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Abstract. The iTask system is an easy to use combinator library for
specifying dynamic data dependent workflows in a very flexible way.
The specified workflows are executed as a multi-user web-application.
The implementation of the iTask system is fairly complicated. Hence we
cannot use it for reasoning about the semantics of workflows in the iTask
system. In this paper we define an executable semantics that specifies
how workflows react on events generated by the workers executing them.
The semantics is used to explain iTasks and to reason about iTasks. Based
on this semantics we define a mathematical notion of equivalence of tasks
and show how this equivalence for tasks can be approximated automat-
ically. Advantages of this executable semantics are: it is easy to validate
the semantics by interactive simulation; properties of the semantics can
be tested by our model-based test system GVst. GVst can test a large
number of properties within seconds. These tests appeared to be a good
indication about the consistency of the specified semantics and equiv-
alence relation for tasks. The automatic testing of properties was very
helpful in the development of the semantics. The contribution of this
paper is a semantics for iTasks as well as the method used to construct
this operational semantics.

1 Introduction

The iTask system [10] is an experimental toolkit to specify data dependent dy-
namic workflows in a flexible and concise way by a set of combinators. The iTask
system supports workers executing the specified tasks by a web-based interface.
Typical elementary user tasks in this system are filling in forms and pressing
buttons to make choices. The elementary tasks are implemented on top of the
iData system [9]. Based on an input the iTask system determines the new task
that has to be done and updates the interface in the browser. Arbitrary complex
tasks are created by combining (elementary) tasks. The real power of data de-
pendent tasks is provided by the monadic bind operator that contains a function
to generate the next task based on the value produced by the previous task.
The iTask implementation executes the tasks, but has to cope with many
other things at the same time: e.g. i/o to files and database, generation of the
multi-user web interface, client/server evaluation of tasks, and exception han-
dling. The iTask system uses generic programming to derive interfaces to files,
databases and web-browsers for data types. The combination of these things



makes the implementation of iTasks much too complicated to grasp the seman-
tics. To overcome these problems we develop a high level operational semantics
for iTasks in this paper. This semantics is used to explain the behavior of the
iTask system, and to reason about the desired behavior of the system. In the
future we will use this semantics as model to test the real iTask implementation
with our model-based test tool G¥st. A prerequisite for model-based testing is
an accurate model of the desired behavior. Making a model with the desired
properties is not easy. Such a model is developed, validated, and its properties
are tested in this paper.

In this paper we provide a basic rewrite semantics for iTasks as well as a num-
ber of useful notions to reason about tasks, such as needed events and equivalence
of tasks. The semantics of many other workflow systems is based on Petri-nets
[11], actor-oriented directed graphs (including some simple higher order con-
structs) [7], or abstract state machines (ASM) [6]. Neither of these alternatives
is capable to express the flexibility covered by the dynamic generation of tasks
of the monadic bind operation of the iTask system. As usual we omit many de-
tails in the semantics to express the meaning of the basic iTask combinators as
clearly as possible. The semantics is expressed in the functional programming
language Clean instead of the more common Scott Brackets, denotational se-
mantics, or horizontal bar style, structural operational semantics a la Plotkin.
The close correspondence between semantics and functional programs goes back
at least to [8]. Expressing the operational semantics in a FPL is as concise as
in Scott Brackets style. Using a functional programming language as carrier of
the specification of the semantics has a number of advantages: 1) the type sys-
tem performs basic consistency checks on the semantics; 2) the semantics is
executable; 3) using the iTask system it is easy to validate the semantics by in-
teractive simulation; 4) using the model-based test tool GVst [5] it is possible to
express properties about the semantics and equivalence of task concisely, and to
test these properties fully automatically. Although the semantics is executable,
it is not an iTask system itself. The semantics is a model of the real system, it
lacks for instance a frontend (user interface) as well as a backend (e.g. interface
to a database).

Especially the ability to express properties of the specified semantics and to
test them automatically appears to be extremely convenient in the development
of the semantics and associated notions described in this paper. An alternative,
more traditional, approach would be to define a semantics in a common math-
ematical style, state properties in logic, and formally prove these properties. It
would be wise to use a proof assistant like COQ [13] or SPARKLE [3] in prov-
ing the properties, this would require a transformation of the semantics to the
language of the proof assistant. In the past we have used this approach for the
iData system [1]. In such a mathematically based approach it is much harder to
experiment with different formulations of the semantics and to get the system
consistent after a change. Proving a property of a new version of the seman-
tics typical takes some days of human effort where testing the same property is
done in seconds by a computer. When we have a final version of the semantics



obtained in this way, we can decide to prove (some of) the tested properties in
order to obtain absolute confidence in their correctness.

In section 2 we show how we model iTasks and the effect of applying an input
to a task. In this section we also define useful notions about subtasks, such as
when they are enabled or needed. In section 3 we define the equivalence of tasks
and how the equivalence of tasks can be determined in two different ways. Some
important properties of the semantics of iTasks are given in section 4, we also
show how these properties can be tested fully automatically. Testing properties
of the semantics increases the confidence that we have specified the semantics of
iTasks right. In the future we will use this semantics for model-based testing of
the real iTask implementation, this will increase the confidence that the system
obeys the semantics. Finally there is a discussion.

2 A semantics for iTasks

In the original iTask system a task is a state transformer of the strict and unique
Task State Tst. The required uniqueness of the task state (to guarantee single
threaded use of the state in a pure functional language) is in Clean indicated by
the type annotation *. The type parameter a indicates the type of the result.
This result is returned by the task when it is completely finished.

: Task a := *TSt — *(a,*TSt) // an iTask is state transition of type TSt

Hence, a Task of type a is a function that takes a unique task state TSt as
argument and produces a unique tuple with a value of type a and a new unique
task state. In this paper we consider only one basic task: the edit task.

editTask :: String a — Task a | iData a

The function editTask takes a string and a value of type a as arguments and
produces a task a under the context restriction that the type a is in the type
class iData. The class iData is used to create a web based editor for values of
this type. Here we assume that the desired instances are defined.

The editTask function creates a task editor to modify a value of the given
type, and adds a button with the given name to finish the task. A user can
change the value as often as she wants. The task is not finished until the button
is pressed. There are predefined editors for all basic data types. For other data
types an editor can be derived using Clean’s generic programming mechanism
[2], or a tailor-made editor can be defined for that type.

In this paper we focus on the following basic iTask combinators to compose
tasks.

return ita — Task a | iData a

(>>=) infixl 1 :: (Task a) (a—Task b) — Task b | iData b

(=11-) infixr 3 :: (Task a) (Task a) — Task a | iData a
|

(-&&-) infixr 4 :: (Task a) (Task b) — Task (a,b) | iData a & iData b

The combinators return and >>= are the usual monadic return and bind. The
return combinator transforms a value in a task yielding that value immediately.



The bind combinator is used to indicate a sequence of tasks. The expression
t >>= u indicates that first task t must be done completely. When this is done,
its result is given to u in order to create a new task that is executed subsequently.

The expression t -||- u indicates that both iTasks can be executed in any
order and interleaved, the combined task is completed as soon as any subtask is
done. The result is the result of the task that completes first, the other task is
removed from the system. The expression t -&&- u states that both iTasks must
be done in any order (interleaved), the combined task is completed when both
tasks are done. The result is a tuple containing the results of both tasks.

All these combinators are higher order functions manipulating the complex
task state TSt. This higher order function based approach is excellent for con-
structing such a library in a flexible and type safe way. However, if we want to
construct a program with which we can reason about iTasks, higher order func-
tions are rather inconvenient. In a functional programming language like Haskell
or Clean it is not possible to inspect which function is given as argument to a
higher order function. The only thing we can do with such a function given as
argument is applying it to arguments. In a programming context this is exactly
what one wants to do with such a function. In order to specify the semantics
of the various iTask combinators however, we need to know which operator we
are currently dealing with. This implies that we need to replace the higher order
functions by a representation that can be handled instead. We replace the higher
order functions and the task state TSt by the algebraic data type ITask. We use
infix constructors for the or-combinator, . ||., and the and-combinator, .&&., in
order to make the representation similar to the corresponding infix combinators
-11- and -&&- from the original iTask library.

: ITask
= EditTask 1D String BVal // an editor
| .11. infixr 3 ITask ITask // OR-combinator
| .&&. infixr 4 ITask ITask // AND-combinator
| Bind 1D ITask (Val—ITask) // sequencing-combinator
| Return Val // return the value

:: Val = Pair Val Val | BVal BVal
:: BVal = String String | Int Int | VOID

Instances of this type ITask are called task trees. Without loss of generality we
assume here that all editors return a value of a basic type (Bval). In the real
iTasksystem editors can be used with every (user defined) data type. Using only
these basic values in the semantics makes it easier to construct a type preserver
simulator (see section 5). Since the right-hand side of the sequencing operator
Bind is a normal function, this model has here the same rich expressibility as the
real iTask system.

In order to write ITasks conveniently we introduce two abbreviations. For the
monadic Bind operator we define an infix version. This operator takes a task and
a function producing a new task as arguments and adds a default id to the Bind
constructor.



(=) infix]l 1 :: ITask (Val—ITask) — ITask
(=) t £ =Bind idl t £

For convenience we introduce also the notion of a button task. It executes the
given iTask after the button with the given label is pressed. A button task is
composed of a V0OID editor and a Bind operator ignoring the result of this editor.

ButtonTask i s t = EditTask i s VOID = A_ — t

Any executable form of iTasks will show only the button of a V0ID editor. Since
the Type of the edited value must be preserved, it cannot be changed.

2.1 Task Identification

The task to be executed is composed of elementary subtasks. These subtasks
can be changed by events in the generated web-interface, like entering a value
in a text-box or pushing a button. In order to link these events to the correct
subtask we need an identification mechanism for subtasks. We use an automatic
system for the identification of subtasks. Neither the worker, nor the developer
of task specification has to worry about these identifications. The fact that the
iTask system is in principle a multi-user system implies that there are multiple
views on the task. Each worker can generate events independently of the other
workers. The update of the task tree can generate new subtasks as well as re-
move subtasks of other workers. This implies that the id’s of subtasks must be
persistent and that newly generated subtasks cannot reuse old id’s. For these
reasons the numbering system has to be more advanced than just a numbering
of the nodes. The semantics in this paper ignores the multi-user aspect of the
semantics, but the numbering system is able to handle this (just as the real iTask
system).

Tasks are identified by a list of integers. These task identifications are used
similar to the sections in a book. On top level the tasks are assigned integer
numbers starting at 0. In contrast to sections, the least significant numbers are
on the head of the list rather than on the tail. The data type used to represent
these task identifiers, ID, is just a list of integers.

:: ID = ID [Int]

next :: ID — ID
next (ID [a:x]) = ID [a+l:x]

Whenever a task is replaced by its successor the id is incremented by the function
next. For every id, i, we have that next i # i. In this way we distinguish inputs
for a task from inputs to its successor. The function splitID generates a list of
task identifiers for subtasks of a task with the given id. This function adds two
numbers to the identifier, one number for the subtask and one number for the
version of this subtask. If we would use the same number for both purposes, one
application of the function next would incorrectly transform the identification of
the current subtask to that of the next subtask.



splitID :: ID — [ID]
splitID (ID i) = [ID [0,j:1i] \\ j — [0..]]

These identifiers of subtasks are used to relate inputs to the subtasks they belong
to. The function nmbr is used to assign fresh and unique identifiers to a task tree.

nmbr :: ID ITask — ITask

nmbr i (EditTask _ s v) = EditTask i s v

mmbr i (t .||. u) =mnmbr j t .||. nmbr k u where [j,k:_] = splitID i
nmbr i (t .&&. u) =mnmbr j t .&&. nmbr k u where [j,k:_] = splitID i
nmbr i (Bind _ t f) = Bind k (ombr j t) f where [j,k:_] = splitID i
nmbr i t=:(Return _) =t

By convention we start numbering with id1 = ID [0] in this paper.

2.2 Events

The inputs for a task are called events. This implies that the values of input
devices are not considered as values that change in time, as in FRP (Functional
Reactive Programming). Instead changing the value of an input device generates
an event that is passed as an argument to the event handling function. This
function will generate a new state and a new user interface.

An event is either altering the current value of an editor task or pressing
the button of such an editor. At every stage of running an iTask application,
several editor tasks can be available. Hence many inputs are possible. Each event
contains the id of the task to which it belongs as well as additional information
about the event, the EventKind.

:: Event = Event ID EventKind | Refresh
:: EventKind = EE BVal | BE

The event kind EE (Editor Event) indicates a new basic value for an editor. A
Button Event BE signals pressing the button in an editor indicating that the
user finished editing.

Apart from these events there is a Refresh event. In the actual system it is
generated by each refresh of the user-interface. In the real iTask system this event
has two effects: 1) the task is normalized; and 2) an interface corresponding
to the normalized task is generated. In the semantics we only care about the
normalization effect. Normalization of a task is done by applying the Refresh
event to the task. Although this event is ignored by all elementary subtasks it
has effects on subtasks that can be rewritten without user events. For instance,
the task editTask "ok" 1 -||- return 5 is replaced by return 5. Similarly the
task return 7 >>= editTask "ok" is replaced by editTask "ok" 7 We elaborate
on normalization in the next section.

2.3 Rewriting Tasks given an Event

In this section we define a rewrite semantics for iTasks by defining how a task
tree changes if we apply an event to the task. Because we want an executable



instance @. ITask Event

1

where 2
(e.) (EditTask i n v) (Event j (EE w)) | i=j = EditTask (next i) nw s
(e.) (EditTask i n v) (Event j BE) | i=j = Return (BVal v) 4
(@.) (t .Il. u) e =caset @. e of 5
t=:(Return _) =t 6

t = case u @. e of 7

u=:(Return _) =u 8

u =t .ll.u 9

(6.) (t .&%. u) e =case (t @. e, u @. e) of
(Return v, Return w) = Return (Pair v w)
(t, u) =t .&&. u
(6.) (Bind i t £) e =case t @. e of
Return v = normalize i (f v)
t =Bind i t £
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Fig. 1. The basic semantics of iTasks.

semantics rewriting is defined by an operator @., pronounced as apply. We define
a class for @. in order to be able to overload it, for instance with the application
of a list of events to a task.

class (@.) infixl 9ab :: ab — a

Given a task tree and an event, we can compute the new task tree representing
the task after handling the current input. This is handled by the most important
instance of the operator @. for ITask and Event listed in figure 1. It is assumed
that the task is properly numbered and normalized, and that the edit events
have the correct type for the editor.

This semantics shows that the ids play a dominant role in the rewriting of
task trees. An event only has an effect on a task with the same id. Edit tasks
can react on button events (line 4) as well as edit events (line 3). Line 14 shows
why the Bind operator has an id. Events are never addressed to this operator,
but the id is used to normalize (and hence number) the new subtask that is
dynamically generated by f v if the left-hand side task is finished. All events
that are not enabled are ignored (line 16). All other constructs pass the events
to their subtasks and check if the root of the task tree can be rewritten after the
reduction of the subtasks. The recursive call with @. e on line 13 can only have
an effect when the task was not yet normalized, in all other situations applying
the event has no effect.

A properly numbered task tree remains correctly numbered after reduction.
Editors that receive a new value get a new number by applying the function
next to the task identification number. The numbering scheme used guarantees
that this number cannot occur in any other subtask. If the left left-hand task of
the bind-operator is rewritten to a normal form a new task tree is generated by
f v. The application of normalize (next i) to this tree guarantees that this tree




is well formed and properly numbered within the surrounding tree. This implies
that applying an event repeatedly to a task has at most once an effect.

The handling of events for a task tree is somewhat similar to reduction of
combinator systems or in the A-calculus. An essential difference of such a reduc-
tion system with the task trees considered here is that all needed information is
available inside a A-expression. The evaluation of task trees needs the event as
additional information.

Event sequences are handled by the following instance of the apply operator:

instance @. t [e] | @. t e where (@.) t es = foldl (@.) t es

Normalization A task t is normalized (or well formed) iff t @. Refresh =
t. The idea is that all reductions in the task tree that can be done without a
new input should have been done. In addition we require that each task tree
considered is properly numbered (using the algorithm nmbr in section 2.1). In
the definition of the operator @. we assume that the task tree given as argument
is already normalized. Each task can be normalized and properly numbered by
applying the function normalizel to that task.

normalize :: ID ITask — ITask
normalize i t = nmbr i (t @. Refresh)

normalizel :: ITask — ITask
normalizel t = normalize idl t

Enabled Subtasks All editor tasks that are currently part of the task tree are
enabled, which implies that they can be rewritten if the right events are supplied.
The subtasks that are generated by the function on the right-hand side of a Bind
construct are not enabled, even if we can predict exactly what subtasks will be
generated. Events accepted by the enabled subtasks are called enabled events,
this is the set of events that have an effect on the task when it is applied to such
an event. Consider the following tasks:

t1 = EditTask idl "b" (Int 1) .&&. EditTask id2 "c" (Int 2)

t2 = EditTask idl "b" (Int 1) .||. EditTask id2 "c" (Int 2)

t3 = ButtonTask idl "b" (EditTask id2 "c" (Int 3))

t4 = ButtonTask idl "b" t4

t5 = EditTask id1l "b" (Int 5) = Mv.ButtonTask id2 "c" (Return (Pair v v))
t6 = EditTask idl "b" (Int 6) = Av.t6

t7 v p = EditTask idl "ok" v = Ar=:(BVal w).if (p w) (Return r) (t7 w p)

In t1 and t2 all integer and button events with identifier id1 and id2 are enabled.
In t3 and t4 only the event Event id1 BE is enabled. In t5, t6 and t7 all integer
and button events with identifier id1 are enabled. All other events can only be
processed after the button event for the task with id1 on the left-hand side of
the bind operator.

Task t4 rewrites to itself after a button event. In t6 the same effect is reached
by a bind operator. The automatic numbering system guarantees that the tasks



obtain another id after applying the enabled button events. Task t7 is parame-
terized with a basic value and a predicate on such a value, and terminates only
when the worker enters a value satisfying the predicate. This simple example
shows that the bind operator is more powerful than just sequencing fixed tasks.
In fact any function of type Val—ITask can be used there.

Normal Form A task is in normal form if it has the form Return v for some
value v. A task in normal form is not changed by applying any event. The
function isNF :: ITask — Bool checks if a task is in normal form. In general
a task tree does not have a unique normal form. The normal form obtained
depends on the events applied to that task. For task t2 above the normal form
of t2 @. Event idl BEis Return (BVal (Int 1)) whilet2 @. Event id2 BE is Return
(Bval (Int 2)). The recursive tasks t4 and t6 do not have a normal form at all.

Needed Events An event is needed in task t if the subtask to which the event
belongs is enabled and the top node of the task tree t cannot be rewritten
without that event.

In task t1 above the events Event id1 BE and Event id2 BE are needed. Task
t2 has no needed event. This task can evaluate to a normal form by applying
either Event idl BE or Event id2 BE. As soon as one of these events is applied, the
other task disappears. In t3 only Event id1 BE is needed, the event Event id2 BE
is not enabled. Similarly, in t4, t5 and t6 (only) the event Event id1 BE is needed.

For an edit-task the button-event is needed. Any number of edit-events can
be applied to an edit-task, but they are not needed. For the task t1 .&&. t2
the needed events is the sum of the needed events of t1 and the needed events
of t2. For a monadic bind the only needed events are the needed events of the
left hand task. The needed events of a task t are obtained by collectNeeded. To
ensure that needed events are collected in a normalized task we apply normalizel
before scanning the task tree. In the actual iTask system the task is normalized
by the initial refresh event and needs no new normalization ever after. In the
task t1 .1|. t2 non of the events is needed, the task can is finished as soon as
the task t1 or the task t2 is finished. Normalization is only include here to ensure
that the task is normalized in every application of this function.

collectNeeded :: ITask — [Event]
collectNeeded t = col (normalizel t)

where
col (EditTask id n v) = [Event id BE]
col (t1 .&&. t2) = col tl1 ++ col t2
col (Bind id t f) =col t // no events from f
col _ =] // Return and the OR-combinator

In exactly the same spirit collectButtons collects all enabled button events
in a task tree, and collect yields all enabled button events plus the enabled edit
events containing the current value of the editors. The list of events is needed
for the simulation of the task discussed in section 5.



An event is accepted if it causes a rewrite in the task tree, i.e. the corre-
sponding subtask is enabled. A sequence of events is accepted if each of the
events causes a rewrite when the events are applied in the given order. This im-
plies that an accepted sequence of events can contain events that are not needed,
or even not enabled in the original tree. In task t2 the button event with id1
and id2 are accepted, also the editor event Event id1 (EE (Int 42)) is accepted.
All these events are enabled, but neither of them is needed. The task t5 accepts
the sequence [Event idl BE, Event id2 BE|. The second event is not enabled in
t5, but applying Event id1 BE to t5 enables it.

Value The value of a task is the value returned by the task if we repeatedly press
the left most button in the task until it returns a value. This implies that the
value of task t1 is Pair (Int 1) (Int 2), the value of t2 is Int 1 since buttons
are pressed from left to right. The value of t3 is Int 3 and the value of t5 is
Pair (Int 5) (Int 5). The value of t4 and t6 is undefined. Since a task cannot
produce a value before all needed events are supplied, we can apply all needed
events in one go (there is no need to do this from left to right).

For terminating tasks the value can be computed by inspection of the task
tree, there is no need to do the actual rewrite steps as defined by the @. operator.
For nonterminating tasks the value is undefined, these tasks will never return a
value. The class val determines the value by inspection of the data structure.

class val a :: a — Val
instance val BVal where val v = BVal v
instance val Val where val v =v
instance val ITask
where
val (EditTask i n e) =val e
val (Return v) =val v
val (t .Il. u) =val t // priority for the left subtask
val (t .&&. u) = Pair (val t) (val u)
val (Bind i t f) =val (f (val t))

The value produced is always equal to the value returned by the task if the
user presses all needed buttons and the leftmost button if there is no needed
button. The property pval in section 4 states this and testing does not reveal
any problems with this property.

The value of a task can change after applying an edit event. For instance the
value of task EditTask idl "ok" (BVal (Int 2)) is BVal (Int 2). After applying
Event idl (BVal (Int 7)) to this task the value is changed to Bval (Int 7).

Type Although all values that can be returned by a task are represented by the
type Val, we occasionally want to distinguish several families of values within
this type. This type is not the data type Val used in the representation of tasks,
but the type that the corresponding tasks in the real iTask system would have.
We assign the type Int to all values of the form Int i. All values of the form

10



String s have type String. If value v has type v and value w has type w then the
value Pair v w has type Pair v w. The types allowed are:

Type = Int | String | VOID | Pair Type Type

To prevent the introduction of yet another data type we represent the types
yielded by tasks in this paper as instance of Val. The type Int is represented by
Int 0 and the type String is represented as String "". We define a class type to
determine types of tasks.

: Type := Val
class type a :: a — Type

Instances of this class for Val and ITask are identical to the instances of val
defined in section 2.3. Only the instance for Bval is slightly different:

instance type BVal

where
type (Int i) = BVal (Int 0)
type (String s) = BVal (String "")
type VOID = BVal VOID

3 Equivalence of Tasks

Given the semantics of iTasks we can define equivalence of tasks. Informally we
want to consider two tasks equivalent if they have the same semantics. Since we
can apply infinitely many update events to each task that contains an editor we
cannot determine equivalence by applying all possible input sequences. Moreover,
tasks containing a bind operator also contain a function and the equivalence of
functions is in general undecidable. iTasks are obviously Turing complete and
hence equivalence is also for this reason known to be undecidable. It is even
possible to use more general notions of equivalence, like tasks are equivalent
if they can be used to do the same job. Hence, developing a useful notion of
equivalence for tasks is nontrivial.

In this paper we will develop a rather strict notion of equivalence of tasks:
tasks t and u are equivalent if they have an equal value after all possible sequences
of events and at each intermediate state the same events are enabled. Since the
identifications of events are invisible for the workers using the iTask system, we
allow that the lists of events applied to ¢t and w differ in the event identifications.
The strings that label the buttons in ¢ and v do not occur in the events, hence
it is allowed that these labels are different for equivalent tasks.

First we introduce the notion of simulation. Informally a task u can simulate
a task t if a worker can do everything with u that can be done with ¢. It is very
well possible that a worker can do more with u than with ¢. The notation t < u
denotes that u can simulate ¢. Technically we require that: 1) for each sequence
of accepted events of ¢ there is a corresponding sequence of events accepted by
u; 2) the values of the tasks after applying these events is equal; and 3) after

11



applying the events, all enabled events of ¢ have a matching event in u. Two
events are equivalent, e; = eo, if they differ at most in their identification.

t < u=Vie€ accept(t).3j € accept(u).i = j A val(tQ.7) = val(u Q. j)
Acollect(t @.4) C collect(u Q. 5)

The notion ¢ < u is not symmetrical, it is very well possible that uw can do
much more than t. As an example we have that for all tasks ¢ and u that are
not in normal form ¢ < ¢.||.u, and ¢t < w.||.t. If one of the tasks is in normal
form it has shape Return v, after normalization the task tree u.||. ¢ will have the
value Return v too. Any task can simulate itself ¢ < ¢, and an edit task of any
basic value v can simulate a button task that returns that value: ButtonTask id1
"b" (Return (BVal v)) < EditTask id2 "ok" v. In general we have t.||.¢ X ¢: for
instance if ¢ is an edit task, in ¢.||. t we can put a new value in one of the editors
and produce the original result by pressing the ok button in the other editor,
the task ¢ cannot simulate this. The third requirement in the definition above
is included to ensure that ¢.||.¢ % t also holds for tasks with only one button
ButtonTask id1l "b1" (BVal (Int 36)).

Two tasks t and u are considered to be equivalent iff ¢ simulates u and u
simulates t.

1%

t=Z2u =t<u N u=xt

This notion of equivalence is weaker then the usual definition of bisimulation
[12] since we do not require equality of events, but just equivalency. Two editors
containing a different value are not equivalent. There exist infinitely many event
sequences such that these editors produce the same value. But for the input
sequence consisting only of the button event, they produce a different value.

Since each task can simulate itself (¢ < t), any task is equivalent to itself:
t = t. If t and u are tasks that are not in normal form we have ¢.||. u = u ||.t.
Consider the following tasks:

ul = ButtonTask idl "bl" (Return (BVal (Int 1)))
u2 = EditTask id2 "b2" (Int 1)

u3 = EditTask id2 "b3" (Int 2)

u4 = EditTask id2 "b4" (String "Hi")

ub =ul .||. u2

u6 =u2 .||. ul

u7 =u2 .&&. ué

u8 = ud .&&. u2

u9 = u2 = Mv.Return (BVal (Int 1))

ul0 = u2 = Ax.u4 = )y.Return (Pair x y)

The trivial relations between these tasks are u; < u; and u; = u; for all u;. The
nontrivial relations between these tasks are: ul < u2, ul < u5, ul < u6, ul < u9,
u2 < u5, u2 < ub, us < ub, ub < ub, uld < u7, ul0 < us, and u2 = u9, us = ub.
Note that u7 2 u8 since the tasks yield another value.

Due to the presence of functions in the task expressions it is in general unde-
cidable if one task simulates another or if they are equivalent. However, in many
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situations we can decide these relations between tasks by inspection of the task
trees that determine the behavior of the tasks.

3.1 Determining the Equivalence of Task Trees

The equivalence of tasks requires an equal result for all possible sequences of
accepted events. Even for a simple integer edit task there are infinitely many
sequences of events. This implies that checking equivalence of tasks by applying
all possible sequences of events is in general impossible.

In this section we introduce two algorithms to approximate the equivalence
of tasks. The first algorithm, section 3.2, is rather straightforward and uses only
the enabled events of a task tree and the application of some of these events to
approximate equivalence. The second algorithm, section 3.3 is somewhat more
advanced and uses the structure of the task trees to determine equivalence when-
ever possible.

We will use a four valued logic as for the result:

:: Result = Proof | Pass | CE | Undef

The result Proof corresponds to True and indicates that the relation is known
to hold. The result CE (for Counter Example) is equivalent to False, the relation
does not hold. The result Pass indicates that functions are encountered during
the scanning of the trees. For the values tried the properties holds. The property
might hold for all other values, but it is also possible that there exists inputs
to the tasks such that the property does not hold. The value Undef is used as
result of an existential quantified property (Jw.P z) where no proof is found in
the given number of test cases; the value of this property is undefined [5]. This
type Result is a subset of the possible test results handled by the test system
GVst. For these results we define disjunction (‘or’, v), conjunction (‘and’; A), and
negation (‘not’; -) with the usual binding power and associativity. In addition
we define the type conversion from Boolean to results and the weakening of a
result which turns Proof in Pass and leaves the other values unchanged.

class (V) infixr 2 ab :: ab — Result //aORYD
class (A) infixr 3 ab :: ab — Result //a AND Db

instance — Result // negation

toResult :: Bool — Result // type conversion
toResult b = if b Proof CE

pass :: Result — Result // weakens result to at most Pass
pass r = r A Pass

For v and A we define instances for all combinations of Bool and Result as a
straightforward extension of the corresponding operation on Booleans.
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3.2 Determining Equivalence by Applying Events

In order to compare ITasks we first ensure that they are normalized and supply an
integer argument to indicate the maximum number of reduction steps. The value
of this argument N is usually not very critical. In our tests 100 and 1000 steps
usually gives identical (and correct) results. The function equivalent first checks
if the tasks are returning currently the same value. If both tasks need inputs we
first check 1) if the tasks have the same type, 2) if the tasks currently offer the
same number of buttons to the worker, 3) if the tasks have the same number
of needed buttons, and 4) if the tasks offer equivalent editors. Whenever either
of these conditions does not hold the tasks t and u cannot be equivalent. When
these conditions hold we check equivalence recursively after applying events. If
there are needed events we apply them all in one go, without these events the
tasks cannot produce a normal form. If the tasks have no needed events we apply
all combinations of button events and check if one of these combinations makes
the tasks equivalent. We need to apply all combinations of events since all button
events are equivalent. All needed events can be applied in one go since they are
needed in order to reach a normal form and the order of applying needed events
is always irrelevant. If there are edit tasks enabled, length et>0, in the task the
result is at most Pass. This is achieved by applying the functions pass or id.

equivOper :: ITask ITask — Result
equivOper t u = equivalent N (normalizel t) (normalizel u)

equivalent :: Int ITask ITask — Result

equivalent n (Return v) (Return w) =v = w
equivalent n (Return v) _ = CE
equivalent n _ (Return w) = CE
equivalent n t u
| n<0
= Pass

= if (length et>0) pass id
(type t = type u A 1lbt = 1lbu A lnt = 1lnu A sort et = sort eu
A if (1nt>0)
(equivalent (n-1nt) (t @. nt) (u @. nu))
(exists N [equivalent n (t @. i) (u @. j)\\(i,j)«diag2 bt bu]))

where
bt = collectButtons t; nt = collectNeeded t
bu = collectButtons u; nu = collectNeeded u
et = collectEdit t; eu = collectEdit u

Int = length nt; 1lnu = length nu; 1bt = length bt; lbu = length bu

The function exists checks if one of the first N values is Pass or Proof.

exists :: Int [Result] — Result
exists n ] = CE

exists 0 1 = Undef

exists n [a:x] = a V exists (n-1) x

In this approach we do not apply any edit events. It is easy to design examples of
tasks where the current approximation yields Pass, but applying some edit events
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reveals that the tasks are actually not equivalent (e.g. t = EditTask idl (BVal
(Int 5)) and t = Return (BVal (Int 5))). We obtain a better approximation of
the equivalence relation by including some edit events in the function equivalent.
Due to space limitations and to keep the presentation as simple as possible we
have not done this here.

3.3 Determining Equivalence of Tasks by Comparing Task Trees

Since the shape of the task tree determines the behavior of the task corresponding
to that task tree, it is tempting to try to determine properties like ¢t < u and
t & u by comparing the shapes of the trees for u and t. For most constructs
in the trees this works very well. For instance it is much easier to look at the
structure of the tasks EditTask id1 "ok" (BVal (Int 5)) and EditTask id2 "done"
(Bval (Int 5)) to see that they are equivalent, than approximating equivalence of
these tasks by applying events to these tasks and comparing the returned values.
In this section we use the comparison of task trees to determine equivalence of
tasks. The function eqStruct implements this algorithm.

There are a number of constructions that allow different task trees for equiv-
alent tasks. These constructs require special attention in the structural compar-
ison of task trees:

1. The tasks ButtonTask idl "b" (Return v) .&&. Return w and ButtonTask idl
"b" (Return (Pair v w)) are equivalent for all basic values v and w. This kind
of equivalent tasks with a different task tree can only occur if one of the
branches of .&&. is in normal form and the other is not. On lines 9, 16 and
17 of the function eqStruct there are special cases handling this. The problem
is handled by switching to a comparison by applying events, very similar to
the equivalent algorithm in the previous section. The function equ takes care
of applying events and further comparison.

2. The choice operator .||. should be commutative, (t.1l.u ~ u.|l.t), and
associative ((t.ll.u).Il.v =~ t.1l.(u.ll.v)). In order to guarantee this,
egStruct collects all adjacent or-tasks in a list and checks if there is a unique
mapping between the elements of those list such that the corresponding sub-
tasks are equivalent (using eqStruct recursively). The implementation of the
auxiliary functions is straightforward.

3. The Bind construct contains real functions, hence there are many ways to
construct equivalent tasks with a different structure. For instance, we have
that any task t is equivalent to the task t = Return, or slightly more ad-
vanced: s.&%.t is equivalent (t .&&. s) = A(Pair x y)—Return (Pair y x)
for all tasks s and t.

The function eqStruct checks if the left-hand sides and the obtained right-
hand sides of two bind operators are equivalent. If they are not equivalent
the tasks are checked for equivalence by applying inputs, see line 13-15.

The eqStruct algorithm expects normalized task trees. The operator ~ takes
care of this normalisation.
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class (~) infix 4 a :: a a — Result // is argl equivalent to arg2?

instance ~ ITask where (~) t u = eqStruc N (normalizel t) (normalizel u)

If the structures are not equal, but the task might be event equal we switch
to applying inputs using the function equ. This function is very similar to the
function equivalent in the previous section. The main difference is that the
function equ always switches to eqStruct instead of using a recursive call. If
a structural comparison is not possible after applying an event, the function
egStruct will switch to equ again.

egStruc :: Int ITask ITask — Result 1
eqStruc 0 t u = Pass 2
egStruc n (Return v) (Return w) =v ~w 3
egStruc n (Return v) - =CE 4
eqStruc n _ (Return w) = CE 5
eqStruc n (EditTask _ _ e) (EditTask _ _ f) = e~f 6
egStruc n s=:(a .&&. b) t=:(x .&&. y) 7
= egStruc (n-1) a x A eqStruc (n-1) b y Vv 8

((inNF a || inNF b || inNF x || inNF y) Aequn s t) 9
egStruc n s=:(a .||. b) t=:(x .ll. y) 10
= eqORn n (collectOR s) (collectOR t) 11
eqStruc n s=:(Bind i a £f) t=:(Bind j b g) 12
= eqStruc (n-1) a b A egStruc (n-2) (f (val a)) (g (val b)) Vequn s t 13
eqStruc n s=:(Bind _ _ _) t =equnst 14
eqStruc n s t=:(Bind _ _ _) =equn s t 15
egStruc n s=:(a .&&. b) t = (inNF al||inNF b) Aequn s t 16
egStruc n s t=:(x .&&. y) = (inNF x||inNF y) Aequn s t 17
egStruc n s t = CE 18

This uses instances of ~ for basic values (Bval) and values (Val). For these
instances no approximations are needed. The line 10 and 11 implements the
commutativity of the operator .||.: collectOR produces a list of all subtasks
glued together with this operator, and eqORn determines if these lists of subtasks
are equivalent in some permutation. The definitions are a direct generalization
of the ordinary equality =.

A similar approach can be used to approximate the simulation relation <.

Property pEquiv in the next section states that both notions of equivalence
yield equivalent results, even if we include edit events. Executing the associated
tests indicate no problems with this property. This test result increases the
confidence in the correct implementation of the operator ~. Since ~ uses the
structure of the tasks whenever possible, it is more efficient than equivOper that
applies events until the tasks are in normal form. The efficiency gain is completely
determined by the size and contents of the task tree, but can be significant. It
is easy to construct examples with an efficiency gain of one order of magnitude
or more.
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4 Testing Properties of iTasks

Above we mentioned a number of properties of iTasks and their equivalency like
Vs, t€iTask.s.|l.t~t.||.s. Although we designed the system such that these
properties should hold, it is good to verify that the properties do hold indeed.
Especially during the development of the system many versions are created in
order to find a concise formulation of the semantics and an effective check for
equivalence.

Creating formal proofs for all properties for all those versions of the seman-
tics during its development is completely infeasible. Assuming that all well-typed
versions of the semantics are correct is much to optimistic. We used the auto-
matic test system GVst to check the semantic functions presented here with a set
of desirable properties. For instance the above property can be stated in GVst as:

pOr :: GITask GITask — Property
pOr x y = normalizel (t.||.u) =~ normalizel (u.l|l|.t)
where t = toITask x; u = toITaskT (type t) y

The arguments of such a property are treated by the test system as universal
quantified variables over the given types. The test system generates test values
of these types using the generic class ggen. Since some ITask constructs con-
tain a function, we use an additional data type, GITask, to generate the desired
instances. We follow exactly the approach as outlined in [4]. The type GITask
contains cases corresponding to the constructors in ITask, for button tasks, for
tasks of the form t = Return, and for some simple recursive terminating tasks.
For p0r we need to make sure the tasks t and u have the same type since we com-
bine them with an or-operator. The conversion by toITask from the additional
type GITasks used for the generation to ITasks takes care of that.

After executing 23 tests GVst produces the first counterexample that shows
that this property does not hold for t = Return (BVal (Int 0)) and u = Return
(Pair (BVal (Int 0)) (BVal (Int 0))). Using the semantics from figure 1 it is
clear that GVst is right, our property is too general. A correct property imposes
the condition that t and u are not in normal form:

p0r2 x y = notNF [t,u] => normalizel (t.||.u) ~ normalizel (u.|l.t)
where t = toITask x; u = toITaskT (type t) y

In the same way we can show that t.||.t 2 t for tasks that are not in normal
form (p2) and test the associativity of the .||. or operator (p3).

p2 :: GITask GITask — Property
p2 x y = notlNF [s,t] => (s.||.t) &t
where s = toITask x; t = toITaskT (type s) y

p3 :: GITask GITask GITask — Property
pdPxyz=1(s .Il. (£ .Il.u)=((s .Il. ) .1l. u)
where s = toITask x; t = toITaskT (type s) y; u = toITaskT (type s) z

In total we have defined over 70 properties to test the consistency of the defini-
tions given in this paper. We list some representative properties here. The first

17



property states that needed events can be applied in any order. Since there are
no type restrictions on the type t we can quantify over ITasks directly.

pNeeded :: ITask — Property
pNeeded t = (A\j. t @. i ~ t @. j) For perms i where i = collectNeeded t

In this test the fragment For perms i indicates an additional quantification over
all j in perms i. The function perms :: [x] — [[x]] generates all permutations
of the given list. In logic this property would have been written as Vt € ITask,
Vj € perms (collectNeeded ¢). t Q. (collectNeeded t) ~ ¢ Q. j.

The next property states that both approximations of equivalence discussed
in the previous section produce equivalent results.

pEquiv :: ITask ITask — Property
PEquiv t u = (equivOper t u) =~ (t~u)

The type of a task should be preserved under reduction. In the property pType
also events that are not well typed will be tested. Since we assume that all events
are well typed (the edit events have the same type as the edit task they belong
to), it is better to use pType2 where the events are derived from the task t.

pType :: ITask — Property
pType t = (A\i.type t = type (t @. i)) For collect t

pType2 :: ITask — Property
pType2 t = pType t For collect t

The phrase For collect t indicates that for testing these properties the events
are collect from the task tree rather then generated systematically by Gvst. How-
ever the tasks to be used in the test are generated systematically by Gvst.

The property pVal states that the value of a task obtained by the optimized
function val is equal to the value of the task obtained by applying events obtained
by collectVal until it returns a value. The function collectVal returns all needed
events and the leftmost events if these are no needed events.

pVal :: ITask — Property
pVal t =val t = nf t
where

nf (Return v) = v

nf t = nf (t @. collectVal t)

The definitions presented in this paper pass all stated properties. On a normal
laptop (Intel core2 Duo (using only one of the cores), 1.8 GHz) it takes about
7 seconds to check all defined properties with 1000 test cases for each property.
This is orders of magnitude faster and more reliable then human inspection,
which is on its turn much faster than a formal proof (even if it is supported by
a state of the art tool). Most of these properties are very general properties, like
the properties shown here. Some properties however check specific test cases that
are known to be tricky, or revealed problems in the past. If there are problems
with one of the properties, they are usually spotted within the first 50 test cases
generated. It appears to be extremely hard to introduce flaws in the system that
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are not revealed by executing these tests. For instance omitting one of the special
cases in the function eqStruct is spotted quickly. Hence testing the consistency of
the system in this way is an effective and efficient way to improve the confidence
in its consistency.

5 Discussion

In this paper we give a rewrite semantics for iTasks. Such a semantics is necessary
to reason about iTasks and their properties, it is also well suited to explain their
behavior. In addition we defined useful notions about iTasks and stated properties
related to them. The most important notion is the equivalence of tasks.

Usually the semantics of workflow systems is based on Petri nets, abstract
state machines, or actor-oriented directed graphs. Since the iTask system al-
lows arbitrary functions to generate the continuation in a sequence of tasks (the
monadic bind operator), such an approach is not flexible enough. To cope with
the rich possibilities of iTasks our semantics incorporates also a function to de-
termine the continuation of the task after a Bind operator.

We use the functional programming language Clean as carrier for the seman-
tical definitions. The tasks are represented by a data structure. The effect of
supplying an input to such a task is given by an operator modifying the task
tree. Since we have the tasks available as data structure we can easily extract
information from the task, like the events needed or accepted by the task. A
typical case of the operator @. (apply) that specifies the semantics is:

(e.) (EditTask i n e) (Event j BE) | i=j = Return (BVal e)

In the more traditional Scott Brackets style this alternative is written as:
A [ EditTask i n e] (Event j BE) = Return (BVal e), if i = j

Our representation has the same level of abstraction and has as advantages that
it can be checked by the type system and executed (and hence simulated and
tested).

Having the task as a data structure it is easy to create an editor and simulator
for tasks using the iTask library. Editing and simulating tasks is helpful to validate
the semantics. Although simulating iTasks provides a way to interpret the given
task, the executable semantics is not intended as an interpreter for iTasks. In an
interpreter we would have focused on a nice interface and efficiency, the semantics
focusses on clearness and simplicity.

Compared with the real iTask system there are a number of important sim-
plifications in our ITask representation. 1) Instead of arbitrary types, the ITasks
can only yield elements of type Val. The type system of the host language is
not able to prevent type errors within the ITasks. For instance it is possible to
combine a task that yields an integer, Bval (Int i), with a task yielding a string,

BVal (String s), using an .||. operator. In ordinary iTasks it is type technically
not possible (and semantically not desirable) to combine tasks of type Task Int
with Task String using a -||- operator. Probably GADTs would have helped us

19



to enforce this condition in our semantical representation. 2) The application of
a task to an event does not yield an HTML-page that can be used as GUI for
the iTask system. In fact there is no notion at all of HTML output in the ITask
system. 3) There is no way to access files or databases in the ITask system.
4) There is no notion of workers and assigning subtasks to them. 5) There is
no difference between client site and server site evaluation of tasks. 6) There is
only one workflow process which is implicit. In the real iTask system additional
processes can be created dynamically. 7) The exception handling from the real
iTask system is missing in this semantics.

Adding these aspects would make the semantics more complicated. We have
deliberately chosen to define a concise system that is as clear as possible.

Using the model-based test system it is possible to test the stated properties
fully automatically. We maintain a collection of over 70 properties and test them
with one push of a button. Within seconds we do known if the current version
of the system obeys all properties stated. This is extremely useful during the
development and changes of the system. Although the defined notions of equiv-
alence are in general undecidable, the given approximation works very well in
practice. Issues in the semantics or properties are found very quickly (usually
within the first 100 test cases). We attempted to insert deliberately small errors
in the semantics that are not detected by the automatic tests, but we failed
miserably.

In the near future we want to test with Gvst if the real iTask system obeys the
semantics given in this paper. In addition we want to extend the semantics in
order to cover some of the important notions omitted in the current semantics, for
instance task execution in a multi-user workflow system. When we are convinced
about the quality and suitability of the extended system we plan to prove some of
the tested properties. Although proving properties gives more confidence in the
correctness, it is much more work then testing. Testing with a large number of
properties has shown to be an extremely powerful way to reveal inconsistencies
in the system.
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