remains the same:
it only succeeds if it is provided a value that is exactly ad-hoc
polymorphic in Array.

Type code extension Wrapping ad-hoc polymorphic values like
selectFiirst requires a modification to the type codes presented ear-
lier in Section 5.2. Luckily, these are easily extended with multiple
parameters by adapting the C'ontezt type accordingly:

:: Context = Context ClassDef [Parameter|

Instead of a single parameter, a context now includes a list of
parameters. Also, the ClassDef has to take the new form into
account. Unwrapping a value like selectFirst still follows the
semantics of the analogue rank-2 polymorphic definition.

6.2 Flexible contexts

We restricted contexts occurring in class definitions, instance def-
initions, and type signatures as well. In class definitions, contexts
are restricted to the form C' «, where C is a type class and o a
type variable. The flexible contexts extension allows us to define
any context (i.e., superclass) in a class definition, as long as the
class hierarchy remains acyclic. This change only affects dictio-
nary types and the translation from concrete instances to dictionary
definitions. Therefore, this is not of our concern. However, flexible
contexts of defined instances do affect our approach. In combina-
tion with multi-parameter type classes as described earlier, it re-
laxes the original context of the form C' atobe C 71 ... T,, where
T; is any type. To ensure compile-time termination, the new form
is subject to the so-called Paterson and coverage conditions (Sulz-
mann et al., 2007). As an example of flexible contexts, we define
an instance of Array for lists and lists of values:

instance Array [] [€] | Array [] e where
select i x = ...

Now, the context takes the type constructor [], besides the type
variable «. Its dictionary definition takes an additional argument
that reflects this context:

dictArrayListList ::V e . DictArray [] € = DictArray [] [€]
dictArrayListList da = {select = Xi z — ...}

The final part of the extension lifts the restriction of the form
of contexts in type signatures from C' « or C (& T1...75) to
C 71 ...7,. For instance, in the following example we explicitly
require a list array to concatenate the nested lists:

concatArray Ve . [[e]] — [€] | Array [] €

We leave its definition abstract since this would require a more
elaborate Array type class with more member functions.

Both dynamic typing in ad-hoc polymorphism as well as ad-hoc
polymorphism in dynamic typing are affected by flexible contexts.
The former since the form of contexts in instances is changed and
the latter since the form of contexts in type signatures is changed.

6.2.1 Dynamic typing in ad-hoc polymorphism
We only have to consider dynamic dictionary composition since

container datatypes are not concerned with more flexible contexts
in class definitions, instance definitions, or type signatures.

Dynamic dictionary composition Consider the earlier introduced
generator function for the Array type class from Section 6.1.1.
The instance for lists and lists of values, defined using the flexible
contexts extension, adds the following arm:

genDictArray (—::[]) (= [e]) =
do da + genDictArray (dynamic L :: [])
(dynamic 1 ::¢)
Just (dynamic (dictArrayListList (unwrap da)))

Here, the recursive call to the generator function no longer just
takes pattern variables obtained from the dynamic pattern match,
but ordinary types as well, as visible in its first argument. The
expressive dynamic typing system allows us to construct a dynamic
value of any type, therefore, this extension is easily taken care of.
Note that if we lifted the coverage conditions as mentioned earlier,
termination of the generator function is not guaranteed.

6.2.2 Ad-hoc polymorphism in dynamic typing
A value like concatArray is wrapped as usual:

wrappedConcatArray :: Dynamic
wrappedConcatArray = wrap concatArray

Again, such a value is unwrapped by explicating its type in a
dynamic pattern match:

dynAppArray ::V € . Dynamic — [[e]] — [€] | Array [] €
dynAppArray (f =Ve.[[e]] = [e] | Array [e) z =f z
dynAppArray _ =1

Since the form of contexts in type signatures is changed by the
extension, both dictionary-passing types and type code extension
are affected.

Dictionary-passing types Flexible contexts are straightforwardly
included in the dictionary-passing types approach. For instance,
when we wrap the concatArray function, a type code is included
for the following type:

concatArray =V e . DictArray [] € — [[€]] — [€]

As before, the dictionary-passing type is used in the dynamic pat-
tern match as well:

dynAppArray ::
Ve. DictArray [] € — Dynamic — [[€]] — [€]
dynAppArray da (f ::V e. DictArray [] € — [[e]] = [€])
x=fdax
dynAppArray da _ _ = 1

Note that the dynamic pattern match not only succeeds any more
for values that are exactly ad-hoc polymorphic in Array. Since the
first parameter of the dictionary type is restricted to the list type,
any dictionary that is less restrictive will also do.

Type code extension We adapt the Parameter type, that models
type class parameters, from Section 5.2 to include flexible contexts:

:: Parameter = Parameter [Type]

It now includes a list of types, instead of always requiring a type
variable in prefix position. Again, the ClassDef type has to be
modified as well to include the new form of contexts in class
definitions. Unwrapping values including flexible contexts follow
rank-2 polymorphism semantics.

6.3 Flexible instances

Besides a restricted context, we also restricted the instances to
be of the form C' (T «i...an) where C is a type class, T’
a type constructor, and «; a distinct type variable. The flexible
instances extension lifts this restriction, including multi-parameter
type classes, to the form C' 71 ... 7,, where C'is a type class and 7;
is any type. For example, we define an instance of Array for lists
and pairs with integers:

instance Array [] (Int, €) where
select i x = ...

The corresponding dictionary definition reflects the flexible in-
stance in its type:

dictArrayListPairInt ::V € . DictArray [] (Int,€)
dictArrayListPairInt = {select = Xi x — ...}

Due to the extension, overlap between instances can occur. For
example, consider the following additional instance:

instance Array o (Int,€) | Array o e where
select i x = ...

Here, the instances overlap in the first parameter of Array. Conse-
quently, it is not clear which instance to choose for an array whose
elements are of type (Int, Bool). Normally, such ambiguities are
rejected at compile time. Another extension called overlapping in-
stances lifts this restriction and chooses the most specific one. In
this example, the first one is most specific. Evidently, there is not
always such an instance, consider for example the following:

instance Array [] (e, Bool) where
select i x = ...

Then, the overlapping instances are rejected at compile time.
Since the extension only affects the form of instances, only
dynamic typing in ad-hoc polymorphism is affected.

6.3.1 Dynamic typing in ad-hoc polymorphism

Only dynamic dictionary composition is concerned with the form
of instances. Therefore, we do not consider container datatypes.

Dynamic dictionary composition As before, each instance of a
type class results in an arm of the corresponding generator function.
The instance of Array for lists and pairs with integers gives the
following arm:

genDictArray (—::[]) (=:: (Int,e)) =
Just (dynamic dictArrayListPairInt)

The more flexible form of the second parameter results in a more
elaborate dynamic pattern match. Again, the dynamic typing sys-
tem is expressive enough to cope with such types in a dynamic
pattern match.

Overlapping instances are resolved at compile time. If there is
not a single most specific instance to choose, a compile-time error
occurs. In our approach we use a generator function to compose
dictionaries. Therefore, it is only until run time that we are able to
verify this condition. Unfortunately, the generator function is me-
chanically deduced at compile time, choosing an explicit ordering
of the arms. Consequently, overlapping instances are not supported
in this approach.

7. Related work

An extensive overview of the interaction between ad-hoc polymor-
phism and dynamic typing in a statically typed functional language
has not been described earlier. However, bringing the worlds of ad-
hoc polymorphism and dynamic typing has been recognised before
by Plasmeijer and van Weelden (2005). An interactive shell is de-
scribed to interpret user-provided values using the dynamic typing
system. To facilitate ad-hoc polymorphism, the dictionary-passing
style is made explicit when translating the value provided by the
user to an internal structure. Unfortunately, this is restricted to pre-
defined type classes; additional instances cannot be provided by the
user. Evidently, the approaches described in this paper are not re-
stricted in that sense. Furthermore, our approach is more flexible
since we are not confined to the world of dynamic typing.

Before type classes, Kaes (1988) already described an ap-
proach towards ad-hoc polymorphism named parametric over-
loading where functions are parameterised with additional argu-
ments that represent the abstracted behaviour. In that sense, these
functions are not ad-hoc polymorphic but parametric polymorphic.
Wadler and Blott (1989) improved on this technique by allowing
the additional parameters to be grouped in type classes, and de-
scribed the translation to dictionary-passing style which we used
extensively in this paper. However, the approach of parametric
overloading did include a mechanism that resolves ad-hoc poly-
morphism dynamically. Unfortunately, this requires the additional
parameters (i.e., the dictionary) to be strict, and possibly resulted
in nontermination. Our approaches of container datatypes and dy-
namic dictionary composition do not use parametric overloading
but include the full power of type classes without compromising
laziness nor termination.

Leroy and Mauny (1993) describe dynamic typing with para-
metric polymorphism and show how this is used to model ad-hoc
polymorphism. Functions enumerate all possible expected types
using dynamic values, which is named structural ad-hoc polymor-
phism. Its opposite is embodied by type classes and is called nomi-
nal ad-hoc polymorphism. The main difference is that the nominal
variant is ‘open’ (i.e., instances can be given anywhere), whereas
the structural variant is ‘closed’ (i.e., every ad-hoc polymorphic
function enumerates the possible cases). The former is orthogo-
nal to the latter: instances do not require exhaustive enumerations,
though their definitions are dispersed. A unification of both variants
in a single functional language is described elsewhere (Vytiniotis
et al., 2004). Our dynamic dictionary composition approach uses
both: dispersed instances are mechanically grouped at compile time
in a single generator function to capture all available instances.

While we considered statically typed functional languages like
Clean, Haskell, and ML, other functional languages that are dy-
namically typed also support ad-hoc polymorphism. For instance,
languages like Lisp and Scheme resolve ad-hoc polymorphism at
run time since only then type information becomes available. While
these languages use a similar dispatching mechanism like the gen-
erator function, there is no support for an expressive static system
like type classes.

We describe run-time resolving of ad-hoc polymorphism that
can fail, consistent with the original semantics of dynamic pattern
matches. Rouaix (1990) describes an approach, inspired by object-
oriented languages, where a restricted form of ad-hoc polymor-
phism is resolved at run time without any possibility of run-time
failure. However, this is described in a statically typed language,
while our approaches especially consider such languages that sup-
port dynamic typing as well.

Object-oriented languages, being statically typed like Java and
Scala or dynamically typed like Smalltalk, resort to run-time re-
solving of ad-hoc polymorphism due to their late binding. Only at
run time it can be determined which method is used.

8. Conclusion

‘We have given an elaborate overview of the interaction between ad-
hoc polymorphism and dynamic typing in a statically typed func-
tional language. We identified two sides to their interaction: dy-
namic typing in ad-hoc polymorphism and ad-hoc polymorphism
in dynamic typing, introducing one world into the other. Regard-
ing the former interaction, we showed two complementary ap-
proaches, namely container datatypes and dynamic dictionary com-
position, that provide mechanisms to resolve ad-hoc polymorphism
depending on dynamic type information. Both approaches are best
suited in different applications, either requiring rigidity or flexi-
bility. Also, both approaches can happily coexist. With respect to
the latter interaction, we showed two different approaches, namely
dictionary-passing types and type code extension, to wrap and un-
wrap ad-hoc polymorphic values in a dynamic. These approaches
differ in implementation effort and flexibility of pattern-matching
semantics. Finally, we discussed several type class extensions and
argued that most of these fit naturally in the described mechanisms.
Only lifting the restrictions of flexible contexts using undecidable
instances and flexible instances using overlapping instances are not
supported by dynamic dictionary composition.

Some of the work described in this paper has been experimen-
tally included in Clean: container datatypes that expose the type
of their content, as well as the possibility to (un)wrap ad-hoc poly-
morphic values via dictionary-passing types. We plan to experiment
with the other approaches in Clean as well. Also, we aim to further
investigate the relation between ad-hoc polymorphism and dynamic
typing via a more formal approach to their interactions.

Acknowledgments

The authors would like to thank the anonymous reviewers for their
helpful comments and suggestions. The authors are indebted to
John van Groningen for the original idea of dictionary-passing
types and the helpful discussions on the related subjects. This work
has been funded by the Technology Foundation STW through its
project on “Demand Driven Workflow Systems” (07729).

References

Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dy-
namic typing in a statically typed language. ACM Transactions on Pro-
gramming Languages and Systems, 13(2):237-268, 1991.

Martin Abadi, Luca Cardelli, Benjamin Pierce, Didier Rémy, and Robert
Taylor. Dynamic typing in polymorphic languages. Journal of Func-
tional Programming, 5(1):81-110, 1994.

Peter Achten. Clean for Haskell 98 programmers - A quick ref-
erence guide. http://www.st.cs.ru.nl/papers/2007/
achp2007-CleanHaskellQuickGuide.pdf, 2007.

Arthur Baars and Doaitse Swierstra. Typing dynamic typing. In Simon
Peyton Jones, editor, Proceedings of the 7th International Conference on
Functional Programming, ICFP ’02, Pittsburgh, PA, USA, pages 157—
166. ACM Press, 2002.

James Cheney and Ralf Hinze. A lightweight implementation of generics
and dynamics. In Manuel Chakravarty, editor, Proceedings of the 6th
Haskell Workshop, Haskell *02, Pittsburgh, PA, USA, pages 90-104.
ACM Press, 2002.

John van Groningen, Thomas van Noort, Peter Achten, Pieter Koopman,
and Rinus Plasmeijer. Exchanging sources between Clean and Haskell
- A double-edged front end for the Clean compiler. In Jeremy Gibbons,
editor, Proceedings of the 3rd Haskell Symposium, Haskell 10, Balti-
more, MD, US. ACM Press, 2010. To appear.

Stefan Kaes. Parametric overloading in polymorphic programming lan-
guages. In Harald Ganzinger, editor, Proceedings of the 2nd European
Symposium on Programming, ESOP ’88, Nancy, France, pages 131-144.
Springer-Verlag, 1988.

Konstantin Laufer and Martin Odersky. Polymorphic type inference and
abstract data types. ACM Transactions on Programming Languages and
Systems, 16(5):1411-1430, 1994.

Xavier Leroy and Michel Mauny. Dynamics in ML. Journal of Functional
Programming, 3(4):431-463, 1993.

Erik Meijer and Peter Drayton. Static typing where possible, dynamic
typing when needed: the end of the cold war between programming
languages. In Roel Wuyts, editor, Proceedings of the 1st International
Workshop on Revival of Dynamic Languages, OOPSLA ’04, Vancouver,
BC, Canada. ACM Press, 2004.

Martin Odersky and Konstantin Laufer. Putting type annotations to work. In
Hans Boehm, editor, Proceedings of the 23rd Symposium on Principles
of Programming Languages, POPL ’96, St. Petersburg Beach, FL, USA,
pages 54-67. ACM Press, 1996.

John Peterson and Mark Jones. Implementing type classes. In Robert
Cartwright, editor, Proceedings of the 6th Conference on Programming
Language Design and Implementation, PLDI '93, Albuquerque, NM,
USA, pages 227-236. ACM Press, 1993.

Simon Peyton Jones. Haskell 98 language and libraries: the revised report.
Cambridge University Press, 2003.

Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an
exploration of the design space. In John Launchbury, editor, Proceedings
of the 2nd Haskell Workshop, Haskell *97, Amsterdam, The Netherlands.
ACM Press, 1997.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. Simple unification-based type inference for GADTs. In
Julia Lawall, editor, Proceedings of the 11th International Conference
on Functional Programming, ICFP ’06, Portland, OR, USA, pages 50—
61. ACM Press, 2006.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark
Shields. Practical type inference for arbitrary-rank types. Journal of
Functional Programming, 17(1):1-82, 2007.

Simon Peyton Jones, Dimitrios Vytiniotis, Tom Schrijvers, and Martin
Suzmann. Modular type inference with local assumptions. Journal of
Functional Programming, 2010. Under consideration for publication.

Marco Pil. First class file I/O. In Chris Clack, Kevin Hammond, and Antony
Davie, editors, Selected Papers of the Sth International Workshop on
Implementation of Functional Languages, IFL '97, St. Andrews, UK,
volume 1467 of Lecture Notes in Computer Science, pages 233-246.
Springer-Verlag, 1997.

Marco Pil. Dynamic types and type dependent functions. In Kevin Ham-
mond, Tony Davie, and Chris Clack, editors, Selected Papers of the
10th International Workshop on the Implementation of Functional Lan-
guages, IFL ’98, London, UK, volume 1595 of Lecture Notes in Com-
puter Science, pages 169—185. Springer-Verlag, 1999.

Rinus Plasmeijer and Arjen van Weelden. A functional shell that oper-
ates on typed and compiled applications. In Varmo Vene and Tarmo
Uustalu, editors, Proceedings of the 5th International Summer School
on Advanced Functional Programming, AFP *04, Tartu, Estonia, volume
3622 of Lecture Notes in Computer Science, pages 245-272. Springer-
Verlag, 2005.

Francois Rouaix. Safe run-time overloading. In Frances Allen, editor, Pro-
ceedings of the 17th Symposium on Principles of Programming Lan-
guages, POPL ’90, San Francisco, CA, US, pages 355-366. ACM Press,
1990.

Martin Sulzmann, Gregory Duck, Simon Peyton Jones, and Peter Stuckey.
Understanding functional dependencies via constraint handling rules.
Journal of Functional Programming, 17(1):1-82, 2007.

Dimtrios Vytiniotis, Geoffrey Washburn, and Stephanie Weirich. An open
and shut typecase. In Greg Morrisett and Manuel Fihndrich, editors,
Proceedings of the 5th Workshop on Types in Language Design and
Implementation, TLDI 05, Long Beach, CA, USA, pages 13-24. ACM
Press, 2004.

Phil Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad
hoc. In Proceedings of the 16th Symposium on Principles of Program-
ming Languages, POPL ’89, Austin, TX, US, pages 60-76. ACM Press,
1989.

Stefan Wehr and Manuel Chakravarty. ML modules and Haskell type
classes: a constructive comparison. In Ganesan Ramalingam, editor,
Proceedings of the 6th Asian Symposium on Programming Languages
and Systems, APLAS ’08, Bangalore, India, volume 5356 of Lecture
Notes in Computer Science, pages 188-204. Springer-Verlag, 2008.

Ronny Wichers Schreur and Rinus Plasmeijer. Dynamic construction of
generic functions. In Clemens Grelck, Frank Huch, Greg Michaelson,
and Phil Trinder, editors, Revised Selected Papers of the 16th Interna-
tional Workshop on the Implementation and Application of Functional
Languages, IFL "04, Liibeck, Germany, volume 3474 of Lecture Notes
in Computer Science, pages 160—176. Springer-Verlag, 2005.

