iEditors:
Extending iTask with Interactive Plug-ins

Jan Martin Jansen!, Rinus Plasmeijer?, Pieter Koopman?

! Faculty of Military Sciences,

Netherlands Defence Academy, Den Helder, the Netherlands,
2 Tnstitute for Computing and Information Sciences (ICIS),
Radboud University Nijmegen, the Netherlands
jm.jansen.04@nlda.nl, {rinus, pieter}@cs.ru.nl

Abstract. The iTask library of Clean enables the user to specify web-
enabled workflow systems on a high level of abstraction. Details like
client-server communication, storage and retrieval of state information,
HTML generation, and web form handling are all handled automatically.
Using only standard HTML web browser elements also has a disadvan-
tage: it does not offer the same level of interaction as we are used to
from desktop applications. Browser plug-ins can fill this gap. They make
it possible to extend web-applications with interactive functionality like
the making of drawings. In this paper we explain how plug-ins can be
nicely integrated in the iTask system. A special feature of the integra-
tion is the possibility for a plug-in to use Clean functions as call-back
mechanism for the handling of events. These call-backs can be handled
on the server as well as on the client. As a result we are now able to cre-
ate interactive iTask applications (iEditors) using plug-ins like graphical
editors. Although complicated, distributed multi-user applications can
be created in this way, reasoning about the program remains easy since
all code is generated from one and the same source: the high-level iTask
specification in Clean.

1 Introduction

The internet has become an important platform for the deployment of appli-
cations. Despite this popularity, for an application programmer it is still hard
to write web applications. To overcome this, the iData [18] and iTask [19] tool-
kits have been developed. They enable the development of web applications at
a high level of abstraction, where the programmer can focus on the essence of
the application without having to deal with web details like HTML generation
and client-server communication. An iData application automatically generates
output (HTML) and automatically handles user changes made in an HTML form.
The iTask system adds the concept of tasks to iData. An iTask application can
be considered as a structured collection of tasks to be performed by one or more
users. In iTask specifications the flow of control and information between tasks

can be expressed. To enhance the performance of iTask applications, the possi-
bility to handle tasks at the client side of a web application was added. For this
the SAPL interpreter [20] was extended to a full Clean interpreter [9].

iData and iTask make use of standard HTML elements. In many cases these
standard elements do not suffice for the creation of desktop-like applications.
Browser plug-ins can be used to overcome this. Examples of plug-ins are media
players for playing music and movies and Java Applets that offer the possibility
to run Java programs at the client side of web applications.

When developing a web application using a plug-in the programmer has to
deal with the following issues:

1. How to include the plug-in in the web application?

2. How to load relevant data into the plug-in?

3. How to transfer relevant data from the plug-in to the server application?

4. How to do specific processing for the plug-in (e.g, event handling for editors)?

For the inclusion of plug-ins in web applications, standard solutions in HTML
exist. The other issues are mostly handled on an ad hoc basis, depending on the
kind of application developed.

In this paper we focus on a more systematic solution for the last three issues.
The focus is on the inclusion of Java Applet plug-ins [6,23] into iTask applica-
tions using generic [8] programming techniques. The presented techniques are
not restricted to Java Applets alone but can also be used for communication
with other kinds of plug-ins like advanced text editors (e.g. fckeditor [10]). For
incorporating plug-ins into iTasks, a generic (read: poly-typical) framework is
developed. The benefits for an application programmer are:

— A plug-in can be used with a minimum of programming effort and use of
specific interface code. Generic functions take care of the conversion of Clean
to Java data and back. They also take care of the communication between
web-application and plug-in;

— One can define call-backs for the plug-in in Clean which can be handled either
on server or client. Server handling can be used for executing more time
consuming functions and client handling can be used for events requiring
a quick response like mouse-event handling; For client side evaluation of
call-backs the SAPL interpreter is used;

— Plug-in tasks behave like ordinary iTasks. If a suitable plug-in already exists,
the application programmer only has to define Clean types (matching the
content and event types of the plug-in), similarly to what is needed for
ordinary iTasks. In order to include a plug-in into an iTask application only
two interface functions are needed. For Java Applets the interface with plug-
ins is encapsulated into a generic Java class.

We will call an iTask plug-in with Clean call-backs an iEditor. The technical
contributions are:

— The seamless integration of plug-in tasks in the iTask formalism. This is real-
ized by specializing the generic HTML generation and data update functions,
in a completely transparent way for the application programmer;

— The use of Clean and SAPL dynamics [24] for realizing fine grained control
over call-back function handling. Clean expressions are serialized at the server
side, moved to the client side and executed there (this requires a referential
transparent formalism). In this way it is possible to move entire computations
from server to client in a dynamic way;

— A generic way to exchange data between Clean and Java. On the Clean side
this is realized by standard generic print and parse functions. On the Java
side this is realized by the Java reflection [14] mechanism.

The structure of this paper is as follows. In Section 2 we start with a short
survey of the iTask system and architecture. In Section 3 we discuss the issues
to be dealt with for including plug-ins in iTask and we give an example of the
use of iEditors. Section 4 discusses the implementation of iEditors. In Section
5 we present a generic framework for the exchange of data between Clean and
Java. In Section 6 we discuss some alternative uses and implementations of the
techniques we developed. Section 7 compares our solution with other approaches
that use client-side processing. Finally, we end with some concluding remarks in
Section 8.

2 The iTask toolkit

The iTask toolkit [19] is a web-based combinator library written in the lazy,
purely functional programming language Clean. It can be used to implement
powerful web-applications like online shops, etc. We briefly repeat the most
important characteristics of iTask. A task in iTask can be a basic task or a
combination of tasks:

— A basic task is created by the editTask function, which turns an element of
an arbitrary data type into an editable web form. User edits of the form lead
to automatic updates of the underlying data type;

— Task combinators enable the combination of tasks. Combinators are used
to control the flow of processing and data from one task to another. Tasks
can be performed sequentially, in parallel and distributed over several users.
New tasks can dynamically depend on the results of previous tasks.

In the original iTask architecture all processing is done at the server side of
the application and all user actions lead to a complete update of the web-page
the user is editing. In [20] we showed how we can update sub-tasks in web pages
and reduce the overhead of client-server communication in iTask applications
by adding Ajax [5] and client side evaluation of tasks. The plug-in extensions
discussed in this paper extend the set of basic tasks with powerful interactive
tasks. This is done in a way that does not restrict the way in which tasks can
be combined with combinators.

Browser Web Server
html (page)
post data
webpage action httpRequest Server
Java
updates) updates
Script

request | updates ‘

SAPL iTasks App Clean
Interpreter
Plug-in

iTasks App SAPL

Fig. 1. The architecture of an iTask Application

2.1 The Architecture of iTask Applications

The architecture (see Fig. 1) of iTask applications is representative for web ap-
plications based on the Ajax philosophy (web 2.0 applications [5,17], [25] gives
details about web development with Ajax). It has the following characteristics:

An iTask application consists of two images. A server executable running in
native code at the server side of the application and a client side image run-
ning in the SAPL (Simple Application Programming Language) interpreter
that is integrated in the web browser as a plug-in;

Both the server and client images are generated from one single source pro-
grammed in Clean. From this source the server executable and a client SAPL
program are generated by the Clean compiler. Both the Clean executable
and the SAPL source comprise the complete iTask program. Tasks can be
handled either at the server or the client. In principle, it is even possible to
run the complete application (all tasks) at the client, except for the storage
and retrieval of information in files and data bases;

The server application initially generates a complete HTML page (web form)
that is displayed in the client browser;

User actions in the web form can be handled as normal post messages by
the server or as an httpRequest by either client or server. In the first case
a complete new HTML page is generated. In the second case it should be
decided in JavaScript whether a request to either server or client application
must be made. As result of the request a (partial) update of the web-page
is made;

The JavaScript at the client side is generic (the same for all iTask programs).
JavaScript acts as an intermediary between client and server and client and
SAPL interpreter. It takes care of updating the page with results from the
server or client and it transforms user actions in the forms into calls for
server or client application.

The use of JavaScript is a characteristic of all Ajax-based applications, but in our
case the JavaScript functions are only a means for passing requests and results
between the server application, client application and web-page. All application
related programming is done in Clean. In this paper we extend this architecture
with plug-in communication.

2.2 The SAPL Interpreter and Clean-SAPL dynamics

To execute tasks and Clean functions at the client-side, we need a Clean plat-
form there. This is realized by making a plug-in version of the SAPL interpreter
[9] and a Clean to SAPL compiler. By using a Java Applet for the interpreter,
client-side Clean processing becomes available for all major internet browsers.
The interpreter, originally realized in C, was re-implemented as a Java Applet
with a performance penalty of less than 40%. This means that this interpreter is
still considerably faster than other interpreters like GHCi, Helium and Hugs (see
[9]). We also constructed a Clean to SAPL compiler, supporting the full Clean
language. The generated SAPL code can be loaded into the SAPL interpreter at
start-up of web applications. Loading times of SAPL and client program (exclud-
ing the time needed to load the Java virtual machine) are comparable to that of
web pages including JavaScripts of about 1000 lines.

A special feature of the SAPL interpreter is that we can use a dedicated form
of Clean dynamics [24] for it. With dynamics it is possible to serialize a Clean
expression (closure) to a string, store the string somewhere, retrieve the string at
a later moment, turn it into a Clean expression again and execute it. We extended
the dynamics features of Clean in such a way that it is also possible to serialize
an expression in a Clean executable and de-serialize it in the SAPL interpreter
(running the corresponding SAPL program), and execute the expression there.
This is a powerful feature because it makes it possible to migrate execution
of a Clean program from server to client. In this paper we use this feature for
executing call-back functions at the client side.

2.3 Examples of iTask Applications

To give an idea of the iTask system, we give some small examples. Creating
a basic task in iTask is simple. With the editTask function one can turn an
element of an arbitrary data type into a task. As a result an editor for the data
type element is created residing in a web form. A user edit action of this form
results in an automatic update of the data type that can be further processed by
the remainder of the iTask application. editTask has two arguments: the name
of the button that the user should press to end the task and the initial value of
the editor. Here two examples of the use of this function are given: simpleInt
creates an editor for an integer while simplePerson creates an editor for an
element of type Person. We also give the definition of the type Person.

simpleInt :: Task Int
simpleInt = editTask "Ok" createDefault

:: Person = { name :: String
, e_mail :: String
, date0fBirth :: HtmlDate
, gender :: Gender
}

:: Gender — Female | Male

simplePerson :: Task Person
simplePerson = editTask "Ok" createDefault

Fig. 2 shows the resulting editors created when respectively simpleInt and
simplePerson are called. Note we use createDefault for the initial value of the

MName:

E_mail: test@here.com

Date of birth:

Gender:

Fig. 2. editTask for Int (left) and Person (right)

editors. The fields in the form now get default values generated by the system
using generic functions.

The ‘simple’ examples just create a form to be filled in by a single user,
yielding a value of the corresponding type. In the following example a combinator
is used to let two users perform tasks after each other:

addMultiUserTask :: Task Int
addMultiUserTask
= 0 @:: editTask "Ready" 0

=> Av — 1 @:: editTask "Ready" 0

=> Xw — 0 @:: editTask "Result" (v+w),

User 0 (a login procedure binds a user to a unique id) has to enter a number, then
user 1 has to enter a second number, then user 0 gets the sum of the numbers,
but can still edit the result.

=>> is the iTask equivalent of the monadic ‘bind’ operator. n @:: task as-
signs task to user n.

3 iEditor: Plug-ins in iTask

Plug-ins are used for features that are not supported by standard HTML con-
structs like interactive drawing, complex text editing and animations. Plug-ins
have to be installed by the user of the browser. Once this is done, they can be

loaded by special HTML constructs. The use of plug-ins however, complicates
the development of web applications. The developer has to take care that the
plug-in is initialized and that the data needed by the plug-in is passed to it. In
some cases, data from the plug-in has to be passed back to the web application
or events occurring in the plug-in have to be handled by the web applications
(e.g. mouse events).

In this section we introduce iEditor, an extension to iTask for the integration
of plug-ins and give an example of its use.

3.1 The iTask architecture including iEditors
In Fig. 3 we show the adapted iTask architecture for including iEditors. The

Browser Web Server
html (page)
post data
webpage action httpRequest Server
Java
updates . updates
Script

request | updates
callback q P ‘

callback
content SAPL iTasks App Clean
||3T|aslk Interpreter
ugin Plug-in

iTasks App SAPL

Fig. 3. The architecture of iTask with plug-ins

extensions with respect to the standard iTask architecture (Fig. 1) are:

— The plug-in is part of a web-page. This means that the initial web-page
should contain an HTML representation of the plug-in;

— All communication with a plug-in must be done via JavaScript functions. This
is the standard way of communication with plug-ins. All popular plug-ins
can be accessed from JavaScript and can call JavaScript functions. Although
it is possible to communicate directly with Java Applets from the SAPL
interpreter, we use the indirection via JavaScript to obtain a uniform interface
that can also be used for non-Java plug-ins;

— For call-backs from the plug-in, the JavaScript function handling them has
to decide where the calls should be made: either server or client.

3.2 The PlugIn wrapper type

In a basic iTask an element of a data type is turned into an editable HTML form
by the function editTask and the result of editing the form is automatically

turned into an updated instance of this data type. We want to maintain this
interface for iEditors. More concretely, the information exchanged with a plug-in
must also be represented by a data type and the use of the plug-in should lead
to an updated instance of this data type. Because editTask has no means of
distinguishing a data type intended for a plug-in from any other data type and
also because we need information about how to load and display the plug-in,
we have to wrap the content data type into a special PlugIn data type. For
this wrapper type we can now make a specific implementation of the editTask
function.

::PlugIn ct et st = {plugininfo :: PlugInInfo,
content 1 oct,
events ir [et],
state i ost,
callback :: [et] (ct,st) — (ct,st),
isServerEvent :: et — Bool}

The wrapper type contains all information needed for the creation of the plug-
in (the right HTML code). It also contains all information needed to enable
communication from plug-in to JavaScript and vice versa. PlugIn has three type
parameters ct, et and st:

— ct is the type of the content to be exchanged with the plug-in;

— et is the type of the events that can occur in the plug-in;

— st is the type of the state that must be maintained between calls of the call-
back. This type is not visible to the plug-in itself, but only to the call-back
function that handles events from the plug-in.

The fields in the Plugln type have the following meaning:

— plugininfo: information for constructing the HTML representation of the
plug-in: how to load the plug-in, its size and other initializing parameters
(see the example in Section 3.4);

— content: content of the plug-in. This field contains the initial content of the
plug-in and after the plug-in is ready it contains the result of the plug-in;

— events: generated events that have to be processed by the call-back function;

— state: value of the state to be maintained between call-back calls;

— callback: call-back function that handles the generated events;

— isServerEvent: indication where events have to be handled.

The call-back function takes the generated events, the current content and state
as input and returns a new content and state. The content is passed back to
the plug-in. The state is maintained for the next call of the call-back. The call-
back function is automatically called from the plug-in whenever an event occurs.
On the plug-in side there should be data types where the content and event
types can be mapped on (more details in Section 4). Mismatches will lead to the
generation of exceptions on either Clean or plug-in side.

For indicating where events have to be handled, the user must specify the
function isServerEvent. If this function returns True for an event, this event
is handled on the server; if it returns False, the event is handled on the client.

From the iTask point of view an iEditor is just another editor for a data type
(the content field). All other information in the PlugIn type is only there for
enabling the creation of the iEditor and for doing processing (event handling)
for the plug-in (invisible at the iTask level). For plug-ins not requiring event
processing, the events, state and callback fields can be filled with stubs.

3.3 Interface functions for a Plug-in

For exchanging information between the iTask program and the plug-in two
interface functions (one for the plug-in and one for JavaScript) are needed:

setContent (String content)
doPlugInCall(String pluginid, String content, String events)

setContent should be implemented by the plug-in and must be callable from
JavaScript. doPlugInCall is a JavaScript function and must be called by the
plug-in. pluginid is a unique id, identifying the plug-in (there can be more
than one plug-in). The content and events arguments are serialized versions
of the corresponding Clean datatypes (see Sections 3.4 and 4). For Java Applets
we provide a generic Java class that takes care of the communication between
plug-in and iTask program (see Section 5).

For other plug-ins there are two possibilities. Either the plug-in should be
adapted by wrapping code that supports these functions, or special interface
code can be written in JavaScript taking care of the conversion of Clean data to
data compatible with that of the plug-in. Often, this interface code can be used
for a whole class of similar plug-ins.

3.4 A Graphical Editor Plug-in for iTask

We now look at an example of the inclusion of an iEditor in iTask: a simple
graphical editor. We assume, we have created a Java Applet plug-in that is
capable of displaying simple graphics (lines, ovals, rectangles, etc.) and that can
generate events for mouse and button actions. The processing of events depends
on what kind of graphical editor we want to make (vector graphics, diagrams,
etc.). It is possible to create a dedicated plug-in for each kind of editor, but by
using Clean for doing event handling we can adapt the behavior of the application
by only changing the Clean source, without the need to adapt the plug-in. The
key idea is that mouse and button events are passed to the web-application by
a call-back function call. The call-back function can either be executed on the
server by the Clean executable or on the client by the SAPL version of the Clean
application. For each type of event, the programmer can choose where it must
be handled.

We give the (almost) complete Clean source code for this editor. We start
with the data types:

: :GraphObject = GraphLine Int Int Int Int | GraphOval Int Int Int Int |
GraphRect Int Int Int Int | GraphPolyLine [Pnt] |
GraphButton String

10

::Pnt = Pnt Int Int

: :GraphEvent = MouseDown Int Int | MouseDrag Int Int |
MouseUp Int Int | ButtonEvent String

::GraphState = NewLine | NewPolyLine | NewRect | NewOval

In the application a drawing is represented by a list of GraphObject. We distin-
guish several types of figures and simple buttons (for the sake of simplicity we
combined figures and buttons in one type). GraphEvent represents the events
that can occur. We distinguish mouse (down, up, drag) and button events.
The Ints represent the x and y position of the mouse event We assume that
the plug-in is capable of displaying elements of GraphObject and that it turns
events into elements of GraphEvent. The plug-in should have matching types for
GraphObject and GraphEvent. The transformation of elements of these types
onto each other is done automatically (see Section 4 and 5). GraphState is a
state data type maintaining that part of the state that is not passed to the plug-
in, but that is needed by the call-back function. In this example it maintains the
type of the figure to be drawn at a mouse down event.
The task definition is given by:

graphtask :: Task (PlugIn [GraphObject] GraphEvent GraphState)
graphtask = editTask "Ready" graphplugin

The initialization of the plug-in is given by:

graphplugin :: PlugIn [GraphObject] GraphEvent GraphState

graphplugin = {plugininfo = grapheditapplet,
content = initpicture,
events =],
state — NewLine,
callback = doEvents,

isServerEvent = isMouseUp}

isMouseUp (MouseUp _ _) = True

isMouseUp _ = False

grapheditapplet = AppletPlugIn {id = "drawplugin",
archive = "drawapplet. jar",
code = "drawapplet/maincanvas.class",
width = 500,

height = 200}

initpicture = [GraphButton "Line", GraphButton "PolyLine",
GraphButton "Rectangle", GraphButton "Oval"]

graphplugin contains the initialization of the plug-in. We see that all events
are handled on the client except MouseUp events. As a consequence, the server
side PlugIn data type is updated at every MouseUp. grapheditapplet contains
the information needed for generating the HTML representation of the plug-in:

11

the Applet id, the codebase and main class, its width and height. Finally, we see
that the initial picture only contains the buttons.
Events occurring in the plug-in, are handled by the doEvents function:

doEvents :: [GraphEvent]| ([GraphObject], GraphState) —
([GraphObject], GraphState)

doEvents [ButtonEvent "Line":evs] (figs,_)

= doEvents evs (figs,NewLine)

doEvents [MouseDown x y:evs] (figs,NewLine)

= doEvents evs ([GraphLine x y x y:figs],NewLine)
doEvents [MouseDrag x y:evs] ([GraphLine v w _ _: figs],a)

= doEvents evs ([GraphLine v w x y: figs],a)

doEvents [e:evs] (figs,a) = doEvents evs (figs,a) // ignore other events
doEvents |] (figs,a) = (figs,a) // return result

Here only the code for Line is shown, Rectangle, PolyLine and Oval are han-
dled in a similar way. Fig. 4 shows a screen shot of the application.

E\/O
0

| Line H PolyLine || Rectangle || Oval ‘

Fig. 4. Screen shot of the drawing application

The user can stop editing by clicking the ‘Ready’ button. The current content
and state are now made available to the remainder of the iTask application.

A multi-user graphical editor To show that the plug-in task simply behaves
like a normal iTask we give a small variation of graphtask analogous to the multi-
user example from Section 3:

graphtask :: Task (PlugIn [GraphObject] GraphEvent GraphState)
graphtask = 0 @:: editTask "O Ready" graphplugin
=>> Av — 1 @:: editTask "1 Ready" v
=>> Xw — 0 @:: editTask "Result" w

12

Two users are involved in this example. User 0 makes an initial drawing. The
result is passed to user 1, who can further edit the drawing. If this task is ready
the result is passed back to user O who can continue editing.

For this application the programmer only has to specify the (content, state
and event) types and the call-back function needed for handling events. The
plug-in iTask behaves like an ordinary iTask. All communication with the plug-
in is handled in a way that is transparent for the programmer.

It is also possible to wrap several plug-ins into one task. For example: editTask
"Ready" (graphplugin,texteditplugin) wraps two editors together into one
form. The editors are displayed next to each other.

4 Implementation of iEditors

From the example it is clear that the use of iEditors is straightforward for the
application programmer and that, from the iTask point of view, an iEditor is just
another editor. In the implementation we face a number of challenges (to answer
questions 1 to 4 from Section 1):

— How to fit the plug-in into the iData/iTask architecture?
— How to exchange data between server, plug-in and client?
— How to invoke call-back functions from plug-in for server and client?

4.1 Fitting a plug-in into the iTask architecture

The HTML representation of the plug-in is generated as part of the initial iTask
web-page. This is realized by making a specialized implementation of the generic
gForm [18] function that is part of the implementation of editTask and that is
responsible for the generation of the web form. The resulting HTML also contains
the initial content of the plug-in and all other information needed by the plug-in
and by the JavaScript functions that interact with the plug-in. This adapted
gForm is generic and works for all plug-ins.

4.2 Data exchange between client, plug-in and server

For data exchange between plug-in, server and client Clean program we use the
generic print and parse functions on the Clean side (on server and client). As
a consequence the plug-in must have a (generic) way to parse and unparse the
strings representing the event and content data types. In Section 5 we discuss
how this is realized for Java.

Although we have the same Clean program running at both the server and
client side, the internal representations of data types are completely different.
Therefore we also use the generic print and parse functions for the exchange of
data between the Clean programs at server and client side.

All communication between server, client and plug-in is done using JavaScript
functions, similar to what is done for Ajax and client side handling of iTask tasks

13

(see [20]). These functions are generic in the sense that they do not depend on
the specific plug-in. The JavaScript functions are responsible for passing data
from plug-in to server and client and vice-versa, but also for making the call-
back and deciding where the call-back must be handled. The addition of plug-ins
only requires one extra JavaScript function to handle all communication from the
plug-in with client and server Clean programs:

doPlugInCall (String pluginid, String content, String events)

This function can both handle the final result from a plug-in and the call-backs
generated by the plug-in. The first argument is the unique ID of the plug-in
(there can be more than one plug-in and they all use this JavaScript function).
The second argument is the serialized version of the current content of the plug-
in. The third argument is a serialized version of the list of the events that must
be processed (this list is empty in case the plug-in just wants to synchronize its
content with the server program). The JavaScript function takes care of either
updating the server program with the content of the plug-in or by making the
call-back to client or server program (see Section 4.3).

For updating its content the plug-in should implement the following function:

setContent (String content)

The argument is again a (serialized) string representation of the content. This
function is called from JavaScript. It is custom for plug-ins to support function
calls from JavaScript.

4.3 Handling call-backs

Call-backs can be made to either client or server. The plug-in makes the call-back
by calling the (generic) Javascript function doPlugInCall with the serialized con-
tent and events as arguments. The JavaScript function determines whether the
call must be handled on the server or the client by executing the isServerEvent
function for the event in the SAPL interpreter. For the server case, the PlugIn
data type is updated in a similar way as for an ordinary update for iData [18].
The implementation of editTask makes use of the generic function gUpd for up-
dating the data type with the result of a user edit action. For the PlugIn data
type a specialized version of gUpd is made that applies the call-back function to
its arguments before updating the PlugIn data structure with the result. Finally,
the HTML representation of the plug-in is re-generated with the new content.
We could use the same strategy for the client side (the full Clean program is
available). But we must do it in a much more efficient way, because the overhead
of finding out for which task the update is intended can be large. We can do
it more efficiently because we have an interpreter available that can execute an
arbitrary Clean expression. We use this to directly execute the call-back function
call and use the result to make a direct update of the content of the plug-in.
In this way we short-circuit the use of gUpd and the whole iTask machinery
needed for finding out which task is updated [19]. This optimization is absolutely
necessary for events needing immediate response like mouse drag events.

14

For making the direct call-back on the client we use Clean-SAPL dynamics
(see Section 2.2). For this, the serialized call-back function is stored in the plug-in
HTML representation. Not only is the call-back function itself serialized, but the
isServerEvent function and the parse and unparse functions for the arguments
(content, state and events) are also serialized. The last is necessary because the
arguments are passed to the call-back as serialized strings from the plug-in via
the doPlugInCall function and the result must be passed back in serialized form
too.

In the actual call-back, it is first checked if the event is really intended for
the client by applying the isServerEvent function to the deserialized event. If
not, the server call-back is made as described above. Otherwise the call-back and
parse and unparse functions are all de-serialized, the arguments are parsed, the
call-back is applied, and the result state and content are unparsed again. The
content is handed back to the plug-in directly (via setContent) and the state
is maintained in the HTML representation of the plug-in.

Note that we cannot handle all call-backs at the client side. Processing in-
tensive call-backs and call-backs requiring information from data bases or files
should be handled on the server side.

4.4 Evaluation of Efficiency of handling call-backs

In the graphical editor application we used the call-back function to handle
mouse down and drag events by the SAPL interpreter. Mouse drag events often
occur in quick sequences (in the order of 10-15 events per second). The whole call-
back machinery was capable of keeping track of these events on an Intel 1.6 GHz
Core Duo 2 machine (using only one core). Attempts to handle the drag events
by the server lead to a browser hang-up due to a client-server communication
overload. Of course, the (de)serialization of data types takes a significant amount
of time and is a limiting factor in the amount of events that can be handled.
Native implementations (without the need to (de)serialize) can easily handle up
to ten times as much events.

5 Implementation for Java Applets

Java Applets [6,23] are an important class of plug-ins. All modern web browsers
offer the possibility of Applet plug-ins. In this way it is possible to incorporate
complex Java applications into web pages. We already used the Java Applet
mechanism for loading the SAPL interpreter at the client side of iTask for han-
dling client tasks and call-backs. Although Java Applets can offer rich function-
ality they are less popular, because communicating with them must be handled
in an ad-hoc manner, making it difficult to integrate them with the remainder of
a web application (see also [21]). By using the iTask plug-in techniques, we have
a generic strategy which simplifies the communication with Java Applets. To
include a Java Applet in an iTask application we have to deal with the following
issues:

15

— We have to find a way to map Clean types on corresponding Java data types;
— We have to take care that we offer the interface needed for communication
with JavaScript.

5.1 Mapping Clean and Java Data Types onto each other

In order to exchange information between a Clean and Java application there
must be a way to transfer Clean data to Java data and back. To save the pro-
grammer from writing boilerplate data transformation code we included generic
code in Clean and Java to handle this data transformation. Not all Clean and
Java data types can be mapped onto each other. For a Java class the member
fields are (currently) restricted to the following types:

— primitive types: (int,long,float,double,boolean,char);
the String type;

— all subtypes of List (they are all mapped on a Clean list);
other Java classes with members that obey these rules.

A class may be a subclass of another class or implement an interface, but all
superclasses must obey the rules mentioned above. Other (container) types, like
Map and arrays are not (yet) allowed. For these classes an ad-hoc mapping must
be made (like is done for List).

From the Clean point of view, the automatic conversion of Clean data types
to Java types is restricted to first order data types that can be described by
standard Algebraic Data Types. Records are not allowed yet, but they can be
easily added. If a Clean type is mapped onto a Java type hierarchy the fields of
the Clean type should match the union of all fields in the class hierarchy in the
order of the hierarchy (fields of superclass before fields of subclass).

More formally, consider the following algebraic data type definition in Clean:

::typename t1 .. tk=C1 t11 .. tin_1 | .. | Cm tml .. tmn_m

t1..tk are type parameters, C1..Cm constructor names and tik type names or
type parameters. This type definition corresponds to the following Java interface
and m Java classes:

interface typename {}
class<tl,..,tk> Cl implements typename {t11 all; .. tin_1 aln_1;}

class<tl,..,tk> Cm implements typename {tml aml; .. tmn_m amn_m;}

Each constructor is represented by a separate Java class with as name the con-
structor name and with as fields the arguments of the constructor (with names
aik) with their type. As an example, the Clean type GraphObject from Section
3 corresponds to the following Java classes:

interface GraphObject {}

class Graphline implements GraphObject {int x, y, v, w;}

class GraphRect implements GraphObject {int x, y, v, w;}
v}

class GraphOval implements GraphObject {int x, y, v,

I

16

class GraphPolylLine implements GraphObject {List<Pnt> points;}
class GraphButton implements GraphObject {String name;}

class Pnt {int x, y;}

It is possible to generate a corresponding Clean data type definition from
an existing Java class (hierarchy) using generic Java functions. Otherwise the
programmer has to take care that matching types at Clean and Java side exist,
as we did in our graphics editor example. Once corresponding data types exist,
the conversion of data is done automatically.

For the actual conversion of data we use the standard generic print and parse
functions at the Clean side (gPrint and gParse) and reflection [14] on the Java
side.

5.2 Java Applet Plug-In Interface

To further simplify the communication between Java plug-in and Clean iTask
application, the Java class CleanJavaCom is offered. This class contains mem-
ber functions that can be used for parsing and unparsing Java objects and
functions for handling the communication with the JavaScript interface. The
CleanJavaCom class is generic and can be used in every Java Applet to be used
as plug-in in an iTask application.

class CleanJavaCom<CT,ET> {
private String writeClassToString(Object object) {...}
private Object readClassFromString(String inp) {...}
public CT getContent() {...}
public void setContent(String ser_content) {...}
public void handleEvents(List<ET> events) {...}

}

The class is parametrised by the Java versions of the content (CT) and event (ET)
types.

— writeClassToString generates a string representation of an object that
exactly fits the Clean representation;

— readClassFromString parses a string representation generated by gPrint
to the corresponding Java object;

— getContent is called to obtain the content by the remainder of the Applet;

— setContent is called from JavaScript to set the content. The content string
is de-serialized by a call to readClassFromString. The result can now be
obtained by the remainder of the applet by a call of getContent;

— handleEvents is called by the Applet after one (or more) event(s) have
occurred. This function takes care of serializing the content and events and
calling the doPlugInCall function in JavaScript. JavaScript should pass back
the result by a call of setContent. If the plug-in only wants to synchronize
its content with the iTask server application it should call doEvents with an
empty event list.

17

In the implementation of writeClassToString and readClassFromString the
Java reflection mechanism is used.

6 Discussion

Plug-ins must have matching types for the content and event types. For Java
we implemented a generic way to convert the serialized content and event types
to Java data structures and back. Not all plug-in types offer the possibility to
do this conversion in a generic way. An alternative is to use generic functions in
Clean for generating a representation the plug-in can deal with and for parsing
back the results. An example is the use of XML [2]. Java has the XMLEncoder
and XMLDecoder classes for generating and parsing XML representations of data
types. For us, a more interesting alternative is the use of JSON (JavaScript Ob-
ject Notation) [1]. This has as an advantage that we can also exchange data with
JavaScript and a large number of other formalisms. Like string serialization, it
allows for a lightweight implementation with little overhead. We already started
to implement generic generation and parsing of JSON data in Clean and we will
use this for future implementations.

Other alternatives are the use of CORBA [16] or the Java Native Interface
[12] for exchanging data between Clean and the plug-in. Examples can be found
in [15,21,4]. For us, these approaches are too heavyweight to be used at the
client side in the SAPL interpreter.

The idea of attaching an event handler to an editor is not restricted to plug-
in tasks. Call-back functions can also be attached to other basic iTask editors.
The call-back can be used to check the content of the editor before sending it
back to the server and give the user feedback in case something is wrong or to
reformat the content before displaying it again. Because the full power of Clean
is available at the client side there are no restrictions to the call-back functions
that can be defined. In this way, the concept of iEditors can be extended to
arbitrary iTask editors. To implement this, we can either use a wrapper type like
PlugIn or introduce a special combinator in iTask like the one used for assigning
users to tasks (see Section 2).

7 Related Work

In this paper we extended the iTask toolkit with a generic framework for the
inclusion of plug-ins, with the possibility to make calls from the plug-in to Clean
functions that can be executed on either client or server. We are not aware of any
other functional system that has these features. However, there are functional
approaches for handling web pages using the same formalism for server and client
side processing. Most of them compile to JavaScript for client side execution. An
example of this approach is Hop [22,13]. Hop is a dedicated web programming
language and its syntax is HTML-like. In Hop it is also possible to specify a
complete web application without the (direct) use of JavaScript. Hop uses two
compilers, one for compiling the server side program and one for compiling the

18

client-side part. The client side part is only used for executing the user interface.
The application essentially runs on the client and may call services on the server.
Hop uses syntactic constructions for indicating client and server part code. It is
build on top of the Scheme programming language. In our case we do not have
to extend Clean, but can write the entire web application in Clean itself. In [13]
it is shown that a reasonably good performance for the client side functions
in Hop can be obtained. For us, compiling to JavaScript is no option because
Clean is lazy. Instead we use the SAPL interpreter, which also has competitive
performance as was shown in [9] and the graphics editor application.

Links [3] and its extension formlets is a functional language-based web pro-
gramming language. Links compiles to JavaScript for rendering HTML pages, and
SQL to communicate with a back-end database. A Links program stores its ses-
sion state at the client side. In a Links program, the keywords client and server
force a top-level function to be executed at the client or server respectively. In
Links, processes can be spawned and these processes can communicate via mes-
sage passing. Client-server communication is implemented using Ajax technology,
like we do. In the iData and iTask toolkits, forms are generated generically for
every data type, whereas in Links and Formlets these need to be coded by the
programmer.

The Flapjax language [11] is an implementation of functional reactive pro-
gramming in JavaScript, with features comparable to those of Hop. Both are
designed to create intricate web applications. In Flapjax, Hop and Formlets pro-
cessing is directly attached to web form handling, which is comparable to the
use of call-backs in iEditors.

A much more restricted approach has been implemented in Curry [7]: only a
very restricted subset of Curry is translated to JavaScript to handle client side
verification code fragments only.

Summarizing the main differences with the other approaches are:

— iTask/iEditor applications are just plain Clean applications, where web forms
are generated from data types. The other approaches define dedicated web
languages where processing is attached to web forms;

— We can use the full Clean functionality at the client side because the SAPL
interpreter offers a full Clean platform. The other approaches rely on com-
pilation to JavaScript with, in many cases, restrictions on the functions that
can be compiled to JavaScript;

— Clean-SAPL dynamics offers a generic and flexible way to attach call-back
handling to web forms and plug-ins. Where the other approaches use static
annotations to indicate whether functions have to be executed on either
client or server, in our approach this can be decided dynamically, depending
on the events to be processed.

8 Conclusions

Plug-ins are often an essential part of more interactive web applications. In this
paper we discussed a generic way for including plug-ins in iTask applications. All

19

communication between iTask application and plug-in is on the level of exchang-
ing and updating data types, which is entirely consistent with the normal way
iTask works. Plug-in tasks behave like ordinary tasks. No adaptations of iTask
were necessary to incorporate them, only a specialization of the gForm and gUpd
functions for the Plugln type.

An important feature is that plug-ins can use Clean functions, which can be
executed on either server or client, for event handling. This gives the programmer
fine-grained control over the behavior of the plug-in without the need to adapt
the plug-in itself. In this way, we can keep the plug-in to its essence and use
Clean for all processing not involving the specialities of the plug-in.

Information exchange between server, client and plug-in is realized with the
use of generic (un)parsing of data types. For efficient client side event handling
a combination of Clean-SAPL dynamics and generic (un)parsing is used. With
Clean-SAPL dynamics it is possible to move the execution of arbitrary Clean
expressions from server to client. This turns out to be a powerful feature that
can also be used for attaching client side functions to arbitrary web forms.

For Java Applets, a straightforward to use generic class is provided that
handles all interaction of the plug-in with Clean including the conversion of data
types and the forwarding of call-backs. Plug-ins of other type should implement
a simple JavaScript interface and the (de)serialization of the data types used for
the exchange of information.

‘We have maintained the declarative approach of the iTask toolkit. Server and
client programs and all call-back handling functions are generated from an anno-
tated, single-source specification with a low burden on the programmer because
the system itself switches automatically between client and server side evalua-
tion of tasks and call-backs when this is necessary. The iTask system integrates
all mentioned technologies in a truly transparent and declarative way.

References

1. Introducing JSON. www.json.org, visited March 2009.

2. T. Bray, J. Paoli, and C. Sperberg-Macqueen. Extensible Markup
Language (XML) 1.0 (w3c recommendation), 1998. Technical Report,
http://www.w3.org/TR /1998 /REC-xml-19980210.

3. E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web programming without
tiers. In Proceedings of the 5th International Symposium on Formal Methods for
Components and Objects, FMCO ’06, volume 4709 of Lecture Notes in Computer
Science, pages 266—296. Springer, 2006.

4. E. Evans and D. Rogers. Using Java applets and CORBA for multi-user distributed
applications. Internet Computing, IEEE, 1:43-55, 1997.

5. J. Garrett. Ajax: A new approach to web applications, 2005.
www.adaptivepath.com/ideas/essays/archives/000385.php, visited March 2009.

6. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Sun Microsys-
tems, 1996.

7. M. Hanus. Putting declarative programming into the web: Translating Curry to
JavaScript. In Proc. of the 9th International ACM SIGPLAN Conference on Prin-
ciple and Practice of Declarative Programming (PPDP’07), pages 155-166. ACM
Press, 2007.

20

8. R. Hinze. A new approach to generic functional programming. In Proceedings of the
27th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, January 2000.

9. J. M. Jansen, P. Koopman, and R. Plasmeijer. Efficient interpretation by trans-
forming data types and patterns to functions. In H. Nilsson, editor, Proceedings
Seventh Symposium on Trends in Functional Programming, TFP 2006, Notting-
ham, UK, 19-21 April 2006, The University of Nottingham, volume 7 of Trends in
Functional Programming. Intellect Publisher, 2006.

10. F. C. Knabben. FCK editor, 2003. www.fckeditor.net, visited March 2009.

11. S. Krishnamurthi. The Flapjax site, 2007. www.flapjax-lang.org, visited March
20009.

12. S. Liang. Java Native Interface: Programmer’s Guide and Reference. Addison-
Wesley Longman Publishing Company, 1999.

13. F. Loitsch and M. Serrano. Hop client-side compilation. In Trends in Functional
Programming, TFP 2007, New York, pages 141-158. Interact, 2008.

14. G. McCluskey. Using Java reflection, 1998.
http://java.sun.com/developer/technical Articles/ALT /Reflection/index.html, vis-
ited March 2009.

15. E. Meijer and S. Finne. Lambada: Haskell as a better Java. In Proceedings of the
2000 Haskell Workshop, Montreal, Canada, 2000.

16. OMG: Object Management Group. The Common Object Request Broker: Architec-
ture and SpecificationRevision 2.0, 1996. http://www.omg.org/corba-e/index.htm,
visited March 2009.

17. L. D. Paulson. Building Rich Web Applications with Ajax. Computer, 38(10):14—
17, 2005.

18. R. Plasmeijer and P. Achten. The implementation of iData. In A. Butterfield,
C. Grelck, and F. Huch, editors, Implementation and Application of Functional
Languages, 17th International Workshop, IFL 2005, Dublin, Ireland, September
19-21, 2005, Revised Selected Papers, volume 4015 of Lecture Notes in Computer
Science, pages 106—123. Springer, 2006.

19. R. Plasmeijer, P. Achten, and P. Koopman. iTasks: Executable specifications of
interactive work flow systems for the web. In N. Ramsey, editor, Proceedings of
the 2007 ACM SIGPLAN International Conference on Functional Programming,
Freiburg, Germany, October 1-3, 2007, volume ICFP’07 of International Confer-
ence on Functional Programming, pages 141-152. ACM, 2007.

20. R. Plasmeijer, J. M. Jansen, P. Koopman, and P. Achten. Declarative Ajax and
client side evaluation of workflows using iTasks. In Principles and Practice of
Declarative Programming, Valencia, Spain, July 2008, volume PPDP 08, 2008.

21. C. Reinke. Towards a Haskell/Java connection. In Implementation of Functional
Languages, IFL 1998, volume 1595 of Lecture Notes in Computer Science, pages
203-219. Springer, 1998.

22. M. Serrano, E. Gallesio, and F. Loitsch. Hop: a language for programming the web
2.0. In ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2006), Portland, Oregon, USA, October
22-26 2006, pages 975-985, 2006.

23. Sun Microsystems. Release notes for the next-generation Java Plug-In technology,
2008. jdk6.dev.java.net/plugin2, visited March 2009.

24. A. van Weelden. Putting Types To Good Use. PhD thesis, Radboud University
Nijmegen, the Netherlands, 2007.

25. W3 Schools. Ajax tutorial, 2008. http://w3schools.com/ajax/default.asp.

