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Abstract

The functional programming languages Clean and Haskell have
been around for over two decades. Over time, both languages have
developed a large body of useful libraries and come with interest-
ing language features. It is our primary goal to benefit from each
other’s evolutionary results by facilitating the exchange of sources
between Clean and Haskell and study the forthcoming interactions
between their distinct languages features. This is achieved by us-
ing the existing Clean compiler as starting point, and implementing
a double-edged front end for this compiler: it supports both stan-
dard Clean 2.1 and (currently a large part of) standard Haskell 98.
Moreover, it allows both languages to seamlessly use many of each
other’s language features that were alien to each other before. For
instance, Haskell can now use uniqueness typing anywhere, and
Clean can use newtypes efficiently. This has given birth to two new
dialects of Clean and Haskell, dubbed Clean* and Haskell*. Ad-
ditionally, measurements of the performance of the new compiler
indicate that it is on par with the flagship Haskell compiler GHC.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.3.4 [Programming
Languages]: Processors - Compilers

General Terms Design, Languages

Keywords Clean, Haskell

1. Introduction

The year of 1987 was a founding one for two pure, lazy, and
strongly typed functional programming languages. Clean (Brus
et al., 1987) was presented to the public for the first time and
the first steps towards a common functional language, later named
Haskell, were taken (Hudak et al., 2007).

Clean was conceived at the Radboud University Nijmegen as a
core language that is directly based on the computational model
of functional term graph rewriting to generate efficient code. It
also serves as an intermediate language for the compilation of
other functional languages (Koopman and Nöcker, 1988; Plasmei-
jer and van Eekelen, 1993). For these reasons, it deliberately used
a sparse syntax (van Eekelen et al., 1990): “. . . at some points one
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can clearly recognize that [..] Clean is a compromise between a
functional programming language and an intermediate language
used to produce efficient code. For instance, a minimal amount of
syntactic sugar is added in [..] Clean.”. Later, the core language
was sugared. One particularly important factor was its adoption of
uniqueness typing (Barendsen and Smetsers, 1993) to handle side-
effects safely in a pure lazy language. Based on this concept, a GUI
library (Achten and Plasmeijer, 1995; Achten et al., 1992) was de-
veloped, which was used in large applications such as the Clean
IDE, spreadsheet (de Hoon et al., 1995), and later the proof assis-
tant Sparkle (de Mol et al., 2002). In 1994, Clean 1.0 appeared,
which basically added the syntactic sugar to core Clean that was
necessary to develop such large libraries and large applications.
In the following years Clean turned open source, and extended its
arsenal of functional language features with dynamic typing (Pil,
1999), and built-in generic programming (Alimarine and Plasmei-
jer, 2002), obtaining Clean 2.1 (Plasmeijer and van Eekelen, 2002).
Whenever we refer to Clean in this paper, we mean this version.

Very shortly after the presentation of Clean, Haskell was born
as a concepts language out of the minds of a large collaboration
that idealized an open standard to: “reduce unnecessary diversity in
functional programming languages” and “be usable as a basis for
further language research”. After three years, this effort resulted
in the Haskell 1.0 standard (Hudak et al., 1992) and later the (re-
vised) Haskell 98 standard (Peyton Jones, 2003; Peyton Jones and
Hughes, 1999). Early this year, Haskell 2010 was announced and
the Haskell’ standard is under current active development. Haskell
especially enjoyed the benefits of a rapidly growing community;
evolving and adapting standards quickly. The downside being that
the term ‘Haskell’ became heavily overloaded. It is often not clear
to what it refers: one of the standards, a specific implementation
of the flagship Haskell compiler GHC, or something in between?
Whenever we refer to Haskell in this paper, we mean Haskell 98
and explicate any deviations.

We did not take part in the Haskell collaboration and chose
to explore the world of functional programming on our own. Af-
ter diverging onto different paths more than 20 years ago, we be-
lieve it is time to reap the benefits by exchanging (some of) each
other’s evolutionary results. Both languages have developed inter-
esting language features and concepts (e.g., uniqueness typing in
Clean and monads with exceptions in Haskell) and many useful
libraries (e.g., the workflow library iTask and the testing library
Gast in Clean, and the parser combinator library Parsec and test-
ing library QuickCheck in Haskell). Our long-term goal is to fa-
cilitate the exchange of such libraries and study the forthcoming
interactions between languages features that are distinct to Clean
or Haskell. There are many ways to achieve this goal. A naive
approach is to define a new functional language that is the union
of Clean and Haskell. The resulting language would become very



baroque due to different syntax in Clean and Haskell for very simi-
lar, but not identical, concepts. A second approach is to develop two
separate compilers that translate Clean to Haskell and vice versa.
This would require an incredible amount of work and is quite hard
since features from one language do not always easily project to
the other language. This can be simplified by disallowing such fea-
tures to be used in the libraries under exchange, but that restricts
the application of libraries too much. Instead, we develop dialects
of Clean and Haskell, dubbed Clean* and Haskell*, that include
just enough extra language features to use each other’s libraries
conveniently. Both new languages are realised in a double-edged
front end for the Clean compiler that runs in two modes:

• Clean* mode that accepts Clean 2.1 programs extended with
Haskell 98 features.

• Haskell* mode that accepts Haskell 98 programs extended with
Clean 2.1 features.

Although Clean and Haskell are both pure and lazy functional
languages, there are many subtle differences. An overview of most
of the syntactical differences has been given in (Achten, 2007). In
this paper we mainly focus on the semantic differences and describe
our effort to marry them within the two extended languages. We
do not aim to give a complete and detailed overview, but instead
identify the biggest challenges and describe the intuition behind
their solution and implementation. Concretely, our contributions
are the following:

• We identify the most salient differences between Clean and
Haskell: modules, functions, macros, newtypes, type classes,
uniqueness typing, monads, records, arrays, dynamic typing,
and generic functions (Sections 2 to 12).

• With each difference we discuss if and how Clean* and Haskell*
support the exchange and briefly explain how this is incorpo-
rated in an implementation.

• We provide a concrete implementation of the front end that sup-
ports Clean, Haskell, and their dialects Clean* and Haskell*1.

We give a brief comparison of the current performance of the
front end in relation to GHC (Section 13). We end this paper with
related work (Section 14) and conclude with a discussion and future
work (Section 15).

Since Clean and Haskell are syntactically so much alike, it
can be quite hard to disambiguate examples from both languages.
Therefore, we choose to start each code fragment with a comment
line, // Clean or -- Haskell respectively, choosing redundancy
over opacity. Similarly for the dialects of the languages, we start
with a comment line // Clean* or -- Haskell*.

2. Modules

Clean and Haskell come with many libraries. Instead of migrat-
ing these manually, we aim to support the exchange of sources
via the front end. It allows Clean modules to import Haskell mod-
ules and vice versa. In this section we first briefly compare the
two module systems (Section 2.1) and corresponding compilation
strategies (Section 2.2). Then we discuss how the front end facili-
tates mixed compilation of modules in Clean* and Haskell* (Sec-
tion 2.3).

2.1 Module systems

From the beginning, Clean has used a module system that is very
similar to that of Modula-2 (Wirth, 1985). Implementation mod-

1 The front end is under active development, current releases are available
via http://wiki.clean.cs.ru.nl/Download_Clean

ules reside in .icl files and contain all implementations of func-
tions, datastructures, and type classes. Definition modules reside in
.dcl files and specify the corresponding interfaces by the exported
definitions. Besides importing an entire module, Clean allows the
explicit import of elements of a module, distinguishing between the
sort of element (functions, types, type classes, etc.). This has been
included in Haskell* during this project.

Although Haskell 1.0 also used a module system with separate
module interfaces, these were abandoned as of Haskell 1.3 because
they were increasingly perceived as compiler-generated artifacts,
rather than interface definitions (Hudak et al., 2007). Instead, the
header of a module enumerates its exported symbols. This percep-
tion fits within the language philosophy of Haskell to have the pro-
grammer specify only what is required to successfully compile a
program. For instance, in Haskell it is allowed to export an iden-
tifier x in a module M but not its type, and to import x in another
module N. Because x is not in scope in module N, it cannot be
given an explicit type. However, the compiler can, and has to, find
this type by inspecting module M. Haskell prescribes no relation
between module names and files, but by convention each module
resides in a .hs or .lhs file. Haskell provides fine-grained control
over the names of imported definitions. This is achieved via hiding
specific definitions, qualified imports of modules, and hierarchical
modules (this last feature is an extension of Haskell). These con-
structs have been included in Clean* during this project.

User-defined definition modules as used in Clean have as ad-
vantage that a programmer obtains a clear description of the offered
interface of a specific library module, which is very useful from an
engineering point of view. A disadvantage of the approach is that
a definition module cannot be used by a compiler to provide ad-
ditional information about the actual implementation, which might
be used for optimizations such as inlining.

2.2 Compilation strategies

When the Clean compiler compiles an implementation module, it
is first verified that the exported definitions match the correspond-
ing implementation. Imported definition modules are assumed to
match their implementation and an implementation module is only
recompiled if it is new, or required by its timestamp. Compilation
of modules takes place from top to bottom. When the compiled ver-
sion of an imported module is up to date, it suffices to inspect only
the definition modules of the imported modules, which significantly
speeds up the compilation process. Clean modules are compiled to
intermediate ABC code (Koopman et al., 1995), from which object
code is generated.

The compilation process of a Haskell program is more involved.
Because modules can confine themselves to exporting definitions
only, but not their types, all sources of imported modules must be
available. During compilation, interface files are generated that can
be used instead. In the end, object files are generated that are used
by a linker to create an executable.

2.3 Mixed compilation

The support of mixing Haskell* or Clean* modules in the Clean
compiler is based on definition modules. In the Clean world, these
definition modules are still defined separately. The definition mod-
ule of a Haskell* module is generated by the compiler. When
Clean* with Haskell* modules are mixed, the compiler has to
switch between compilation strategies: Clean* modules are com-
piled top down as usual, while Haskell* modules have to be com-
piled bottom up in order to generate the required definition mod-
ules. The compiler has to know with what kind of module it is
dealing with. If the module is a .icl file, it is assumed that there
is a manually defined .dcl file available. Otherwise, if the mod-
ule is an .hs or .lhs file, an accompanying .dcl file is generated.



If a previous compilation of a Haskell* module already generated
such a definition module, the new definition module is compared to
the old one. If they are identical, the old definition module is kept,
leaving its timestamp unchanged. Otherwise, it is replaced by the
new definition module. Before a module is compiled, the definition
modules of all imported modules have to be available. If these do
not exist or are out of date since their timestamp is newer than the
one of the definition module, the corresponding Haskell* modules
have to be compiled first in order to generate the required definition
modules. As we will see in the following sections, generated defini-
tion modules from Haskell* modules sometimes include additional
information to inform the compiler of typical Haskell* constructs.
For efficiency reasons it is sometimes worthwhile to define defini-
tion modules of Haskell modules by hand. In Section 6 we see an
example where we manually include specialization information in
exported function types.

3. Functions

The semantics of the core of Clean is based on term-graph rewrit-
ing. The expression that is computed is a computation graph and
functions are sugared versions of term-graph rewrite rules. Sharing
is explicit in both computation graphs and functions. In Clean, the
signature of a function reveals information about its arity, strictness,
and uniqueness properties. The first two concepts are discussed in
this section, the third in Section 7.

Sharing is explicit in Clean functions. Variable names in func-
tion argument patterns, and case patterns as well, really point to a
subgraph in the computation graph after matching a redex. Multi-
ple occurrences of these variables on the right-hand side of a func-
tion and case patterns implies that these are shared. Similarly, local
graph definitions (i.e., using let or where) on the right-hand side
of a function are also always shared. The local function definitions
are always lambda lifted. In all cases, = is used as a separator be-
tween the left-hand side and right-hand side of a function or local
definition. Locally, graph definitions are considered to be constant
definitions, and hence, these are shared. If the programmer intends
a function of arity zero, this is denoted using => as a separator, or
by providing an explicit type signature. Haskell does not explicitly
specify what must be shared, but every implementation uses simi-
lar rules as stated above. At the top level of a Clean module, every
definition is considered to be a function definition. If the program-
mer intends a constant in applicative form (CAF), this is denoted by
using =: as a separator. As an example, we define the well-known
efficient list of fibonacci numbers as a constant:

// Clean
fibs =: [1 : 1 : [x + y \\ x <- fibs & y <- tl fibs]]

If we used = as a separator instead, this would result in recomputing
the list for each invocation.

In Haskell, a top-level function without arguments is assumed
to be a CAF, unless it has an explicit overloaded type signature.
Hence, the above example can be expressed as a function without
risk of recomputation:

-- Haskell
fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

In Clean the programmer can make the tradeoff between (possible)
recomputation and space usage. In Haskell this choice is fixed to
storing the results and hence usage of space.

The arity of term-graph rewrite rules can be greater than one,
in contrast to functions considered from a λ-calculus perspective
as chosen by Haskell. For this reason, function signatures in Clean
show the arity of their implementation, while signatures are curried
in Haskell. The advantage to knowing the arity of a function is
efficiency: a function application knows when it is fully saturated. It

is important to observe that this is a syntactic issue: it neither limits
the type system nor the use of currying in Clean. As an example,
consider the following function that combines the application of the
well-known functions map and concat (named flatten in Clean):

// Clean
concatMap :: (a -> [b]) [a] -> [b]
concatMap f xs = flatten (map f xs)

The function type exposes the arity of the implementation, which
is two in this case. Hence, if we change the definition to a point-
free notation, the type of the function changes. We use the infix
Clean function o for function composition, in contrast to Haskell’s
Prelude . notation:

// Clean
concatMap :: (a -> [b]) -> ([a] -> [b])
concatMap f = flatten o map f

(It should be noted that, as usual, the right-most brackets can be
omitted because -> associates to the right.) Now, the arity of the
function is one, which is reflected in its type by the insertion of a
function type. Moving the first argument inwards changes the arity
of the type again, making it of arity zero:

// Clean
concatMap :: ((a -> [b]) -> [a] -> [b])
concatMap = \f -> flatten o map f

The parentheses around the function type express that this is a
constant function. In Haskell, all these implementations are given
the same type, namely:

-- Haskell
concatMap :: (a -> [b]) -> [a] -> [b]

Consequently, such a type does not reflect the arity of its imple-
mentation.

Similar effects occur in the use of type synonyms in function
signatures. Suppose that we define the following type synonym:

// Clean
:: ListF a b :== a -> [b]

-- Haskell
type ListF a b = a -> [b]

In Haskell, ListF a b -> ListF [a] b is also a valid type for any
of the implementations of concatMap, but in Clean (ListF a b) ->

ListF [a] b is only valid for the second definition with arity one.
Since its first version, Clean comes with a strictness ana-

lyzer (Nöcker, 1994) as well as strictness annotations for function
signatures. Strictness information is crucial to generate efficient
code. The programmer can add strictness annotations to function
arguments, and hence export this information in the corresponding
definition module. Haskell has no support for strictness informa-
tion in function signatures. Clean and Haskell both support strict-
ness annotations in datatypes in very similar ways, therefore this is
not discussed.

Exchange Clean* functions can be used easily by Haskell* and
vice versa without modification. Haskell* function definitions are
interpreted as term graph rewrite rules as described above. In
Haskell* function signatures can be given strictness annotations
in the same fashion as in Clean*. Strictness information is derived
during compilation and exported in the corresponding definition
module. Below is discussed how the arity information is derived
and exported.

Implementation The issue with function arity shows up in inter-
faces between Clean* and Haskell* modules. The front end trans-
forms user-provided Haskell* types for exported functions in the



generated definition module and makes the arity of a Haskell* func-
tion explicit. Suppose we have the following Haskell* definition of
the concatMap function:

-- Haskell*
concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f xs = concat (map f xs)

When a Haskell* module exports this function, the front end gen-
erates a Clean type for the definition module that reflects the arity
of the implementation, which is two in this case:

concatMap :: (a -> [b]) [a] -> [b]

If we define this function in point-free notation, the arity of the
implementation changes and the exported type becomes:

concatMap :: (a -> [b]) -> [a] -> [b]

Note that in this case, the exported type is syntactically identical
to the original Haskell type, but explicitly states that concatMap f

yields a function value.
Similarly, when a type synonym obscures the arity of a function,

its exported type is transformed. Suppose we export the following
functions with one identical Haskell* type:

-- Haskell*
concatMap2, concatMap1, concatMap0 ::

ListF a b -> ListF [a] b

concatMap2 f xs = concat (map f xs)
concatMap1 f = \xs -> concat (map f xs)
concatMap0 = \f xs -> concat (map f xs)

With each version, the type synonym is expanded to match the arity
of the implementation of the function. Thus, the definition module
contains:

concatMap2 :: (a -> [b]) ![a] -> [b]
concatMap1 :: (a -> [b]) -> [a] -> [b]
concatMap0 :: ((a -> [b]) -> [a] -> [b])

Only concatMap2 is strict in its list argument since concat and map

are strict, and the other definitions return functions that still expect
one ore two arguments.

4. Macros

Clean 0.8 added macros to the language. A macro can be re-
garded as a function with one alternative and just named arguments.
Macros are substituted at compile time, and hence are not allowed
to be recursive. Naturally, it may use other recursive functions or
define recursive functions locally. Note that the substitution is a
graph reduction, and not a textual substitution. For instance, we de-
fine a macro to double a value:

// Clean
double x :== x + x

Here, the application double (fib 100) is reduced at compile time
to let x = fib 100 in x + x. Hence, the computation of x is
shared.

In Haskell, the programmer can use the INLINE pragma to en-
courage the compiler to inline the body of a function. For instance,
the above macro is defined as follows in Haskell as a function to be
inlined:

-- Haskell
{-# INLINE double #-}
double x = x + x

Exchange Haskell* modules can import and use Clean macros,
and define them using the same syntax. The INLINE pragma is not
yet included in Clean*. However, macros subsume this concept.

Implementation Currently, it remains future work to export
macros from Haskell*.

5. Newtypes

Although type synonyms are useful to document code and explain
the purpose of a type, they suffer from the disadvantage that they
cannot serve as an instance of a type class or be recursive. Clean’s
syntax for type synonyms indicates that they are just macros at
the type level. Haskell 1.3 introduces newtype declarations (i.e.,
datatype renamings) which are syntactically identical to an alge-
braic datatype with exactly one constructor of arity one, but which
intention is to behave semantically as a type synonym. For instance,
here are two newtype definitions:

-- Haskell
newtype Nat = Nat Int
newtype Fix f = In (f (Fix f))

This eliminates the above mentioned drawbacks: Nat can be made
an instance of say the type class Integral, and Fix is clearly a
recursive type. The constructors are still included in patterns and
construction, but are assumed to be erased by the compiler. Hence,
every Nat instance behaves as an ordinary Int value and every Fix

f behaves as a plain recursive function.
Clean does not support newtypes. The best approximation is to

use an algebraic datatype with a strict argument:

// Clean
:: Nat = Nat !Int
:: Fix f = In !(f (Fix f))

Operationally, this version is more expensive than a version where
these constructors are erased at compile time.

Exchange All Haskell* newtypes can be imported and used in
Clean* modules and adhere to the assumed Haskell semantics.
The mentioned Clean types are defined as newtypes in Clean* as
follows:

// Clean*
:: Nat =: Nat Int
:: Fix f =: In (f (Fix f))

Note that this code fragment is also legal Haskell*.

Implementation The implementation of newtypes avoids the
constructor overhead since all constructors belonging to newtypes
are erased at compile time. Removing constructors is not as trivial
as it seems. For example, consider the Haskell wrapper function
toNat:

-- Haskell
toNat :: Int -> Nat
toNat = Nat

We have to introduce an identity function if the constructor Nat

is erased. Also, constructors need to be erased from patterns in
function definitions:

-- Haskell
fromNat :: Nat -> Int
fromNat (Nat _) = 10

If we would leave the constructor, the function becomes strict while
the semantics requires a nonstrict function. The value fromNat ⊥
must be rewritten to 10 and not to ⊥.

Also, the newtypes itself must be erased at compile time in order
to make annotations for uniqueness typing on the argument of the
newtype effective. The type wrapped in the newtype obtains the
type annotations of the newtype definition, instead of the strictness
annotation shown earlier. This implies that Nat has to be replaced
by Int. Evidently, this is not possible for recursive newtypes.



6. Type classes

Haskell has supported type classes from the very beginning. Clean,
having started as a core language, added type classes to the lan-
guage with version 1.0 in 1994. There are a number of differences
that need to be discussed.

While Clean supports multi-parameter type classes, the param-
eters of a Haskell type class are restricted to one (although many
Haskell implementations allow more parameters). For example,
consider the following type class Array a e that is used for arrays
of type a with elements of type e, as we will see in Section 10:

// Clean
class Array a e where

createArray :: Int e -> (a e)
size :: (a e) -> Int

Type classes in Haskell can suggest default implementations for
its members that can be overruled in specific instances. For instance
in the equality type class:

-- Haskell
class Eq a where

(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

x == y = not (x /= y)
x /= y = not (x == y)

If an instance provides no definition, the default definition is used.
In Clean, default members are defined using macros, which are
described earlier in Section 4:

// Clean
class Eq a where

(==) :: a a -> Bool

(/=) x y :== not (x == y)

The difference with Haskell is that default members via macros
cannot be redefined.

In contrast to Haskell, Clean does support defaults on the level
of instances. For example, consider the catch-all instance for Eq:

// Clean
instance Eq a where

_ == _ = False

This instance is used whenever no other instance matches. Conse-
quently, overlap occurs between instances, but this is only allowed
on the top level. We cannot define both instances of Eq for both
(Int, a) and (a, Int) in Clean.

As we discussed in Section 3, Clean enforces an explicit arity of
function type signatures while Haskell types do not reflect the arity
of their implementation. Hence, the members of the instances of a
Clean type class must agree on their arity as specified by the type
class. Instances of a Haskell type class can differ in arity from each
other and the original type class definition.

To avoid the overhead of the dictionary-passing style translation
of type class, Haskell includes the SPECIALIZE language pragma to
generate specialized versions at compile time. For instance, in the
overloaded equality on lists, we indicate that specialized definitions
for Int and Bool are to be generated and used when possible:

-- Haskell
{-# SPECIALIZE eqL :: [Int] -> [Int] -> Bool #-}
{-# SPECIALIZE eqL :: [Bool] -> [Bool] -> Bool #-}

eqL :: Eq a => [a] -> [a] -> Bool
eqL [] [] = True
eqL [] _ = False
eqL _ [] = False
eqL (x:xs) (y:ys) = x == y && eqL xs ys

In Clean, any overloaded function is specialized within module
boundaries. Therefore, only exported functions and instances pos-
sibly need to be specialized using the special keyword in a defini-
tion module:

// Clean
eqL :: [a] [a] -> Bool | Eq a special a = Int; a = Bool

instance Eq [a] | Eq a special a = Int; a = Bool

In contrast to Haskell, such specializations are specified by a sub-
stitution instead of the substituted type.

To avoid boilerplate programming, Haskell supports a deriving

clause for data or newtype declarations. This relieves the pro-
grammer from writing instances of the type classes Eq, Ord, Enum,
Bounded, Show, Read, and Ix herself, but instead lets the compiler
do the job. In Clean, this kind of type-directed boilerplate program-
ming is achieved by generic functions, as we will discuss later in
Section 12.

Haskell uses a rather elaborate system of type classes to orga-
nize numerical values: Num, Real, Fractional, Integral, RealFrac,
Floating, and RealFloat for handling values of type Int, Integer,
Float, Double, and Rational. Numeric denotations are over-
loaded: 0 is of the type Num a => a and is in fact the expression
fromInteger (0 :: Integer). Therefore, a Haskell programmer
needs to add a type signature to disambiguate overloading from
time to time. A default declaration provides another approach
to disambiguate these cases. This consists of a sequence of types
that are instances of the numeric classes. In case of an ambiguous
overloaded type variable that uses at least one numeric class, the
sequence of types are tried in order to find the first instance that
satisfies the constraints. A module has at most one such declara-
tion, and by default it is default (Integer, Double). Clean uses
a much simpler approach: numbers are either integer (Int) or float-
ing point (Real) and their denotations are different: 0 is always of
type Int, and 0.0 is always of type Real. Coercion between these
types is achieved explicitly using any of the overloaded functions
toInt, toReal, fromInt, or fromReal.

Exchange Haskell* supports the less restrictive multi-parameter
type classes of Clean. Not only can we import such definitions
in Haskell*, we can also define such type classes ourselves and
provide instances.

When importing a type class from the other language, the se-
mantics of default members remains the same: Clean* can rede-
fine Haskell default members while Haskell* cannot redefine Clean
macros.

The arity of the members of a concrete instance is determined
by the importing language. Members of an instance of a Clean type
class in Haskell* can be of any arity, while the arity of the members
of a Haskell type class in Clean* is the number of arguments.

Specialization in the style of Haskell is not yet implemented.
Recall that specialized definitions are generated within module
boundaries, similar to Clean.

The type class hierarchy for numerical values in Haskell is
available in Clean* as a library. Haskell’s types for numerical
values are currently not supported in Clean*. However, Haskell*
can use Clean’s numerical types by prefixing such a value with ‘.
The value ‘0 is of the Clean type Int, just like the Haskell value 0

:: Int. Similarly, the value ‘0.0 is of the Clean type Real like the
Haskell value 0.0 :: Double. Proper support for efficient Float

values in Haskell* is still under active development.

Implementation The front end uses Clean macros to implement
default members in Haskell*. The default members can be rede-
fined, but their current form is restricted. A default member in
Haskell* must have the same arity as the type it has been given,
it can only consist of one alternative, and no infix-style definition is



allowed. Also, such default members cannot yet be exported, this
is future work.

Since the arity of members of Haskell instances can differ, the
generated definition module of a Haskell* module must include the
types of the exported instance members to reflect their arity.

To facilitate efficient implementations of some of the Haskell
Prelude functions, Clean includes redefinitions of exported special-
ized instances and functions. For example, the exported Haskell
function that converts Integral values has the following signature:

fromIntegral :: (Integral a, Num b) => a -> b
special a = Int, b = Double :== fromIntegralIntDouble

Here, we manually include a type signature in the definition module
that defers the specialization to a more efficient implementation in
fromIntegralIntDouble.

Derived instances in Haskell* are automatically included in the
generated definition module such that these can be imported from
another module. The implementation of the deriving construct in
Haskell* is not as straightforward as it may seem. A fixed-point
computation is required to determine the context by reduction, if
some of the derived instances are already defined but with a more
complicated context.

In Clean, CAFs are not allowed to be overloaded since such
a value must have a single type in order to be a proper constant.
In Haskell, overloaded CAFs without an explicit type signature
are allowed, but overloading is resolved at compile time using the
monomorphism restriction and the default rule as described earlier.
Consequently, the type of an overloaded CAF cannot be determined
just using its definition and the types of the functions it uses, but
also by the uses of the CAF in the module. Therefore, we may have
to type check the entire module before we can determine the type
of the CAF. The following implementation is used:

1. The type of a CAF is determined without the monomorphism
restriction and default rule. If it is not overloaded, type checking
continues in the usual way.

2. If it is overloaded and used by another function, a preliminary
type of this function is determined using the overloaded type
of the CAF. The type of the use of the CAF, after unification,
is remembered. If the function contains more than one use,
the types of these are unified. Other CAFs that are used are
remembered together with their types.

3. If a function with such a preliminary type is used by another
function, this function is typed as if the function used the CAFs
remembered in the preliminary type. Hence, a preliminary type
is inferred that contains the types of the CAFs that are used
(possibly indirectly) by this function. Note that a CAF that uses
another CAF is treated in a similar way.

4. The remembered preliminary types of the CAFs are unified to
determine their types.

5. All functions for which preliminary types were inferred are type
checked again, but now using the no longer overloaded types of
the CAFs.

7. Uniqueness typing

Uniqueness typing relies heavily on the fact that sharing is com-
pletely explicit in Clean, as discussed in Section 3. A value that is
unique has a single path from the root of the computation graph to
the value. A function demands such an argument using the * anno-
tation in its signature. Function bodies that violate this constraint
are not well typed, and hence are rejected during compilation. Val-
ues that have a single reference can be updated destructively with-
out compromising functional semantics. This allows Clean to sup-
port arrays with in-place updates of its elements, as we discuss later

in Section 10. The programmer can annotate function arguments
and datastructures with uniqueness attributes for the same purpose.
Uniqueness can also be used to implement I/O, by annotating val-
ues that are somehow ‘connected’ with the outside world as being
unique, which is discussed in Section 8.

As an example of uniqueness typing, consider a stateful map
function, mapS, that threads a unique state of type *s (type variables
need to be attributed uniformly):

// Clean
mapS :: (a *s -> (b, *s)) [a] *s -> ([b], *s)
mapS f [] s = ([], s)
mapS f [x:xs] s = ([y:ys], s2)
where (y, s1) = f x s

(ys, s2) = mapS f xs s1

Actually, the most general type for mapS is one that allows both
nonunique and unique arguments. The . annotation ensures that
the same type variable is assigned the same uniqueness attribute:

// Clean
mapS :: (.a .s -> (.b, .s)) [.a] .s -> ([.b], .s)

The type variable .a is either unique or nonunique in the signature,
the same holds for .b and .s. For reasons of presentation, we
usually omit these extensive type signatures.

World-as-value programming is supported syntactically in Clean
using #-definitions, also known as let-before definitions. For in-
stance, mapS is preferably written as:

// Clean
mapS :: (.a .s -> (.b, .s)) [.a] .s -> ([.b], .s)
mapS f [] s = ([], s)
mapS f [x:xs] s # (y, s) = f x s

# (ys, s) = mapS f xs s
= ([y:ys], s)

Note that this definition is a sugared version of the earlier mapS

definition using local where definitions.

Exchange Haskell* accepts uniqueness typing in Clean style.
It can use Clean functions that manipulate unique values. As an
example, here is a function that uses Clean I/O to write data to a
file using an accumulating parameter:

-- Haskell*
writeLines :: Show a => [a] -> *File -> *File
writeLines [] file = file
writeLines (x:xs) file =
writeLines xs (fwrites (clstring (show x)) file)

We use Clean’s StdFile library function fwrites to write a string
to a file and clstring to convert a Haskell string to a Clean string
(their difference is discussed in Section 10).

Naturally, the uniqueness properties of Haskell* functions need
to be verified. Types can be annotated with uniqueness attributes
explicitly, or uniqueness information is derived and exported in the
corresponding generated definition module. For instance, consider
this Haskell* function to update an element in a list:

-- Haskell*
updateAt _ _ [] = []
updateAt 0 x (_:ys) = x : ys
updateAt n x (y:ys) = y : updateAt (n - 1) x ys

This function can be applied to a list that may contain unique values
(.a) and preserves the uniqueness of the spine of the list (u:[.a]):

-- Haskell*
updateAt :: Num n => n -> .a -> u:[.a] -> u:[.a]

The uniqueness attributes in this type are identical to those of
updateAt in Clean’s StdList module.



Uniqueness annotations can also enforce constraints. Consider
the following function to swap an element in a possibly spine-
unique list, instead of updating it:

-- Haskell*
swapAt :: Int -> .b -> u:[.b] -> (.b, v:[.b]), [u <= v]
swapAt _ x [] = (x, [])
swapAt 0 x (y:ys) = (y, x:ys)
swapAt n x (y:ys) = (z, y:zs)

where (z, zs) = swapAt (n - 1) x ys

The source and result list now have different uniqueness attributes
(u and v respectively), but they are related in the sense that the
uniqueness of the source list is at least as unique as the result list
([u <= v]). In this case it means that from a nonunique source list
you cannot construct a unique result list (due to sharing of part of
the list spine), but from a unique source list you can construct a
nonunique result list.

Implementation The issues that are related to the monomor-
phism restriction and default rule, as discussed earlier in Section 6,
needed to be solved in order to adopt Clean’s uniqueness typing in
Haskell*.

8. Monads

Any practical programming language needs to be able to interact
with the ‘outside’ world. Clean and Haskell have followed entirely
different solutions for this challenge. In Clean 0.8, uniqueness typ-
ing has been included to support an explicit multiple environment
passing style (i.e., the world-as-value style). In Haskell 1.3, monads
were adopted in favor of the stream-based and continuation-based
I/O of earlier Haskell versions.

The basic philosophy of monads is that a monadic value rep-
resents a recipe that, when performed, may have side-effects and
yields a value of some type. Technically, a monad consists of the
combinators return and >>=:

-- Haskell
infixl 1 >>=
class Monad m where

return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

A well-known instance of this class passes a state of type s from
function to function. The state-passing function is wrapped in the
newtype StateF:

-- Haskell
newtype StateF s b = StateF (s -> (b, s))

instance Monad (StateF s) where
return x = StateF (\s -> (x, s))
(StateF f) >>= g

= StateF (\s -> let (x, s1) = f s
(StateF h) = g x

in h s1
)

A very similar class Monad is defined in Clean:

// Clean
class Monad m where

return :: a -> m a
(>>=) infixl 1 :: (m a) (a -> m b) -> m b

The differences with the Haskell definition are the notation for the
fixity of the >>= combinator and the explicit arity in the types.

Instead of a newtype for StateF we use an algebraic datatype, as
described in Section 5. It should be noted that additional uniqueness
attributes are required in the right-hand side of StateF to allow both
b and s to be unique. We rely on uniqueness typing to ensure a
correct single-threaded implementation:

// Clean
:: StateF s b = StateF !.(s -> .(b, s))

instance Monad (StateF .s) where
return x = StateF (\s -> (x, s))
(>>=) (StateF f) g

= StateF (\s -> let (x, s1) = f s
(StateF h) = g x

in h s1
)

Monads are used to structure programs. Using this Monad class, the
function mapS from Section 7 is expressed more elegantly:

// Clean
mapS :: (a -> m b) [a] -> m [b] | Monad m
mapS f [] = return []
mapS f [x:xs] = f x >>= \y ->

mapS f xs >>= \ys ->
return [y:ys]

In Haskell, monads are supported syntactically with do-notation.
Hence we can choose for the definition of mapS for a notation
similar to the Clean version or the version with do-notation:

-- Haskell
mapS :: Monad m => (a -> m b) -> [a] -> m [b]
mapS f [] = return []
mapS f (x:xs) = do y <- f x

ys <- mapS f xs
return (y:ys)

The IO monad in Haskell is used to sequence I/O operations.
The world is hidden from the programmer, and hence there is no
danger of violating the single threadedness of this value. In Clean,
the world is not hidden from the programmer, and single threaded-
ness is guaranteed by marking them unique. The programmer either
chooses to pass these objects explicitly as in the previous section,
or to hide the unique object in a monad and pass it implicitly.

The IO monad in Haskell also enables exception handling. Its
single threadedness ensures a correct binding of exceptions to han-
dlers in a lazy language.

Exchange Monads are integrated seamlessly with uniqueness
typing. In the previous section we explained that unique types are
available in Haskell*. The IO monad, as well as conversions from
and to a unique world, is available in Clean* via:

-- Haskell*
newtype IO a = IO (!*World -> *(a, !*World))

Since this is an ordinary type, it is straightforward to pack a unique
world in IO and to unpack it again.

Implementation The basic transformation scheme from do-nota-
tion to ordinary monadic constructors is given by Peyton Jones
(2003). In order to achieve efficient execution, the code obtained
by this transformation needs to be optimized. Currently our imple-
mentation of Clean* performs a number of optimizations, such as
inlining the member definitions of the IO instance for Monad.

Also, the exception-handling mechanism is implemented in
Clean* and Haskell*. The implementation maintains a stack of
exception handlers and dynamically searches for the correct han-
dler if an exception occurs. This makes installation of a handler
via a catch relatively expensive, but prevents costs during ordinary
evaluation.

9. Records

Records were introduced in Clean 1.0. A Clean record is an alge-
braic datatype of one alternative that does not have a constructor,
but a nonempty set of field names. Records are allowed to use the



same (sub)set of field names. For instance, the following declara-
tions happily coexist:

// Clean
:: GenTree a = {elt :: a, kids :: [GenTree a]}
:: Stream a = {elt :: a, str :: Stream a}

Field values are extracted via pattern matching on the field names
or by using a field name as a selector. In case of overlapping
field names, a programmer must disambiguate the expression
by either providing one distinguishing field name in a pattern
(e.g., {elt, kids} and {elt, str}) or by inserting the appropri-
ate type constructor name (e.g., {GenTree | elt} in a pattern or
x.GenTree.elt as a selector).

Records are created by exhaustively enumerating all field names
or by updating a subset of the field names of an existing record.
Here is an example of a function that updates an element of a
stream:

// Clean
updStream :: Int a (Stream a) -> Stream a
updStream i x s=:{elt, str}

| i < 0 = s
| i == 0 = {Stream | s & elt = x}
| otherwise = {s & str = updStream (i - 1) x str}

Haskell supports records only partially (since Haskell 1.3) in
the form of field labels. All arguments of a constructor of an
algebraic datatype are either addressed by their position or by
field labels. A field label f is allowed in several alternatives of an
algebraic datatype T, provided they have the same type a. Every
field label brings a new function in scope, named f :: T -> a. For
this reason, no two datatypes can use the same field label, even if
they have the same result type.

To create a record, the corresponding constructor must be pro-
vided and a (possibly empty) set of field labels to be initialized. Any
omitted nonstrict field label is silently initialized as ⊥. It is illegal
to omit strict field labels at initialization. Given a record value, a
new record is created by updating a subset of the field labels. As an
example, the Stream datatype and the updStream function look as
follows in Haskell:

-- Haskell
data Stream a = Stream {elt :: a, str :: Stream a}

updStream :: Int -> a -> Stream a -> Stream a
updStream i x s@(Stream {elt = elt, str = str})
| i < 0 = s
| i == 0 = s {elt = x}
| otherwise = s {str = updStream (i - 1) x str}

Exchange We allow both styles of records: a Clean* program
can still define record types with overlapping field names, and a
Haskell* program can define record types with multiple alternatives
that use the same field labels. In Haskell*, it is allowed to import
and use Clean records. Clean record fields are selected with ~,
and the record type can be used to disambiguate field names.
For instance, the Clean GenTree and Stream record types can be
imported and used in the same Haskell* module:

-- Haskell*
mkGenTree :: GenTree a
mkGenTree = {elt = 0, kids = []}

mkStream :: Stream a
mkStream = {elt = 0, str = mkStream}

rootGenTree :: GenTree a -> a
rootGenTree t = t~GenTree~elt

The mkGenTree and mkStream functions construct a Clean record.

Conversely, a Clean* module can import Haskell records and
their field selector functions as well. For instance, a Haskell module
that exports the above definition of Stream can be used in Clean*:

// Clean*
mkStream :: Stream a
mkStream = Stream 0 mkStream

hdStream :: (Stream a) -> a
hdStream s = elt s

A Haskell record is denotated as a vanilla algebraic datatype.
Clean* does not support the field label syntax at Haskell record
value construction.

Implementation The mixed use of Clean records in Haskell*
gives rise to several parser issues. Consider the following example:

-- Haskell*
analyzeThis = C {elt = 0, kids = []}

This is either a normal Haskell record update in which C ::

GenTree a, or the function C applied to a Clean record, but also
a data constructor C with a Clean record of type Stream a:

-- Haskell*
data T a = C (Stream a)

In Haskell, the programmer can switch between layout-sensitive
and layout-insensitive definitions within a function body. Layout-
sensitive mode is assumed when no opening brace is encountered
after one of the keywords where, let, do, or of. In Clean, layout-
insensitive mode is switched on or off at the beginning of an
entire module, simply by ending the module header with ; (on) or
not (off). Hence in Haskell*, using a local definition that pattern-
matches a Clean record is very similar to a local layout-insensitive
definition. Consider the two following definitions:

-- Haskell*
f = (elt, kids) where {elt = 3; kids = []}

g = (e, k) where {elt = e, kids = [k]} = mkGenTree

Here, it can only be determined that a local layout-insensitive
definition is given due to the use of ; and missing = ... right-hand
side. Currently, Haskell* allows switching to layout-insensitive
mode via {, but does not allow switching back.

10. Arrays

Clean has extensive language support for efficient arrays that can
be updated destructively due to their uniqueness properties. Arrays
with elements of type a come in three flavors: lazy ({a}, which
is the default), strict ({!a}), and unboxed ({#a}). Since these are
different types, array operations are organized as a multi-parameter
type class Array a e where a is the array type, and e the element
type. Array operations are bundled in module StdArray. Unboxed
array elements can only be basic types, arrays, or records. Note that
in Clean the String type is implemented as an unboxed array of
Char values, and hence is synonym to {#Char}. In Haskell, String
is synonym to a list of Char values.

Clean array values can be created in several ways:

// Clean
zeroes :: Int -> .(a Int) | Array a Int
zeroes n = createArray n 0

fibs10 :: .(a Int) | Array a Int
fibs10 = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55}

fibs :: Int -> .(a Int) | Array a Int
fibs n = {fib i \\ i <- [0..n - 1]}



All of these functions create an array of type .(a Int) | Array a

Int, where the . indicates that the array can be updated destruc-
tively. Here, zeroes n creates an array, via the Array class mem-
ber function createArray, containing n zeroes, fibs10 contains the
first ten fibonacci numbers, and fibs n uses an array comprehen-
sion to construct the first n fibonacci numbers. It should be noted
that usually the programmer decides for one particular array type
(lazy, strict, or unboxed) for efficiency reasons, and uses overloaded
versions typically for array libraries.

Arrays are updated destructively. The notation is similar to
record updates, but instead of a field label, an index is provided.
So, with a an array, then {a & [i] = x, [j] = y} destructively
updates a at index positions (starting at zero) i and j with values x

and y respectively. Array updates can be combined concisely with
array comprehensions. For instance, the function fibs is defined
more efficiently using a lazy array:

// Clean
fibs :: Int -> {Int}
fibs n = a

where
a = {createArray n 1 & [i] = a.[i - 1] + a.[i - 2]

\\ i <- [2..n - 1]}

Here, a.[i] selects the element at index i in array a.
Indexes can also be used in patterns, making these either con-

stants or variables. As an example, here is a palindrome checker for
arrays:

// Clean
isPalindrome :: {e} -> Bool | Eq e
isPalindrome a = size a <= 1 || check (0, size a - 1) a

where check (i, j) a=:{[i] = x, [j] = y} =
i >= j || x == y && check (i + 1, j - 1) a

Haskell provides only immutable arrays via the standard module
Array. Arrays are implemented as an abstract datatype Array a b

where a is the type of the bounds of the array and must be an
instance of the Ix class, and b is the element type. Haskell lacks
denotations for arrays, array patterns, and array selections. Arrays
are created using two library functions:

-- Haskell
array :: Ix a => (a, a) -> [(a, b)] -> Array a b
listArray :: Ix a => (a, a) -> [b] -> Array a b

In both cases, the first argument (l, u) defines the bounds of the
array and the second argument influences the initial array elements.
For array, each (i, x) in the (finite) list updates the array at index
position i to value x. For listArray, the first u - l + 1 entries
from the (possibly infinite) list determine the initial values of the
array. In both cases unaddressed positions are initialized with ⊥.

The // operator creates a new array from an existing array:

-- Haskell
(//) :: Ix a => Array a b -> [(a, b)] -> Array a b

The result array is identical to the source array, except that each (i,

x) in the list sets the value at index position i to x.

Exchange The Array module has been implemented in Haskell*
and can be used in Clean*. Haskell* can import Clean arrays and
manipulate them with the functions from the StdArray module.
The Clean syntax of array element selection (a.[i]) conflicts with
Haskell function composition and list notation. Hence, this is not
supported in Haskell*. Instead, elements are selected with a?[i]

which selects the element at index position i and returns the un-
altered array a. Alternatively, the Array class member function
select can be used. Also, we can denote Clean arrays in Haskell*.
For instance, {1, 2, 3}, {!1, 2, 3}, and {#1, 2, 3} are legal de-
notations in Haskell*.

Implementation Haskell arrays in the Array module are imple-
mented as strict Clean arrays:

-- Haskell*
data Array a b = Array !(!a, !a) !{b}

Due to this strict representation of arrays, all array operations
come with strict arguments. Specialized versions of type Int are
generated and exported, using special as discussed in Section 6,
for the array operations that are overloaded in the Ix class. As an
example, here are the exported signatures of array and listArray:

-- Haskell*
array :: Ix a => !(!a, !a) -> ![(a, b)] -> Array a b

special a = Int
listArray :: Ix a => !(!a, !a) -> ![b] -> Array a b

special a = Int

Also, a distinction is made between arrays that have a zero lower
bound and other lower bound values.

11. Dynamic typing

Clean supports a Dynamic type to wrap values into a black box
together with its type, deferring type unification until run time.
Haskell has no such feature, but GHC offers the Data.Dynamic li-
brary for similar but limited purposes. In Clean, a value is wrapped
in a dynamic using the corresponding keyword:

// Clean
wrapInt :: Int -> Dynamic
wrapInt x = dynamic x :: Int

The type annotation is only required when polymorphically typed
values are wrapped. Unwrapping a value is performed via pattern
matching, specifying the expected type:

// Clean
unwrapInt :: Dynamic -> Int
unwrapInt (x :: Int) = x
unwrapInt (xs :: [a]) = length xs
unwrapInt ((f, x) :: (a -> Int, a)) = f x
unwrapInt (f :: A.a: [a] -> Int) = f [1..10]
unwrapInt _ = 10

In the second and third arm, a is a pattern variable and is unified
with the concrete type that is stored in the dynamic value. Multiple
occurrences of the pattern variable in the third arm forces unifica-
tion of the components of the tuple type. In the fourth arm, a is
universally quantified, and hence the value must be a polymorphic
function on lists.

Any value can be (un)wrapped, as long as there is a value
representation of its type available. This is guarded by the built-
in type class TC. For example, consider the following universal
wrapping function:

// Clean
wrap :: a -> Dynamic | TC a
wrap x = dynamic x

The context in which this function is used determines the type that
is stored in the dynamic with the value. Analogously, unwrapping
a value can depend on the type that the context requires:

// Clean
unwrap :: Dynamic -> Maybe a | TC a
unwrap (x :: a^) = Just x
unwrap _ = Nothing

Here, the type of the context determines with which type the dy-
namic content is unified. This is indicated by postfixing a type pat-
tern variable with ^, which ‘connects’ it with the type variable oc-
curring in the type of function.



Exchange Since Haskell does not support dynamic typing like
Clean, we only have to consider the effects of Clean’s dynamic
typing in Haskell*. The type Dynamic and type class TC are im-
ported via the module StdDynamic in Haskell* since these are built
in. When a Clean function is used that returns a dynamic value, the
Haskell* module has to be able to denotate such values. Therefore,
it supports the dynamic keyword. For instance, we are able to define
the wrap function in Haskell* as follows:

-- Haskell*
wrap :: TC a => a -> Dynamic
wrap x = ‘dynamic x

The keyword is escaped using a ‘ to avoid any naming conflicts
with similarly named definitions in Haskell. Also, we can unwrap
a value in a dynamic pattern match in Haskell*:

-- Haskell*
unwrap :: TC a => Dynamic -> Maybe a
unwrap (x :: a^) = Just x
unwrap _ = Nothing

Implementation Since the Clean compiler already supports dy-
namic typing, the implementation did not pose many challenges.
The only issue arisen in the Haskell parser was due to the use of
the :: annotation which is obligatory when wrapping polymorphic
values. It conflicts with Haskell where any expression can be an-
notated with a type using the same notation. For example, consider
the following expression:

-- Haskell*
wrappedId :: Dynamic
wrappedId = ‘dynamic id :: A.a: a -> a

It is unclear whether the type annotation is part of Clean’s dynamic
typing system or Haskell’s expression. Whenever the parser recog-
nizes the ‘dynamic keyword, the subsequent type annotation is part
the dynamic value. Otherwise, the type annotation is part of the
expression.

12. Generic functions

Clean supports generic programming as advocated by Hinze (2000)
which was adopted in Clean in 2001. The style of programming
is very similar to Generic Haskell (Löh et al., 2003). Generic pro-
gramming is used to avoid boilerplate programming, for essentially
the same purpose as instances can be derived automatically for type
classes in Haskell, as discussed in Section 6. Haskell has no lan-
guage support for generic functions.

A generic function is a recipe that is defined in terms of the
structure of datatypes, rather than the datatypes themselves. The
key advantage is that there are only a few structural elements
from which all custom datatypes can be constructed. For algebraic
datatypes, the programmer needs to distinguish alternatives, prod-
ucts of (empty) fields, and basic types. As an example, here is an
excerpt of the generic definition of equality:

// Clean
generic geq a :: a a -> Bool
geq{|Int|} x y = x == y
geq{|UNIT|} UNIT UNIT = True
geq{|EITHER|} fx _ (LEFT x1) (LEFT x2) = fx x1 x2
geq{|EITHER|} _ fy (RIGHT y1) (RIGHT y2) = fy y1 y2
geq{|EITHER|} fx fy _ _ = False
geq{|PAIR|} fx fy (PAIR x1 y1) (PAIR x2 y2) = fx x1 x2

&& fy y1 y2

Note that this is not a single function definition, but rather a collec-
tion of function definitions that are indexed by a type constructor.
They also do not need to reside in the same module, but can be de-
fined anywhere provided that the generic type signature is in scope.

If the programmer wishes to have an instance of equality for her
custom type, say GenTree and Stream defined in Section 9, then this
is expressed as:

// Clean
derive geq GenTree, Stream

Such derived functions are exported in the same fashion.
A kind annotation is always provided for a generic function. For

instance, if we wish to test two general trees x and y for equality, we
write geq{|*|} x y. Naturally, overloaded equality can be defined
as a synonym of the generic variant:

// Clean
instance Eq (GenTree a) | geq{|*|} a where
x == y = geq{|*|} x y

The programmer can deviate from the generic recipe if she wishes.
In that case, the generic function is specialized for a specific type.
Suppose that two general trees are identical if they have the same
elements when visiting the tree in left-first depth-first order:

// Clean
geq{|GenTree|} fx x1 y2 = length e1 == length e2

&& and (zipWith fx e1 e2)
where (e1, e2) = (elts x1, elts y2)

elts {elt, kids} = [elt : concatMap elts kids]

The fx parameter is provided by the generic mechanism and is the
generic equality for the element types of the generalized tree. This
specialization is exported using the derive syntax.

Exchange Haskell does not have any built-in support for generic
functions, therefore, we only consider using Clean’s generic func-
tions in Haskell*. Since every use of a generic function requires a
kind annotation, Haskell* supports such annotations. When import-
ing a generic function like geq in a Haskell* module, an instance
for a Haskell* datatype is derived using the derive keyword. For
similar reasons as ‘dynamic in Section 11, this keyword is escaped:

-- Haskell*
data BinTree a = Leaf a | Node (BinTree a) a (BinTree a)

‘derive geq BinTree

We are even able to define generic functions in Haskell*. The ear-
lier definition of geq remains the same, only its signature changes:

-- Haskell*
‘generic geq a :: a -> a -> Bool

An escaped keyword is now used and the type no longer reflects
the arity of its definition. Exporting generic functions and their
derivations from a Haskell* module is not yet implemented.

Implementation The implementation did not pose any challenges
since Clean already includes support for generic functions.

13. Performance

Although the implementation of the front end is not yet complete,
it is already possible to compile a large class of Haskell programs
to efficient code. We havfe compared the current implementation
of the double-edged front end for the Clean compiler with GHC
6.12.2 by running the complete Haskell benchmark programs of
Hartel (1993). We modified the parstof program slightly to prevent
GHC from optimizing the program. It is intended that the compu-
tation is performed 40 times instead of once. To obtain good mea-
surable execution times some of the input sizes of the programs
were increased. Our benchmark environment used IA32 code on a
computer with an AMD Opteron 146 2Ghz processor running the
Windows XP X64 operating system.



Program Front end GHC Ratio Front end GHC -O
(s) (s) GC Heap +RTS

complab 0.81 1.03 0.79 c 8M -H8M
event 0.64 1.23 0.52 c 32M -H32M
fft 0.36 0.78 0.46 c 64M -H64M
genfft 0.72 1.37 0.53 m 400K
ida 0.84 0.87 0.97 c 16M -H16M
listcompr 0.11 0.25 0.44 m 400K
listcopy 0.11 0.26 0.42 m 400K
parstof 0.23 0.19 1.21 m 8M -H8M
sched 2.78 1.84 1.51 m 12M
solid 0.81 1.11 0.73 c 4M -H4M
transform 0.91 1.28 0.71 m 400K
typecheck 0.77 0.86 0.90 m 400K
wang 0.55 0.64 0.86 m 100M -H100M
wave4 0.53 0.72 0.74 m 10M -H10M

Table 1. Execution times of Haskell using the front end and GHC

The results are shown in Table 1. The columns show the name
of the program, the execution times in seconds (elapsed wall clock
time including startup), the ratio of execution times (comparing the
execution time of GHC executables to the front end executables),
and the provided options for the generated executables. For the
front end we specify what garbage collector was used to obtain
the best performance (‘c’ is the combination of a copying and
compacting collector and ‘m’ is the combination of a marking
and compacting collector) and the maximum heap size. With GHC
we used the ‘-O’ optimization option and for the executables that
required larger heaps we used ‘-H’ with the same heap size as for
the Clean executables for the GHC executables, but only if this
improved the performance.

All benchmarks are single-module Haskell programs. Hence,
GHC cannot obtain an advantage by cross-module optimization
over our compiler. Since the current implementation of the front
end is work in progress, not all planned optimizations are imple-
mented yet. When these optimisations are implemented we will
study the benchmarks and the reasons behind the observed differ-
ences in-depth. Currently, the benchmarks just show that our com-
piler achieves competitive results.

14. Related work

Already in Fortran, the first programming language that offered
functions, it was realized that it is sometimes convenient to use for-
eign functions, for instance to improve efficiency by directly using
assembly functions. Soon after other languages were introduced,
there was the desire to use parts of other programs. There are many
programming languages that offer such interpretability, usually re-
alized by a foreign function interface (FFI). A typical FFI offers a
possibility to annotate a function as external. Then, the compiler
assumes that the external function exists. It is the task of the linker
to include that external function, which is compiled by the compiler
of its host language, to the code generated for the program.

It is evident that this approach to exchange sources between
languages imposes huge restrictions on the compiler as well as
the language. Not only must the stack layout of both languages be
identical, but also the memory layout of all datastructures used. For
instance, both languages must use the same precision for integers,
and layout for records and multidimensional arrays. An example
of an issue in the interface is that Fortran starts array indices by
one, while most modern languages starts array indices at zero.
Moreover, the array dimensions in Fortran are reversed compared
to languages like C. Hence the array declaration A(n, m) in Fortran
matches A[m][n] in C. The element A(i, j) in Fortran matches
A[j-1][i-1]. To overcome such kind of problems, many languages

offer interface types which mimic their counterpart in the external
language.

Both Haskell (Chakravarty, 2003) and Clean offer the pos-
sibility to exchange sources with C. Moreover, both languages
offer support for using functions via this interface, GreenCard
for Haskell and HtoClean for Clean. Exchanging sources between
Clean and Haskell via this interface is very unattractive. The inter-
face puts severe restrictions on the types that can be used. For in-
stance, there is no notion of type classes and higher order functions,
and parameterized recursive datatypes cause all kinds of problems.
Also, such an interface is completely unsuited for lazy evaluation
since this is not supported by C.

Since C is a subset of the C++, every valid C program is also
valid C++. Hence, every compiler for C++ accepts C, which makes
interoperability between these two languages very easy. Such an
approach is not applicable for our purposes since Clean nor Haskell
is a subset of the other.

The Microsoft .NET Framework supports multiple program-
ming languages and focuses on language interoperability. It con-
tains special designed languages like C#, F# and J#, as well as sup-
port for standard languages like Python and Lisp. Some alterna-
tive and free implementations of parts of this framework are Mono,
CrossNet and Portable.NET. Since Haskell nor Clean is designed
for such a framework this approach is not suited for our needs.
Moreover, these frameworks are based on an object-oriented view
of the world and have limited support for features in modern lazy
functional languages.

There is some work to translate Haskell to Clean in order
to obtain Haskell programs with the speed of Clean programs.
First, Hegedus (2001) translated Haskell structures to Clean. Next,
Diviánszky (2003) implemented a partial compiler from Haskell to
Clean based on these concepts. Hackle (Naylor, 2004) is a compiler
from a restricted subset of Haskell 98 to Clean. This compiler ac-
tually achieved performance gain compared to GHC for a number
of programs. Although each of these approaches studied translat-
ing Haskell to Clean, the exchange of language features from both
languages was not considered.

There are a number of stand-alone Haskell implementations.
The flagship compiler GHC supports the complete Haskell 98 stan-
dard, as well as a wide variety of language extensions. Hugs 98
provides an almost complete implementation of the standard, but
unfortunately the last release dates from 2006. Nhc 98 is a small
compiler that is compliant to the standard, its last release stems
from 2007. Yhc branched from Nhc 98, but is not yet a complete
Haskell 98 compiler. The recent UHC supports almost the com-
plete standard and adds several experimental language extensions.
None of these Haskell compilers has support for interoperability
with Clean.

15. Discussion and Future Work

In this paper we have described what it takes to exchange sources
between Clean and Haskell. We discussed most of the differences
in language features and the required extensions of both Clean and
Haskell to denotate them. This has resulted in two dialects, dubbed
Clean* and Haskell* respectively. Also, we briefly explained how
their exchange is facilitated in a concrete implementation. We have
seen how some of the language features go together nicely hand-
in-hand (e.g., uniqueness typing and monads), while others lead to
subtle conflicts (e.g., records).

Besides the exchange of sources, the front end supports the ex-
change of features to a certain extent as well. Haskell programmers
can now use uniqueness typing, dynamic typing, and generic func-
tions. Clean programmers can use constructs like newtypes. Ad-
ditionally, the front end comes with benefits for both Haskell and
Clean programmers. For instance, Haskell programmers can use



the full-fledged IDE including project manager. Also, performance
of compiled Haskell programs looks promising: on a par and for
computation-intensive applications often slightly better than GHC.
For Clean programmers, it is nice that their work becomes more
easily accessible to the large Haskell community.

Although the most important features of Haskell 98 have been
implemented, the list of remaining issues is still rather long since
some features took much more work than expected. When we
started this project about three years ago, we knew that Haskell is a
more baroque language than Clean. But only after digging into the
details of the language we discovered that Haskell was even more
complicated than anticipated. For instance, since Haskell makes
heavily use of overloading and monads, more effort was needed
to retain the efficiency that Clean is well known for. Also, the num-
ber of Haskell libraries which are really Haskell 98 compliant is
rather limited. To enable the practical reuse of Haskell libraries, we
have to implement some of GHC’s extensions, such as generalised
algebraic datatypes and type families. This is challenging, not only
in terms of the programming effort, but more because of the con-
sequences it will have on features such as uniqueness typing. We
believe this double-edged front end provides an excellent research
and implementation laboratory to investigate these avenues.
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Marko van Eekelen, Eric Nöcker, Rinus Plasmeijer, and Sjaak Smetsers.
Concurrent Clean (version 0.6). Technical Report 90-20, Radboud
University Nijmegen, 1990.

Pieter Hartel. Benchmarking implementations of lazy functional languages
II - Two years later. In John Williams, editor, Proceedings of the 6th

International Conference on Functional Programming Languages and

Computer Architecture, FPCA ’93, Copenhagen, Denmark, pages 341–
349. ACM Press, 1993.

Hajnalka Hegedus. Haskell to Clean front end. Master’s thesis, ELTE,
Budapest, Hungary, 2001.

Ralf Hinze. A new approach to generic functional programming. In
Tom Reps, editor, Proceedings of the 27th International Symposium on

Principles of Programming Languages, POPL ’00, Boston, MA, USA,
pages 119–132. ACM Press, 2000.

Walter de Hoon, Luc Rutten, and Marko van Eekelen. Implementing a
functional spreadsheet in CLEAN. Journal of Functional Programming,
5(3):383–414, 1995.

Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fair-
bairn, Joseph Fasel, Marı́a Guzmán, Keving Hammond, John Hughes,
Thomas Johnsson, Richard Kieburtz, Rishiyur Nikhil, Will Partain, and
John Peterson. Report on the programming language Haskell, a non-
strict, purely functional language. ACM SIGPLAN Notices, 27(5):1–164,
1992.

Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A
history of Haskell: being lazy with class. In Barbara Ryder and Brent
Hailpern, editors, Proceedings of the 3rd Conference on History of

Programming Languages, HOPL III, San Diego, CA, USA, pages 1–55.
ACM Press, 2007.
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