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Abstract. Workflow management systems (WFMSs) are systems that
generate, coordinate and monitor tasks performed by human workers in
collaboration with automated (information) systems. The iTask system
(iTasks) is a WFMS that uses a combinator language embedded in the
pure and lazy functional language Clean for the specification of highly
dynamic workflows. iTask workflow specifications are declarative in the
sense that they only specify (business) processes and the types of data
involved. They abstract from user interface and storage issues, which are
handled generically by the workflow engine.

Earlier work has focused on the development of the iTask combinator lan-
guage. The workflow language was implemented as an engine that eval-
uated task combinator expressions and generated interactive web pages.
Although suitable for its original purpose, this architecture has proven
to be less so for generating practically usable workflow support systems.
In this paper we present a new implementation of the iTask system that
implements the combinator library using a service based architecture
that exposes the workflow and a user friendly Ajax client. Because user
interface issues are outside the scope of workflow specifications, and can-
not be specified explicitly, it is crucial that the generic operationalization
of the declarative interaction primitives is of adequate quality. We ex-
plain the novel generic libraries we have developed for this purpose.

1 Introduction

Workflow management systems (WFMSs) are systems that generate, coordinate
and monitor tasks performed by human workers in collaboration with auto-
mated (information) systems. Many contemporary WFMSs suffer from lack of
flexibility. This is partially caused by the static nature of the languages used
for modeling the business processes they coordinate. To address this limitation
the iTask system has been developed. This system uses a function combinator li-
brary embedded in the pure and lazy functional programming language Clean to
model business processes, and allows specification of highly dynamic workflows.
The iTask system uses declarative specifications of tasks. Task specifications de-
fine what has to be done, by whom and when. However, they do not specify
how tasks are presented to users, how results are entered, or how progress is
visualized. These operational details are taken care of fully automatically.



Earlier work [6,9,11,12] has focused primarily on the benefits of the iTask
system for programmers. Its goal has been to develop and extend the iTask
combinator library to be able to express powerful, yet concise, specifications of
arbitrary business processes. For this purpose a prototype implementation of the
iTask engine with a minimum level of usability that could be used to simulate
workflow scenarios by expert users has been sufficient.

In this paper we present a new implementation of the iTask system that
uses a service based architecture to enable a practically applicable interface for
end-users. Since user interaction is considered a declarative aspect of the iTask
language and outside the scope of a workflow specification, it is critical for the
usefulness of the iTask system that the generic framework performs adequately
in this area. We show how we operationalize workflow specifications in such a
way that, for end-users, selecting and working on tasks is no more difficult than
the use of an average e-mail client.

The contributions of this paper are the following:

— We present a new implementation of the iTask system. We discuss its new
service based architecture and key features, and how it compares to previous
implementations.

— We explain the declarative nature of the iTask system. We discuss what
is specified by iTask expressions, and what is not. We show how workflow
specifications are operationalized by the iTask engine.

— We present a novel generic web interface library in Clean. This library pro-
vides type-driven Html visualizations of data as well as editable Ajax forms
for manipulating data.

The remainder of this paper is organized as follows: First we cover the concept
of declarative workflow specification in the iTask system in Section 2. Then an
architectural overview of the iTask system is given in Section 3. The generic web-
interface library is explained in Section 4. We discuss related work in Section 5
after which final concluding remarks are given in Section 6.

2 Declarative Workflow Specification

The iTask combinator language is designed for declarative specification of work-
flows. This means that the specifications describe what has to be done, not how.
However, one cannot speak of a language being declarative without specifying
at which level of granularity. The level of abstraction of a domain determines
whether a specification can be classified as declarative at that level. Since this
level is not always immediately clear, especially in workflow languages, we elab-
orate on it some more in this section.

2.1 When Is a Workflow Specification Declarative?

The iTask system is based on the idea that in workflow support systems, the only
differences that really matter between two systems are: 1) The (business) process



they support, and 2) The data that is exchanged between actors. Everything else
that is needed to build these systems can be generic. The iTask system provides
both a specification language to describe the processes and data, as well as a
framework that provides the generic foundation that operationalizes them.

In this context, we classify a specification as declarative when everything in it
specifies either data or process. Contrary to what is sometimes called declarative
workflow, a process can be specified very rigidly but still be considered declara-
tive with respect to this definition. A specification that also specifies issues such
as presentation, or storage is considered not declarative in this context. A quick
glance at the signature of one of the iTask primitives for interacting with users in
Figure 1 illustrates this best. For instance, the enterInformation primitive yields
a task that asks a user to provide some information. This primitive describes
the action that is needed to achieve some goal, but leaves entirely open how
information is entered.

2.2 The iTask Workflow Language

Above we have already loosely mentioned the iTask specification language, yet
we have not explained how it is defined and implemented. The iTask language is a
domain specific language embedded in the pure and lazy functional programming
language Clean. It is essentially an API of functions and (monadic) function
combinators that is used to construct complex functions that when evaluated
compute the tasks that have to be done. However, from the point of view of a
workflow programmer, the combinator API is just a collection of primitives and
operators that are used to define workflows in a syntax that just happens to
have a striking resemblance to Clean.

The central concept of iTask workflow specifications is that everything is
a task that produces a typed result once it is done. Tasks are represented by
the abstract Clean type :: Task a, where a is the type of the result of the task.
Although everything is a task, we can still make a distinction between basic
tasks and combined tasks. Basic tasks are the smallest units of work like entering
some data in a form, or reading a piece of data from a database. From these
basic tasks, larger more complex tasks are constructed using task combinators.
For example the monadic bind combinator (>>=), where the result of the first
task is passed to a function that computes the second. By combining tasks
sequentially, in parallel or conditionally, tasks of unlimited complexity can be
constructed. A short excerpt with common tasks and combinators from the iTask
API is shown in Figure 1 3. The full API consists of many more basic tasks and
combinators, like for instance, for interacting with users, generic storage and
retrieval, access to meta-data of other workflows and users. Examples of iTask
workflow specifications have been given in [9, 11].

3 Context restrictions on overloaded types have been omitted for clarity



— Basic tasks —

// Ask a user to enter information.

enterInformation :: question — Task a

// Ask a user to enter information while subject information is shown
enterInformationAbout :: question s — Task a

// Show a message to a user

showMessage :: message — Task Void

// Show a message and subject information to a user
showMessageAbout :: message s — Task Void

// Create a value in the data store

dbCreateltem o Task a

// Read a value from the data store

dbReadItem :: !(DBRef a) — Task (Maybe a)

— Task combinators —

// Lift a value to the task domain

return it a — Task a
// Bind two tasks sequentially

(>>=) infixl 1 :: (Task a) (a — Task b) — Task b
// Assign a task to another user

(@:) infixr 5 :: UserId (Task a) — Task a
// Ezecute two tasks in parallel

(-&&-) infixr 4 :: (Task a) (Task b) — Task (a,b)
// Ezecute two tasks in parallel, finish as soon as one yields a result
(=11-) infixr 3 :: (Task a) (Task a) — Task a

// Ezecute all tasks in parallel

allTasks :: ([Task a] — Task [a])
// Ezecute all tasks in parallel, finish as soon as one yields a result
anyTask :: ([Task a] — Task a)

Fig. 1. A short excerpt from the iTask API



2.3 Implementation Consequences

As can be seen in the API in Figure 1, workflow specifications in the iTask sys-
tem define nothing more than data and process. However, a complete executable
workflow system is generated from just that and nothing else. A major conse-
quence of this design is that this generic foundation that is used to generate a
working system from these high level specifications must be of such quality, that
there is no need to further hack or tweak the system after generation. When this
is not the case the risk exists that clever programmers will find ways to abuse the
workflow language to force for example a specific interface layout. This clutters
the workflow definitions and makes them no longer declarative.

Of course there are domains where generic solutions are far inferior to spe-
cialized instances. Entering a location for example, is easier by putting a marker
on a map than by entering coordinates in a form. For these situations the iTask
system provides the possibility to define custom domain libraries that contain
data types and task primitives along with specializations of the generics. This
enables the use of custom code when necessary without cluttering the workflow
specifications.

3 The Revised iTask System

As mentioned in Section 1 the original iTask system was used primarily to ex-
plore the design of a workflow language based on function combinators. However,
experiments with building applications beyond the level of toy examples showed
that much hacking and tweaking was necessary to build somewhat usable appli-
cations. Examples of such tweaking are: the use of multiple variants of essentially
the same task: chooseTaskWithButtons and chooseTaskWithRadios, or the use of pre-
sentation oriented data types such as HtmlTextArea instead of just String. To be
able to generate iTask applications at the level of usability that may be expected
from contemporary web-based information and workflow systems, without clut-
tering the workflow specifications with presentation issues, a major redesign of
the iTask engine was necessary.

3.1 Original Architecture

Originally the architecture of the iTask system as presented in [10, 9] was that of
a simple web application that dynamically generated Html pages. The content of
these pages was generated by a program compiled from an iTask workflow spec-
ification and a generic base system. This architecture is depicted graphically in
the left diagram of Figure 2. Page content generation was performed by appli-
cation of a workflow definition to an initial state which yielded an output state
that accumulated Html code. The abstract type Task a of task primitives and
combinators was defined as Task a:==#*TSt — (a,*TSt) which is Clean’s notation
for a function that takes a unique state of type TSt and returns a value of type a
and new state. Additionally to generating the Html code for the tasks to display
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Fig. 2. Architecture old (left) and new (right) iTask system

on the page, TSt also accumulated ad-hoc meta-data about tasks, which was used
to generate the navigation components for switching between tasks. When users
triggered some event in the generated page, like clicking a button or changing
the content of a textbox, the event was sent to the server by reloading the entire
page, and used to generate the updated page. This was necessary because each
event could potentially cause the workflow to be reduced or the user interface
to be different.

3.2 Fundamental Problems

The original architecture, though suitable for showing the expressive power of
the combinators, suffered from some scalability problems. When used in a more
realistic setting, this architecture has a number of fundamental problems.

1. The first issue is one of separation of concerns. The original implementation
of the task combinators as functions that both compute the advancement
in a workflow and the representation of that workflow as a user interface
only works for small examples. As soon as you want to define more intricate
workflow combinators or put higher demands on the user interface, the im-
plementations of the workflow combinators quickly becomes too complex to
manage.

2. Another problem, which is related to the previous issue, is that in the origi-
nal architecture the only way to interact with iTask workflows was through
the web interface. There was no easy means of integrating with other sys-
tems. The obvious solution would be to add some flavor of remote procedure
calling to the system, but this would then also have to be handled within
the combinators, making them even more complex.

3. The final issue, which may appear trivial, is the necessity to reload an entire
page after each event. This approach is not only costly in terms of network
overhead, it also inherently limits the possibilities for building a decent user
interface. Essential local state, such as cursor focus, is lost during a page
reload which makes filling out a simple form using just the keyboard nearly
impossible.



3.3 Improved Architecture

To solve the problems described in the previous section, a drastic redesign of the
iTask system was needed. The only way to address them was to re-implement
the iTask combinator language on top of a different architecture.

The architecture of the new iTask implementation is a web-service based
client-server architecture and is shown in head to head comparion with the old
architecture in Figure 2 and illustrated in more detail in Figure 3. The major
difference between the old and new architecture is that the new server system
does not generate web pages. Instead, it evaluates workflow specifications with
stored state of workflow instances to generate datastructures called Task Trees.
These represent the current state of workflows at the task level. These trees
contain structural information: how tasks are composed of subtasks, meta-data:
for example, which user is assigned to which task, and task content: a definition
of work that has to be done. For interactive tasks, the content is a high-level
user interface definition that can be automatically generated, which will be ex-
plained in Section 4. Task trees can be queried and manipulated by a client
program through a set of JSON (JavaScript Object Notation: A lightweight data-
interchange format) web services.

The overview shown in Figure 3 illustrates how the various components in
the server correspond with components in the client. The workflow specifications
are queried directly through the workflow directory service. The authentication
service queries the user store. All other services use the task trees as interme-
diate representation. In the next section, the computation of task trees and the
individual services are explained in more detail.

The iTask system provides a default web based Ajax client system, described
in Section 3.5, that lets users browse their task list, start new workflow instances
and work on multiple tasks concurrently. However, because the service based ar-
chitecture nicely separates the computation of workflow state from presentation,
and communication is based on open web standards, it is also easy to integrate
with external systems. For example, we have also built a special purpose client
written in Python that monitors a filesystem for new documents and starts a
new workflow for processing that simply uses the same services as the standard
client.

3.4 The Server System

The server system manages a database with the state of all active workflow
instances (processes) and user and session information. It offers interaction with
the workflow instances through JSON webservices. Requests to these services are
HTTP requests that use HTTP POST variables to pass arguments. Responses are
JSON encoded data structures. The server system is generated by compiling a
Clean program that evaluates the startEngine function defined by the iTask base
system. This function takes a list of workflow specifications as its argument.
The iTask system provides two implementations of the startEngine function. One
implements a simple HTTP server, which is useful for development and testing.



Server Browser

Workflow Directory Ajax Client
Service
Specs ; WF Directory
Task List
Service Task List
Stores Task I
Task Definition K
Processes Trees Service Task Area
i Task Property
Sessions oo
Users Auth_entication Login Window
Service

Fig. 3. A detailed architecture overview

The other implements the server system as a CGl application for use with third
party web server software.

Task Tree Computation The core task of the server system is to compute
and update representations of the current states of executing workflow processes.
The central internal representation of the state of a workflow instance that is
computed by a combinator expression is a data structure called Task Tree. It is
a tree structure where the leaves are the atomic tasks that have to be performed,
and the nodes are compositions of other tasks. It is the primary interface between
the workflow specifications and the rest of the framework and is queried to
generate task lists and user interface definitions. Task trees are defined by the
following Clean data type:

:: TaskTree 1
= // A stand-alone unit of work with meta-data 2
TTMainTask TaskInfo TaskProperties [TaskTree] 3

// A task composed of a sequence of tasks 4

| TTSequenceTask TaskInfo [TaskTree] 5
// A task composed of a set tasks to be executed in parallel 6

| TTParallelTask TaskInfo [TaskTree] 7
// A task that interacts with a user 8

| TTInteractiveTask TaskInfo (Either TUIDef [TUIUpdate]) 9

// A task that monitors an external event source
| TTMonitorTask TaskInfo [HtmlTag]

// A completed task
| TTFinishedTask TaskInfo

o
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[
.

—
S

-
w

[
'S

[
o

// Shared node information: task identifiers, labels, debug info etc.
:: TaskInfo
// Task meta-data for main tasks, assignedd user, priority etc.

-
o

[
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:: TaskProperties 18

Every function of type Task a generates a (sub) task tree. Combined tasks use
their argument tasks to compute the required sub task trees. Because an expla-
nation of task tree generation is impossible without examining the combinators
in detail, we will restrict ourselves to a demonstration of their use by means of
an example. Let’s consider the following simple workflow specification:

bugReport :: Task Void 1
bugReport = reportBug >>= fixBug 2
where 3
reportBug :: Task BugReport 4
reportBug = enterInformation "Please describe the bug you have found" 5

6

fixBug :: BugReport — Task Void 7
fixBug bug = "bas" @: (showMessageAbout "Please fix the following bug" bug) 8

Figure 4 graphically illustrates two task trees that reflect the state of this work-
flow at two moments during execution. The tree on the left is produced during
the execution of the first reportBug task. The bind (>>=) combinator only has a
left branch, which is the TTInteractiveTask that contains a user interface definition
for the bug report form. The tree on the right is produced during the execution
of fixBug. At this point the leftmost branch is reduced to a TIFinishedTask and
the @: has been expanded to a subtree consisting of a bind of some getUserByName
task, that is finished, and a TTMainTask containing the TTInteractiveTask with the
interface definition for showing the bug report.

TTMainTask: TTMainTask:
bugReport bugReport
| | | |
TTSequenceTask: TTSequenceTask:
>>= >>=
- - h
TTInteractiveTask: TTFinishedTask: TTSequenceTask:
enterInformation enterInformation >>=

" S
TTFinishedTask: TTMainTask:

getUserByName assign

TTInteractiveTask:
showMessageAbout

Fig. 4. Task tree during reportBug (left) and fixBug (right)

The Authentication Service The iTask server maintains a user and role
database such that (parts of) workflows can be restricted to users with spe-
cial roles, and roles may be used to find the right type of worker to do a cer-
tain task. The server handles authentication of clients and keeps a database
of authenticated time-limited sessions. This service consist of two methods,



/handlers/authenticate which accepts a username and password and yields a ses-
sion key to access the other services, and /handlers/deauthenticate that can be
passed a session key to explicitly terminate a session.

The Workflow Directory Service In order to initiate new workflow instances,
the iTask server offers a directory service to browse the available workflow defi-
nitions. The server maintains a hierarchic directory of available workflows that
are filtered by the roles of a user. The /handlers/new/list method yields the list
of possible workflows and subdirectories for any given node in the hierarchy.
The /handlers/new/start method starts a new instance of a workflow definition
and returns a task identification number for the top level task of that workflow
instance.

The Tasklist Service Users can find out if there is work for them through
the tasklist service. The /handlers/work/list method yields a list of all main tasks
assigned to the current user along with the meta-data of those tasks. This list
is an aggregation of all active tasks in all workflow instances the current user is
involved in. Because tasks are often subtasks of other tasks, parent/child relation
information is also available in the list entries to enable grouping in a client.

The Task Service To actually get some work done, users will have to be able to
work on tasks through some user interface. Because the tasks are highly dynamic,
no fixed user interface can be used. Therefore, the iTask system uses a generic
library to generate high-level user interface definitions that are interpreted by
the client. The /handlers/work/tab method returns a tree structure that represents
the current state of a workflow instance. This tree data is used by a client
either to render an interface, or to adapt an already rendered interface. When a
user updates an interactive control, this method is called with the event passed
as argument. This yields a new tree that represents the updated state of the
workflow after this event and possibly events from other users. This process is
explained in more detail in Section 4.

The Property Service To update the meta-data of a workflow instance, for
example to reassign tasks to different users or change their priority, the service
/handlers/work/property may be used. This service can set any of the meta-data
properties of a workflow instance.

3.5 The Client System

Although the iTask system focuses on workflow specification and execution on
the server, the average end-user will only interact with this server through a
client. While the JSON service API is not limited to one specific client, the
iTask system provides a default Javascript client built with the ExtJS framework.
ExtJS is a Javascript library that facilitates construction of “desktop like” Ajax
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Fig. 5. The iTask client interface

applications with multiple windows, different kinds of panels, and other GUI
components in a web browser. The iTask client runs in any modern webbrowser
and provides everything a user needs to view and work on tasks. Figure 5 shows a
screenshot of the iTask client with multiple tasks opened. The client user interface
is divided into three primary areas in a layout that is common in e-mail client
applications. This similarity is chosen deliberately to ease the learning of the
application. The area on the left of the screen shows a folder hierarchy that
accesses the workflow directory service. New workflow instances can be started
by clicking the available flows in the folders. The top right area shows a user’s
task list, and the final main area is the lower right task area. In this part of the
interface area users can work on multiple tasks concurrently in a series of tabs.
New tabs are opened by clicking items in the task list.

The most interesting feature of the client application is its ability to dy-
namically render and update arbitrary user interfaces defined by the server. It
constructs the user interfaces required to work on tasks by interpreting a defini-
tion it receives from the server. It then monitors all interactive elements in the
interface and synchronizes changes to them with the server in the background.
The server processes the user input and responds by sending instructions to
adapt the user interface when necessary. A big advantage of this design is that
the server is kept synchronized with the client. This way the server can pro-
vide immediate feedback or dynamically extend an interface without the need
for page refreshes. It also means that tasks can be reassigned at any moment
without losing any work.



4 Dynamic Generic Web-Interfaces

One of the primary reasons for redesigning the iTask using a different architecture
was to improve the user experience for end-users. In this section we show how
the new iTask system makes use of the new architecture to operationalize the
declaritive user interaction primitives of the specification language.

For basic tasks like enterInformation or displayMessageAbout to be operational-
ized, the iTask system needs to be able to generate forms for entering data and
visualizations of data to display. Because user interface issues are an aspect that
is abstracted from in the iTask specification language, it is essential that its
implementation is able to generate satisfactory user interfaces. For any type
that someone defines in a workflow specification, the system needs to be able to
generate forms and renderings that have to have the following properties:

— They need to be layed out in a visually and ergonomically pleasing way.

— They need to react responsively and consistently. The cursor should follow a
logical path when using the keyboard to navigate through a form and there
must never be unexplainable loss or change of focus.

— They must communicate clearly what is optional and what is mandatory.
The forms must ensure that mandatory input is entered.

— They must be able to adapt dynamically depending on the choice of con-
structor for algebraic data types. It is, for example, simply impossible to
generate a static form for entering a list, because the number of elements is
unbounded.

Please describe the bug you have found

Application: iTasks

Wersion

{optional):

Date: 13-10-2000 [F

Ocours at: (&) Startup () Shutdown () Other
Severity: Medium v

Description:

Fig. 6. An automatically generated form

The redesign of the iTask system with a service based architecture and stand-
alone (Javascript) client as explained in Section 3 removes the implicit usability



limitations of the original iTask system. It enables a new approach to dynamic
interface generation that uses type generic functions as can be defined in Clean
[1] on the server and an interpreter in the client that is able to meet the demands
stated above.

Figure 6 shows the user interface that is generated for the BugReport type used
in the enterInformation task of the bugReport example in Section 3.4:

:: BugReport = 1
{ application :: String 2
, version :: Maybe String 3
, date :: Date 4
, occursAt :: BugOccurance 5
, severity :: BugSeverity 6
, description :: Note 7
} R
:: BugSeverity = Low | Medium | High | Critical 9

:: BugOccurance = Startup | Shutdown | Other Note

[
o

The demands stated above are all applicable to this relatively simple type al-
ready. It contains both optional and mandatory parts, it has to adapt dynam-
ically when the Other constructor is chosen and it has a wide variety of input
elements that have to be arranged in a pleasing layout. An attentive reader may
even spot that different input controls are used to select a constructor in Fig-
ure 6 for BugOccurance and BugSeverity. This choice is not specified explicitly, but
is decided by a layout heuristic in the interface generation.

4.1 Key Concepts

The iTask system generically provides generic user interfaces through the in-
terplay between two type generic functions. The first one, gVisualize, generates
visualizations of values that are rendered by the client. The second one, glpdate,
maps updates in the rendered visualization back to changes in the correspond-
ing values. Before explaining these functions in detail, we first introduce the key
concepts underlying their design.

Visualizations Visualizations in the iTask system are a combination of pretty
printing and user interface generation. The idea behind this concept is that they
are both just ways of presenting values to users, whether it is purely informa-
tional or for (interactive) editing purposes. The generic user interface library
therefore integrates both in a single generic function. Furthermore, most types
of visualizations can be coerced into other types of visualizations. For exam-
ple: a value visualized as text can be easily coerced to an Html visualization, or
vice versa. The library offers functions for such coercions. There are six types of
visualizations currently supported as expressed by the following type:

:: VisualizationType 1
= VEditorDefinition 2
| VEditorUpdate 3



| VHtmlDisplay 4

| VTextDisplay 5
| VHtmlLabel 6
| VTextLabel 7

And four actual visualizations:

:: Visualization 1
= TextFragment String 2
| HtmlFragment [HtmlTag) 3
| TUIFragment TUIDef 4

o

| TUIUpdate TUIUpdate

The VHtmlDisplay and VTextDisplay constructors are pretty print visualizations in
either plain text or Html. The VHtmlLabel and VTextLabel constructors are sum-
maries of a value in at most one line of text or Html. Labels and display visual-
izations use the same constructor in the Visualization type. The VEditorDefinition
and VEditorUpdate visualizations are explained in the next two subsections.

User Interface Definitions When a value is to be visualized as an editor, it is
represented as a high-level definition of a user interface. These TUIDef definitions
are delivered in serialized form to a client as part of a TTInteractiveTask node of
a task tree. A client can use this definition as a guideline for rendering an actual
user interface. The TUIDef type is defined as follows:

:: TUIDef 1
= TUIButton TUIButton 2
| TUINumberField TUINumberField 3
| TUITextField TUITextField 4
| TUITextArea TUITextArea 5
| TUIComboBox TUIComboBox 6
| TUICheckBox TUICheckBox 7
oo 8
| TUIPanel TUIPanel 9
P 10
:: TUIButton = 11
{ name :: String 12
, id :: String 13
, text :: String 14
, value :: String 15
, disabled :: Bool 16
, iconCls :: String 17
} 18
:: TUIPanel = 19
{ layout :: String 20
, items :: [TUIDef] 21
, buttons :: [TUIDef] 22

23

:‘}.. 24



Components can be simple controls such as buttons described by the TUIButton
type on line 11, or containers of other components such as the TUIPanel type on
line 19 that contains two containers for components: One for its main content,
and one additional container for action buttons (e.g. ”Ok” or ”Cancel”).

User Interface Updates To enable dynamic user interfaces that adapt without
replacing an entire GUI, we need a representation of incremental updates. This
is a visualization of the difference between two values expressed as a series of
updates to an existing user interface.

:: TUIUpdate
= TUIAdd TUIId UIDef
| TUIRemove TUIId
| TUIReplace TUIId UIDef
| TUISetValue TUIId String
| TUISetEnabled TUIId Bool
:: TUIId :==String

N o o e W =

New components can be added, existing ones removed or replaced, values can
be set and components can be disabled or enabled. The TUIId is a string that
uniquely identifies the components in the interface that the operation targets.
The one exception to this rule is the TUIAdd case, where the TUIId references the
component after which the new component will have to be placed.

User interface updates are computed by a local structural comparison while
traversing an old and new datastructure simultaneously. This ensures that only
substructures that have changed are being updated.

Data Paths In order to enable updating of values, it is necessary to identify sub-
structures of datastructure. A DataPath is a list of integers (::DataPath:== [Int])
that are indexes within constructors (of arity > 0) when a datastructure is be-
ing traversed. Figure 7 show some example DataPaths for a simple binary tree.
DataPaths are a compact, yet robust identification of substructures within a datas-
tructure.

5 [0,1]:5
[0] : Node
/ N\
3 9— [0,2,0]:2
7\ [0,2] : Leaf
4 /————1[0,0,2,0]: 7

Fig. 7. Data paths for a value of type ::Tree = Node Tree Int Tree | Leaf Int



Data Masks When a datastructure is edited, it is possible that during this
editing, parts of the structure are temporarily in an “invalid” state. For example
when an element is added to a list: between the structural extension of the list
and the user entering the value of the new element, the list is in a state in which
one of its elements has a value, but that is not entered by the user. To indicate
which parts of a datastructure have been accessed by a user we use the DataMask
concept. A DataMask is simply a list of all paths that have been accessed by a
user (::DataMask :== [DataPath]). This additional information is used to enhance
usability by treating components that have not been touched by a user different
from those that the user has already touched. For example, validation of only
those fields in a form that have already been filled out.

4.2 The Big Picture

With the key concepts explained, we can now sketch the big picture of how user
interfaces of interactive tasks are handled. This process consists of three main
steps:

1. An initial user interface definition (TUIDef) representing the current value of a
datastructure and its mask is generated by a generic function on the server.
This definition is rendered by the client and event handlers are attached to
interactive components to notify value changes.

2. When a user changes an interactive component, an encoding of this change
and the datapath of the component are sent back to the server and inter-
preted by another type generic function that updates the datastructure and
mask to reflect the change.

3. The updated datastructure is compared to its previous value and if there
is a structural difference, a list of TUIUpdate is computed and sent back to
the client. The client interprets these instructions and modifies the interface
accordingly.

In the next section we will explain some of the machinery behind those steps.
For reasons of brevity we do not go into implementation details, but explain the
key datastructures and type signatures of key functions instead.

4.3 Low Level Machinery

The core machinery of the library consist of two generic functions: gVisualize
and gUpdate. Instances of these functions for concrete types can be automatically
derived. Because these functions have been designed favoring pragmatism over
elegance, the library exposes them through a set of wrapper functions:

//Visualization wrappers (under condition that gVisualize exists for type a)
visualizeAsEditor :: String DataMask a — ([TUIDef],Bool)

| gVisualize{}} a
visualizeAsHtmlDisplay :: a — [HtmlTag]

| gVisualize{} a

[ B S



determineEditorUpdates :: String DataMask DataMask a a — ([TUIUpdate],Bool) 6

| gVisualize{}]} a 7
e 8
//Update wrappers (under condition that gUpdate exists for type a) 9
updateValueAndMask :: String String a DataMask *World — (a,DataMask,*World) 1o

| gUpdate{} a 1

12

Tasks such as enterInformation use the visualizeAsEditor wrapper to create the
content, of a TTInteractiveTask node in the task tree. All interactive components
are given an identifier derived from their data path within the data structure.
This enables the client to send back updates when such a component is updated.
When a client sends an event to the server, the updateValueAndMask wrapper is used
to process the update. Its first two arguments are a string representation of the
data path, and a string representation of the update. The last parameter is the
unique world. Clean uses uniqueness typing to facilitate stateful functions by
threading an abstract World value. The main reason that updates are impure,
is that it enables impure specializations for specific types. For example when
updating a Maybe Date from Nothing to Just, the current date can be set as value.
After updating a value and mask, the determineEditorUpdates wrapper is used to
create task content containing an incremental update for the client GUI.

Although the generic functions are never called directly, and for normal use
only derived for types, we conclude this section with a brief overview of their
type signatures and arguments to give an impression of what goes on under the
hood.

generic gVisualize a :: 1
(VisualizationValue a) 2
(VisualizationValue a) 3
VSt — ([Visualization], VSt) 4

5

:: VisualizationValue a = VValue a DataMask | VBlank 6

12 VSt = 7

{ vizType :: VisualizationType 8
, idPrefix :: String 9
, label :: Maybe String 10
, currentPath :: DataPath 11
, useLabels :: Bool 12
, onlyBody :: Bool 13
, optional :: Bool 14
, valid :: Bool 15
} 16

The first two arguments are wrapped values of type a with their mask, or an
undefined blank. The last argument that is both input and output of gVisualize
is the visualization state. This state contains all parameters relevant to the
visualization and is used to keep track of global properties. The optional field
in the structure is used to mark parts of editor visualizations as optional. A
specialization of gVisualize for the Maybe a type sets this field to true, and then



produces a visualization of type of a. When a visualization of an optional value
that is Nothing needed, there is no value of type a available. In that case VBlank
values are used. The valid field of VSt is used to validate mandatory fields. It is
updated at each interactive element and set to False when a non-optional field
is not masked. This validation is used to disable completion of a task until its
form has been filled out completely.

generic gUpdate a it a *USt — (a, *USt) 1
: *¥USt = 2

{ mode :: UpdateMode 3

, searchPath :: DataPath 4

, currentPath :: DataPath 5

, update :: String 6

, consPath :: [ConsPos] 7

, mask :: DataMask 8

, world 1 *World 9

} 10

:: UpdateMode = UDSearch | UDCreate | UDMask | UDDone 11

The gUpdate function traverses a datastructure recursively and at each point
transforms the value and state according to one of four modes. In UDSearch mode,
the currentPath path field is compared to the searchPath field and update is applied
when they are equal. The mode is then set to UDDone and the mask field is updated
to include the value of currentPath.. In UDDone mode, the function does nothing
and is just an identity function. When a constructor of an algebraic data type is
updated to one that has a non-zero arity, the glpdate function needs to be able
to produce default values for the substructures of the constructor. It uses its
UDCreate mode to create these values. In this mode, the glpdate ignores its input
value and returns a default value. The last mode is the UDMask mode, which adds
the paths of all substructures to the mask as it traverses the datastructure. This
is used to compute a complete mask of a datastructure.

5 Related Work

The iTask system is a workflow management system, and is therefore comparable
with other WFMSs. However, unlike many contemporary WEMSs (e.g. YAWL,
WebSphere, Staffware, Flower, Bonita), the iTask system does not use a graphical
formalism for the specification of workflows, but uses a compact combinator
language embedded in a general purpose functional language instead.

Although the iTask system is a WFMS, many web applications can be consid-
ered workflow support systems in some way or another. Therefore one could also
view the iTask system as a more general framework for (rapid) development of
web applications. This makes it comparable with other web development frame-
works found in functional languages like WASH/CGI [14]and HAppS [5] in Haskell,
XCaml in OCaml, or the frameworks available in dynamic scripting languages like
Rails [13] in Ruby or Django [2] in Python. While these frameworks aim to sim-
plify the development of any type of web application, the iTask system will only
be suitable for applications that can be sensibly organized around tasks.



The final body of work that may be classified as related is not so much related
to the iTask system itself but rather to its new generic web visualization library.
Other functional web GUI libraries exist like the WUI combinator library in Curry
[4], or the iData toolkit [8] in Clean that powered previous iTask implementations.
The new iTask visualization library differs from those libraries in that it makes
use of an active Ajax client, in this case built with the ExtJS framework [3]. This
gives the generated editors more control over the browser than is possible with
plain Html forms, hence enabling the generation of more powerful “desktop-like”
user interfaces. However, the iTask client is a single application that interprets
instructions generated on the server and is not to be confused with client side
application frameworks such as Flapjax [7]. Such frameworks could be used as a
replacement for ExtJS in alternative iTask clients.

6 Conclusions

In this paper we have presented a new implementation of the iTask system. This
new implementation uses a service-based architecture combined with an active
client. This approach enables the generation of more user-friendly interfaces for
end-users without compromising the declarative nature of the iTask language.

Although seemingly superficial, improved usability is a crucial aspect of the
implementation of the iTask workflow language, because the iTask system gen-
erates executable systems solely from a workflow specification and nothing else.
Hence, the generation quality largely determines the usefulness of the language.

A direct consequence of, and a primary motivation for, this work is that it
enables case study and pilot research to validate the effectiveness of the function
combinator approach to workflow modeling used by the iTask system in scenarios
with real end-users. Not surprisingly, such realistic case studies in the context
of supporting disaster response operations are planned for the coming years.

More information, examples and downloads of the iTask system can be found
at: http://itasks.cs.ru.nl/.
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