
A Concise Guide to Clean StdEnv

Peter Achten

Radboud University Nijmegen, Netherlands
version august 26 2011
P.Achten@cs.ru.nl

Abstract. These notes serve as a brief guide to the Clean StdEnv, the set of library
modules that come with the standard distribution. It is assumed that the reader has
basic knowledge of programming in Clean.

1 Roadmap

Here is a brief overview of all Clean StdEnv modules in alphabetic order and in
which section you can find its explanation.

module section page module section page
StdArray 6 20 StdBool 4.1 7
StdChar 4.4 7 StdCharList 7 22
StdClass 2.2 3 StdEnum 5.1 14
StdFile 4.5 8 StdFunc 9 23
StdInt 4.2 7 StdList 5, 5.4 14, 17
StdMisc 10 25 StdOrdList 5.5 19
StdOverloaded 2.1 1 StdReal 4.3 7
StdString 7 22 StdTuple 8 23

2 An overloaded API

In order to appreciate the Clean StdEnv, we first need to have a look at the role
of overloading. Two modules play a key role: StdOverloaded and StdClass.

2.1 StdOverloaded

This module defines all standard overloaded functions and operators. For his-
toric reasons, the keyword used for overloading is class, which must not be
confused with object oriented classes! The name is really an abbreviation for
type class, or, even longer, type constructor class. In StdOverloaded you find the
usual suspects, such as arithmetic and comparison operations.

2 StdEnv, concisely

Clean does no automatic coercion of values: if an Int value is expected, then
an Int value should be provided, and not a Real or a Bool (even if you can think
of sensible coercions). As an example, 1 + 2.5 does not type check in Clean.
These kinds of coercions need to be done explicitly by you, and for this purpose
StdOverloaded provides two families of coercion functions, viz.:

class toInt a :: !a -> Int // Convert into Int
class toChar a :: !a -> Char // Convert into Char
class toBool a :: !a -> Bool // Convert into Bool
class toReal a :: !a -> Real // Convert into Real
class toString a :: !a -> {#Char} // Convert into String

for coercing a value of some type to the given basic type, and

class fromInt a :: !Int -> a // Convert from Int
class fromChar a :: !Char -> a // Convert from Char
class fromBool a :: !Bool -> a // Convert from Bool
class fromReal a :: !Real -> a // Convert from Real
class fromString a :: !{#Char} -> a // Convert from String

for coercing a basic type to a desired type. The earlier example can be trans-
formed to the following variants:

– toReal 1 + 2.5 (which yields 3.5 of type Real)
– fromInt 1 + 2.5 (which yields 3.5 of type Real)
– 1 + toInt 2.5 (which yields 3 of type Int)
– 1 + fromReal 2.5 (which yields 3 of type Int)

The overloaded constants zero and one are usually used in combination with
the arithmetic operators (+, -, *, and /). The zero and one instances should
adhere to the usual algebraic laws that you know from high school:

zero + x = x = x+ zero

x = x− zero

one ∗ x = x = x ∗ one
x = x/one

Clean cannot enforce this, so you should make certain that these basic properties
hold for your custom defined instances.

Finally, one overloaded function is defined differently from all others:

class length m :: !(m a) -> Int

3

This is an example of a type constructor class. It says that length is overloaded
for a type constructor m that can hold values of type a. StdEnv contains only
one instance of this overloaded function: in StdList the type constructor is the
list type ([]), and the instance computes the length of a list (see also section
5.4).

2.2 StdClass

When you are developing overloading functions (i.e. functions that use over-
loaded operators and functions, and hence become overloaded themselves), you
quickly notice that these functions use similar groups of overloaded functions.
A typical example is +, -, zero. A function that uses these operators would
normally have the following signature:

my_overloaded_function :: ... a ... | +, -, zero a

Instead of enumerating every single overloaded function or operator, you can
use:

my_overloaded_function :: ... a ... | PlusMin a

Here, PlusMin is not an overloaded function, but a collection of overloaded func-
tions or operators, and is defined in StdClass:

class PlusMin a | + , - , zero a

Such a group of overloaded functions can be used in the overloaded context re-
striction of a function. It automatically expands to the single member functions.
For this reason, the same keyword class is used.

Another frequently occurring group of overloaded functions is *, /, one. For
this, another group is defined in StdClass:

class MultDiv a | * , / , one a

(Type constructor) classes can be combined to form larger classes. An ex-
ample is the following, that you can also find in StdClass:

class Arith a | PlusMin , MultDiv , abs , sign , ~ a

An overloaded function that uses (a subset of) these overloaded functions can
have signature:

my_overloaded_function :: ... a ... | Arith a

which is much shorter than:

4 StdEnv, concisely

my_overloaded_function :: ... a ... | +, -, zero, *, /, one, abs, sign, ~ a

The classes IncDec and Enum are used to create lists with the dot-dot notation
(see also section 5.1).

The class Eq contains the overloaded equality test operator ==, and uses it to
add the inequality test <>, which is defined in terms of == in the obvious way:

class Eq a | == a

where
(<>) infix 4 :: !a !a -> Bool | Eq a

(<>) x y :== not (x == y)

Here, <> is a derived member of the Eq class.
Finally, the Ord class derives a number of useful operators, once < is given,

viz. >, <=, >=, min and max. This makes sense only if < is transitive: if a < b and
b < c, then a < c.

3 Do I have to worry about !, *, ., and u:?

Clean types are annotated, i.e. there is additional information attached to the
type of functions, operators, and data types. There are two sorts of annotations:
strictness (!) and uniqueness (*, ., u:). To understand the bare type of functions
and operators, you usually do not need to know the meaning of these annota-
tions, and can therefor safely ignore them. There are two notable exceptions:
when working with files (section 4.5) and when working with arrays (section 6).
The annotations convey information of the behavior of a function that cannot
be derived from its bare type only.

3.1 Strictness annotations

The strictness annotation is the ! symbol, prefixed immediately before the an-
notated type. Clean is, by default, a lazy language: it evaluates a computation
only if it is really needed to obtain the result of the program. Usually, a com-
putation becomes needed when it is passed as an argument to a function that
in one way or another needs to know (part of) the value of that computation.
For instance, to compute the sum of two computations, surely + requires the
values of both its arguments. Another example: to take the head element of a
list, surely hd must inspect the beginning of the list data structure that it is
applied to. This is a property of the function, not of its type. Because types
are used to communicate properties of functions in definition modules, they are

5

suited candidates to piggy back this information, and therefor we annotate the
types of functions:

class (+) infixl 6 a :: !a !a -> a // in StdOverloaded
instance + Int // in StdInt
hd :: ![a] -> a // in StdList

By declaring an instance of + for type Int, you really make the following function
available:

(+) infixl 6 :: !Int !Int -> Int

Both arguments are annotated with !, and hence you know that + will have to
evaluate both arguments in order to compute a sum. Similar, hd is defined as:

hd [a:x] = a

hd [] = abort "hd of []"

The pattern match on the list argument forces the evaluation of any argument
passed to hd to the structure of the first list constructor, but no further ! Therefor,
it is safe to compute:

Start = hd [42 : abort "That hurt!"]

3.2 Uniqueness annotations

Clean is a pure and lazy functional language. To be more precise, it is a pure, lazy
graph rewriting language, i.e.: it allows sharing of arbitrary (sub)computations.
This is great from a language engineers point of view because it allows easier
reasoning as well as a host of optimizing language transformations. However,
can a language that is pure (no assignments) and lazy (no control flow) and
that shares computations (long living computations) do interesting things such
as file I/O? graphical I/O? use memory efficiently? There is a long answer and
a short answer, and I’ll stick to the short answer here: yes, they can.

A slightly longer answer is: a function can update an argument in place
(which is an assignment) if only it knows for sure that it is the only piece of
code in the program at the point of evaluation that has access to that argument.
Put in other words: if a function has unique access to a data structure, then it
can reuse the memory of that data structure without harming any of the highly
desirable properties of being pure, lazy and shared.

A function can handle its argument(s) uniquely, i.e.: it does not introduce
sharing on that argument. This is a property of the function, and is always

6 StdEnv, concisely

inspected by the uniqueness analysis of the Clean compiler. However, it is not
enough that the function treats this argument uniquely to allow updates on
that argument, it must also be certain that that argument is unique at every
time that the function is called. This can of course not be guaranteed by the
function, but only by the calling party. To let them know that this function can
update its argument, it annotates the type of that argument with the uniqueness
attribute, *. This states that the function will always update its argument.
Examples are opening and closing files, writing data to file, opening windows
and menus in a GUI program. In case of polymorphic arguments, a function can
tell its environment that it does not change the uniqueness of that argument by
putting the . annotation in all occurrences of type argument in its type. This
means that you can call the function with either a unique argument or a shared
argument. An example is the hd function from StdList:

hd :: ![.a] -> .a

You can give it a list that contains elements with shared computations ([a])
but also a list in which none of the elements have shared computations ([*a]).
In either case, hd returns the first element of that list, without changing its
uniqueness property.

In some cases, these uniqueness dependencies require that you can name
them so that you can refer to them in other uniqueness constraints. In that
case, you can use a name, say u, and attach it to a type with u:. There are
many examples in StdList. One such function is tl:

tl :: !u:[.a] -> u:[.a]

This type says that you can apply tl to both a list with shared computations
as well as a list without shared computations, but the uniqueness of the result
list is exactly the same (namely u) as that of the argument list.

4 Modules for basic types

Now that we have dealt with overloading and (type constructor) classes as well
as annotations (!, *, ., u:), we can inspect the modules that define operations on
the basic types of Clean. Clean offers six basic types: Bool, Int, Real, Char, File,
and String. The String type is a bit special because it is really a composite
type (array of unboxed Chars, to be precise) and is used together with the
StdArray module, as well as lists, so I treat Strings separately in Section 7. For
each basic type Type, a separate module named StdType exists. They consist

7

mostly of instance declarations of the overloaded functions that are defined in
the StdOverloaded module that was discussed in Section 2.

4.1 StdBool

StdBool is the smallest of the basic type modules. Besides a few overloaded oper-
ations (== and coercion), it provides the usual boolean operators && (conditional
and), || (conditional or), and not (negation). Note that the types of && and ||

suggest that these operations are conditional :

(||) infixr 2 :: !Bool Bool -> Bool

(&&) infixr 3 :: !Bool Bool -> Bool

because the second argument has no strictness annotation ! (see Section 3.1).
If these operations weren’t conditional, then they would have to evaluate both
arguments in all cases, and therefor would be strict in both arguments.

4.2 StdInt

StdInt implements many of the arithmetic overloaded operations that you en-
counter in StdOverloaded. Besides these, it also allows you to do bitwise manip-
ulation of integer numbers. These are:

(bitor) infixl 6 :: !Int !Int -> Int

(bitand) infixl 6 :: !Int !Int -> Int

(bitxor) infixl 6 :: !Int !Int -> Int

(<<) infix 7 :: !Int !Int -> Int

(>>) infix 7 :: !Int !Int -> Int

bitnot :: !Int -> Int

4.3 StdReal

StdReal is very similar to StdInt except that it does not offer bit manipulation
operations, but instead gives you access to the usual trigonometry operations,
as well as raising powers, taking logarithms, and computing the square root.

4.4 StdChar

StdChar defines instances for basic computations and coercion on ascii characters.
Clean does not support Unicode. A few additional coercion functions are defined
on the value of their Char argument:

8 StdEnv, concisely

digitToInt :: !Char -> Int // Convert Digit into Int
toUpper :: !Char -> Char // Convert Char into an uppercase Char
toLower :: !Char -> Char // Convert Char into a lowercase Char

(digitToInt c) yields the integer value of the digit representation of that value.
Of course, c ∈ {’0’ . . .’9’}. (toUpper c) yields the upper case character if c
∈ {’a’ . . .’z’}, and c otherwise. (toLower c) yields the lower case character if c
∈ {’A’ . . .’Z’}, and c otherwise.

StdChar also defines a number of predicates on Char values, that are useful
when working with texts.

isUpper :: !Char -> Bool // True if arg1 is an uppercase character
isLower :: !Char -> Bool // True if arg1 is a lowercase character
isAlpha :: !Char -> Bool // True if arg1 is a letter
isAlphanum :: !Char -> Bool // True if arg1 is an alphanumerical character
isDigit :: !Char -> Bool // True if arg1 is a digit
isOctDigit :: !Char -> Bool // True if arg1 is a digit
isHexDigit :: !Char -> Bool // True if arg1 is a digit
isSpace :: !Char -> Bool // True if arg1 is a space, tab etc
isControl :: !Char -> Bool // True if arg1 is a control character
isPrint :: !Char -> Bool // True if arg1 is a printable character
isAscii :: !Char -> Bool // True if arg1 is a 7 bit ASCII character

4.5 StdFile

StdFile is the only module in StdEnv that deals with the ‘impure’ external
world. Clean does offer a lot of other libraries for these kinds of operations, but
they are not part of StdEnv. The external world is known by the type World.
There is only one world, so most functions expect that single world and update
it. Hence, their type signature is something like ... *World ... -> ... *World
The functions in StdFile are grouped into the following categories: managing
files, working with read-only files, and working with read-write files. These are
explained below.

Managing files: In order to work with a file, you need to open it, and close
it when you’re done. These file management functions are collected within one
(type constructor) class, called FileSystem:

class FileSystem env where

9

fopen :: !{#Char} !Int !*env -> (!Bool,!*File,!*env)
fclose :: !*File !*env -> (!Bool, !*env)
stdio :: !*env -> (!*File,!*env)
sfopen :: !{#Char} !Int !*env -> (!Bool,! File,!*env)

In StdFile, two instances of this class are provided. The only relevant instance
is of type World, the other (Files) is only present for historic reasons (I can tell
you about it if you really want to know). So we have:

instance FileSystem World

which gives us the following functions to play with:

fopen :: !{#Char} !Int !*World -> (!Bool,!*File,!*World)
sfopen :: !{#Char} !Int !*World -> (!Bool,! File,!*World)
stdio :: !*World -> (!*File,!*World)
fclose :: !*File !*World -> (!Bool, !*World)

There are three functions to open a file: fopen, sfopen, and stdio. The dif-
ference between fopen and sfopen is that fopen opens a file that can be written
to and read from (it is updated, hence it must be unique), and that sfopen

opens a read-only file (it can not be updated, hence it need not be unique).
The function stdio opens a special file, stdio, that connects with the console
for simple line-based I/O programs (it is updated, hence it must be unique).
Only the unique files need to be closed when you’re done with them. This is
done with fclose. Note that if you accidently forget to close a unique file, you
can not be certain that all data is actually written to that file due to internal
buffering. It is also impossible to reopen that file within the same program for
further processing.

The first argument of (s)fopen is the file name. If you simply pass the name
of a file, without any directory path before it, then this works on the current
directory of the application. If the file name also consists of a directory path,
then that location is used. The second argument of both functions controls the
file mode. This is an integer value, and should be one of:

FReadText :== 0 // Read from a text file
FWriteText :== 1 // Write to a text file
FAppendText :== 2 // Append to an existing text file
FReadData :== 3 // Read from a data file
FWriteData :== 4 // Write to a data file
FAppendData :== 5 // Append to an existing data file

10 StdEnv, concisely

Use on of the first three modes if you wish to work with ascii files, and use one
of the last three modes if you wish to work with binary files. If you want to
read either file, use FReadMode; if you want to clear the file content and write
new data, use FWriteMode; and if you want to extend the current content, use
FAppendMode. The third parameter must be the current world, of which there is
only one anyway.

A few examples: to open a text file, called "test.txt", and read its content:

(ok,file,world) = fopen FReadText "test.txt" world

To add data to a log file in some standard directory:

(ok,file,world) = fopen FAppendText

"C:\\Program Files\\MyProgram\\settings.log"

world

(s)fopen returns a boolean to report success (True only if the file could be
opened), the actual file, and the updated world in which the file has been opened.
The file result can only be used if the file could be created. Any attempt to use
it results in a run-time error, so check your boolean! Hence, typical idiom is:

(ok,file,world) = fopen ...

| not ok = abort "The file could not opened.\n"

... // now you know it is safe to use file

or, if you dislike #:

case fopen ... of
(False,_, world) = ... // opening failed, continue with world
(True,file,world) = ... // opening succeeded, safe to use file

The typical structure of a basic file manipulating program is:

Start :: !*World -> *World

Start world

(ok,file,world) = fopen mode name world

| not ok = abort ("Could not open file ’" +++ name +++ "’.")
file = do_something_interesting_with file

(ok,world) = fclose file world

| not ok = abort ("Could not close file ’" +++ name +++ "’.")
| otherwise = world

where
mode = // file mode of your choice
name = // file name of your choice

11

Finally, there is one function that allows you to change the file mode of a
file that has already been opened with fopen:

freopen :: !*File !Int -> (!Bool,!*File)

The integer argument is the new file mode that the file should have. Again, the
boolean returns True only if this operation was successful, and the new file value
can only be used safely if that was the case.

Read-only files: Read-only files are created with sfopen, as explained above.
Because they are not updated, they can be shared safely, and hence do not
require to be unique. Their type is therefor just File.

The following read operations are available on read-only files:

sfreadc :: !File -> (!Bool,!Char, !File)
sfreadi :: !File -> (!Bool,!Int, !File)
sfreadr :: !File -> (!Bool,!Real, !File)
sfreads :: !File !Int -> (!*{#Char},!File)
sfreadline :: !File -> (!*{#Char},!File)
sfend :: !File -> Bool

To read the next, single, Char (Int, Real) value from the file, use sfreadc (sfreadi,
sfreadr). Because reading advances the internal read pointer of the file, these
functions need to return a new file value. As usual, the boolean result indicates
successful reading.

To read a maximum of n Char values from file, use sfreads file n. To read
the next line from file, use sfreadline. A line is a sequence of Chars, returned
as a String, terminated by a newline character. If the end of the file was not
terminated with a newline character, then the String simply contains the re-
mainder of the file content. You can test whether you’ve reached the end of file
with sfend file.

The above functions read a file from start to end. In some cases you want to
seek a file, i.e. start at specific positions within a file. It is sometimes useful to
determine the current value of the internal read pointer of a file. This is done
with sfposition file which returns that value.

sfposition :: !File -> Int

The internal read pointer can be set with sfseekwhich expects three arguments:
the first is the file itself and the second and third argument determine the new
value of the internal read pointer. This third argument determines from which
relative position the second argument, an offset, should be interpreted:

12 StdEnv, concisely

FSeekSet: set read pointer to offset ;
FSeekCur: advance read pointer offset characters;
FSeekEnd: advance read pointer offset characters from the end of the file.

sfseek :: !File !Int !Int -> (!Bool,!File)

FSeekSet :== 0 // New position is the seek offset
FSeekCur :== 1 // New position is the current position plus the seek offset
FSeekEnd :== 2 // New position is the size of the file plus the seek offset

Read-write files: Read-write files support the same read operations as read-
only files do. The names of these functions are the same as of the read-only
operations with the prefix s skipped. The types of the file, which can be updated,
is *File. Hence, the operations that have been discussed above for read-only
files appear similarly for read-write files (the only difference is that fend and
fposition have to return a new file value):

freadc :: !*File -> (!Bool,!Char, !*File)
freadi :: !*File -> (!Bool,!Int, !*File)
freadr :: !*File -> (!Bool,!Real, !*File)
freads :: !*File !Int -> (!*{#Char},!*File)
freadline :: !*File -> (!*{#Char},!*File)
fend :: !*File -> (!Bool, !*File)

fposition :: !*File -> (!Int, !*File)
fseek :: !*File !Int !Int -> (!Bool, !*File)

Besides these operations, which are basically the same as for read-only files,
read-write files offer one additional reading function:

freadsubstring :: !Int !Int !*{#Char} !*File -> (!Int,!*{#Char},!*File)

The meaning of freadsubstring start end string file is that (end-start) char-
acters are read from file (if not possible, then less characters are read). Assume
n characters are read. These n characters are updated in string (which is why
it must be unique), starting at start, and ending at start+n-1. The result is n,
the updated string, and the read file.

To write data to read-write files, use one of the following functions:

fwritec :: !Char !*File -> *File

13

fwritei :: !Int !*File -> *File

fwriter :: !Real !*File -> *File

fwrites :: !{#Char} !*File -> *File

fwritesubstring :: !Int !Int !{#Char} !*File -> *File

To write a Char (Int, Real, String) to file, use fwritec (fwritei, fwriter, fwrites).
To write the slice s%(start,end) to file, use fwritesubstring start end s file.

An alternative, and more concise, notation for writing data is the following
overloaded operator:

class (<<<) infixl a :: !*File !a -> *File

instance <<< Char

instance <<< Int

instance <<< Real

instance <<< {#Char}

Its instance implementations correspond with fwrite(c,i,r,s) respectively. Be-
cause <<< is left-associative, you can write multiple data in one go:

file <<< "This line has " <<< 4 <<< " words " <<< ’.’

Robust programs should check whether file manipulations have succeeded.
After you have written data to file, you can check whether this was successful
with ferror file. Hence, typical idiom of its use is:

file = file <<< "This line has " <<< 4 <<< " words " <<< ’.’

(fail,file) = ferror file

| fail = abort "Could not write data file."

... // now you know it is safe to use file

If you have created a read-write file, and are completely satisfied, then you
can turn it into a read-only file with fshare :: !*File -> File. Note that you
cannot open this file any longer within the program for further writing!

Finally, there is one special read-write file that is particularly useful for
writing trace statements :

stderr :: *File

It is special because it creates a read-write file that can be opened arbitrarily
many times in a program. This is not possible for any of the other read-write
files, which need to be closed before they can be opened. Note that with the
Clean distribution, a more convenient tracing module is provided, viz. StdDebug.

14 StdEnv, concisely

5 Working with lists

Lists are the workhorses of functional programming languages. The language
Clean is no exception to this rule. There is a lot of support for list operations,
both in the language as well as in the standard environment (in particular the
modules StdList.dcl and StdOrdList.dcl). This section presents this support.

5.1 List notation

In order to work with lists, you first need to denote them. The simplest way of
denoting lists is to enumerate all elements. Here are a number of examples:

Start = ([] 1.

, [1,2,3,4,5,6,7,8,9,10] 2.

, [1..10] 3.

, [’a’..’z’] 4.

, [’a’ , ’c’ .. ’z’] 5.

, [10.0, 9.0 .. 0.0] 6.

) 7.

The simplest list of all is the empty list (line 1) which contains no elements. The
type of an empty lists cleanly expresses that we do not know its element type:
[] :: [a] . In line 2 a list is created with 10 elements, viz. 1 upto 10 (inclusive).
If there is some sort of regularity, then it is much more concise to use the ..

notation (dot-dot notation). Examples are in lines 3 – 6. The list on line 3 has
the same value as the one on line 2, and both are of type [Int] . The list on line
4 has value

[’a’ ,’b’ ,’c’ ,’d’ ,’e’ ,’f’ ,’g’ ,’h’ ,’i’ ,’j’ ,’k’ ,’l’ ,’m’
,’n’ ,’o’ ,’p’ ,’q’ ,’r’ ,’s’ ,’t’ ,’u’ ,’v’ ,’w’ ,’x’ ,’y’ ,’z’]

and type [Char] . A less cumbersome notation for Char-lists is:

[’abcdefghijklmnopqrstuvwxyz’]

which has exactly the same value as above. The examples on lines 5 and 6 shows
that lists can also be enumerated that have a regular ‘gap’ between successive
elements. The size of the gap is determined by computing the difference between
the first two elements. Next elements are computed by keeping adding the gap
until the border value has been reached. The list on line 5 has value

[’acegikmoqsuwy’]

Working with lists 15

and type [Char] and the list on line 6 has value

[10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0]

and type [Real] .
If you use dot-dot notation, you are required to import the module StdEnum.

This module is automatically imported if you import StdEnv. StdEnum contains
the functions that create the list when dot-dot notation is used. The Clean
compiler transforms these expressions to these functions. This also explains
why it is possible to use dot-dot notation for types defined by yourself, as soon
as you have defined proper instances of the corresponding class Enum.

5.2 ZF-expressions

A powerful way to create and manipulate lists are ZF-expressions, or list com-
prehensions. The name ZF-expressions comes from the Zermelo Frank notation
for sets in mathematics. Assume that you have a predicate isPrimeNumber
which determines whether an integer number is prime1 ; then the set of all
prime numbers can be denoted by:

{x|x ∈ {1, 2 . . .} ∧ isPrimeNumber(x)}

If you have a Clean predicate isPrimeNumber :: Int -> Bool which determines if
a number is prime, then the same set can be constructed as a list by means of
a ZF-expression:

all_primes :: [Int]
all_primes = [x \\ x <- [1..] | isPrimeNumber x]

Here, the expression x <- [1..] is a generator. In this case it is the infinite
list of integral numbers, starting with 1 and incremented by 1. The generator
determines the subsequent value of x. Just as in function definitions, conditions
are preceded by a | symbol. In this case the condition is isPrimeNumber x, for each
x that is produced by the generator. Hence, the value of the function all_primes

is an infinite list of integral numbers, in ascending order, starting from 1, that
are also prime. The result of this function is therefor (at least, its beginning):

[1,2,3,5,7,11,13,17,19,23,

1 A number n is prime if its only integral divisors are the numbers 1 and n.

16 StdEnv, concisely

In a ZF-expression the result x can be manipulated as well. Suppose you
need the set of squares of all prime numbers, or, mathematically:

{x2|x ∈ {1, 2 . . .} ∧ isPrimeNumber(x)}

then you can write this down analogously in Clean as follows:

all_prime_squares :: [Int]
all_prime_squares = [x*x \\ x <- [1..] | isPrimeNumber x]

With the other function definition, you could also have defined it as follows:

all_prime_squares :: [Int]
all_prime_squares = [x*x \\ x <- all_primes]

One remark on the use of infinite datastructures: in a functional language such
as Clean it is no problem to define and manipulate them, as long as you don’t
try to compute them entirely. That will lead to a non-terminating program.
The following function uses this property to compute the first hundred prime
numbers:

first_100_primes :: [Int]
first_100_primes = take 100 all_primes

The standard function take n xs takes the first n elements of the list xs and
has type take :: Int [a] -> [a] (see Section 5.4).

An (inefficient) way to create the function isPrimeNumber is the following ZF
expression:

isPrimeNumber :: Int -> Bool

isPrimeNumber n = [1 ,n] == [divisor \\ divisor <- [1..n] | n rem divisor == 0]

This function examines too many cases to determine whether a number n is
prime. However, it should be obvious that it correctly determines the desired
property.

5.3 More ZF expressions

In the above section we have created lists with ZF expressions that are con-
structed with generators and conditions. It is also possible to combine genera-
tors in two ways:

1. If as and bs are lists, then the Carthesian product of both lists can be defined
as:

Working with lists 17

product as bs = [(a,b) \\ a <- as, b <- bs]

Assume that as = [1 ,2 ,3] and bs = [’a’ ,’b’] , then:

product as bs = [(1 ,’a’) ,(1,’b’) ,(2,’a’) ,(2,’b’) ,(3,’a’) ,(3,’b’)]

The length of the resulting list is equal to the product of the lengths of as
and bs.

2. If as and bs are lists, then the elements of both lists can be combined element
by element (zipped):

zipped as bs = [(a,b) \\ a <- as & b <- bs]

Assume that as = [1 ,2 ,3] and bs = [’a’ ,’b’] , then:

zipped as bs = [(1 ,’a’) ,(2,’b’)]

The length of the resulting list is the length of the shortest list.

All ways to create and manipulate ZF expressions that have been presented
above can be combined in arbitrary ways. As a result, ZF expressions are flexible
tools of expression to work with lists.

5.4 StdList: operations on lists

In this section the most frequently used functions of module StdList are dis-
cussed. These functions are grouped according to what you would like to do
with lists.

I want to compare lists:

– as == bs : yields True only if as and bs have the same number of elements
that also have the same value. Hence, [a1 . . . an] == [b1 . . . bm] is True only if
n = m and ∀1 ≤ i ≤ n : ai == bi.

– isEmpty as : yields True only if as = [] .

I want to know how many elements a list has:

– length [a1 . . . an] = n, and length [] = 0.

I want to find an element of a list:

– isMember x [a0 . . . an] = True only if x = ai for some 0 ≤ i ≤ n.
– isAnyMember [x0 . . . xn] as = True only if isMember xi as for some 0 ≤ i ≤ n.

18 StdEnv, concisely

I want to select an element of a list:

– [a0 . . . an] !! i = ai.
– hd [a0 . . . an] = a0.
– last [a0 . . . an] = an.

I want to remove elements from a list:

– [a0 . . . an] % (i, j) = [ai . . . aj] (0 ≤ i ≤ j ≤ n).
– tl [a0 . . . an] = [a1 . . . an] (n > 0).
– init [a0 . . . an] = [a0 . . . an−1] (n > 0).
– take k [a0 . . . an] = [a0 . . . ak−1] (0 ≤ k ≤ n+ 1).
– takeWhile p [a0 . . . an] = [a0 . . . ak] where (p ai) = True for all ai in the

resulting list, and (p ak+1) = False.
– drop k [a0 . . . an] = [ak . . . an] (0 ≤ k).
– dropWhile p [a0 . . . an] = [ak . . . an] where (p ai) = True for all i < k, and

(p ak) = False.
– filter p a = [x\\x← a | p a].
– removeAt i [a0 . . . an] = [a0 . . . ai−1, ai+1 . . . an].
– removeMember x as removes the first occurrence of x from as.
– removeMembers [x0 . . . xn] as removes the first occurrence of x0, x1 . . . xn from

as.
– removeDup as removes all duplicate elements from as (using ==).
– removeIndex e[x0 . . . xi−1 e xi+1 . . . xn] = (i, [x0 . . . xi−1, xi+1 . . . xn]), if e 6= xj

voor 0 ≤ j < i.

I want to build a bigger list:

– [a0 . . . am] ++ [b0 . . . bn] = [a0 . . . am, b0 . . . bn].
– flatten [l0 . . . ln] = l0 ++ l1 ++ . . .++ ln.
– insertAt i x [a0 . . . an] = [a0 . . . ai−1, x, ai . . . an].
– insert p x [a0 . . . an] = [a0 . . . ai−1, x, ai . . . an], such that (p x ai) = True, and

for each 0 ≤ j < i : ¬(p x aj).

I want to modify a list, but retain the number of elements:

– map f a = [f x \\x← a].
– reverse [a0 . . . an] = [an . . . a0].
– updateAt i x [a0 . . . an] = [a0 . . . ai−1, x, ai+1 . . . an].

Working with lists 19

I want to divide lists:

– splitAt i a = (take i a,drop i a).
– span p a = (takeWhile p a,dropWhile p a).
– unzip [(a0, b0), (a1, b1) . . . (an, bn)] = ([a0, a1 . . . an], [b0, b1 . . . bn]).

I want to create a list:

– iterate f x = [x, f x, f (f x), f (f (f x)) . . .].
– repeat x = [x, x, x . . .].
– repeatn n x =take n (repeat x).
– indexList [a0 . . . an] = [0 . . . n].
– zip ([a0, a1 . . . an], [b0, b1 . . . bn]) = [(a0, b0), (a1, b1) . . . (an, bn)].
– zip2 [a0, a1 . . . an][b0, b1 . . . bn] = [(a0, b0), (a1, b1) . . . (an, bn)].

I have a list and want to reduce it to a single value:

– foldl f r [a0 . . . an] = f (. . . (f (f r a0) a1) . . .) an.
– foldr f r [a0 . . . an] = f a0 (f a1 (. . . (f an r) . . .).

5.5 StdOrdList: operations on sorted lists

Being sorted is an important property for data structures. The moduleStdOrdList
contains functions that manipulate sorted lists. The most frequently used func-
tions are:

– sort as sorts the elements of as using the ordering < that is defined on
values of the list element type.

– merge as bs = sort (as ++ bs) (but in a smarter way. . .). Important: merge
assumes that as and bs are sorted!

– maxList as determines the maximum element of as using the ordering < that
is defined on values of the element type of as. maxList [] yields a run-time
error.

– minList as determines the minimum element of as using the ordering < that
is defined on values of the element type of as. minList [] yields a run-time
error.

Of each of the functions described above, StdOrdList also provides a . . .By
version, which is parameterized with a comparison function that is used instead
of the < ordering on values of the list element type.

20 StdEnv, concisely

6 Working with arrays

Clean supports arrays. Arrays differ from lists in several aspects:

– Arrays always have a finite number of elements, whereas lists can be in-
finitely long.

– Element selection is in constant time (O(1)), whereas list element selection
is linear (O(n)).

– Arrays consume contiguous blocks of memory, whereas a list is a linked data
structure.

In Clean, the type String is implemented as an array of characters. Hence,
everything that is said here about arrays also applies to Strings. For further
manipulations of Strings, I refer to section 7.

6.1 Array notation

Arrays are created by enumeration of their elements, in a similar way as with
lists, except that the delimiters are { and } instead of [and]. So, {} denotes
an array with zero elements, and {1,2,3,4,5} and array with five elements,
viz. 1 up to 5.

Unfortunately, there is no dot-dot notation for arrays, so you can’t write
down {1..10} as you can for lists. However, if you happen to have a list, say
list = [1..10] , then you can create an array with the same elements as follows:

{e \\ e <- list}

You can also use another array as a generator. Say you have array = {1,2,3,4,5},
then you can create another one:

{f e \\ e <-: array}

Note the different symbol for extracting elements from an array generator (<-:).
Because you can use both arrays and lists as generators, you can easily transform
lists into arrays and vice versa:

toList array = [e \\ e <-: array]
toArray list = {e \\ e <- list}

Array creation is overloaded : the same expression, say myArray = {1,2,3,4,5},
can be one of three concrete types (I refer to the language manual for more
details):

Working with lists 21

– myArray :: {Int}, which is a lazy array. This is basically an array of uneval-
uated element expressions.

– myArray :: {!Int}, which is a strict array. In such an array, all expressions
are evaluated strictly.

– myArray :: {#Int}, which is an unboxed array. Here, the element type must
be a basic type. In such an array, the element values are evaluated strictly
and stored subsequently within the array.

6.2 Array manipulation

Arrays are overloaded, and this is also the case for its manipulation functions.
Clean provides syntax for these operations, but internally they are translated to
the functions that are imported via StdArray (in a similar way as those for dot-dot
expressions with lists). Because unboxed arrays are only defined for basic types,
there must be relation between the sort of array (lazy, strict, unboxed) and its
element type. For this reason, the class Array that defines these operations is a
true type constructor class:

class Array .a e where
select :: !.(a .e) !Int -> .e

uselect :: !u:(a e) !Int -> *(e, !u:(a e))
size :: !.(a .e) -> Int

usize :: !u:(a .e) -> *(!Int, !u:(a .e))
update :: !*(a .e) !Int .e -> *(a .e)
createArray :: !Int e -> *(a e)
replace :: !*(a .e) !Int .e -> *(.e, !*(a .e))

The array element selection operations array.[index] and array![index] are
translated to select array index and uselect array index respectively. The zero-
based index must be less than the size of the array. If you need an array for
subsequent destructive updates, then you should use uselect, and otherwise you
can use select.

To determine the size of a non-unique or a unique array, use size and usize

respectively. Both return the size of the array in constant time.
Unique array updates {array & [index] = expr} are translated to update

array index expr. A useful function is createArray which takes an integer that
represents the number of elements an array should have, and a value for each
of the elements. For instance, createArray 1000 "Hello World!" creates a unique
array (so that it can be updated destructively later on) that consists of 1000

22 StdEnv, concisely

"Hello World!" text elements. The function replace is useful when working with
arrays of unique elements: it updates the array at the given index position with
the new value, and returns the old value at the same position.

7 Working with texts

As was already mentioned in Section 4, the String type is a basic type in
Clean, even though it is a composite type, viz. an unboxed array of characters.
There is special notation for convenient creation (myString = "Hello World!"),
and there is a module, StdString, that contains useful operations on strings.
Because strings are also arrays, everything you can do with arrays, you can also
do with strings (see Section 6).

StdString provides string comparison (== and <) and the usual conversion
instances. Strings can be sliced (%) and concatenated (+++). If you need to work
with unique strings, then +++. can be used to produce a unique string for further
destructive updates. You can update the ith element (counted from zero) of a
string s with a new character c with the := operator: s:=(i ,c). For instance,

Start = let hello = "Hello World!" in hello := (size hello-1,’?’)

outputs

Hello World?

Strings are arrays, so the following program produces the same result:

Start = {"Hello World!" & [11]=’?’}
If you need to manipulate strings, it is in many case more convenient to use

lists, simply because StdList offers a lot of list manipulating functions. StdList
contains two functions for this conversion: the fromString and toString instances
for character lists.

Module StdCharList offers a number of functions that aim at ‘word pro-
cessing’ functionality. Usually you get a big chunk of text as a single string,
containing newline characters which indicate line ends. Given such a string, you
can easily convert it to a list of lines (where each line is a list of characters) with
mklines. Note that mklines removes the trailing newline character from each line.
You can then process the line elements, and glue the lines back together into a
big string with flatlines, which inserts the appropriate newline characters back
at the end of each line.

If you need to align lines of text to the left, right or center, given a certain
column width, then you can use one of the functions ljustify, rjustify, or

Working with lists 23

cjustify respectively. As a typical example, the following function transforms
a string into another string in which all lines are centered for a certain column
width:

centerAllLines :: Int -> String -> String

centerAllLines width

= toString o flatlines o (map (cjustify width)) o mklines o fromString

Finally, the little utility function spaces n produces a list of n spaces (it is
literally implemented as spaces n = repeatn n ’ ’.

8 Working with tuples

StdTuple contains a number of functions for easy access to tuples and triplets.
To select the first or second part of a tuple, use fst or snd respectively. To
select the first or second or third part of a triplet, use fst3 or snd3 or thd3

respectively. Tuples and triplets can be compared for equality (== instance) and
lexical ordering (< instance). If you have two functions f and g, then they can
be applied to the first and second component of a tuple with app2 (f ,g). Use
app3 (f ,g ,h) in case of triplets. Finally, there are two conversion functions to
switch between a function of type (a,b) -> c to a b -> c (curry) and vice versa
(uncurry).

9 StdFunc

StdFunc contains a number of standard higher order functions.
The first two are id and const with trivial implementations: id x = x and

const a b = a.
When using higher order functions, you sometimes notice that the function

that you want to pass to such a function has the arguments in the wrong order.
Suppose you have a function f of type a b -> c but need a function in which
the argument order is flipped, hence of type b a -> c. Then flip f is a function
of type b a -> c. Again, flip is implemented trivially as flip f b a = f a b.

The function composition operator, o, is the same as in high school: if you
want to apply function g after function f, then you can this with g o f. Function
composition is concisely defined as: (o) g f = \x = g (f x) (note that it must
have arity two because it is an operator).

A function that you encounter in literature is twice, which is defined as
twice f x = f (f x).

24 StdEnv, concisely

StdFunc contains a number of functions that resemble imperative control
structures:

while :: !(a -> .Bool) (a -> a) a -> a

until :: !(a -> .Bool) (a -> a) a -> a

iter :: !Int (.a -> .a) .a -> .a

Given a predicate p, and a computation f on some arbitrary data type, and an
initial value v0, while p f v0 applies f to subsequent values vi = fi v0 while p

holds for these values. The value returned is the first vn for which p vn is false.
The computation until p f v0 is basically the same, except that the computa-
tions are performed as long as p does not hold, and the value returned is the
first vn for which p vn is true. The computation iter n f v0 = fn v0, provided
that n ≥ 0.

The function seq is given a list of computations, [f0, . . .fn] that all modify
a value of some arbitrary type, and computes their subsequent application in
left-to-right order: fn o fn−1 o . . .o f0. The function seqList is similar, except
that the functions in the list not only modify a value of some arbitrary type, but
also return some additional information. seqList applies the functions in the list
in the same order as seq does, but also collects these additional results in the
same order, and returns them together with the altered value. Both functions
are most often used in combination with unique data structures, such as files.

The final two functions are extremely well known in literature, and they
are known as the monadic state combinators (for clarity, I show the types here
without uniqueness annotations):

(‘bind‘) infix 0 :: (St s a) (a -> St s b) -> St s b

(‘bind‘) f g = \st0 -> let (result,st1) = f st0 in g result st1

return :: a -> St s a

return r = \s -> (r,s)

bind is a kind of ‘flipped’ function composition, except that the subsequent func-
tion can ‘react’ to the result of the first computation. return leaves the state
untouched, and returns it as well as its argument value. These two higher order
functions are extremely useful as glue of computations that return additional
information, as we have also seen in seqList. You encounter it typically in com-
bination with λ abstraction, in which you use the λ to give a name to the result
of the first computation, and continue with the second computation that can
use that name during its computation.

Working with lists 25

10 StdMisc

The smallest module of StdEnv is StdMisc, which defines two functions that are
useful to indicate error-conditions in a program:

abort :: !{#Char} -> .a

undef :: .a

As you can see from their types, they can be applied in any context. abort msg,
when evaluated, prints msg and aborts the computation of the entire program,
while undef simply aborts without an additional message. Use these functions
to cover unexpected cases in your code.

	A Concise Guide to Clean StdEnv
	Peter Achten

