
A Typical Synergy

Dynamic Types and Generalised Algebraic Datatypes

Thomas van Noort and Peter Achten and Rinus Plasmeijer

Institute for Computing and Information Sciences
Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

{thomas, p.achten, rinus}@cs.ru.nl

Abstract. We present a typical synergy between dynamic types (dy-
namics) and generalised algebraic datatypes (GADTs). The former pro-
vides a clean approach to integrating dynamic typing in a statically typed
language. It allows values to be wrapped together with their type in a
uniform package, deferring type unification until run time using a pat-
tern match annotated with the desired type. The latter allows for the
explicit specification of constructor types, as to enforce their structural
validity. In contrast to ADTs, GADTs are heterogeneous structures since
each constructor type is implicitly universally quantified. Unfortunately,
pattern matching only enforces structural validity and does not provide
instantiation information on polymorphic types. Consequently, functions
that manipulate such values, such as a type-safe update function, are
cumbersome due to boilerplate type representation administration. In
this paper we focus on improving such functions by providing a new
GADT annotation via a natural synergy with dynamics. We formally
define the semantics of the annotation and touch on novel other appli-
cations of this technique such as type dispatching and enforcing type
equality invariants on GADT values.

1 Introduction

In this paper we discuss a typical synergy between two concepts: dynamic types
(dynamics) and generalised algebraic datatypes (GADTs).

Types play an important role in strongly typed functional programming lan-
guages such as Clean and Haskell. Using static type checking, erroneous be-
haviour at run time is prevented. Moreover, more efficient code can be generated
using the knowledge provided by the types at compile time. However, in dynamic
systems that deal with user input, some types will only be known at run time.
Using dynamics, monomorphic [1] and polymorphic [2] values can be wrapped
together with their type in a black box. The dynamic is unwrapped by pattern
matching on the required type in a function definition, instead of specifying the
type explicitly in its signature. This approach defers part of the type checking
process until run time, exactly when the final required type information is made
available. Fortunately, this does not take place at the cost of the advantage of

static typing since the type system guarantees that when pattern matching suc-
ceeds, the unwrapped dynamic can be used safely as dictated by the specified
type. Of course, pattern matching can fail and cause a run-time error, but this
is not different from conventional pattern matching.

Algebraic datatypes (ADTs) in functional languages allow us to inductively
define structures. Unfortunately, it does not allow us to enforce structural validity
at compile time. With the arrival of generalised algebraic datatypes (GADTs) [6,
10, 14], this restriction is relieved by allowing constructors to explicitly dictate
their types. On the one hand, this prevents us from constructing ill-structured
(i.e., ill-typed) values, and on the other hand this ensures structural validity
once a GADT value is pattern matched. In contrast to ADTs, GADTs are het-
erogeneous structures since each constructor occurrence is implicitly universally
quantified. Pattern matching such a value only introduces information regarding
the structure of the constructor types, leaving the type variables polymorphic.
However, more information on their instantiation is often required, typically in
functions that manipulate such values. Conventional approaches to this problem
are cumbersome, due to boilerplate type representation administration.

The main contribution of this paper is to define a type-safe update function
on GADT values via an annotation, achieved by a natural synergy between
dynamics and GADTs.

Overview

This paper is organised as follows. First, we elaborate on both dynamics and
GADTs (Section 2). We motivate the need for the synergy by defining an update
function on λ-terms (Section 3). Then, we formally define a semantics for the
new annotation via a synergy between dynamics and GADTs (Section 4). We
conclude with related work (Section 5) and a discussion on future work and other
applications of this technique (Section 6). In this paper we use Clean’s dynamics
and Haskell’s GADTs. For the sake of presentation, our examples use Haskell
syntax, augmented with Clean’s notation for dynamics.

2 Preliminaries

We start by introducing dynamics (Section 2.1) and GADTs (Section 2.2).

2.1 Dynamic Types

The advantage of statically typed languages is that types are verified at com-
pile time, preventing erroneous behaviour at run time due to ill-typed values.
However, static typing sometimes does not suffice since a type might only be
known at run time. Using dynamic types, values are wrapped in a black box,
not exposing the type of the contents to the outside world. But unlike existential
types [9], both the value and its type are unwrapped by pattern matching the
black box, thereby obtaining a value of the matched content type.

In Clean, the keyword dynamic provides the mechanism to wrap values
together with their type in a dynamic [13], obtaining a value of type Dynamic:

wrapInt :: Int → Dynamic

wrapInt x = dynamic x

Unwrapping the integer value is achieved by pattern matching on the dynamic
value using the :: annotation, thereby providing a required type:

unwrapInt :: Dynamic → Int

unwrapInt (x :: Int) = x

unwrapInt (x :: String) = stringToInt x

unwrapInt = 0

The first arm of the function pattern matches on a value x of type Int in the
dynamic. If this is the case, the value is returned unchanged. However, the value
in the dynamic is possibly a string and has to be converted to an integer first.
Due to run-time type unification, the dynamic pattern match can fail in case the
wrapped value is not of the type Int or String. It is our responsibility to provide
a catch-all arm which either returns a default value or a run-time error message.

Instead of defining a function for each value type that is turned into a dy-
namic, we define a single function:

wrap :: TC α⇒ α→ Dynamic

wrap x = dynamic x

Since this function is polymorphic in the argument type, we require the context
to provide the type code (i.e., the value representation of the type) of α which is
stored together with the value x , using Clean’s built-in TC class constraint. A
type code also contains the definition of the type it describes, because dynamics
can be (de)serialised across modules and verifying name equivalence in a dynamic
pattern match does not suffice. Consequently, TC instances are only available
for nonabstract types.

Unlike Haskell, Clean supports type-dependent dynamics [11], which allows
us to use pattern variables in the type of a dynamic pattern match:

unwrap :: TC α⇒ Dynamic → α

unwrap (x :: α∧) = x

unwrap = error "unwrap: incorrect type"

We require x to be of type α and refer to the same variable in the result type of
unwrap using the ∧ annotation. This causes both types to be coerced automat-
ically at run time. Therefore, a type code is required for α such that it can be
compared with the type code obtained from the dynamic pattern match. The
context in which this function is used determines which type code is provided.

Pattern variables can also be used to enforce type equality, for example, to
define function application of dynamics:

apply :: TC α⇒ Dynamic → Dynamic → Maybe α

apply (f :: β → α∧) (x :: β) = Just (f x)
apply = Nothing

The dynamic pattern matches in the first arm share the same scope. Therefore,
they only succeed once the argument type of the function matches the type of the
argument. Because the result type of the function in the first dynamic pattern
match refers to α in the result type of apply , a type code is required for this
type. As an example, consider the following expressions:

apply (dynamic fst) (dynamic (1, "2")) Just 1
apply (dynamic fst) (dynamic 1) Nothing

While the first expression succeeds, the second expression fails since the ar-
gument is not a pair. Finally, dynamics preserve lazy behaviour of functional
programs:

apply (dynamic fst) (dynamic (1,⊥)) Just 1

Although the value ⊥ is part of the tuple that is wrapped in a dynamic, it is not
evaluated when (un)wrapped.

2.2 Generalised Algebraic Datatypes

Algebraic datatypes are an oft-used abstraction in functional languages since
they provide an inductive approach to defining complex structures by enumerat-
ing the alternatives of a type and the associated fields. For example, in Haskell,
an ADT representing λ-terms could be defined as follows:

data Lam = Undef

| Const Value

| App Lam Lam

The Undef constructor has no fields, while the Const constructor has a single
field for a value. The App constructor has two fields, which both can be any
term. The values are enumerated by another ADT:

data Value = VInt Int

| VFun (Value → Value)

Next, we define an evaluation function:

eval :: Lam → Value

eval Undef = ⊥
eval (Const x) = x

eval (App f x) = case eval f of

VFun f → f (eval x)
→ error "eval: not a function"

The arms for Undef and Const are straightforward. However, since nothing
prevents us from constructing ill-typed terms, the arm for App has to ensure
that its first field actually evaluates to a function.

With the arrival of generalised abstract datatypes, we are able to enforce
structural validity by providing an explicit type signature to each constructor.
Consequently, a GADT imposes a heterogeneous structure since all constructors
are implicitly universally quantified. We illustrate the use of GADTs by defining
the Lam type again, this time describing typed λ-terms:

data Lam :: ⋆→ ⋆ where

Undef :: Lam α

Const :: α→ Lam α

App :: Lam (β → α)→ Lam β → Lam α

The Lam type is parameterised by the result type of the term once it is eval-
uated. With each constructor, we explicitly specify its result type. The Undef

constructor represents an undefined value. Since its result type α is free and
not bound by any fields, it can be unified with any other type. The Const con-
structor lifts any value to the Lam type. The App constructor is more explicit
about the types of its two field. The argument type of the function term must
match the type of the argument term. Then, its result type is the result type of
the function term. The explicit constructor types prevent us from constructing
ill-typed terms. Consider the following examples:

⊥ 1 ≡ App Undef (Const 1)

Since the return type of the Undef constructor can be anything, it is instantiated
to a function as App requires, thereby returning a value of type Lam α. When
we provide a term that does not return a function, the term becomes ill typed:

0 1 ≡ App (Const 0) (Const 1)

A more useful example actually applies a function, for example the absolute
value of an integer:

abs 1 ≡ App (Const abs) (Const 1)

This term is well typed and returns a value of type Lam Int .
Type information described in the type of the constructors is also employed

when the constructors are pattern matched in a function definition. Since only
well-typed terms can be constructed, we can now safely and concisely define the
evaluation function:

eval :: Lam α→ α

eval Undef = ⊥
eval (Const x) = x

eval (App f x) = eval f (eval x)

The result type of the function depends on the term that is evaluated. Each
constructor dictates the type of its fields as well as the result type. For example,
evaluating the first field of the App constructors returns a function, which can
safely be applied to its evaluated second field. However, be aware that the exact
types of these fields are not known since we are dealing with a heterogeneous
structure.

3 Motivation

In this section, we motivate the need for the typical synergy between dynamics
and GADTs in the context of update functions on GADTs (Section 3.1). Next, we
discuss why the conventional approach is not suited to this problem (Section 3.2)
and how the synergy elegantly improves on these issues using a new GADT
annotation (Section 3.3).

3.1 Setting the Scene

As the running example, we use the definition from Section 2.2 that represents
typed λ-terms. Our goal is to define an update function that takes such a term,
and updates a field of a constructor at a specified position with a new value.
Then, the desired type of the update function becomes:

update :: Lam α→ Path → β → Lam α

The argument and result type of the function are the same since we only consider
updates that do not affect the top-level type of the term. However, an update
can change the structure. The path depicts the location of the update in the
heterogeneous structure:

type Path = [Int]

The path is represented as a list of integers. The length of the list indicates the
recursive level (where the empty list is the root) of the target and each value the
field (where 0 is the first field) that must be considered. Since the path possibly
dictates an update anywhere in the heterogeneous structure, the type of the new
value is unrestricted. Hence, the challenge we face lies in only allowing type-safe
updates.

3.2 Conventional Approach

The conventional approach to this problem makes extensive use of equality
types [3, 5]. By comparing the value representations of the type of the old and
new value, a proof of type equality can be obtained to ensure only type-safe
updates.

First, we modify our original Lam definition from Section 2.2 to the following:

data LamR :: ⋆→ ⋆ where

UndefR :: LamR α

ConstR :: RepOf α→ LamR α

AppR :: RepOf (LamR (β → α))→ RepOf (LamR β)→ LamR α

The difference is that the types of the constructor fields now include a type
representation:

type RepOf α = (α,Rep α)

The Rep type enumerates the possible types, including the integer type, the
function type, and the LamR type:

data Rep :: ⋆→ ⋆ where

RInt :: Rep Int

RFun :: Rep α→ Rep β → Rep (α→ β)
RLamR :: Rep α→ Rep (LamR α)

The Rep type is only a witness of a type, for example, the type LamR (Int → Int)
is witnessed by the value RLamR (RFun RInt RInt). For the sake of brevity,
this representation type only reflects monomorphic types. Given such witnesses,
we are able to construct the actual proof that the types of such Rep values are
the same. Such a proof is constructed by the following GADT:

data Equal :: ⋆→ ⋆→ ⋆ where

Refl :: Equal α α

The Equal type consists of a single constructor Refl , one that proves that both
of the type arguments are the same. Then, we define a type equality function
that performs a point-wise comparison of type representations, using Haskell’s
do notation:

eqR :: Rep α→ Rep β → Maybe (Equal α β)
eqR RInt RInt = Just Refl

eqR (RFun x1 x2) (RFun y1 y2) = do Refl ← eqR x1 y1

Refl ← eqR x2 y2

return Refl

eqR (RLamR x) (RLamR y) = do Refl ← eqR x y

return Refl

eqR = Nothing

Given two Rep values, this function either returns Just Refl if the type repre-
sentations are the same, thereby implicitly indicating that the types α and β

are the same as well, or Nothing . In the arms for RFun and RLamR we have to
explicitly pattern match the result of the recursion as to obtain its type equality
proof. Finally, we define a catch-all arm which returns Nothing for Rep values
that are not equal.

Then, using the modified Lam definition and a type representation added to
the new value, we are finally able to define our update function:

updateR :: LamR α→ Path → RepOf β → LamR α

updateR UndefR [] = UndefR
updateR (ConstR (x , rx)) [0] (y, ry) = case eqR rx ry of

Just Refl → ConstR (y, ry)
Nothing → ConstR (x , rx)

updateR (AppR (f , rf) x) [0] (y, ry) = case eqR rf ry of

Just Refl → AppR (y, ry) x

Nothing → AppR (f , rf) x

updateR (AppR f (x , rx)) [1] (y, ry) = case eqR rx ry of

Just Refl → AppR f (y, ry)
Nothing → AppR f (x , rx)

updateR (AppR (f , rf) x) (0 : p) y = AppR (updateR f p y, rf) x

updateR (AppR f (x , rx)) (1 : p) y = AppR f (updateR x p y, rx)
updateR x = x

In the arm for UndefR there is nothing left to do, we only have to make sure
that the path is fully consumed. The ConstR is the first interesting case, since
we have to verify that the types match, by testing the equality of the Rep values.
Once these values are the same, we provide a proof that α and β are equal types
by pattern matching on the Refl constructor. Then, in the arms for AppR we
use the same approach and either replace its first or second field, or dispatch
on the head of the path and continue to recurse in either of its fields. Finally, a
catch-all arm is included to return the original term once the provided path is
incorrect. Whenever the function is applied, all the type representations need to
be provided explicitly:

updateR (ConstR (abs ,RFun RInt RInt)) [0] (neg,RFun RInt RInt)

ConstR (neg,RFun RInt RInt)

Although this approach guarantees type-safe updates, it is not a very elegant
definition. First of all, the invasive inclusion of Rep values in the datatype clutters
the update function with type equality witnesses and manual proofs. Moreover,
the types of the values that are updated have to be known beforehand since these
are enumerated in the Rep type and traversed in the type equality function.
Above all, this approach does not scale up to more complex structures and
update functions.

3.3 The Synergy

The conventional approach requires us to carry around type representations
which are used to convince the type checker of type equality. When we look
back at Section 2.1, we notice that this is actually what Clean’s TC type class
provides. We propose to adapt the original Lam definition from Section 2.2 again:

data LamT :: ⋆→ ⋆ where

UndefT :: LamT α

ConstT :: TC α ⇒ α→ LamT α

AppT :: (TC β,TC α)⇒ LamT (β → α)→ LamT β → LamT α

Instead of including Rep values, we include TC class constraints with the con-
structors that can be updated. Then, we define the update function using the
new ::G annotation on the field of a GADT constructor:

updateT :: TC β ⇒ LamT α→ Path → β → LamT α

updateT UndefT [] = UndefT
updateT (ConstT (x ::Gβ∧)) [0] y = ConstT y

updateT (AppT (f ::Gβ∧) x) [0] y = AppT y x

updateT (AppT f (x ::Gβ∧)) [1] y = AppT f y

updateT (AppT f x) (0 : p) y = AppT (updateT f p y) x

updateT (AppT f x) (1 : p) y = AppT f (updateT x p y)
updateT x = x

Let us take a look at the differences between this update function and the con-
ventional definition updateR from Section 3.2. First of all, this function operates
on the LamT type that is decorated with TC constraints, and its type contains
a TC constraint to obtain a type code for the new value of type β. Although the
update function was intended to be polymorphic at first, this constraint only
forbids abstract types to occur as new values, as discussed earlier in Section 2.1.
Another difference is that the function is no longer cluttered with verbose type
equality witnesses and manual proofs. Instead, the fields of the constructors are
annotated using the ::G annotation, accessing the instantiated polymorphic type
information. For example, in the arm for ConstT , the annotation denotes that x

is of type β, or even more specific, the type of the new value as determined by
the context in which this function is used. Note that the catch-all arm now also
takes care of any failing tests for type equality. Comparing the use of this update
function to the conventional approach emphasises the elegance of our approach:

updateT (ConstT abs) [0] neg ConstT neg

Instead of explicitly providing type representations and equality proofs, it is now
the context that implicitly determines which fields are eligible for an update.

4 Semantics

In this section we present the formal semantics of the synergy. We formally define
a core functional language and the GADT annotation extension (Section 4.1).
Then, we describe the idea behind the translation from the extended language
to the core language by means of an example (Section 4.2), followed by a formal
approach (Section 4.3).

(program) π ::= δ φ

(datatype declaration) δ ::= type T α = τ

| data T α = C τ

| data T :: κ where C :: σ

(qualified type) σ ::= TC α ⇒ τ

(base type) τ ::= α | Int | T
| τ1 τ2 | τ1 → τ2

| Dynamic

(annotation type) ω ::= α | α∧ | Int | T
| ω1 ω2 | ω1 → ω2

| Dynamic

(kind) κ ::= ⋆ | κ1 → κ2

(function declaration) φ ::= fix f :: σ = ǫ

(expression) ǫ ::= ⊥ | i | x | C
| ǫ1 ǫ2 | λx → ǫ | case ǫs of ρ → ǫ

| dynamic e :: ω

(nested pattern) ρ ::= ̺ | C ρ

(base pattern) ̺ ::= | i | x
| x :: ω

Fig. 1. The core language FC

4.1 Formal Language

The functional core language FC, which forms the basis of our semantics, is
depicted in Fig. 1. It is a common subset of Clean and Haskell, extended with
Clean’s dynamics and Haskell’s GADTs. An FC program consists of zero or more
datatype declarations and function declarations. A datatype is either a type
synonym, an ADT, or a GADT. A type comes in three flavours: a qualified
type, a base type, and an annotation type. A qualified type only includes the
TC constraint, as to facilitate dynamics, where we write τ as a shorthand for
the qualified type · ⇒ τ with no constraints. Second, a base type comprises the
polymorphic types. Very much alike a base type, we define a separate annotation
type, but one that also allows the use of the ∧ annotation. A named function is
defined by its type and body. Amongst the well-known expressions, our language
supports the case construct to pattern match values, typically the arguments of
a function, and dynamic values. In the language of patterns we distinguish a
nested pattern from a base pattern, as to prepare for the language extension.
Finally, we do not explicitly include lists and tuples of arbitrary arity in the
language of expressions, patterns and types, since these can easily be realised
through predefined ADTs. We do not provide operational semantics and typing
for the core language since these have been studied in-depth elsewhere [2, 4, 6].

(expression) ǫ ::= · · ·

| · · · | case ǫs of θ → ǫ

| · · ·

(pattern) θ ::= ̺ | C ϑ

(field pattern) ϑ ::= ρ | x ::Gω

Fig. 2. The extended language FC
+

Next, we define the extended language FC
+ that allows us to use the GADT

annotation, as shown in Fig. 2. For the sake of simplicity, we only allow the new
annotation to occur on the top level of a constructor field pattern. However,
nested patterns can be easily achieved by nesting case expressions. We redefine
patterns in FC case expressions to be either a base pattern or a constructor with
field patterns. Then, a pattern in a constructor field is either an original nested
pattern, or an identifier annotated with a type.

As an example, we define the updateT function from Section 3.3 in the FC
+

language:

fix updateT :: TC β ⇒ LamT α→ Path → β → LamT α =
λx → λp → λy → case (x , p) of

(UndefT , []) → UndefT
(x , (0 : []))→ case x of

ConstT (x ::Gβ∧)→ ConstT y

AppT (f ::Gβ∧) x → AppT y x

→ x

(x , (1 : []))→ case x of

AppT f (x ::Gβ∧)→ AppT f y

→ x

(AppT f x , (0 : p)) → AppT (updateT f p y) x

(AppT f x , (1 : p)) → AppT f (updateT x p y)
→ x

While being slightly more verbose than the original definition, a translation from
a Clean or Haskell definition is easily made. Note that the definitions of the Path

and LamT type from Section 3.1 and Section 3.3 respectively do not change in
the formal model.

4.2 Intuition

The general idea behind the translation is to take each GADT and translate it
to an extended parallel definition in which only constructor fields that are anno-
tated in the program, are decorated with additional type information. A conver-
sion function takes care of inserting type information in the original definition
and the ::G annotations are translated such that it accesses this information.

For example, the LamT type from Section 3.3 translates to the following:

data Lam◦
T :: ⋆→ ⋆ where

Undef ◦T :: Lam◦
T α

Const◦T :: TC α ⇒ TypeOf α→ Lam◦
T α

App◦
T :: (TC β,TC α)⇒ TypeOf (LamT (β → α))→ TypeOf (LamT β)

→ Lam◦
T α

The extended definition, as well as its constructors, is given a new name. Since all
fields of the constructors are annotated in the update function from Section 3.3,
all fields of the Const◦T and App◦

T constructor now contain a typed value. Note
that in order to only have to translate patterns instead of complete functions
later on, the addition of type information is nonrecursive:

type TypeOf α = (α,Dynamic)

A typed value is simply the original value paired with its type stored in a dy-
namic. As a Dynamic can contain a value of any type, not necessarily the type
α, we use the following function to obtain correctness by construction:

fix typeOf :: TC α⇒ α→ TypeOf α =
λx → (x ,dynamic ⊥ :: α∧)

Since we only need the type of a value, it suffices to wrap ⊥ instead of an actual
value. As described in Section 2.1, the ∧ annotation refers to context-dependent
type information. Meaning, the context in which typeOf is used determines the
type that is stored in the dynamic. Note that constructors can contain GADT
values, like App◦

T, which requires such types to be stored in a dynamic. Unfortu-
nately, type code facilities are yet to be defined for GADTs. Although GADTs
greatly complicate the type inference process [10, 12], we hypothesise that stor-
ing such values in dynamics is not different from ADT values since it does not
affect the unification of type codes which describe a GADT.

Then, the conversion from the original to the extended definition injects the
type information in constant time using the function typeOf :

fix toLam◦
T :: LamT α→ Lam◦

T α =
λx → case x of

UndefT → Undef ◦T
ConstT x → Const◦T (typeOf x)
AppT f x → App◦

T (typeOf f) (typeOf x)

The conversion only renames the UndefT constructor since it has no fields.
The fields of the ConstT and AppT constructor are extended with their types.
As the function typeOf dictates, this requires a type code for the field types.
The translation relies critically on this assumption, which is enforced by only
considering a FC

+ program well typed, if and only if, each constructor has TC

constraints on every type variable occurring in its annotated fields. Fortunately,
as mentioned before in Section 2.1, the TC constraint is easily discharged for

[[π
FC

+]] ≡ πFC

[[δ]] ≡ δ′ φ◦ [[φ]] ≡ φ′

[[δ φ]] ≡ δ′ φ◦ φ′

(t-prog)

Fig. 3. Translation of programs

any nonabstract type, which only forbids the use of the GADT annotation in
combination with abstract types.

Finally, we define the translation of the actual ::G annotation, accessing the
inserted type information. For example, the FC

+ function updateT , as defined in
Section 4.1, is translated to FC:

fix updateT :: TC β ⇒ LamT α→ Path → β → LamT α =
λx → λp → λy → case (x , p) of

· · ·
(x , (0 : []))→ case toLam◦

T x of

Const◦T (x , :: β∧) → ConstT y

App◦
T (f , :: β∧) (x ,)→ AppT y x

→ x

(x , (1 : []))→ case toLam◦
T x of

App◦
T (f ,) (x , :: β∧)→ AppT f y

→ x

· · ·

The conversion from the original to the extended GADT is applied to the scruti-
nee of the case expression. This provides type information in the pattern match,
allowing it to interact naturally like a conventional dynamic, in this case with
the type of the function using the ∧ annotation. Note that since the conversion
function is specific to a program, and not to each case expression, the fields that
do not use the annotation must discard the inserted type information, such as
in the case for App◦

T.

4.3 Formal Translation

We continue by defining the formal translation from the extended language FC
+

to the core language FC. We conjecture that the translation is sound, every well-
typed FC

+ program is translated to a well-typed FC program.
Let us begin by translating programs, as depicted by Rule t-prog in Fig. 3.

A program in the FC
+ language is translated to the FC language by translating

both the datatype declarations and the function declarations.
In Fig. 4 we define the translation of datatype declarations. Type synonyms

and ADTs are left unchanged, as defined by Rules t-data-tsyn and t-data-adt.
We distinguish GADTs by using the metafunction annotated(T) to test if it is

[[δ
FC

+]] ≡ δFC; φFC

[[type T α = τ]] ≡ type T α = τ ; ·
(t-data-tsyn)

[[data T α = C τ]] ≡ data T α = C τ ; ·
(t-data-adt)

¬ annotated(T)

[[data T :: κ where C :: σ]] ≡ data T :: κ where C :: σ; ·
(t-data-gadt-1)

annotated(T)

[[σ]]C ≡ σ◦; x ; ǫ◦ δ
◦≡ data T

◦ :: κ where C ◦ :: σ◦

φ
◦≡ fix toT

◦ :: T α → T
◦
α =

tarity(T) ≡ α λx → case x of

C x → C ◦ ǫ◦

[[data T :: κ where C :: σ]] ≡ data T :: κ where C :: σ δ
◦; φ◦

(t-data-gadt-2)

Fig. 4. Translation of datatypes

[[σ
FC

+]]C ≡ σFC; x ; ǫFC

[[τ]]C ;0 ≡ τ
◦; x ; ǫ◦

[[TC α ⇒ τ]] ≡ TC α ⇒ τ
◦; x ; ǫ◦

(t-qtype)

Fig. 5. Translation of qualified types

pattern matched somewhere in the program using the GADT annotation (e.g.,
annotated(Lam◦) ≡ True). If not, the original definition is returned without
any modifications, as defined by Rule t-data-gadt-1. However, an annotated
GADT requires some effort. In Rule t-data-gadt-2, the translation results in
the original definition, an extended definition δ◦ and a conversion function φ◦.
By translating the types of the constructors, parameterised by the respective
constructor name, we obtain extended types together with corresponding pat-
tern variables and expressions that extend these variables. The former is used
to define the constructor types of the extended definition, the latter two to de-
fine the corresponding conversion function. The metafunction tarity(T) provides
zero or more fresh type variables, determined by the arity of the type T (e.g.,
tarity(LamT) ≡ α).

The translation of qualified types, parameterised by a constructor name, is
shown in Fig. 5. A qualified type propagates the translation to its base type,
adding a parameter which represents the index of the constructor field type
under translation.

In Fig. 6 we define the parameterised translation of such types, resulting
in an extended type, pattern variables and expressions that extends these vari-

[[τ
FC

+]]C ;n ≡ τFC; x ; ǫFC

[[T]]C ;n ≡ T ; ·; ·
(t-type-data)

[[τ1 τ2]]C ;n ≡ τ1 τ2; ·; ·
(t-type-app)

¬ annotated(C ,n) [[τ2]]C ;n+1 ≡ τ
◦
2; x2; ǫ◦2

[[τ1 → τ2]]C ;n ≡ τ1 → τ
◦
2; x1 x2; x1 ǫ◦2

(t-type-fun-1)

annotated(C ,n) [[τ2]]C ;n+1 ≡ τ
◦
2; x2; ǫ◦2

[[τ1 → τ2]]C ;n ≡ TypeOf τ1 → τ
◦
2; x1 x2; (typeOf x1) ǫ◦2

(t-type-fun-2)

Fig. 6. Translation of base types

[[φ
FC

+]] ≡ φFC

[[ǫ]] ≡ ǫ
′

[[fix f :: σ = ǫ]] ≡ fix f :: σ = ǫ
′ (t-fun)

Fig. 7. Translation of functions

ables. Since we are only interested in the fields of a constructor type, and the
type of an empty constructor is either a type constructor or a type application,
Rules t-type-data and t-type-app result in an unchanged type and no pattern
variables or expressions. The function type is the interesting case. If a construc-
tor field is not annotated in the program, as shown in Rule t-type-fun-1, it is
returned unchanged together with a fresh pattern variable and expression that
corresponds to the identity. Otherwise, the translation in Rule t-type-fun-2 ex-
tends the type of the constructor field with additional type information and
ensures that the fresh pattern variable is extended as well. In both cases we
recurse in the translation by incrementing the second parameter to denote the
next constructor field.

Next, we define the translation of functions by Rule t-fun in Fig. 7. A func-
tion is translated by translating its body expression, which localises the conver-
sion and thus does not change the type of a function.

The translation of expressions is shown in Fig. 8. The basic building blocks of
expressions: bottom, integers, identifiers, and constructors, are left unchanged,
as can be seen in Rules t-exp-bot, t-exp-int, t-exp-id, and t-exp-con respec-
tively. Translation of an application is defined by Rule t-exp-app and translates
both its expressions and Rule t-exp-abs defines the translation of an abstraction
by translating the body expression. For case expressions, we define two separate
rules, testing if one of its patterns uses the GADT annotation. If not, it suffices
to only translate the scrutinee and the expression of each pattern, as defined
by Rule t-exp-case-1. Otherwise, Rule t-exp-case-2 defines that the conversion
function must be applied to the translated scrutinee. The name of this function

[[ǫ
FC

+]] ≡ ǫFC

[[⊥]] ≡ ⊥
(t-exp-bot)

[[i]] ≡ i
(t-exp-int)

[[x]] ≡ x
(t-exp-id)

[[C]] ≡ C
(t-exp-con)

[[ǫ1]] ≡ ǫ
′
1 [[ǫ2]] ≡ ǫ

′
2

[[ǫ1 ǫ2]] ≡ ǫ
′
1 ǫ

′
2

(t-exp-app)
[[ǫ]] ≡ ǫ

′

[[λx → ǫ]] ≡ λx → ǫ
′
(t-exp-abs)

x ::Gα 6∈ θ

[[ǫs]] ≡ ǫ
′
s θ ≡ ρ [[ǫ]] ≡ ǫ′

[[case ǫs of θ → ǫ]] ≡ case ǫ
′
s of ρ → ǫ′

(t-exp-case-1)

x ::Gα ∈ θ btype(ǫs) ≡ T

[[ǫs]] ≡ ǫ
′
s [[θ]] ≡ ρ [[ǫ]] ≡ ǫ′

[[case ǫs of θ → ǫ]] ≡ case toT
◦
ǫ
′
s of ρ → ǫ′

(t-exp-case-2)

[[ǫ]] ≡ ǫ
′

[[dynamic ǫ :: ω]] ≡ dynamic ǫ
′ :: ω

(t-exp-dyn)

Fig. 8. Translation of expressions

[[θ
FC

+]] ≡ ρFC

[[̺]] ≡ ̺
(t-pat-base)

[[ϑ]]C ;index ≡ ρ

[[C ϑ]] ≡ C
◦
ρ

(t-pat-con)

Fig. 9. Translation of patterns

is determined by the metafunction btype(ǫs) which determines the base name of
the type of the scrutinee ǫs (e.g., btype(ConstT 1) ≡ LamT). Furthermore, each
pattern is translated so that the actual use of the annotation is translated. As we
will see in a moment, the translation of patterns takes care of renaming the con-
structors, which is required since the scrutinee is converted to the extended type.
Finally, Rule t-exp-dyn defines the translation of a dynamic, simply translating
its expression.

Patterns possibly provide access to the inserted type information, their trans-
lation is shown in Fig. 9. A base pattern is left untouched, as depicted in
Rule t-pat-base. In Rule t-pat-con, the constructor in a constructor pattern
is renamed and its fields are all translated, parameterised by the name of the
original constructor and a metavalue index that provides the index of each con-
structor field.

[[ϑ
FC

+]]C ;n ≡ ρFC

¬ annotated(C ,n)

[[ρ]]C ;n ≡ ρ
(t-fpat-pat-1)

annotated(C ,n)

[[ρ]]C ;n ≡ (ρ,)
(t-fpat-pat-2)

[[x ::Gω]]C ;n ≡ (x , :: ω)
(t-fpat-ann)

Fig. 10. Translation of field patterns

In Fig. 10 we conclude the translation from FC
+ to FC by defining the trans-

lation of field patterns, being the language extension itself. Since the conver-
sion function that inserts type information is specific to a program, we have
to verify if the current field pattern is annotated somewhere in the program.
Rule t-fpat-pat-1 defines that if a field is never annotated, it need not to be
translated. Otherwise, the additional information is discarded, as defined by
Rule t-fpat-pat-2. The core of the translation is captured by Rule t-fpat-ann.
A GADT annotation is erased by translating it to a dynamic type annotation,
yielding a pair that matches the original value and the type that is stored in the
dynamic.

5 Related Work

The foundations of structured programming on GADTs [7] provide an elegant
approach to defining algebras on GADTs. While such algebras provide an ab-
straction mechanism to define an update function, explicit type representations
and equality types [3, 5] are still required. In Section 3.2, we discussed the disad-
vantages of such an approach. In our work, type representations and type equal-
ity proofs are implicitly provided by dynamics, which significantly improves the
elegancy of the function definitions.

Another approach to heterogeneous structures reflects the structure of a value
directly in its type [8]. For example, the type of a heterogeneous list is basically
a structure of nested tuples. Then, functions are defined on such structures using
the type class mechanism, dispatching on the type structure. To enforce type-safe
updates, yet another type class is defined to reflect type equality. Consequently,
this approach results in rather verbose definitions since all action takes place on
the level of type classes. Since the structure of the types are available, direct ma-
nipulation enables type-changing functions. Looking at the type of the update
function in Section 3.3, our approach seems to forbid any type-changing up-
dates. However, subterms can be replaced by arbitrary complex terms, thereby
changing the underlying type structure.

6 Conclusion

We have presented the typical synergy between dynamics and GADTs to ele-
gantly define functions that manipulate GADTs, requiring instantiation informa-
tion on polymorphic types. Our approach comprises a new GADT annotation
and improves upon boilerplate type representation administration in conven-
tional approaches, since the functions are not cluttered any more with type
equality witnesses and manual proofs. Also, by using dynamics, we no longer
need to maintain a closed enumeration of the used types. Above all, our ap-
proach scales up to more complex structures and functions due to its simplicity.
We have shown that the language extension is easily translated to a functional
core that supports both dynamics and GADTs.

One of the major limitations in our approach is that the use of type codes
limits the use of the GADT annotation to non-abstract types. It remains future
work to define type codes for such types, as well as investigating if dynamics can
be implemented without type codes as class constraints. This would improve
our approach considerably since it will no longer require us to decorate GADTs
beforehand with type code constraints. Also, we plan to verify our hypothesis
that storing GADTs in dynamics is no different from conventional ADTs.

Despite these limitations, the translation to dynamics provides novel op-
portunities, such as type dispatching and enforcing type equality invariants on
GADTs. These opportunities require a more intricate translation than described
in this paper, since this class of functions projects values instead of manipulating
the values as such.

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful com-
ments and suggestions. This work has been funded by the Technology Foundation
STW through its project on “Demand Driven Workflow Systems” (07729).

References

1. Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typ-
ing in a statically typed language. ACM Transactions on Programming Languages

and Systems, 13(2):237–268, 1991.

2. Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, Didier Rémy, and Robert Taylor.
Dynamic typing in polymorphic languages. Journal of Functional Programming,
5(1):81–110, 1994.

3. Arthur Baars and Doaitse Swierstra. Typing dynamic typing. In Simon Pey-
ton Jones, editor, Proceedings of the 7th International Conference on Functional

Programming, ICFP ’02, Pittsburgh, PA, USA, pages 157–166. ACM, 2002.

4. Robert Cartwright and James Donahue. The semantics of lazy (and industrious)
evaluation. In Proceedings of the 2nd Symposium on LISP and Functional Pro-

gramming, LFP ’82, Pittsburgh, PA, USA, pages 253–264. ACM, 1982.

5. James Cheney and Ralf Hinze. A lightweight implementation of generics and
dynamics. In Manuel Chakravarty, editor, Proceedings of the 6th Haskell Workshop,

Haskell ’02, Pittsburgh, PA, USA, pages 90–104. ACM, 2002.
6. James Cheney and Ralf Hinze. First-class phantom types. Technical Report

TR2003-1901, Cornell University, 2003.
7. Patricia Johann and Neil Ghani. Foundations for structured programming with

GADTs. In George Necula and Philip Wadler, editors, Proceedings of the 35th

Symposium on Principles of Programming Languages, POPL ’08, San Francisco,

CA, USA, pages 297–308. ACM, 2008.
8. Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heterogeneous

collections. In Henrik Nilsson, editor, Proceedings of the 8th Haskell Workshop,

Haskell ’04, Snowbird, UT, USA, pages 96–107. ACM, 2004.
9. Konstantin Läfer and Martin Odersky. Polymorphic type inference and ab-

stract data types. ACM Transactions on Programming Languages and Systems,
16(5):1411–1430, 1994.

10. Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Wash-
burn. Simple unification-based type inference for GADTs. In Julia Lawall, edi-
tor, Proceedings of the 11th International Conference on Functional Programming,

ICFP ’06, Portland, Oregon, USA, pages 50–61. ACM, 2006.
11. Marco Pil. Dynamic types and type dependent functions. In Pieter Koopman

and Chris Clack, editors, Selected Papers of the 10th International Symposium on

the Implementation of Functional Languages, IFL ’99, Lochem, The Netherlands,
pages 169–185. Springer-Verlag, 1999.

12. Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann, and Dimitrios Vytiniotis.
Complete and decidable type inference for GADTs. In Graham Hutton and Andrew
Tolmach, editors, Proceedings of the 14th International Conference on Functional

Programming, ICFP ’09, Edinburgh, Scotland, pages 341–352. ACM, 2009.
13. Martijn Vervoort and Rinus Plasmeijer. Lazy dynamic input/output in the lazy

functional language Clean. In Philip Trinder, Greg Michaelson, and Ricardo Pena,
editors, Selected Papers of the 14th International Symposium on the Implementa-

tion of Functional Languages, IFL ’02, Edinburgh, UK, pages 101–117. Springer-
Verlag, 2003.

14. Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype construc-
tors. In Greg Morrisett and Alex Aiken, editors, Proceedings of the 30th Sym-

posium on Principles of Programming Languages, POPL ’03, New Orleans, LA,

USA, pages 224–235. ACM, 2003.

