
Embedding a Web-Based Workflow Management

System in a Functional Language

experience paper

Jan Martin Jansen

Faculty of Military Sciences, Netherlands Defence Academy, Den
Helder, the Netherlands

Rinus Plasmeijer, Pieter Koopman, and Peter Achten

Institute for Computing and Information Sciences (ICIS),
Radboud University Nijmegen, the Netherlands

Abstract

Workflow management systems guide and monitor tasks performed by
humans and computers. The workflow specifications are usually expressed
in special purpose (graphical) formalisms. These formalisms impose se-
vere restrictions on what can be expressed. Modern workflow management
systems should handle intricate data dependencies, offer a web-based in-
terface, and should adapt to dynamically changing situations, all based
on a sound formalism. To address these challenges, we have developed
the iTask system, which is a novel workflow management system. We en-
tirely embed the iTask specification language in a modern general purpose
functional language, and generate a complete workflow application. In
this paper we report our experiences in developing the iTask system. It
not only inherits state-of-the-art programming language concepts such as
generic programming and a hybrid static/dynamic type system from the
host language Clean, but also offers a number of novel concepts to generate
complex, real-world, multi-user, web based workflow applications.

1 Introduction

Workflow Management Systems (WFMS) are computer applications that coor-
dinate, generate, and monitor tasks performed by human workers and comput-
ers. Workflow specification plays a dominant role in WFMSs: the work that
needs to be done to achieve a certain goal is specified as a structured and or-
dered collection of tasks that are assigned to available resources at run-time. In

1

1 INTRODUCTION 2

many WFMSs, the workflow specification only determines the framework for the
workflow application, i.e. a partial workflow application. In other WFMSs one
has to provide much details in the workflow specification. In both approaches
substantial coding is required to complete the workflow application. In general,
this results in complex distributed, multi-user and heterogeneous applications
that are hard to maintain.

In this paper, we report on our experience in designing, building, and de-
ploying the iTask system [12], which is a novel WFMS based on state-of-the-art
programming language concepts with firm roots in functional programming.
We developed the iTask system, because of a number of perceived issues with
contemporary WFMSs. Their complex nature makes it very hard to correctly
create a complete application from the partial application that is generated by
them. Furthermore, contemporary WFMSs use special purpose (mostly graphi-
cal) specification languages to enable the rapid development of a workflow frame-
work. Unfortunately, these formalisms often offer limited expressiveness. First,
recursive definitions are commonly inexpressible, and there are only limited
ways to make abstractions. Second, workflow models usually only describe the
flow of control. Data involved in the workflow is mostly maintained in databases
and is extracted or inserted when needed. Consequently, workflow models can-
not easily use this data to parameterize the flow of work. This results in more or
less pre-described workflows that cannot be dynamically adapted. Third, these
dedicated languages usually offer a fixed set of workflow patterns [1]. However,
in the real world work can be arranged in many ways. If it does not fit in a
(combination of) pattern(s), then the workflow specification language probably
cannot cope with it either. Fourth, and related, is the fact that functionality
that is not directly related to the main purpose of the special purpose language
is hard to express. To overcome this limitation, one either extends the special
language or interfaces with code written in other formalisms. In both cases one
is better off with a well designed general purpose language.

For the above reasons, the iTask system is a domain specific language that is
embedded in a textual, formal general purpose programming language as a work-
flow specification language. This allows us to address all computational concerns
within the workflow specification and provides us with general recursion. We
use a functional language, because it offers a lot of expressive power in terms
of modeling domains, use of powerful types, and functional abstraction. We use
the pure and lazy functional programming language Clean, which is a state-of-
the-art language that offers fast compiler and interpreter technology, generic
programming features [2], a hybrid static/dynamic type system [16], which are
paramount for generating systems from models in a type-safe way. Workflows
modeled in the iTask system result in complete workflow applications that run on
the web distributed over server and client side [14]. Clean and the iTask system
can be found at http://clean.cs.ru.nl/ and http://itask.cs.ru.nl.

The remainder of this paper is organized as follows. We present the iTask
system in Sect. 2 and give a case study in Sect. 3. We discuss our experience
in Sect. 4 and 5. Related work is discussed in Sect. 6. We conclude in Sect. 7.

2 OVERVIEW OF THE ITASK SYSTEM 3

2 Overview of the iTask system

The iTask system is a scientific prototype of a WFMS. It is also a real-world
application that deploys and coordinates contemporary web technology. The
main reason for using web technoloy is that WFMSs are by nature distributed,
multi-user, and heterogeneous software systems. The iTask system is a library
made in the functional programming language Clean. The specifications that
serve as input to the iTask system are expressed as a domain specific language
embedded in Clean. We have adopted the practice in the functional program-
ming community to provide a library offering a set of combinator functions
and primitive functions to allow for compositional, higher-order, parameterized
model specifications.

In order to give an impression of the combinators that a workflow engineer
can use, Fig. 1 shows a few of the combinator functions and types that constitute
the iTask domain specific language (for reasons of presentation, the types have
been slightly simplified).

:: Task a // Task is an opaque, parameterized type constructor

// Sequential composition:
(>>=) infixl 1 :: (Task a) (a→Task b) →Task b | iTask a & iTask b

return :: a →Task a | iTask a

// Splitting-joining any number of arbitrary tasks:
anyTask :: [Task a] →Task a | iTask a

allTasks :: [Task a] →Task [a] | iTask a

// Task assignment to workers:
class (@:) infix 3 w :: w (String,Task a)→Task a | iTask a

instance @: User, String

Figure 1: A snapshot of the iTask combinator functions.

A task is an expression of the opaque (hidden), parameterized type Task a.
Here, a is a type parameter that can be instantiated with any conceivable first
order type. It represents the type of the value that is produced by the task.
Hence, a task (expression) of type Task a is a task that, once it has been per-
formed, produces a value of type a.

Tasks can be combined sequentially. The infix combinator >>= and return

function are the standard monad combinators [11]. Task t >>= f first performs
task t, which eventually produces a value of type a. This value can be used by
the function argument f, which can compute any new kind of task expression
based on that information. The type demands that f eventually produces a
value of type b, which is also the final result of t >>= f. The task return v only
produces value v without any effect.

Any number of tasks ts = [t1 . . .tn] (n ≥ 0) can be performed in parallel

2 OVERVIEW OF THE ITASK SYSTEM 4

and synchronized (also known as splitting and joining of workflow expressions):
anyTasks ts and allTasks ts both perform all tasks ts simultaneously, but anyTasks
terminates as soon as one task of ts terminates and yields its value, whereas
allTasks waits for completion of all tasks and returns their values.

Tasks can be assigned to workers. The expression w @: (l,t) assigns task t

to worker w. Here l is a descriptive label (like the subject field in an e-mail
message). The infix operator @: is overloaded in the identification value of the
worker, which can be a value of type User (a predefined iTask type), or by means
of the user name (String value).

A more detailed description of these combinators is out of scope of this
paper, but in Sect. 3 we give a complete example of a small, yet realistic and
complex workflow that uses many of the above combinators. The crucial points
are that first, all combinator functions are parameterized and statically type
checked with the data that flows along the tasks. Second, tasks can inspect this
data and change the control flow accordingly. Third, there is no limit on the
type of the data that is passed along, provided that suitable generic functions
(see Sect. 5) are available. This is expressed by means of the type class context
restrictions (| iTask . . .). Fourth, several combinators to express iteration are
included in the iTask library. However, because the iTask system is a library
embedded in Clean, the workflow engineer can define new combinators and even
define recursive workflows if desired.

In addition to combinators that combine task expressions in new ways, the
workflow engineer also needs primitive iTask functions. Fig. 2 shows some.

// Worker interaction:
enterInformation :: question →Task a | html question & iTask a

updateInformation :: question a →Task a | html question & iTask a

showMessage :: message →Task Void | html message

chooseTask :: question [Task a] →Task a | html question & iTask a

// Worker administration:
chooseUsersWithRole:: question String →Task [User] | html question

Figure 2: A snapshot of the iTask primitive combinator functions.

The archetypical primitive iTask combinator is enterInformation qwhich, when
performed, presents the current worker with a form to create a new value of type
a. Here, q is a guiding prompt for the worker. Fig. 3 gives an example of a form
for the type Person. updateInformation q v is similar, except that the value v acts
as initial content of the form. The showMessage combinator displays a message to
the user. With chooseTask the user can choose a task to be performed from a list
of tasks. In order to dynamically delegate work to users in the system, a work-
flow needs to have access to the worker administration. With the combinator
function chooseUsersWithRole the user is given a list of current workers, and she
can make a selection.

The overview of the iTask combinators here is just a selection enabling us

3 ORDERING EXAMPLE 5

:: Person = { firstName :: String

, surname :: String

, dateOfBirth :: HtmlDate

, gender :: Gender

}
:: Gender = Male | Female

enterPerson :: Task Person

enterPerson = enterInformation "Enter Information"

Figure 3: A standard form editor generated for type Person.

to present the example used in Sect. 3. There are many more combinators
that we cannot discuss here due to lack of space: combinators for the dynamic
creation and control of workflow processes, combinators to raise and handle
exceptions (stop a running workflow, inform all collaborators and start an alter-
native workflow), and combinators which allow to change workflows at execution
time (replace a workflow on-the-fly by another workflow yielding a result of the
same type). These features are necessary to handle realistic workflow cases.

Finally, iTask is embedded in Clean. This provides the workflow engineer
with many abstraction techniques that are common practice in functional pro-
gramming: tasks can be polymorphic, use higher-order functions, can be param-
eterized, and even higher-order workflows can be created (tasks that have tasks
as parameter or result). This yields a high degree of reusability and customiza-
tion. As a final example, iTask provides a core combinator function, parallel
that is used in the system to define many other split-join combinators such as
anyTask and allTasks that were shown earlier. Its type signature is:

parallel :: ([a] →Bool) ([a] →b) ([a] →b) [Task a] →Task b | iTask a & iTask b

parallel c f g ts performs all tasks within ts simultaneously and collects their
results. However, as soon as the predicate c holds for any current collection of
results, then the evaluation of parallel is terminated, and the result is deter-
mined by applying f to the current list of results. If this never occurs, but all
tasks within ts have terminated, then parallel terminates also, and its result is
determined by applying g to the list of results.

3 Ordering example

To demonstrate the expressive power of iTask, we present an ordering example.
The code presented below is a complete, executable, iTask workflow. The work-
flow has a recursive structure and monitors intermediate results in a parallel
and-task. This case study is hard to express in traditional workflow systems.
The overall structure contains the following steps (see getSupplies below): first,
an inventory is made to determine the required amount of goods (getAmount) (e.g.
vaccines for a new influenza virus); second, suppliers are asked in parallel how

3 ORDERING EXAMPLE 6

much they can supply (inviteOffers); third, as soon as sufficient goods can be
ordered, these orders are booked at the respective suppliers (placeOrders).

getSupplies :: Task [Void] 1.

getSupplies = getAmount >>= inviteOffers >>= placeOrders 2.

Determining the required amount of goods proceeds in a number of steps:

getAmount :: Task Amount 3.

getAmount 4.

= chooseTask "Decide how much we need" 5.

["Decide yourself" @>> enterInformation "Enter the required amount" 6.

,"Let others decide" @>> determineOthers] 7.

determineOthers :: Task Amount 8.

determineOthers 9.

= chooseUsersWithRole "Select institutes:" "Institute" 10.

>>= λusers→ allTasks [user @: ("Amount request" , getAmount) 11.

\\ user←users 12.

] 13.

>>= λothers→updateInformation "Enter required amount" (sum others) 14.

First, with chooseTask the user can choose to enter the amount herself or to ask
others to determine this amount. @>> is used to give a task a (displayable) label.
In determineOthers, with the task chooseUsersWithRole (line 10) a set of users (of
type User) which fulfil a certain role, in this case institutes, is selected by the
user. Each of the selected institutes on their turn may enquire other institutes
recursively in parallel (using the allTasks combinator) how many goods they
need (lines 11-13). The recursive call getAmount has as effect that each of the
chosen institutes can ask other institutes for the same thing, and so on. Given
the amount determined by others, an institute may alter the final amount it
wants to have (line 14). Amount is a non-negative Int:

:: Amount :== Int 15.

Once the amount of goods is established, the workflow can continue by invit-
ing offers from a collection of candidate suppliers:

inviteOffers :: Amount→Task [(Supplier,Amount)] 16.

inviteOffers needed 17.

= chooseUsersWithRole "Select suppliers:" "Supplier" 18.

>>= λsups→ parallel enough (maximum needed) id 19.

[sup @:("Order request" , updateInformation prompt needed 20.

>>= λa→return (sup,a)) 21.

\\ sup←sups 22.

] 23.

where enough as = sum (map snd as) >= needed 24.

prompt = "Request for delivery, how much can you deliver?" 25.

This collection is determined first (line 18). Each supplier can provide an
amount (line 20). This is again done in parallel (line 19-23). The termina-
tion criterium is the enough predicate which is satisfied as soon as the sum of

4 EXPERIENCE WITH THE ITASK LANGUAGE 7

provided offers exceeds the requested amount (line 24). The canonization func-
tion maximum is discussed below. Hence, the result of this task is a list of offers.
Each offer is a pair of a supplier and the amount of goods that it offers to deliver.
A supplier is just a user:

:: Supplier :== User 26.

The total number of offered goods can differ from the required number of
goods. The function maximum makes sure that not too many goods are ordered.

maximum :: Amount [(Supplier,Amount)]→ [(Supplier,Amount)] 27.

maximum needed offers = [(sup,exact) : rest] 28.

where 29.

[(sup,_) : rest] = sortBy (λ(_,a1) (_,a2)→a1 > a2) offers 30.

exact = needed - sum (map snd rest) 31.

With the correct list of offerings, we can place an order for each supplier. This
can be expressed directly with allTasks:

placeOrders :: [(Supplier,Amount)]→Task [Void] 32.

placeOrders offers 33.

= allTasks [sup @: ("Order placement" , showMessage ("Please deliver " <+ a)) 34.

\\ (sup,a)←offers 35.

] 36.

The overloaded infix operator <+ converts its right-hand argument to a string
and glues it to the given left-hand argument. It is part of the iTask system.

In order to complete the case study, the getSupplies workflow needs to be
passed to the iTask run-time system as a workflow that returns Void:

Start :: *World→*World 37.

Start world = startEngine [workflow] world 38.

where 39.

workflow = { name = "Ordering example" 40.

, label = "Collect ordering info and make the order" 41.

, roles = [] 42.

, mainTask = getSupplies >>= λ_→return Void 43.

} 44.

4 Experience with the iTask language

iTask is a prototype language. We have investigated its expressiveness by means
of constructing examples as well as larger case studies, for instance a conference
management system [13]. The next step is to investigate its use in demanding
environments that concern crisis management situations, in a project with the
Netherlands Defense Academy. In this section we report on our experience in
using the iTask specification language.

4 EXPERIENCE WITH THE ITASK LANGUAGE 8

iTask is built on a single, powerful, concept

In iTask, everything is constructed as (a combination of) a task. The notion
of a task and the combinators we use have a clear semantics [7]. A task rep-
resents work that needs to be performed, and abstracts over the way the task
is composed out of sub-tasks and the order in which these sub-tasks are being
evaluated. No matter how complex a task may be, for the programmer a task
remains a unit of work returning a value of type (Task a) once the task as a
whole is terminated. The result of a task can be used as input for other tasks.
The coordination of tasks is defined by means of combinators.

A task represents work that needs to be performed. This work can be any-
thing that is required by the workflow case, such as connecting to a legacy in-
formation system, calling a web service, or arbitrary foreign code. For instance,
for access to information stored in standard information systems, we have de-
veloped a systematic conversion between an information model defined in e.g.
ORM (Object Role Model) and Clean data type definitions. This enables the au-
tomatic conversion between values of these types and the corresponding values
stored in a relational database [8], without the need for explicit SQL program-
ming. As another example, for the type GoogleMap, the basic task enterInformation

Figure 4: An iTask for manipulating a map

will show a standard Google Map in which the end user can scroll and place
markers (Fig. 4). User manipulations of the map are automatically kept track
of and are reflected in the GoogleMap data structure. No extra effort is needed in
the workflow specification other than using the type.

In this way, everything can be considered to be a task. An iTask specification
uses combinators to coordinate tasks, and hence one can use the iTask language
as a web coordination language as well.

4 EXPERIENCE WITH THE ITASK LANGUAGE 9

iTask is a declarative language

We want the specification of a workflow to be declarative and hence to abstract
from details as much as possible. Given an iTask workflow specification, the
iTask system automatically generates all required web forms, handles all user
data entry, storage of intermediate results, task distribution to specified workers,
and handles all coordination. Also the precise way information is displayed in
the browser is not specified in the workflow, but delegated to the client. To
further enable abstraction over lay-out, we offer several primitives in the iTask
library for basic interaction steps. For instance, in addition to enterInformation,
there are basic primitives like enterChoice and enterMultipleChoice. The advantage
of having different primitives for such basic interaction steps is that the workflow
specification becomes more readable while the representation and lay-out can
again be delegated to the client. Due to abstraction, the workflow engineer can
concentrate on specifying the workflow. This promotes rapid prototyping of
workflow applications.

iTask is more than Clean

iTask is an embedded domain specific language and inherits all language aspects
of its host Clean. In particular, these are the strong type system, higher-order
functions, lazy and strict evaluation, and the module system. All computational
and algorithmic concerns can be dealt with in the Clean language. iTask is also
more than Clean because workflows are inherently sequential, distributed, multi-
user, concurrent systems and the Clean standard supports neither of those. Also,
to model realistic workflow cases, one needs to address exceptions and dynamic
change. Again, these concepts are absent in native Clean (see also Sec. 5). Each
of the required concepts of the embedded language are challenging to add to
native Clean. Nevertheless, this experiment shows that it is possible to embed
a workflow language in a host that offers entirely different concepts.

iTask has higher-order tasks

A task in Clean of type Task a | iTask a effectively works for all first order types
a. In particular, it works for the type Task itself, which means that tasks can be
higher order: the result of a task might be a task which can be dynamically and
interactively constructed. In this way meta programming (doing tasks that have
as goal to define new tasks) can be accomplished. A task thus created can be
given as argument to other tasks which can decide to evaluate it or to use it in
the construction of an even more complex task. It is very unlikely that an ad-hoc
domain specific workflow language has the ability to deal with advanced notions
such as higher functions and tasks, and this feature is therefore missing in all
commercial workflow systems. Embedding a workflow language in a language
like Clean really pays off here.

5 EXPERIENCE WITH CLEAN AS HOST LANGUAGE 10

Figure 5: The architecture of an iTask application

5 Experience with Clean as host language

In this section we focus on our experience with using Clean as host language
and implementation vehicle to embed iTask. An iTask specification results in a
web application. The architecture of this web application is given in Fig. 5.

Smart combinators

iTask is a workflow language and is hence inherently sequential, distributed,
multi-user, and concurrent. It needs to handle exceptional situations and dy-
namically changing workflows. The host language Clean offers no native support
for these concepts. When developing such a language in the traditional way, one
would develop a grammar, semantic rules, perhaps a type system, a compiler
and/or interpreter, code generator, and so on. This is a huge amount of work.
In this project we have taken a different route: when designing a language, one
needs to define the semantic rules. Semantic rules can be represented in a nat-
ural way by means of functions. If one takes care in designing these rules in a
compositional way, then these form a set of smart combinator functions. In this
way one can obtain a compositional language implementation almost for free.
This decreases the implementation effort of a new language significantly.

The combinators have several obligations in the iTask system. First, the
combinators yield the current status (and hence GUI) at any moment during
execution. For example, the iTask system can evaluate the expression t >>= f

even if task t is not finished yet. The iTask system does this by creating a
default value of the proper type for the whole expression t >>= f. In this way
the status of all tasks defined in a workflow can be inspected, but only the
values of the finished tasks are taken into account. Second, a new workflow is
calculated by the combinators given the finished tasks. Third, each combinator
stores its current state in memory and uses it for handling the next event from
the participating workers.

5 EXPERIENCE WITH CLEAN AS HOST LANGUAGE 11

Smart tasks

The iTask language is a declarative language. This implies that we want to
generate as much boilerplate code as can be possibly done from an iTask spec-
ification. In iTask this has been realized by using the generic programming
features of Clean [2]. Tasks require the availability of a collection of generic
(kind indexed, type driven) functions. These generic functions are used to gen-
erate all kinds of functionality automatically, such as the generation of web
forms, the handling of user updates of such forms, the storage and retrieval of
information, the serialization and de-serialization of data and functions. The
generic functions are predefined in the iTask library. To use them for a certain
type, however, one needs instances for that type for all the generic functions
being used. As a result a task can be applied to values of any type, as long
as instances for this type have been defined for all generic functions the task is
depending on. The Clean compiler is able to generate instances for these generic
functions for (almost) any (non opaque) type fully automatically. Clean is spe-
cial in this respect. In Haskell e.g. generic functions can be constructed using
special pre-processors like template Haskell.

It should be noted that a great deal of the facilities for which we have used
generics in our project can be done in a programming language that offers
introspection and code generation facilities. One significant advantage of using
generics is its firm integration with the static type system of Clean.

Smart serialization

An iTask application is a web application that runs on the server side. This ap-
plication must handle every possible user request from any possible web browser
that connects with the application. After an event is handled, the web applica-
tion terminates and is started all over again by the web server when new user
events arrive. Hence, an iTask application needs to fully recover its previous state
to compute the proper response. Conceptually, this amounts to reconstructing
the task tree that reflects the current state of computation of the workflow. The
nodes of a task tree are formed by the combinators in the task that is being
computed, and the leaves of a task tree are the primitive tasks. Evaluation of
a workflow amounts to rewriting this task tree as dictated by the combinators.
The task tree can become very big. Hence, a naive implementation of task tree
rewriting for iTask applications is not realistic. Instead, we have incorporated
a number of optimizations that are required to obtain an efficient and scalable
implementation. We briefly discuss two of the most important optimizations.

The first optimization is based on the observation that most rewrites affect
only a local part of the task tree. Hence, for these rewrites it is not necessary to
reconstruct the entire task tree, but only the sub task tree that can be affected.
Because an iTask application terminates after handling an event, we need to be
able to store and read any sub tree that is currently being rewritten. Tasks and
combinators are implemented as state transition functions, hence we need to be
able to store functions. Clean offers a hybrid type system, and statically typed

6 RELATED WORK 12

expressions can be turned into a dynamically typed expression (of static type
Dynamic) and the other way around. Dynamics can be stored to disk and it is
even possible to read in a dynamic stored by some other Clean application.

The second optimization is based on the observation that many computa-
tions do not have to be done at the server side, but can also be done on the
web client side. Hence, clients need to be able to run tasks, which amounts to
running Clean code. To implement this, the Clean compiler generates two exe-
cutable instances from a single source. The first instance is a Clean executable
that runs on the server, and the second instance is a SAPL program to be exe-
cuted by the SAPL interpreter [6] that is running as a Java applet at the client
side. At run-time it can be decided where to execute what. Any function or task
can be shifted from server to client. For this purpose we again use dynamics in
Clean to serialize functions and expressions as SAPL programs at the server side
and interpret them at the client side. For details we refer to [14].

6 Related work

The WebWorkFlow project [5] shares our point of view that a workflow speci-
fication is regarded as a web application. WebWorkFlow is an object oriented
workflow modeling language. Objects accumulate the progress made in a work-
flow. Procedures define the actual workflow. Their specification is broken down
into clauses that individually control who can perform when, what the view is,
what should be done when the workflow procedure is applied, and what fur-
ther workflow procedures should be processed afterwards. Like in iTask, one
can derive a GUI from a workflow object. The main difference is that iTask
is embedded in a functional language, but this has significant consequences:
iTask supports higher-order functions in both the data models and the workflow
specifications; arbitrary recursive workflows can be defined; reasoning about the
evaluation of an iTask program is reasoning about the combinators instead of
the collection of clauses.

Brambilla et al [4] enrich a domain model (specified as UML entities) with
a workflow model (specified as BPMN) by modeling the workflow activities as
additional UML entities and use OCL to capture the constraints imposed by the
workflow. The similarity with iTask is to model the problem domain separately.
However, in iTask a workflow is a function that can manipulate the model values
in a natural way, which enables us to express functional properties seamlessly
(Sect. 3). This connection is ignored in [4] and can only be done ad-hoc.

Pešić and van der Aalst [10] base an entire formalism, ConDec, on linear
temporal logic (LTL) constraints. Frequently occurring constraint patterns are
represented graphically. This approach has resulted in the declare tool [9]. In
iTask a workflow can use the rich facilities of the host language for computations
and data declarations – such facilities are currently absent in declare.

Andersson et al [3] distinguish high level business models (value transfers
between agents), low level process models (workflows in BPMN), and medium
level activity dependency models (activities for value transfers of business mod-

7 CONCLUSIONS 13

els). Activities are value transfer, assigning an agent to a value transfer, value
production, and coordination of mutual value transfers and activities. Activities
are modeled as nodes in a directed graph. The edges relate activities in a way
similar to [4] and [10]: they capture the workflow, but now at a conceptual
level. A conformance relation is specified between a process model and an ac-
tivity dependency model. Currently, there is no tool support for their approach.
The activity dependency models provide a declarative foundation to bridge the
gap between business models and process models. One of the goals of the iTask
project is to provide a formalism that has sufficient abstraction to accomodate
both business models and process models.

Vanderfeesten et al [15] have been inspired by the Bill-of-Material concept
from manufacturing, recasted as Product Data Model (PDM). A PDM is a di-
rected graph. Nodes are product data items, and arcs connect at least one node
to one target node, using a functional style computation to determine the value
of the target. A tool can inspect which product data items are available, and
hence, which arcs can be computed to produce next candidate nodes. This al-
lows for flexible scheduling of tasks. Similarities with the iTask approach are the
focus on tasks that yield a data item and the functional connection from source
nodes to target node. We expect that we can handle PDM in a similar way in
iTask. iTask adds to such an approach strong typing of product data items (and
hence type correct assembly) as well as the functions to connect them.

7 Conclusions

In this paper we report on our experience in using the lazy, pure, functional
language Clean as embedding language to specify and create web-based workflow
iTask applications. Although the iTask combinator language is embedded as a
library in Clean, it is by no means a shallow embedding, i.e. the meaning of the
embedded language is not a straightforward extension of the host language. The
result is a new language for defining workflow applications. This new language
provides the workflow engineer with concepts to seamlessly merge data flow with
control flow (exemplified by the >>= combinator), use higher-order tasks (tasks
that can create, manipulate, and pass around tasks), in a compositional way.
The evaluation order of the workflow is controlled by the iTask combinators
and dictated by the needs of the workflow engineer (by using sequential and
generalized parallel split-join patterns as well as recursion). It is important
to observe that this evaluation order is very different from the lazy evaluation
order of the host language and that one can add new combinators within iTask to
capture other evaluation orders when needed. The iTask system is very general
and serves as a coordination language to control and unify all tools that are used
to realize the system. Specifications inherit the terseness of their host language.

We have used many state-of-the-art programming language techniques to
obtain this result: generic programming to handle boilerplate code generation
(including foreign code) in a type-directed way, dynamic types to handle arbi-
trary (higher-order) data structures which origin need not be the source program

REFERENCES 14

itself, and higher-order functions which permeate through the entire design, im-
plementation, and resulting language. The entire system is statically typed.
Although the boilerplate code generation aspects can be realized in other pro-
gramming languages that support some form of inspection, we have shown in
this project that the task of embedding a language (however alien) is one that
fits functional programming languages like a glove.

References

[1] Wil van der Aalst, Arthur ter Hofstede, Bartek Kiepuszewski, and Ana Bar-
ros. Workflow patterns. QUT technical report, FIT-TR-2002-02, Queens-
land University of Technology, Brisbane, Australia, 2002.

[2] Artem Alimarine and Rinus Plasmeijer. A generic programming extension
for Clean. In Thomas Arts and Markus Mohnen, editors, Selected Papers
of the 13th International Symposium on the Implementation of Functional
Languages, IFL’01, volume 2312 of LNCS, pages 168–186. Springer-Verlag,
September 2002.

[3] Birger Andersson, Maria Bergholtz, and Ananda Edirisuriya. A Declarative
Foundation of Process Models. In Oscar Pastor and João Falcão e Cunha,
editors, Proceedings 17 Int’l Conference on Advanced Information Systems
Engineering, CAiSE 2005, volume 3520 of LNCS, pages 233–247. Springer-
Verlag, 2005.

[4] Marco Brambilla, Jordi Cabot, and Sara Cornai. Automatic Generation
of Workflow-Extended Domain Models. In Gregor Engels, Bill Opdyke,
Douglas C. Schmidt, and Frank Weil, editors, Proceedings Model Driven
Engineering Languages and Systems, 10th Int’l Symposium, MoDELS 2007,
volume 4735 of LNCS, pages 375–389. Springer-Verlag, 2007.

[5] Zef Hemel, Ruben Verhaaf, and Eelco Visser. WebWorkFlow: an object-
oriented workflow modeling language for web applications. In K. Czarnecki,
I. Ober, J.-M. Bruel, A. Uhl, and M. Völter, editors, Proceedings of the
11th International Conference on Model Driven Engineering Languages and
Systems, MoDELS’08, volume 5301 of LNCS, pages 113–127. Springer-
Verlag, 2008.

[6] Jan Martin Jansen, Pieter Koopman, and Rinus Plasmeijer. Efficient inter-
pretation by transforming data types and patterns to functions. In Henrik
Nilsson, editor, Selected Papers of the 7th Symposium on Trends in Func-
tional Programming, TFP’06, volume 7, pages 73–90, Nottingham, UK,
2006. Intellect Books.

[7] Pieter Koopman, Rinus Plasmeijer, and Peter Achten. An executable and
testable semantics for iTasks. In Sven-Bodo Scholz, editor, Selected Papers
of the 20th International Symposium on the Implementation and Applica-
tion of Functional Languages, IFL’08, 2009. To appear in Springer LNCS.

REFERENCES 15

[8] Bas Lijnse and Rinus Plasmeijer. Between types and tables - Using generic
programming for automated mapping between data types and relational
databases. In Sven-Bodo Scholz, editor, Selected Papers of the 20th Inter-
national Symposium on the Implementation and Application of Functional
Languages, IFL’08, 2009. To appear in Springer LNCS.

[9] Maja Pešić. Constraint-based workflow management systems: shifting con-
trol to users. PhD thesis, Technical University Eindhoven, 8, October 2008.

[10] Maja Pešić and Wil van der Aalst. A declarative approach for flexible
business processes management. In Johann Eder and Schahram Dustdar,
editors, Proceedings of the 1st Business Process Management Workshop
on Dynamic Process Management, DPM’06, volume 4103 of LNCS, pages
169–180. Springer-Verlag, 2006.

[11] Simon Peyton Jones and Philip Wadler. Imperative functional program-
ming. In Proceedings of the 20th International Symposium on Principles
of Programming Languages, POPL’93, pages 71–84, Charleston, SC, USA,
January 1993. ACM Press.

[12] Rinus Plasmeijer, Peter Achten, and Pieter Koopman. iTasks: executable
specifications of interactive work flow systems for the web. In Proceedings of
the 12th International Conference on Functional Programming, ICFP’07,
pages 141–152, Freiburg, Germany, 1-3, October 2007. ACM Press.

[13] Rinus Plasmeijer, Peter Achten, Pieter Koopman, Bas Lijnse, and Thomas
van Noort. An iTask case study: a conference management system. In Se-
lected Lectures of the 6th International Summer School on Advanced Func-
tional Programming, AFP’08, volume 5832 of LNCS, Center Parcs “Het
Heijderbos”, The Netherlands, 19-24, May 2008. Springer-Verlag.

[14] Rinus Plasmeijer, Jan Martin Jansen, Pieter Koopman, and Peter Achten.
Declarative Ajax and client side evaluation of workflows using iTasks. In
Proceedings of the 10th International Conference on Principles and Practice
of Declarative Programming, PPDP’08, pages 56–66, Valencia, Spain, 15-
17, July 2008.

[15] Irene Vanderfeesten, Hajo Reijers, and Wil van der Aalst. Product based
workflow support: dynamic workflow execution. In Z. Bellahsène and
M. Léonard, editors, Proceedings of the 20th International Conference on
Advanced Information Systems Engineering, CAiSE’08, volume 5074 of
LNCS, pages 571–574, Montpellier, France, 2008. Springer-Verlag.

[16] Martijn Vervoort and Rinus Plasmeijer. Lazy dynamic input/output in
the lazy functional language Clean. In Ricardo Peña and Thomas Arts,
editors, Selected Papers of the 14th International Symposium on the Imple-
mentation of Functional Languages, IFL’02, volume 2670 of LNCS, pages
101–117. Springer-Verlag, September 2003.

