
Uniqueness Typing Simplified

Edsko de Vries1⋆, Rinus Plasmeijer2, and David M Abrahamson1

1 Trinity College Dublin, Ireland, {devriese,david}@cs.tcd.ie
2 Radboud Universiteit Nijmegen, Netherlands, rinus@cs.ru.nl

Abstract. We present a uniqueness type system that is simpler than
both Clean’s uniqueness system and a system we proposed previously.
The new type system is straightforward to implement and add to existing
compilers, and can easily be extended with advanced features such as
higher rank types and impredicativity. We describe our implementation
in Morrow, an experimental functional language with both these features.
Finally, we prove soundness of the core type system with respect to the
call-by-need lambda calculus.

1 Introduction to Uniqueness Typing

An important property of pure functional programming languages is referential
transparency: the same expression used twice must have the same value twice.
This makes equational reasoning possible and aids program analysis, but most
languages do not have this property. For example, in the following C fragment,

int f(FILE* file) {

int a = fgetc(file); // Read a character from ’file ’

int b = fgetc(file);

return a + b;

}

it is understood that a and b can have different values, even though we are
applying the same function (fgetc) to the same input (file). Although the
input is syntactically identical, the structure denoted by file is modified by
each call to fgetc (the file pointer is advanced)—fgetc has a side effect.

In this example there would be no problem with referential transparency if
there was only a single reference to file. A side effect on a variable (file)
is okay as long as that variable is never used again: it is okay for a function to
modify its input if the input is not shared. Referential transparency then trivially
holds because the same expression never occurs more than once.

Uniqueness typing takes advantage of this observation to add side effects
to a functional language without sacrificing referential transparency. The same
function f implemented in a functional language using uniqueness typing gives

f file0 = let (a, file1) = fgetc file0

(b, file2) = fgetc file1

in (a + b, file2)

⋆ Supported by the Irish Research Council for Science, Engineering and Technology.

Rather than just returning the read character, fgetc returns a pair consisting
of the read character and a new file, file1. Although file0 and file1 point
to the same file on disk, they are conceptually and syntactically different, and
thus it is clear that a and b may have different values. The uniqueness type
system guarantees that fgetc is never applied to an argument which is used
again (shared). For example, the type checker would reject

f file0 = let (a, file1) = fgetc file0

(b, file2) = fgetc file0

in (a + b, file0)

Sharing information is recorded as an attribute on the type of a term. This
attribute is either • for unique (guaranteed not to be shared) or × for non-
unique (may or may not be shared). For instance, File• is the type of files that
are guaranteed not to be shared, and the type of fgetc might be

fgetc :: File•
×
−→ (Char×, Fileu)v

The attribute on the arrow means that the function fgetc itself is non-unique
(Sect. 4.2). The uniqueness variable u on the result means that it is up to the
programmer to decide if they want to treat it as unique or shared (Sect. 6).

2 Contributions of This Paper

The type system we present in this paper is based on that of the programming
language Clean [1, 2]. However, Clean’s type system has a number of drawbacks.

– Types and attributes are regarded as two different entities, which limits
expressiveness and impedes adding uniqueness typing to existing compilers.

– Types often involve implications between uniqueness attributes. For exam-
ple, the function const has type

const :: tu ×
−→ sv w

−→ tu, [w ≤ u]
const x y = x

The constraint [w ≤ u] denotes that if u is unique, then w must be unique (u
implies w).3 The need for this constraint will be explained in Sect. 4.2, but
the presence of these constraints complicates the work of the type checker
(the heart of the typechecker is a unification algorithm, and unification can-
not deal with inequalities) and makes extending the type system to support
modern features such as arbitrary rank types difficult.

– Clean distinguishes between non-unique terms, unique terms (which are
unique now but may become non-unique later), and necessarily unique terms
(which must remain unique forever). Moreover, Clean’s type system has a
subtyping relation between unique and non-unique terms. Both these fea-
tures make the type system unnecessarily complicated.

3 Perhaps the choice of the symbol ≤ is unfortunate. In logic a ≤ b denotes a implies b,
whereas here u ≤ v denotes v implies u. Usage here conforms to Clean conventions.

In this paper, we make the following contributions.

– Section 3 shows that we can regard uniqueness attributes as type construc-
tors of a special kind. This increases the expressive power of the type system
and simplifies the presentation and implementation of uniqueness typing.

– Section 4 presents the type system proper and shows how to avoid inequal-
ity constraints by allowing arbitrary boolean expressions as uniqueness at-
tributes. This facilitates extending the type system with advanced features
and enables the use of unification to solve relations between attributes.

– Section 6 shows how to avoid subtyping. We argued a similar point in a
previous paper [3] but unfortunately the approach in that paper requires a
second uniqueness attribute on the function arrow, offsetting the advantage
of removing subtyping. Our new approach does not have this disadvantage.

– Section 7 describes our implementation in Morrow. Morrow supports higher
rank types and impredicativity, but adding support for uniqueness typing to
Morrow required only a few changes to the compiler. This provides strong
evidence for our claim that retrofitting uniqueness typing to an existing
compiler, and extending uniqueness typing with advanced features, becomes
straightforward using the techniques in this paper. As far as the authors are
aware, this is also the first substructural type system to have these features.

– Finally, we prove soundness of our type system in Sect. 8 with respect to the
call-by-need lambda calculus [4].

3 Attributes Are Types

In this section, we show that we can regard types and attributes as one syn-
tactic category. This simplifies both the presentation and implementation of a
uniqueness type system and increases the expressive power of the type system.

If we regard types and attributes as distinct, we need type variables and at-
tribute variables, and we need quantification (∀) over type variables and attribute
variables. In addition, the status of arguments to algebraic datatypes (such as
List a) is unclear: are they types, attributes, or types with an attribute?

These issues are clarified when we regard types and attributes as a single
syntactic category. Thus Int and Bool are types, and so are • (unique) and ×
(non-unique). We regard Int× as syntactic sugar for the application of a special
type constructor Attr to two arguments, Int and ×. There are no values of type
×, nor are there values of type Int, because Int is lacking a uniqueness attribute
(there are however values of type Int×).

Types that do not classify values are not a new concept. For example, they
arise in Haskell as type constructors such as the list type constructor ([]). We
can make precise which types do and do not classify values by introducing a
kind system [5]. Kinds can be regarded as the “types of types”. By definition,
the kind of types that classify values is denoted by ∗. In Haskell, we have Int

:: *, Bool :: *, but [] :: * → *. The idea of letting the language of vanilla
types and additional properties coincide is not new either (e.g., [6, 7]), but as far
as the authors are aware it is new in the context of substructural type systems.

Kind language

κ ::= kind
T base type
U uniqueness attribute
∗ base type together with a uniqueness attribute
κ1 → κ2 type constructors

Type constants

Int, Bool :: T base type
→ :: ∗ → ∗ → T function space
•, × :: U unique, non-unique
∨, ∧ :: U → U → U disjunction, conjunction
¬ :: U → U negation
Attr :: T → U → ∗ combine a base type and attribute

Syntactic conventions

tu ≡ Attr t u

a
u
−→ b ≡ Attr (a → b) u

Fig. 1. The kind language and some type constructors with their kinds

Since we do not regard Int as a type classifying values, its kind cannot be ∗
in our type system. Instead, we introduce two new kinds, T and U , classifying
“base types” and uniqueness attributes. Since Attr combines a base type and
an attribute into a type of kind ∗, its kind is T → U → ∗. The kind language
and some type constructors along with their kinds are listed in Fig. 1. At this
point it is useful to introduce the following convention.

(Syntactic convention.) Type variables4 of kind T and U will be de-
noted by t, s and u, v. Type variables of kind ∗ will be denoted by a, b.

One advantage of treating attributes as types is that we can use type variables to
range over base types, uniqueness attributes or types with an attribute, simply
by varying the kind of the type variable. This gives more expressive power when
defining algebraic data types. For example, we can define:

newtype X a = MkX a

newtype Y t = MkY t×

newtype Z u = MkZ Intu

The type of a constructor argument must have kind ∗; hence, the first datatype is
parameterized by an attributed type (a type of kind ∗), the second by a base type
(a type of kind T), and the third by a uniqueness attribute (a type of kind U).
The kinds of X, Y and Z are therefore ∗ → T , T → T and U → T , respectively.
The codomain is T in all cases, since X Int× still lacks an attribute; (X Int×)•

on the other hand is a unique X containing a non-unique Int. So, assuming
(5 :: Int×), we have (MkX 5 :: Xu Int×), (MkY 5 :: Yu Int) and (MkZ 5 :: Zu ×).

4 Strictly speaking, these are meta variables, not object language type variables. Our
core language does not include universal quantification.

e ::= expression
x⊙ variable (used once)
x⊗ variable (used more than once)
λx · e abstraction
e e application

τk ::= type
ck constant
τ(k′→k) τk′ type application

Fig. 2. Expression and type language for the core system

In Clean, we can only define the first of these three datatypes, so we have
gained expressive power. What is more, although we have used syntactic con-
ventions to give a visual clue about the kinds of the type variables, the kinds of
these types can automatically be inferred by the kind checker, so the expressive
power comes at no cost to the programmer.

There are two possible variations to the kind system we propose. We could
treat Int× as the application of (Int :: U → ∗) to (× :: U), or as the (postfix)
application of (× :: T → ∗) to (Int :: T), avoiding the need for Attr. We prefer
distinguishing between T , U and ∗, but if the reader feels otherwise they should
feel free to read T as syntactic sugar for (U → ∗), or U as syntactic sugar for
(T → ∗). In all three variations only types of kind ∗ are inhabited, as usual.

4 Removing Constraints

In this section we show that by allowing arbitrary boolean expressions5 as
uniqueness attributes (reading “true” for unique and “false” for non-unique)
we can recode implications between uniqueness attributes as equalities. This
makes the type system so similar to the classical Hindley/Milner type system
that standard type inference algorithms can be applied and modern extensions
such as arbitrary rank types can be incorporated without much difficulty.

The expression language and type language are defined in Fig. 2 (types have
been indexed by their kind k). Both are almost entirely standard, except that
we assume that a sharing analysis has annotated variable uses with ⊙ or ⊗. A
variable x marked as x⊙ is used only once within its scope; a variable marked
as x⊗ is used more than once. The typing rules are listed in Fig. 3. The typing
relation takes the form

Γ ⊢ e : τ |fv

which reads as “in environment Γ , expression e has type τ ; the attributes on
the types of the free variables in e are fv”. Both Γ and fv are mappings from
term variables to types; the only difference is that Γ maps variables to types
of kind ∗ and fv maps variables to types of kind U (in other words, to unique-
ness attributes). The typing rule for abstraction uses fv to determine whether a
function needs to be unique (this is discussed in more detail in Sect. 4.2).

5 Although the typing rules only use disjunctions between uniqueness attributes, more
complicated expressions can be introduced when unifying two boolean expressions.

Γ, x : tu ⊢ x⊙ : tu|x:u
Var

⊙

Γ, x : t× ⊢ x⊗ : t×|x:×
Var

⊗

Γ, x : a ⊢ e : b|fv fv ′ = x fv

Γ ⊢ λx · e : a
W

fv′

−−−→ b|fv′

Abs

Γ ⊢ e1 : a
u
−→ b|fv

1
Γ ⊢ e2 : a|fv

2

Γ ⊢ e1 e2 : b|fv
1
∪ fv

2

App

Fig. 3. Typing rules for the core lambda calculus

The rules are similar to the Hindley/Milner rules, except that they main-
tain some extra information about uniqueness. The underlying base system is
unchanged, so that uniqueness typing can be seen as an “add-on”.

4.1 Variables

We need to distinguish variables that are used once in their scope and variables
that are used multiple times. The rule for variables that are used only once
(Var⊙) is identical to the normal Hindley/Milder rule, and we simply look up
the type of the variable in the environment. Note that even when a variable is
used only once, that does not automatically make its type unique. For example,
there is only one use of x in the identity function:

id x = x⊙

but when a shared term is passed to id, it will still be shared when it is returned
from id. On the other hand, if a variable is used more than once (rule Var⊗),
its type must be non-unique (shared).

4.2 Partial Application

Dealing correctly with partial application is probably the most subtle aspect of
uniqueness typing. We will demonstrate the problem using a simple example.
Temporarily ignoring the attributes on arrows, the type of dup is

dup :: t× → (t×, t×)u

dup x = (x⊗, x⊗)

Since dup duplicates its argument, it only accepts non-unique arguments. The
type checker can easily recognize that dup duplicates x because there is more
than one use of x in the function body, which is therefore marked as ⊗. However,
what if we rewrite dup as

dup ’ x = (\f -> (f⊗ ⊥, f⊗ ⊥)) (const x⊙)

Now there is only one reference to x, which is therefore marked as ⊙. Still
ignoring the attributes on arrows, the function const is defined as

const :: tu → sv → tu

const x y = x

It would therefore seem that the type of dup’ is

dup ’ :: tu → (tu, tu)v

But that cannot be correct, because this type of dup’ tells us that if we pass a
single unique t to dup’, it will return a pair of two unique ts. However, the full
type of const in our type system is

const :: tu ×
−→ sv u

−→ tu

If you pass in a unique t, you get a unique function from s to t: a function that
can only be used once. Conversely, if you use a partial application of const

more than once, the argument to const must be non-unique. The type of dup’
is therefore

dup ’ :: t×
×
−→ (t×, t×)u

Reassuringly, this is the same type as the type of dup. In general, a function
must be unique (and can be applied only once) if it has any unique elements in
its closure (the environment that binds the free variables in the function body).

4.3 Abstraction and Application

The rule for abstractions is the same as the Hindley/Milner rule, except that
we must determine the value of the attribute on the arrow. As discussed in
Sect. 4.2, a function must be unique if it has any unique elements in its closure.
The closure of a function λx · e consists of the free variables in the body e of
the function, minus x. The attributes on the free variables in the body of the
function are recorded in fv ; using fv ′ = x fv (domain subtraction) to denote fv
with x removed from its domain, we use the disjunction

∨
fv ′ of all the attributes

in the range of fv ′ as the uniqueness attribute on the arrow (recall that we treat
uniqueness attributes as boolean expressions).

The rule for application is the normal one, except that we collect the free
variables. The attribute on the arrow is ignored (we can apply both unique and
shared functions).

4.4 Encoding Constraints

In general, we can always recode a type of the form

. . . �u . . . �v . . . , [u ≤ v]

using a disjunction
. . . �u∨v . . . �v . . .

This faithfully models the implication: when v is unique, u∨v reduces to unique,
but when v is non-unique, u∨v reduces to u. For example, in Clean the function
fst that extracts the first element of a pair has the type

fst :: (tu, sv)w → tu, [w ≤ u]
fst (x, y) = x

which we can recode as

fst :: (tu, sv)w∨u → tu

However, in many cases we can do slightly better. For example, suppose the
typing rule for pairs is

Γ ⊢ e1 : a|fv Γ ⊢ e2 : b|fv
Γ ⊢ (e1, e2) : (a, b)u|fv

Pair

then for every derivation of e :: (a, b)•, there is also a derivation of e :: (a, b)×

(because the typing rule leaves the attribute on the pair free). That means that
we can simplify the type of fst to

fst ’ :: (tu, sv)u → tu

The only pairs accepted by fst but rejected by fst’ are unique pairs, but
since the type checker will never infer a pair to be unique (but always either
non-unique or polymorphic in its uniqueness), that situation will never arise.
We took advantage of the same principle in the rule for abstraction, where we
recoded a type

. . .
u
−→ . . . , [u ≤ v, u ≤ w, . . .]

as
. . .

v∨w∨...
−−−−−→ . . .

This will force some functions to be non-unique which would otherwise be poly-
morphic in their uniqueness, but that cannot cause any type errors: the rule
for function application ignores the uniqueness attribute on the function, and
non-unique functions can be used multiple times.

5 Boolean Unification

One advantage of removing constraints from the type language is that standard
inference algorithms (such as algorithm W [8]) can be applied without any mod-
ifications. The inference algorithm will depend on a unification algorithm, which
must be modified to use boolean unification when unifying two terms of kind U .
Suppose we have two terms g and h

g :: t•
×
−→ . . . h :: tu∨v

Should the application g h be allowed? If so, we must be able to unify u∨ v ≃ •.
This equation has many solutions, such as [u 7→ •, v 7→ v], [u 7→ u, v 7→ •], or
[u 7→ •, v 7→ •]. (Recall that attributes are boolean expressions.) However, none
of these solutions is most general, and it is not obvious that the equation u∨v ≃ •
even has a most general unifier, which means we would lose principal types.
Fortunately, unification in a boolean algebra is unitary [9]. In other words, if a
boolean equation has a solution, it has a most general solution. In the example,
one most general solution is [u 7→ u, v 7→ v ∨ ¬u].

unify0 :: BooleanAlgebra a => a -> [Var] -> (Subst a, a)

unify0 t [] = ([], t)
unify0 t (x : xs) = (st ∪ se, cc)

where st = [x 7→ se t0 ∨ (x ∧ se (¬t1))]
(se, cc) = unify0 (t0 ∧ t1) xs
t0 = [x 7→ 0] t
t1 = [x 7→ 1] t

Fig. 4. Boolean unification (unify t ≃ 0)

There are two well-known algorithms for unification in a boolean algebra,
known as Löwenheim’s formula and successive variable elimination [9, 10]. For
our core system either algorithm will work, but when arbitrary rank types are
introduced and we need to use skolemization [11], only the second is practical.6

Temporarily using the more common 0 for false (not unique) and 1 for true
(unique), to unify two terms p and q it suffices to unify t = (p∧¬q)∨(¬p∧q) = 0.
This is implemented by unify

0
, shown in Fig. 4, which takes a term t in a boolean

algebra a and the list of free variables in t as input, and returns a substitution
and the “consistency condition”, which will be zero if unification succeeded.

6 On Subtyping

In this section we compare our approach to subtyping with that of Clean [2] and
to that of our previous paper on the topic [3]. Consider again the function dup:

dup :: t×
×
−→ (t×, t×)u

dup x = (x, x)

In Clean dup has the same type, but that type is interpreted differently. Clean’s
type system uses a subtyping relation: a unique type is considered a subtype of
a non-unique type. That is, we can pass in something that is unique (such as a
unique Array) to a function that is expecting a non-unique type (such as dup).

The fact that a unique array can become non-unique is an important feature
of a uniqueness type system. A non-unique array can no longer be updated,
but can still be read from. However, adding subtyping to a type system leads
to considerable additional complexity, especially when considering a contravari-
ant/covariant system with support for algebraic data types (such as Clean’s). It
becomes simpler when considering an invariant subtyping relation, but we feel
that subtyping is not necessary at all.

6 Löwenheim’s formula maps any unifier to a most general unifier, reducing the prob-
lem of finding an MGU to finding a specific unifier. For the two-element boolean
algebra that is easy, but it is more difficult in the presence of skolem constants. For
example, assuming that uR and vR are skolem constants, and w is a uniqueness
variable, the equation uR ∨ vR ≃ w has a trivial solution [w 7→ uR ∨ vR], but we can
no longer guess this solution by instantiating all variables to either true or false.

In our previous paper, we argued that the type of dup should be

dup :: tu
uf
−−→
×

(t×, t×)v

The (free) uniqueness variable on the t in the domain of the function indicates
that we can pass unique or non-unique terms to dup. Since it is always possible to
use a uniqueness variable in lieu of a non-unique attribute, an explicit subtyping
relation is not necessary.

But there is a catch. As we saw in Sect. 4.2, functions with unique elements
in their closure must be unique, and must remain unique: they should only be
applied once. In Clean, this is accomplished by regarding unique functions as
necessarily unique, and the subtyping is adjusted to deal with this third notion
of uniqueness: a necessarily unique type is not a subtype of a non-unique type.
Hence, we cannot pass functions with unique elements in their closure to dup.

Unfortunately, when dup gets the type from our previous paper it can be
used to duplicate functions with unique elements in their closure. Therefore we
introduced a second attribute on the function arrow, indicating whether the
function had any unique elements in its closure. The typing rule for application
enforced that functions with unique elements in their closure (second attribute)
were unique (first attribute). That means that functions with unique elements
in their closure can be duplicated, but once duplicated can no longer be applied.

This removed the need for subtyping, but that advantage was offset by the
additional complexity introduced by the second uniqueness attribute on arrows:
the additional attribute made types more difficult to read (especially in the case
of higher order functions).

An important contribution of the current paper is the observation that this
additional complexity can be avoided if we are careful when assigning types to
library functions. For example, a function that returns a new empty array should
get the type

newArray :: Int
×
−→ Arrayu

rather than

newArray :: Int
×
−→ Array•

Similarly, the function that clears all elements of an array should get the type

resetArray :: Array•
×
−→ Arrayu

rather than

resetArray :: Array•
×
−→ Array•

An Array that is polymorphic in its uniqueness can be passed to resetArray

as easily as it can be passed to dup (of course, a shared array still cannot be
passed to resetArray). If we are careful never to return a unique array from a
function, we will always be able to share arrays. We still do not have an explicit
subtyping relation but we get the same functionality: the subtyping is encoded
in the type of Array, rather than in the type of dup.

Not all functions should be so modified. For example, many functions with
side effects in Clean have a type such as

fun :: · · · → (World• → World•)

where the World is a token object representing the world state. It never makes
sense to duplicate the world, which can be enforced by returning a unique World
(rather than a World which is polymorphic in its uniqueness).

It may seem that a disadvantage of our approach is that we can no longer
take advantage of more advanced sharing analyses. For example, given

isEmpty :: Arrayu ×
−→ Bool×

shrink , grow :: Array•
×
−→ Arrayu

sharing analysis has been applied correctly to the following definition [2]:

f arr = if isEmpty arr⊗ then shrink arr⊙ else grow arr⊙

Even though there are three uses of arr within f, only one of the two branches
of the if-statement will be executed. Moreover, the condition is guaranteed to
be evaluated before either of the branches, and the shared (⊗) annotation on
arr means that the array will not be modified when the condition is evaluated.

However, this example uses arr at two different types: Array× within the
condition and Array• within both branches. This works in Clean because Array•

is a subtype of Array×. In our previous proposal [3], this works because a unique
term can always be considered as a non-unique term. In our new proposal how-
ever, this program would be rejected (since Array• does not unify with Array×).

However, we can take advantage of the fact that we have embedded our
core system in an advanced type system that supports first class polymorphism
(Sect. 7). We want to use a polymorphic value (arr :: ∀u.Fileu) at two different
types within a function: the classic example of a higher rank type [11]. Our
example above typechecks if we provide the following type annotation:

f :: ∀v. (∀u. Arrayu)
×
−→ Arrayv

The function f now demands that the array that is passed in is polymorphic in
its uniqueness. That is reasonable when we consider that we are using the array
at two different types in the body. Moreover, since we regard all unique objects
as necessarily unique, it is also reasonable that we cannot pass in a truly unique
array to f.

Of course there is a trade-off here between simplicity (and ease of understand-
ing) of the type system on the one hand and usability on the other. Since the
user must provide a type annotation in order for the definition of f to typecheck,
the type system has arguably become more difficult to use. However, this case is
rare enough that the additional burden on the programmer is small, and a case
can be made that it is useful to require a type annotation as it is non-obvious
why the function definition is accepted.

7 Implementation in Morrow

We have integrated our type system in Morrow, an experimental functional lan-
guage developed by Daan Leijen.7 Morrow’s type system is HMF [12], which is a
Hindley/Milner-like type system that supports first class polymorphism (higher
rank types and impredicativity). As such, it is an alternative to both Boxy Types
[13] and MLF [14]. However, unlike boxy types, it is presented as a small logical
system which makes it easier to understand, and at the same time it is much
simpler than MLF. Although HMF is quite a good fit with our type system, we
have also experimented with integrating it into other type systems. For example,
we we have a prototype implementation of a variant on the type system of this
paper that uses the arbitrary rank type system from [11].

As it turns out, the implementation of our type system in Morrow is agreeably
straightforward. This provides strong evidence for our claim that adding unique-
ness typing to an existing compiler, and more importantly, extending uniqueness
typing with advanced features such as higher rank types and impredicativity,
poses little difficulty when using the techniques from this paper.

We outline the most important changes we had to make to Morrow:

– We modified the kind checker to do kind inference for our new kind system
(mostly a matter of changing the kinds of type constants)

– We implemented sharing analysis, annotating variables with information on
how often they are used within their scope (once or more than once)

– We modified the rules for variables and abstraction, so that shared variables
must be non-unique, and abstractions become unique when they have unique
elements in their closure. To be able to do the latter, all the typing rules had
to be adapted to return the fv structure from Sect. 4. Variables that are used
at a polymorphic uniqueness (a type of the form ∀u.tu for some t) must be
treated as if they were unique for the purposes of fv .

– Let bindings had to be adapted to remove the variables bound from fv .
Moreover, the type of every binding in a recursive binding group must be
non-unique (as is standard in a uniqueness type system [2]).

– Most of the work was in modifying the types of the built-in functions and
the kinds of the built-in types, and adding the appropriate type constants
(such as Attr) and kind constants (T , U). However, all of these changes were
local and did not affect the rest of the type checker.

– Unification had be adapted to do boolean unification, as explained in Sect. 5.
In addition, it is necessary to simplify boolean expressions, so that for ex-
ample tu∨× is simplified to tu. This is important because if no simplification
is used the boolean expressions can quickly get complicated. Fortunately, we
can use an independent module for boolean unification and simplification.
When unifying a ≃ b, it suffices to check the kinds of a and b, and if they
are U , to call the boolean unification module. Therefore, boolean unification
does not in any way complicate the unification algorithm of the type checker.

7 Unfortunately we cannot currently make the source available due to licensing issues.

– Morrow uses System F (with pattern matching) as its typed internal lan-
guage. Although the “attributes are types” approach of Sect. 3 means that
the internal language does not need to change, Morrow also includes a Sys-
tem F type checker to ensure that the various phases of the compiler generate
valid code. This type checker had to be adapted in a similar way to the main
type checker.

The majority of these changes were local (did not require any significant refac-
toring of the compiler), and none of the changes were complicated. The fact
that we can treat both vanilla types and uniqueness attributes as types (of dif-
ferent kinds) really helped: modifying the kind checker was straightforward, we
got the additional expressive power described in Sect. 3 virtually for free, we did
not have to introduce an additional universal quantifier for uniqueness attributes
(and thus avoided having to modify operations on types such as capture avoiding
substitution or pretty-printing), etc.

8 Soundness

To prove soundness, we use a slightly modified (but equivalent) set of typing
rules.8 Rather than giving different typing rules for variables marked as used
once or used more than once, we do not mark variables at all but enforce that
unique variables are used at most once by splitting the environment into two
in rule App. Non-unique variables can still be used more than once because
the context splitting operation collapses multiple assumptions about non-unique
variables (rule Split

×). This presentation of the type system is known as a
substructural presentation because some of the structural rules (in this case,
contraction) do not hold. The presentation style we have used, using a context
splitting operation, is based on that given in [15], where it is attributed to [16].

The soundness proof for a type system states that when a program is well-
typed it will not “go wrong” when evaluated with respect to a given semantics.
We are interested in a lazy semantics; often the call-by-name lambda calculus is
used as an approximation to the lazy semantics, but it is not hard to see that we
will not be able to prove soundness with respect to the call-by-name semantics.
For example, consider

(\x. (x, x)) (f y)

In the call-by-name semantics, this term evaluates to

(f y, f y)

But when we allow for side effects, these two terms have a different meaning. In
the first, we evaluate f y once and then duplicate the result; in the second, we

8 The syntax-directed presentation using sharing marks is easier to understand and
more suitable for type inference. However, it is not usable for a soundness proof. Such
a distinction between a syntax-directed and a logical presentation is not uncommon,
and has been used before in the context of uniqueness typing [2].

Term language

e ::= x |λx · e | e e term
A ::= λx · e | let x = e in A answer
E ::= [] |E e | let x = e in E | let x = E0 in E1[x] evaluation context

Syntactic convention

(let x = e1 in e2) ≡ (λx · e2) e1

Evaluation rules

7→ is the smallest relation that contains Value, Commute, Assoc and is closed under
the implication M 7→ N implies E[M] 7→ E[N].
(Value) let x = λy · e in E[x] 7→ {(λy · e)/x}E[x]
(Commute) (let x = e1 in A) e2 7→ let x = e1 in Ae2

(Assoc) let y = (let x = e in A) in E[y] 7→ let x = e in let y = A in E[y]

Substructural typing rules

Γ, x : tu ⊢ x : tu|x:u
Var

Γ, x : a ⊢ e : b|fv fv ′ = x fv

Γ ⊢ λx · e : a
W

fv′

−−−→ b|fv′

Abs

Γ ⊢ e1 : a
u
−→ b|fv

1
∆ ⊢ e2 : a|fv

2

Γ ◦ ∆ ⊢ e1 e2 : b|fv
1
◦fv

2

App

Context splitting

∅ = ∅ ◦ ∅
Split

∅ Γ = Γ1 ◦ Γ2

Γ, x : t× = (Γ1, x : t×) ◦ (Γ2, x : t×)
Split

×

Γ = Γ1 ◦ Γ2

Γ, x : t• = (Γ1, x : t•) ◦ Γ2
Split

•
1

Γ = Γ1 ◦ Γ2

Γ, x : t• = Γ1 ◦ (Γ2, x : t•)
Split

•
2

Fig. 5. Call-by-Need Semantics

evaluate f y twice (and so have the potential side effect of f twice). Accordingly,
the types of both terms in a uniqueness type system are also different. In the
first, f may or may not be unique, and must have a non-unique result (because
the result is duplicated). In the second, f cannot be unique (because it is applied
twice) and may or may not return a unique result.

Traditionally [2] a graph rewriting semantics is used to prove soundness,
but this complicates equational reasoning. Fortunately, it is possible to give
an algebraic semantics for lazy evaluation. Launchbury’s natural semantics for
lazy evaluation [17] is well-known and concise, but is a big-step semantics which
makes it less useful for a soundness proof. The call-by-need semantics by Maraist
et al. [4] is slightly more involved, but is a small-step semantics and fits our needs
perfectly. The semantics is shown in Fig. 5.

Unfortunately, due to space limitations we can only give a summary of the
proof here. A full formal proof, written using the Coq proof assistant, can be
found in a separate technical report [18].

Theorem 1 (Progress). Suppose e is a closed, well-typed term (∅ ⊢ e : τ |fv
for some τ and fv). Then either e is an answer or there exists some e′ such that
e 7→ e′.

Proof. The easiest way to prove progress is to prove a weaker property first:
for every term e, e is an answer, there exists some e′ such that e 7→ e′, or
e = E[x] for some x. This weaker property can be proven by a complete structural
induction on e; the proof is laborious but not difficult. To prove progress using the
weak progress property, we just need to rule out the last possibility. However,
if e = E[x] for some x, and ∅ ⊢ e : τ |fv , then we must have x ∈ ∅, which is
impossible. ⊓⊔

The proof of preservation is more involved and we can only give a brief outline
here. The main lemma that we need to be able to prove preservation is the
substitution lemma:

Lemma 1 (Substitution). If Γ, x : a
W

fv
2−−−→ b ⊢ e1 : τ |fv

1
,x:

W

fv
2
, x is free in

e1, and ∆ ⊢ λy · e2 : a
W

fv
2−−−→ b|fv2

, then Γ ◦ ∆ ⊢ {(λy · e2)/x} e1 : τ |fv
1
◦fv

2
.

The proof is by induction on Γ, x : a
W

fv
2−−−→ b ⊢ e1 : τ |fv

1
,x:

W

fv
2

and is not trivial.
The essence of the proof is that if (λx · e1)(λy · e2) is well-typed, then either x
occurs once in e1, in which case we can substitute λy · e2 for x without difficulty,
or x occurs more than once in e1. In that case, x must have a non-unique type,
which means that λy · e2 must be non-unique, and therefore the function cannot
have any unique elements in its closure—or equivalently, that e2 be typed in an
environment where every variable has a non-unique type. Since ∆ = ∆ ◦∆ if all
assumptions in ∆ are non-unique, this means that we can type the result term
even when λy · e2 is duplicated.

Armed with the substitution lemma, we can prove preservation:

Theorem 2 (Preservation). If Γ ⊢ e : τ |fv and e 7→ e′ then Γ ⊢ e′ : τ |fv .

Proof. By induction on e 7→ e′. The cases for Commute, Assoc, and the three
closure rules (one for each of the non-trivial evaluation contexts) are reasonably
straightforward. The case for Value relies on the substitution lemma. ⊓⊔

A full formalization of the calculus extended with (let-bound or first-class) poly-
morphism is future work.

9 Related Work

There is a large body of related work; we can only discuss the most relevant.

There are two recent papers on uniqueness typing: Harrington [19] presents
a categorical semantics for a uniqueness type system like Clean’s, and Hage et
al. [20] present a generic type system that can be instantiated to support either
sharing analysis or uniqueness typing.

In both systems all unique terms can be coerced to non-unique terms. As
observed in Sect. 6 it is possible to allow this, but one must be careful with
partially applied functions which may have unique elements in their closure.

In the type system from Hage et al., functions with unique elements in their
closure must be unique; however, these functions can then be coerced to be non-
unique and can be applied an arbitrary many times; no special provision is made
to prohibit this. Thus, it is possible to define a function dup! of type

dup! :: t• → (t•, t•)v

dup! x = (\f -> (f ⊥, f ⊥)) (const x)

The authors suggest that the problem may be remedied by introducing an ad-
ditional attribute on arrows, like we suggested in our previous paper (see also
Sect. 6)—and they adopt this solution in a later paper [21]. It remains to be
seen whether a similar solution to the one we propose in the current paper is
possible for their system. The central thesis of their paper is a duality between
uniqueness typing and sharing analysis, and it is not clear whether this duality
is preserved when removing subtyping.

Harrington suggests a different solution to the problem of partial applica-
tion. Two distinct sorts of functions are introduced: ones that can have unique
elements in their closure (of type a ⊸ b) and ones that cannot (of type a ⇒ b).
Functions of type a ⇒ b do not pose any problems and can safely be applied
many times (and potentially return unique results).

Functions with unique elements in their closure can also be applied multiple
times, but their result must be non-unique if they are applied more than once.
While this means that it is no longer possible to define dup!, this approach
is not sufficient to guarantee referential transparency. For example, consider a
function closeFile which returns a boolean indicating whether the file was
already closed:

closeFile :: File•
×
−→ Bool×

In Harrington’s system, the following program would be accepted

f file = (\g. g ⊥, g ⊥) (\x. closeFile file)

even though it is not referentially transparent (it would be rejected in our type
system). It is accepted because the closeFile always returns a non-unique
result, and hence the restriction that functions that are used more than once
must return a non-unique result makes no difference (and hence is not enough to
guarantee referential transparency). It may be difficult to modify Harrington’s
system to adopt a solution similar to the one we propose: subtyping between
unique and non-unique terms is fundamental to Harrington’s formalization.

Uniqueness typing is often compared to linear (or affine) logic [22]. Although
both linear logic and uniqueness typing are substructural logics, there are im-
portant differences. In linear logic, variables of a non-linear type can be coerced

to a linear type (dereliction). Harrington phrases it well: in linear logic, “linear”
means “will not be duplicated” whereas in uniqueness typing, ”unique” means
“has not been duplicated”. According to Wadler: “Does this mean that linear-
ity is useless for practical purposes? Not completely. Dereliction means that we
cannot guarantee a priori that a variable of linear type has exactly one pointer
to it. But if we know this by other means, then linearity guarantees that the
pointer will not be duplicated or discarded” [22, Sect. 3].

However, some systems based on linear logic (such as [23]) are much closer to
uniqueness typing than to linear logic, and these systems could benefit equally
from the techniques presented in this paper (attributes as types, boolean expres-
sions for attributes).

Finally, Guzmán’s Single-Threaded Polymorphic Lambda Calculus [24] has
similar goals to uniqueness typing, but is considerably more complicated. Much
of this complexity comes from trying to support a “strict let” construct where
unique (or “single-threaded”) terms can be used multiple times at a non-unique
(multiple-threaded) type. A detailed discussion of this problem is beyond the
scope of this paper; see for example [25, Sect. 9.4] or [26].

10 Conclusions

By treating uniqueness attributes as types of a special kind U , the presentation
and implementation of a uniqueness type system is simplified, and we gain ex-
pressiveness in the definition of algebraic datatypes. We can recode attribute
inequalities (implications between uniqueness variables) as equalities if we al-
low for arbitrary boolean expressions as uniqueness attributes. This makes type
inference easier (unification cannot deal with inequalities, but can deal with
equalities between boolean expressions). Finally, no explicit subtyping relation
is necessary if we are careful when assigning types to library functions: we require
that unique terms must never be shared, and make sure that functions never re-
turn unique terms (but rather terms that are polymorphic in their uniqueness).

Together these observations lead to an expressive yet simple uniqueness type
system, which is sound with respect to the call-by-need lambda calculus. The sys-
tem can easily be extended with advanced features such as higher rank types and
impredicativity. We have integrated our type system in Morrow, an experimen-
tal programming language with an advanced type system. The implementation
required only minor changes to the compiler, providing strong evidence for our
claim that retrofitting our type system to existing compilers is straightforward.

Acknowledgements. We thank Daan Leijen, Paul Levy and Adam Megacz for
various insightful discussions, and Arthur Charguéraud for his generous assis-
tance with the formal proof in Coq, which uses the proof engineering technique
devised by him and others [27].

References

1. Barendsen, E., Smetsers, S.: Conventional and uniqueness typing in graph rewrite
systems. Technical Report CSI-R9328, University of Nijmegen (December 1993)

2. Barendsen, E., Smetsers, S.: Uniqueness typing for functional languages with graph
rewriting semantics. Math. Struct. in Computer Science 6 (1996) 579–612

3. De Vries, E., Plasmeijer, R., Abrahamson, D.: Uniqueness typing redefined. In
Horváth, Z., Zsók, V., Butterfield, A., eds.: IFL 2006. (2007)

4. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. JFP 8(3)
(1998) 275–317

5. Jones, M.P.: A system of constructor classes: overloading and implicit higher-order
polymorphism. In: FPCA ’93. (1993) 52–61

6. Sheard, T.: Putting Curry-Howard to work. In: Haskell Workshop ’05, ACM (2005)
74–85

7. Sulzmann, M., Chakravarty, M.M.T., Jones, S.P., Donnelly, K.: System F with
type equality coercions. In: TLDI ’07, ACM (2007) 53–66

8. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: POPL
’82. (1982) 207–212

9. Baader, F., Niphow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

10. Brown, F.M.: Boolean Reasoning. Dover Publications, Inc. (2003)
11. Peyton Jones, S., Vytiniotis, D., Weirich, S., Shields, M.: Practical type inference

for arbitrary-rank types. JFP 17(1) (Jan 2007) 1–82
12. Leijen, D.: HMF: Simple type inference for first-class polymorphism. Technical

Report MSR-TR-2007-118, Microsoft Research, Redmond
13. Vytiniotis, D., Weirich, S., Peyton Jones, S.: Boxy types: inference for higher-rank

types and impredicativity. In: ICFP ’06. (2006) 251–262
14. Botlan, D.L., Rémy, D.: MLF: raising ML to the power of System F. In: ICFP ’03.

(2003) 27–38
15. Walker, D.: Substructural type systems. In Pierce, B., ed.: Advanced Topics in

Types and Programming Languages. The MIT Press (2005)
16. Cervesato, I., Pfenning, F.: A linear logical framework. Inf. Comput. 179(1) (2002)

19–75
17. Launchbury, J.: A natural semantics for lazy evaluation. In: POPL ’93. (1993)

144–154
18. de Vries, E.: Uniqueness typing simplified—technical appendix. Technical Report

TCD-CS-2008-19, Trinity College Dublin
19. Harrington, D.: Uniqueness logic. Theor. Comput. Sci. 354(1) (2006) 24–41
20. Hage, J., Holdermans, S., Middelkoop, A.: A generic usage analysis with subeffect

qualifiers. In: ICFP ’07, ACM (2007) 235–246
21. Hage, J., Holdermans, S.: Heap recycling for lazy languages. In: PEPM ’08, ACM

(2008) 189–197
22. Wadler, P.: Is there a use for linear logic? In: PEPM ’91. (1991) 255–273
23. Turner, D.N., Wadler, P., Mossin, C.: Once upon a type. In: FPCA ’95. (1995)

1–11
24. Guzman, J., Hudak, P.: Single-threaded polymorphic lambda calculus. In: Logic

in Computer Science ’90. (June 1990) 333–343
25. Plasmeijer, R., van Eekelen, M.: Clean language report (version 2.1)
26. Odersky, M.: Observers for linear types. In: ESOP ’92, Springer-Verlag (1992)

390–407
27. Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering

formal metatheory. SIGPLAN Not. 43(1) (2008) 3–15

