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Abstract

In today’s digital society, information systems play an important role in many

organizations. While their construction is a well understood software engineering

process, it still requires much engineering effort. Since each new information

system requires the same kind of operations, but for different types of data, much

of this effort consists of repetitive programming work.

In this thesis we explore how generic programming in Clean can be used to reduce

this effort. The presented approach uses Object Role Models to systematically

derive both the relational model of a database, and the types of the data structures

that represent entities in that database. In doing so, a clear relation between these

types and the database is maintained, which enables automated mapping between

them.

To support this approach, a prototype library, which implements this mapping, and

an example information system have been implemented.
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Chapter 1

Introduction

In today’s digital society, information systems (ISs) play an important role in many

organizations. A lot of administrative business processes are supported by such

systems, and some have even been entirely automated. While the construction

of such systems has become a more or less standardized software engineering

process, the required amount of effort remains high. Primarily because, since

each organisation has different business processes, information systems need to

be tailored or custom made for each individual organisation.

The bulk of work in the IS development process can be divided into two groups

of activities: specification and design, and software construction. During the

specification and design activities the knowledge embedded in business processes

is made explicit and codified in written specifications. These specifications con-

sist of natural language requirements and sometimes, more or less formal models

of the conceived system. Because computers are not able to observe business

processes or interview domain experts, these activities will always require human

effort. Specifications are usually written in natural language and cannot be in-

terpreted directly by computers. Therefore, the software construction activities

are needed, during which the specifications are interpreted by programmers who

translate them into computer programs. The amount of work required to do so

largely depends on the level of abstraction that the used tools and programming

languages offer. The higher the abstraction, the more concise the specifications

can be expressed.

A technique which can be used to reduce programming effort in systems where

similar operations are defined for many different data types is “generic program-

ming”. This technique allows the specification of high level algorithms that work

for any type. Since IS development is a largely standardized and well understood

process, a lot of the construction work involved is repetitive. For example, there is

little difference between the construction of a data entry interface for the entry of

new patients in a hospital IS and the entry of books in a library IS. In both cases,

the steps in a data entry interface are the same: Read data from a number of

1



2 CHAPTER 1. INTRODUCTION

database tables, construct some data structure, manipulate that data structure

(e.g. by presenting it to a user as a form), and finally propagate the changes

back by updating, adding or deleting records in a number of database tables. The

data structures used during manipulation are essentially representations, or views,

on parts of the database. Due to the difference in domains, the representation

data types and database tables for patients are different then the ones used in

the library IS, which means we have to write separate code for both systems. An

interesting question is now: How can generic programming be used to reduce the

construction effort of these data entry parts of an information system?

A different approach to reducing construction effort, is reuse of the specification

effort. If specification is done using formal languages and models instead of just

natural languages, automated transformation of specifications into parts of the

executable system becomes possible. Formalization of the specification process

also introduces other advantages such as the possibility of automated checking of

properties such as ambiguity or contradiction. A formal modeling language that

is useful for IS design is Object Role Modeling (ORM). In this graphic modelling

language one can specify what information is to be stored in an information system

by expressing facts about the modelled domain. Since ORM has a formally defined

syntax and semantics, it is possible to derive a relational database schema directly

from the model. While this already an example of reuse of the specification effort,

one might wonder if ORM models could be used to derive even more parts of an

information system.

At first glance, these two approaches are very different. But if we look closer, we

see that there is a connection. If we want to use generic programming to automate

the mapping of data from the various tables in the database to the representation

data structures, we need to know the relation between the types and tables. For

arbitrary types and tables this relation is not clear, or does not even exist. But

when we know that both the types and the tables represent the same concepts

we might succeed. This is where we can benefit from ORM models. If we use an

ORM model, to not just derive a database, but at the same time derive the data

types that will serve as representations for data entry, we are able to maintain an

explicit relation between the database and those types. In this thesis we explore

this approach by answering the following question:

How can we derive a database and a set of representation/view types

from an ORM model, such that generic programming can be used to

automatically map between them?
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1.1 Background

The foundations on which this thesis builds, are on the one hand conceptual model-

ing, especially Object Role Modeling, and on the other hand generic programming.

Before we continue with the further definition of our research question in the next

section, we briefly discuss both of these techniques to provide the required context.

1.1.1 Object role modeling

In order to find a mapping between entities that have some storage representation

in a database and another representation defined by their types in a programming

language, we have to “zoom out” to the conceptual level to see what the entities

and their properties and relations actually are, because both representations are

simply different forms of the same conceptual entity. ORM [8] gives us a formal

modeling language in which we can describe the “world”, or so called Universe of

Discourse (UoD), of our information systems at this conceptual level.

ORM is a conceptual modeling language based on the idea of objects playing

roles in facts. It is a formalization of its predecessor, NIAM (Natural language

Information Analysis Methodology) [20], which is a similar conceptual modeling

technique. With ORM you can model a UoD by stating facts about that universe in

semi natural language. For example: “Person a works for Department b”. Such

facts are expressed using a formal visual diagram language. It is also possible to

“verbalize” facts in a model. This means that the semi natural language sentences

describing them can be derived from the graphical model automatically. This is a

very useful feature for the validation of models by domain experts.

Unlike other conceptual modeling techniques, such as UML class diagrams [1],

ORM has a well defined syntax and semantics. ORM models are therefore not

only well defined specifications, but also have formal meaning and can be used

as input for the derivation of other models. The standard example of this is the

derivation of relational models from ORM with the Rmap algorithm [13], but

we can also use it to derive other models, such as classes in an object oriented

language, or in our case types in a functional language.

1.1.2 Generic Programming

Generic programming is a term which has many meanings in many different con-

texts. The shared idea behind all of them is that one solution can be specified that

is applicable to many similar problems. The actual techniques that are used to

achieve this goal however, vary wildly. For example the generics introduced in Java

1.5 [5] are just parametric polymorphism. Something which has been available in

functional languages for a long time.
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Figure 1.1: The five sub problems to be solved

Even within the family of functional languages, the term generic programming

is used for different techniques. The shared context here, is that it is used for

techniques that allow a programmer to specify functions that can be applied to

values of any type. In this thesis we will use the generic programming mechanism

of Clean [2]. While similar mechanism exist in, for example Haskell [10], Clean has

the advantage of having generics built into the language and the compiler directly.

This allows us to write and use generic functions without depending on additional

preprocessors or compiler extensions.

Generic programming in Clean is based on the idea that any value can be system-

atically transformed to a generic domain and back. This generic domain consists

of a three types which can describe any value: A unit which is a non parametrized

value, an either which represents a choice, and a pair which enables composition

of values. Once a programmer specifies a function which is defined for values of

the types of the generic domain, he has a function which is applicable to values

of any type. A value is first transformed to the generic domain, then the generic

function is applied and finally the modified generic value is transformed back to

it’s original type. In Clean, the transformation from and to the generic domain

is handled transparently by the compiler. The only thing we have to do is write

generic functions and tell the compiler to derive that function for the types we

want to apply it to.

1.2 Problem definition

Since our question is too broad to tackle at once, we apply a “divide and conquer”

approach. We realize the complete generic database mapping by dividing the

problem into sub mappings. These are depicted in figure 1.1, in which the arrows

indicate the sub mappings. The numbers on the arrows correspond to sections

1.2.1 to 1.2.4 in which each is explained further.
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1.2.1 Mapping conceptual models to types

The first problem that needs to be addressed is the question of how to represent

entities in the in the Clean programming language. Because information in an IS is

updated incrementally we need to find a representation for single entities, instead

of the entire database.

The challenge in this problem lies mostly in designing the representation in such

a way that it can be readily used by the programmer in a convenient way. If this

is not the case, it still is necessary to manually program transformations between

the representation used by the mapping, and convenient custom data types. In

this case little is gained, because instead of translating between custom data types

and the database language (SQL), the programmer now has to translate between

his own data types and the representation used by the automatic mapping.

Because we use generic algorithms for the manipulation of the representation, we

can use a representation scheme in which each model is represented by its own

set of types. This freedom in the representation scheme improves the usability of

the representations because it is not necessary to represent every possible model

using a fixed set of types.

Since this mapping takes us down from a conceptual to an operational level, the

mapping may involve implementation choices by the IS developer. The aim for

this sub mapping is therefore not to provide a fully automated mapping, but just

a description of a systematic approach that may be applied to derive useful types

from an ORM model.

1.2.2 Mapping types to relational models

Once we have a way of representing entities in an IS as convenient data types,

we have to design a mapping from these types to a suitable relational database

representation. Because the representation types contain all information about

the database, we can derive the relational structure of the database from that

embedded information.

Since the relational structure can be derived purely from the types, we can, in

theory, automate the derivation process completely. However that requires the

representation types to be first order values. Because they are not, and this

mapping needs to be done only once for each new system, we again aim only at a

description of the derivation algorithm.

1.2.3 Mapping operations to SQL

To perform the basic operations on a database, create, read, update, and delete

(CRUD), we need to be able to fetch all data required for that operation from the
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database. Then we are able to create instances of the representation types. We

also need to be able to translate our representations back to SQL statements, to

actually perform the changes in the database.

The generation of this SQL code is a non-trivial exercise because a single update

in a moderately complex representation type, can require the execution of a series

of SELECT, UPDATE, INSERT, and DELETE statements in exactly the right order. Since

the required information about the database is embedded in the types, we need

some advanced generic functions to perform these operations.

Because of the complexity of the generic functions required to perform the oper-

ations, we do not just give a description of how the operations can be performed,

but implement them in a prototype library as well. This prototype library then

serves as a proof of concept of the proposed mapping.

1.2.4 Mapping relational models to types

For the design of new information systems and databases, we can make an ORM

model and use the previously proposed mappings. But not all existing databases

are designed using an ORM model. If we want to use the mappings for existing

databases, we need a different approach.

When no ORM model is available we have to derive the representation types from

a different source. The obvious choice is then the relational model, because it is

always implicitly available and can be extracted from a relational database. Such

models do however, contain less information than a conceptual model because

the concepts from the UoD have already been flattened into a tabular structure.

Nonetheless, we explore if we can make a mapping from these less detailed rela-

tional models, to the representation types.

Again, we are only interested in a description of the mapping.

1.2.5 Testing by example

The best way to find out if a programming method is possible, is by just trying

it out. In this project we test our complete mapping approach by using it in an

example system. The specifications of this example system are given in section

1.4.

1.3 Related work

There are two areas of research that are related to the approach presented in this

thesis. While no prior work exists which uses the generic programming method of
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functional languages like Clean and Haskell to do an automatic translation between

nested data structures and relational databases, it is similar to a technique called

“Object Relational Mapping” known in object oriented languages. Another slightly

related topic is the research on type safe SQL in several functional languages.

1.3.1 Object-relational mapping

Object-relational mapping [7] is a technique in object oriented languages which

tries to automatically map objects to records in a relational database. While this

technique is commonly used in industry, it is very little documented in scientific

literature. This may be due to the fact that it is a largely pragmatic approach

without a solid theoretical foundation.

The idea behind object relational mapping is to use a relational database as a

persistent store for objects by mapping classes to database tables. A piece of

software called an object-relational mapper then provides a store and load opera-

tion for objects which maps them to a database. Such a mapper often provides

caching facilities which keep objects in memory. So when an object is loaded twice,

the exact same object is returned by the mapper. This is important because in a

relational database, relations are considered equal when all values in the record are

equal, but in an object oriented language, each object has its own identity even

when all attributes are the same as another object. This discrepancy between the

behaviour of objects and relations is known as the “object-relational impedance

mismatch” and it is sometimes argued that correctly mapping classes to relations

(tables) is impossible because of this mismatch. Another problem of object rela-

tional mapping is the issue of dealing with inheritance. If an object x is of class B

which is a sub class of another class A, the object is both of class A and of class

B. When both classes define attributes, it is not clear how the object x should be

mapped. Different object relational mappers, therefore use different strategies and

heuristics to determine a relational schema in which x could be stored persistently.

While the approach described in this thesis is similar to object relational mapping,

there are some important differences.

• The objective is not to use a database as a persistent store for data struc-

tures, but to use data structures as a temporary representation for manipu-

lating a database.

• Types in a functional language are different from classes in an object oriented

language. A mapping between types and relations is therefore different in

nature than a mapping between classes and relations.
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1.3.2 Type safe SQL

A very different approach to improve the way of programming with relational

databases in functional language, is the modeling of SQL queries with the type

system of the language. This allows the type checker to find errors in an SQL query

and thus introduces compile time verification of database queries. This approach

has been used in the HaskellDB library in Haskell [11, 4] and more recently, in the

dependently typed language Agda [15].

These approaches are related because they also eliminate the need to manually

code SQL statements, but are limited to the relational domain. Using such sys-

tems, the programmer still has to define all the queries and data transformations

needed to store a complex nested data structure in a collection of flat tables.

1.4 Example: A Project Management System

To illustrate the mapping procedures in the upcoming chapters, we use a running

example. This example is a simple project management system. To provide the

necessary context, we briefly introduce its specification here. In chapter 6 we show

an implementation of this system which uses the mapping.

In the project management system we have the following conceptual entities:

• Projects are abstract entities which are identified by a unique project number

and have a textual description. Projects are containers for tasks and can be

worked on by employees. A project can be a sub project of another project

and can have sub projects of it’s own.

• Tasks are units of work that have to be done for a certain project. They

are identified by a unique task number and also have a textual description.

The system should also keep track of whether a task is finished or not.

• Employees are workers that are identified by a unique name and also have

a description. They can be assigned to work on projects. An employee can

work on several projects at a time and multiple employees may work on the

same project.

An ORM model of this system is given in figure 1.2.

While this example system is fairly simple and does not use the more advanced

constructs of ORM like subtyping, objectification or n-ary fact types, it does have

some features which make it an interesting enough example.

• The system has facts about entities and values, as well as facts about rela-

tions between entities.
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Figure 1.2: A simple model for a project management system

• Beside binary fact types, the model also has a unary fact type.

• The system contains constraints which allow many-to-one and many-to-

many relations

• The system contains a binary fact about an entity type with itself

It is trivial to add more “attribute” like facts to the model, or add more relations

between entities, but this only makes the model larger, and does not introduce new

constructs to deal with in the mapping. Allowing constructs such as subtyping or

n-ary roles would be interesting to have in the example but have been left out for

the sake of simplicity.
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Chapter 2

Mapping conceptual models
to types

2.1 Introduction

At first glance, finding a representation for conceptual models seems a trivial task.

One could simply map the conceptual model to a relational model, which would

be required for storage in a relational database anyway, and then represent each

table in the relational model as a record in Clean. The obvious drawback of such

an approach is that the representation reflects the relational structure, rather than

the conceptual structure of the domain at hand. To gather all information about

a certain concept, requires the programmer to manually retrieve information from

different tables to create a data structure that reflects this concept. When the goal

of the representation and the associated mappings is to relieve the programmer

of the burden of translating between the world of Clean types and the world of

relational databases, such a representation is of little help.

So, not all representations are equally suitable. But what makes a good represen-

tation? The answer to that question depends on the intention of the programmer,

because the goal he is trying to achieve defines the requirements for the data

types he uses. To find one single representation scheme requires generalization

over these goals. If we assume that the goal of the programmer is to manipulate

the populations of some conceptual model that are stored in a relational database,

we can define a set of three basic operations that the representation must support:

• Easily create instances of conceptual object types.

• Easily update instances of conceptual object types.

• Easily delete instances of conceptual object types.

11
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These operations focus on entity types of a conceptual model because they reflect

the concepts in a universe of discourse. They abstract from the tabular structure

used for storage and represent the meaningful entities one talks about. For ex-

ample, in a model with the concepts Person and Company which each have a

name, one is not so much interested in names alone, but only in the context of

the concept Person or Company. So, hopefully the choice of using conceptual

entity types as the primary unit that has to be represented in Clean, will give us a

representation and mappings which will make the programming involved in building

information systems easier.

Other aspects that have to be taken into account in the design of the representa-

tion scheme, are the possibilities and limitations of Clean itself. For example, Clean

does not have a standard way of using references, so these have to be explicitly

taken into account in the representation.

Due to the rather vague goal of “making it easier” for a programmer to manipu-

late the population of an information system, the design of the representation and

mapping scheme, as many programming problems, cannot be derived straight-

forward from the goals but requires some programmer’s intuition and common

sense. We therefore approach this problem by first defining a simple solution for

the basic cases and then evaluate it against the sub goals given earlier. Based on

this evaluation, the representation and mapping are extended to the more general

case.

2.2 A first approach

To start the search for a good representation, we begin with a limited set of models

and see if we can find a suitable representation for them.

The minimal set of models to start with should at least contain entity and value

types. These are the atomic entities on which the rest of the model is built.

Obviously, we also need to have fact types in the set. We limit the fact types

to just unary and binary types, to keep things simple. The last thing we need to

make a sensible first approach, are uniqueness and total role constraints. Without

these we have no knowledge at all about how many times objects may or should

participate in certain facts. To decide how a concept should be represented, we

should at least know if certain values always have a value, or if there is one, or

many values.

For these simple models without complex constraints or fact types with more than

two roles, we derive a set of types using the following straightforward algorithm.

1. Define a Clean record type for all object types in the ORM model.

2. In each of these records add fields for the identification of that object type

and all facts in which it participates.
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3. Determine the type for each of the fields based on the fact type and con-

straints on the fact type. Label types are represented by actual Clean types,

while object types are represented by special identification types.

• Unary fact types are represented as Bool

• Binary fact types without a uniqueness constraint on the role of this

entity type are represented as a list of the identification/value type of

the other role.

• Binary fact types with a uniqueness and a total role constraint on the

role of this entity type are represented by the identification/value type

of the other role.

• Binary fact types with a uniqueness constraint but without a total role

constraint on the role of this entity type are represented as maybe the

identification/value type of the other role.

4. Define an identification type for all entity types in the model. This is achieved

by creating a type synonym for the type of the identification of the entity

type. This is either a scalar type, or a tuple of scalar types when an entity

type cannot be identified by a single value.

This algorithm is best illustrated with an example. If we apply this algorithm to

the model in figure 1.2 we derive the following set of Clean types:

:: Employee = { name :: String

, description :: String

, works˙on :: [ProjectID]

}
:: EmployeeID :== String

:: Project = { projectNr :: Int

, description :: String

, parent :: Maybe ProjectID

, children :: [ProjectID]

, tasks :: [TaskID]

, worked˙on˙by :: [EmployeeID]

}
:: ProjectID :== String

:: Task = { taskNr :: Int

, description :: String

, is˙finished :: Bool

, project :: Int

}
:: TaskID :== Int
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2.3 Problems of the first approach

While the basic algorithm of the previous chapter already provides a reasonable

representation of the concepts in the model, we can see, even in this simple

example, that this approach is not good enough yet. Suppose we wanted to

always have the full list of tasks as part of the project record instead of references

to tasks. We would than prefer the type of the tasks field in the representation of

projects to be [Task] instead of [TaskID].

This example shows that a fully automated approach is not desirable for the map-

ping of conceptual models to Clean types. A designer should be able to guide the

mapping making design decisions based on the intended use of the types.

We will now look at several properties of our first approach that are problematic

in real use.

2.3.1 The conceptual model subset

In our first approach we have deliberately limited our mapping algorithm to a subset

of ORM. While it is of course desirable to provide a mapping for the entire ORM

language, it is simply too much work to deal with all the details. This additional

work merely distracts from the main research objectives.

We do however, need to be more clear about exactly what the subset of ORM is

that is covered by the mapping. Our first approach did not describe all possible

cases that are possible with the ORM constructs mentioned that were said to be

allowed.

Our final mapping may be defined for a subset of ORM only. But this subset

should be unambiguously defined and completely covered by the mapping.

2.3.2 Design choices

As became clear in the first example of this chapter, the suitability of the rep-

resentation depends on the intentions of the programmer. The mapping should

therefore allow the programmer to make important design choices during the map-

ping process.

Reference or inclusion

An important choice that has to be made by the programmer is what type is used

for fields in the records representing a fact with an entity type in it. One could
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choose to simply reference entity types, but another option is to use the actual

type representing that entity.

Whether a reference to another object, or an inclusion of that object in the record

is chosen depends largely on the nature of the concepts that are represented. If

an object type has a small representation type, for example a user account which

consists of a username and password, it makes sense to include it directly into

another type. But when an object type is represented by a large type or when

many instances of a fact may be linked to an object, it sometimes makes more

sense to use references.

Thus, depending on the circumstances the mapping must allow the programmer to

choose between references and inclusions in the definition of records representing

object types.

Choosing to use inclusion of other entities in an entity’s record is not without

hazards. One must be careful not to introduce inclusion cycles. If an entity type

indirectly includes its own type, operations on that type will no longer terminate.

This happens because, for example, reading an entity of type A from the database

which includes another type B causes all related entities of type B to be read as

well. If B again includes A this causes all related entities of type A to be read as

well. This in turn causes all type A entities to be read and so on. Similar problems

occur with the other operations.

The mapping must therefore only allow the designer to choose inclusion instead

of reference when this does not introduce inclusion cycles.

Fact subsets

For large conceptual models, the representation types derived using the simple

approach could turn into quite large records. This would also mean that to make

an instance of such a type, all that information has to be retrieved from the

database. Depending on the facts, this could be a relatively expensive database

operation. But it may be that for a certain program, only a few of the fields of

the record are used. This would make retrieving and storing of the entire records

a waste of resources.

So for efficiency reasons and just making the program more simple, the program-

mer must be able to omit fields in the representation record for facts that he is

not interested in.

2.3.3 Possibilities and limitations of Clean

Because we do not just want to derive types from the conceptual model, but

also really use them for automated storage and retrieval, we need to take the
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possibilities and limitations of using the types in Clean into account. A simple

choice may seem irrelevant for the programmer working with the types, but have

a large impact on the design of the storage and retrieval mappings.

Real types instead of synonyms for identification

In the simple mapping algorithm we used type synonyms of Int and String to

represent references to objects. This is a simple approach which provides the

programmer with the possibility of referencing an object. While its simplicity may

be attractive, it is too imprecise to use for generic mapping functions. The types

we use for identification need a minimal amount of information about the entity

they are referencing. Apart from the similarity in name there is no link between

the entity types and their identification types. There is no relation between the

reference types Int or String, and the entity it references.

Since an entity type can always be identified by a subset of its record’s fields, the

obvious choice for the identification type would be to use a record as well. This

record contains just the fields that are required to identify an object. For example,

the EmployeeID is then defined as follows:

:: EmployeeID = {employee˙name :: String}

Another possibility which maintains the relation between the identification and

entity types, is the use of “shadow types”. These are types that do not use all of

their type parameters in their constructors. Using a shadow type ID we can define

identification types as follows:

:: ID a b = ID b

:: EmployeeID :== ID Employee String

A disadvantage of this shadow type based approach over using records is that they

do not contain the information about the entities directly. While a link to the

referenced type is available, the identification value is still just a string.

Naming conventions

The generic functions that work with these types, have to get all their information

about the structure of the database from the type of an object. All extra informa-

tion that we need to supply the generic functions with, has therefore be present in

the type definition. A way to this is by using conventions in the naming of types

and fields. The generic functions can then inspect these names and make case

distinctions based on properties of them.

The initial approach already used the ID suffix convention to distinguish types rep-

resenting entities and types representing references to entities. But to provide the
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necessary information to the generic mapping functions later on, we will use struc-

tured convention for naming record fields which allow us to encode the relations

between entities in the types.

2.4 A second approach

With all the extra considerations we have seen in the previous section, we now

specify the final mapping from ORM models to Clean data types. The types

derived using this mapping are used for deriving a relational model and automatic

storage and retrieval of these data types in the upcoming chapters.

2.4.1 The conceptual models

For reasons of simplicity, we continue working with just a subset of the ORM

language. The mapping we define can therefore only be applied to ORM models

that satisfy the following constraints:

• The model only contains entity types, value types and fact types. More

advanced constructs like subtyping and objectification are not considered.

• The model only contains unary and binary fact types.

• Each entity type can be identified by a single value.

• Uniqueness constraints on single facts and mandatory role constraints are

the only constraints used.

• Each fact type has at least one uniqueness constraint

• Uniqueness constraints spanning two roles are only used for facts concerning

two entity types

This subset has roughly the same expressive power as the widely used Entity Rela-

tionship (ER) modeling language. The main difference is that in ER identification

is not limited to single values.

While this subset ignores some of the more interesting aspects of ORM that

make it a more expressive language than ER, it is still rich enough for modeling a

large class of non trivial domains. Because the emphasis of this thesis is on the

application of generic programming techniques we leave extension of the mapping

to support the full ORM language to further research and just use this simplified

version and its derived data types as the context of our generic functions.
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2.4.2 The representation types

The types in Clean that are used to represent parts of the population are designed

with conflicting objectives in mind. On the one hand, they should be easy to

use by a programmer. Therefore they should be as simple as possible and require

no unnecessary work to manipulate. On the other hand, they should contain all

information required to map instances of these types to the database.

Entity records

Records are used as the primary construct to represent entity types in the ORM

model. While the name of these record types may be freely chosen, it is advisable

to use a the name of the entity type it represents. The names of the fields of a

record have a strict structure which can have the following three forms:

• ¡entity name¿ ¡value name¿
This form is used for values or entities that have a one to one relationship

with this entity. The entity identifier is a unique name for this entity type.

Typically the same as the name of the record type.

• ¡entity name¿ ofwhich ¡match name¿
This form is used for embedding relations between two entities where the

relation between the two entities is defined such that the value of the match

identifier one of the entities are equal to the identity value of another entity.

This form is used for one to many relations between entities. The entity

identifier is the identifier of the “many” part of the relationship. The current

entity is the “one” side of the relation.

• ¡relation name¿ ¡match name¿ ofwhich ¡match name¿
This form is used for many to many relationships between entity types. The

relation identifier is a unique name for this relation and is used by both

entity records that have a role in the relation. The match identifiers are role

identifiers for both parts of the relation.

The types that fields in a record can have are limited as well. Fields in a record

can either be a scalar type (Int,Bool,Char,String,Real), record type, a Maybe of

scalar type or record, or list of scalar type or record.

While not immediately visible in the type definition, there is another property of

the records representing entities that should be mentioned here. The first field of

a record must be a one to one relation with a value type and is considered to be

the identification value of that entity. This means that all instances of that type

that have the same value in the first field, are considered to refer to the same

entity in the database.
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Identification records

To prevent endless recursion in the generic functions, we have to use references

to entities instead of actual instances of these entity types at some point. For

example, in many-to-many relationships between entities, only one of the entity

records can contain the other entity. If both use the actual entity type, reading of

one entity from the database causes reading of the related entity, which in turn

requires the reading of the original entity again.

To prevent such cycles we define an ID record for each entity record that we

define. This record type has the same name as the entity record with the suffix

“ID”. Identification records always contain just one field which has exactly the

same name and type as their corresponding entity records.

Scalar types

Value types in the conceptual model are mapped to the basic scalar types in Clean.

We assume that each value type can be represented by such a simple scalar. This

assumption may not hold for real world applications, but keeps the mapping simple.

It is trivial to increase the range of scalar types to which value types can be mapped,

but this increases the number of base cases for the generic functions that perform

the storage and retrieval and therefore increases the implementation effort.

Maybe values

Clean’s Maybe type (::Maybe a = Nothing — Just a) is used for mapping optional

values. These are facts without mandatory role constraints that result in record

fields that may have a value or may be empty.

Lists

Lists are used for mapping one-to-many, or many-to-many relationships. It is

important to note that the order of these lists is considered to have no meaning in

these types. Storage of an entity which contains a list does therefore not guarantee

that this list has the same order upon retrieval.

2.4.3 The mapping algorithm

With all the problems and considerations of the first approach in mind, and with

the input and output domains of the mapping algorithm well defined in the previous

sections, we now define our final algorithm:



20 CHAPTER 2. MAPPING CONCEPTUAL MODELS TO TYPES

1. Define two Clean record types for each object type in the ORM model. The

first of the two records is used as entity record and its name must be equal

to the name of the entity type in the ORM model. The second record is

used as identification record and has the same name, but with an ID suffix.

2. In each of these records, (both the entity and identification records) add

a field for the identification of that entity. This field must be of the form

¡entity name¿ ¡value name¿ where ¡entity name¿ is the name of the

record converted to all lower case characters. The ¡value name¿ must be

the name of the primary identification of the ORM entity type. The type

of the record field must be a scalar type which best fits the domain of the

primary identification of the ORM entity type.

3. Map each fact type in the ORM model to fields in the set of entity records.

The following cases can be distinguished:

• If the fact type is unary, it is mapped to a field of the form ¡entity

name¿ ¡value name¿ in the entity record corresponding to the ORM

entity type to which the fact is connected. ¡entity name¿ is the

lowercase name of the entity record and ¡value name¿ may be freely

chosen as long as it is unique in the entity record to which it is mapped.

The type of the record field is Bool.

• If the fact type is binary and there is a uniqueness constraint on only

one of the roles, it is also mapped to a record field of the form ¡entity

name¿ ¡value name¿ in the entity record of the entity type connected

to the role with the uniqueness constraint. The ¡entity name¿ is

again the lowercase name of the entity and the ¡value name¿ can be

freely chosen but has to be unique within the entity record.

If the role without the uniqueness constraint is connected to a value

type in the ORM model, and the role with the uniqueness constraint

also has a total role constraint, the type of the field in the record is the

scalar type corresponding with the domain of the value type. If there is

no total role constraint the type of the field is the Maybe of the scalar

type.

If the role without the uniqueness constraint is connected to another

entity type in the ORM model, and a total role constraint is present for

the unique role, the type of the field is either the identification record

type or entity record type of that entity type. Which of the two types

is used may be chosen by the designer. The identification record type

can always be used, but the entity record type may only be used when

none of the fields in that entity record has the current record as its

type (including types wrapped in lists or Maybes), or a field indirectly

contains a type which has a field which type is the current record. If

there is no total role constraint, the type of the field is wrapped in a

Maybe type.

Finally, we add a field to the entity record of the entity type connected

to the role without the uniqueness constraint. This field has the form

¡entity name¿ ofwhich ¡match name¿. The ¡entity name¿ must
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be the same as that of the field added to the other entity and the

¡match name¿ should be equal to the ¡value name¿ of the field in

the other entity. The type of this field is a list of identification record

type or entity record type. Which of those two, may be chosen on the

same conditions as the field in the other entity record.

• If the fact type is binary and both roles have a separate uniqueness con-

straint, one has to be chosen as the primary role, and the procedure of

the previous bullet is applied as if only the primary role had a unique-

ness constraint. The only thing we have to do differently is define the

type of the ¡entity name¿ ofwhich ¡match name¿ field in the entity

record of the non-primary role. Instead of a list, we now directly use

the identifier or entity record type as the type of the field, since we

know from the uniqueness constraint that there can be at most one

instance.

• If the fact type is binary and there is a uniqueness constraint span-

ning both the roles of the fact type, we map this fact to two fields of

the form ¡relation name¿ ¡match name¿ ofwhich ¡match name¿.

One in each role of the fact type. For this we need to choose a

globally unique ¡relation name¿ and two ¡match name¿’s which do

not have to be unique, but may not be equal. With these names we

now add the fields to the two entity record types. The field names

are the same, but with reversed ¡match name¿’s. So the first entity

record gets an extra field of the form ¡relation name¿ ¡match name

a¿ ofwhich ¡matchname b¿ and the second of the form ¡relation

name¿ ¡match name b¿ ofwhich ¡match name a¿. The types of the

fields are lists of the entity or identification record types of the “op-

posite” entity. Here, the condition remains that the entity record type

may only be used if the entity record type in which we are adding a field

is not yet part of the entity record type we want to use as type of the

field.

Because the algorithm described above, has a lot of little details which may be

difficult to extract from this rather verbose natural language description, it is

schematically reformulated as a, somewhat informal, flow chart in figure 2.1.

To illustrate the process even further we redo the mapping of the project man-

agement ORM model of figure 1.2, which yields the following set of types:

:: Employee = { employee˙name :: String

, employee˙description :: String

, projectworkers˙project˙ofwhich˙employee :: [ProjectID]

}

:: EmployeeID = { employee˙name :: String

}

:: Project = { project˙projectNr :: Int

, project˙description :: String

, project˙parent :: (Maybe ProjectID)
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Figure 2.1: The mapping algorithm as flowchart
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, task˙ofwhich˙project :: [Task]

, project˙ofwhich˙parent :: [Project]

, projectworkers˙employee˙ofwhich˙project :: [Employee]

}

:: ProjectID = { project˙projectNr :: Int

}

:: Task = { task˙taskNr :: Int

, task˙project :: ProjectID

, task˙description :: String

, task˙done :: Bool

}

:: TaskID = { task˙taskNr :: Int

}

When we compare this set of types with the set in our first approach we see two

big differences. The first is the use of structured record field names, which now

have an explicit relation to the conceptual model. The second is the use of records

for the reference types instead of the simpler type synonyms.
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Chapter 3

Mapping types to relational
models

While the representation types in the previous chapter may be able to represent

parts of a database in a Clean program, they have no connection with relational

databases yet. In order to actually store and retrieve instances of these types in a

relational database, there has to be a real database with tables in which the data

is stored.

This chapter describes how we systematically derive a relational model from a set

of representation types which we have derived using the algorithm in the previous

chapter. This process is relatively simple because the mapping has been designed

in such a way that the representation types contain all the information that is

needed.

3.1 Information extraction from the types

The first step in the transformation of the representation types to a relational

model is the extraction of relevant information from a set of types that has been

derived from a conceptual model. The extraction of type information from the

types is done in two passes in which all fields of all entity records are inspected.

The first pass collects all information that is available without any context in a

record field. The second pass collects some type information that in certain cases

can only be determined with lookups in the information collected in the first pass.

In the first pass, we determine a set of properties for each field of each record

in the set of representation types without the “ID” records. These are ignored

because they are partial copies of the corresponding entity records and therefore

contain no additional information. The properties we determine are:

25
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• Entity

To which entity record does this field belong.

• Field

The field name in the record.

• Relation type

The type of the record field where we ignore if a field is a Maybe value, a

list or an “ID” version of the type. So the relation type of Maybe EntityA,

[EntityA] or EntityAID is in all cases EntityA.

• Scalar

Is the field of scalar type (String, Int, Bool etc.)?

• List

Is the field of list type? E.g. [EntityA].

• Maybe

Is the field of Maybe type? E.g. Maybe EntityA.

• ID

Is the field of “ID” type. E.g. EntityAID.

• Key

Is the field the identifying key? The first field of a record is considered to

be a key. The other fields are not.

• Relation

The name of the relation to which we are mapping this field. This is the

part of the field name before the first underscore. For example, the relation

name of a field named entitya˙name is entitya.

• Select field

The name of the “select field”. This is the name of the column in the

database to which this record field is mapped. For field names without the

ofwhich keyword, this is the part of the field name after the underscore.

For fields with the ofwhich keyword this is the part of the field name after

the relation name and before the ofwhich keyword. In some cases the

ofwhich directly succeeds the relation name. In these cases the select field

is undefined.

• Match field

The name of the “match field”. This is the name of the column in the

database which is used to match on to select database rows during opera-

tions. For field names with the ofwhich keyword, this is the part after the

ofwhich. For the other fields this property is undefined.

If we determine these properties for the types of the project management example

of figure 1.2 which we have derived in section 2.4, we can obtain table 3.1 without

the last two columns.
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Employee employee name String Y N N N Y employee name undefined String undefined

Employee employee description String Y N N N N employee description undefined String undefined

Employee projectworkers project ofwhich employee Project N N N Y N projectworkers project employee Int String

Project project projectNr Int Y N N N Y project projectNr undefined Int undefined

Project project description String Y N N N N project description undefined String undefined

Project project parent Project N N Y Y N project parent undefined Int undefined

Project task ofwhich project Task N Y N N N task undefined project undefined Int

Project project ofwhich parent Project N Y N N N project undefined parent undefined Int

Project projectworkers employee ofwhich project Employee N Y N N N projectworkers employee project String Int

Task task taskNr Int Y N N N Y task taskNr undefined Int undefined

Task task project Project N N N Y N task project undefined Int undefined

Task task description String Y N N N N task description undefined String undefined

Task task done Bool Y N N N N task done undefined Bool undefined

Table 3.1: Information extracted from the representation types

The last two columns of table 3.1 are determined during the second pass of the

information extraction phase. The properties in these columns are the types of

the select and match fields and are determined using the information from the

first pass in the following way.

• Select type

If the select field is undefined, then the select type is obviously undefined

as well. In other cases the select type depends on the relation type. If the

record field is a scalar, then the select type is the same as the relation type.

When the field is not a scalar, the select type is the type of the key field

of the relation type entity. We can find this type by searching the table for

the row where the “Entity” property equals the “Relation type” property of

the current field, and the “Key” property is “Y” (“yes”). There should be

exactly one such row in the table. The select type of the current field is

then the relation type of this row.

• Match type

This type is determined similar to the select type. Again, when the match

field is undefined the match type is also undefined. When the match field

is defined, the match type is equal to the relation type of the key field of

the current entity. This type can be found by searching the table for the

row where the “Entity” property equals the “Entity” property of the current

field, and the “Key” property is “Y”. The match type is then the value of

the “Relation type” property of that row.

3.2 Derivation of the relations

With all the information extracted from the types organized in a single table, the

actual derivation of the relational model is pretty simple. For each combination
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Relation Field Type Null

employee
name String N

description String N

projectworkers
project Int N

employee String N

project

projectNr Int N

description String N

parent Int Y

task

taskNr Int N

project Int N

description String N

done Bool N

Table 3.2: The relations derived from the representation types

of the “Relation” and “Select” properties, we define a field (column). The name

of that field is the value of the “Select” property of that row in a relation (table)

which name is the value of the “Relation” property. The type of this field in

the relation is the value of the “Select type” property. If the “Maybe” property

of the select/relation combination is “Y”, null values are allowed. When the

“Maybe” property is “N”, null values are not allowed. If we repeat this procedure

for the combinations of the “Relation” and “Match” properties and remove double

occurrences of fields in the relations, we have the complete set of relations in which

instances of the types can be stored.

Table 3.2 shows the relations that are derived from the information in table 3.1.

3.3 Derivation of the key constraints

The final step we need to complete the relational model is the derivation of primary

and foreign key constraints. Primary keys are mandatory in most databases and

describe which columns are used to uniquely identify records in a table. Foreign

keys enforce that a record with a certain value in some table exists when that

value also exists in another table. This restriction is used to prevent the database

equivalent of a “dangling pointer”.

Each relation has one and only one primary key. We can find which fields are

part of the primary key of a relation by looking in the type information table and

search for a row which “Relation” property is the relation we want to know the

primary key of, and the “Key” property is “Y”. If such a row exists, the primary key

consists of one field which is the value of the “Select” property in the information

table. If such a row cannot be found, the primary key consists of all the fields in

the relation.

Table 3.3 shows the primary keys that have been derived from the information in

table 3.1.

The foreign keys are derived from the type information table a little different. We

look up up all the rows in the information table where the “Scalar” property is



3.3. DERIVATION OF THE KEY CONSTRAINTS 29

Relation Key fields

employee name

projectworkers project, employee

project projectNr

task taskNr

Table 3.3: The derived primary key constraints

Relation Key field Reference relation Reference field

projectworkers project project projectNr

projectworkers employee employee name

project parent project projectNr

task project project projectNr

Table 3.4: The derived foreign key constraints

“N” and the “Select field” property is not undefined. With each of these rows we

define a foreign key in the following way:

• Relation

The relation on which the foreign key is defined is the value of the “Relation”

property of the row.

• Field

The field which is constraint by the foreign key is the value of the “Select”

property of the row.

• Reference relation

To find the reference relation of the foreign key we need to do an extra lookup

in the information table. The reference relation is the value of the “Relation”

property of the row in the table of which the “Relation” property equals the

“Relation type” property of the current row and the “Key” property is “Y”.

• Reference field

The reference field is the value of the “Select” property of the key row we

looked up to find the reference relation.

Table 3.4 shows the foreign keys that have been derived from the type information

in table 3.1.

With three tables containing the relations (table 3.2), the primary keys (table 3.3)

and foreign keys (table 3.4), the generation of SQL CREATE TABLE statements is

a trivial exercise. One can simply iterate over all relations, lookup the primary key

and the optional foreign keys for each relation and create the SQL statement.
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Chapter 4

Mapping operations to SQL

With the mapping of conceptual models to relational models via Clean types, we

have gained very little yet. We can now derive a set of data types that has a clearly

defined mapping to a relational model, which we can derive from that set of types,

but without functionality. To take advantage of the types we have derived as

an intermediate stage in mapping to the relational model, we need operations on

these types to allow storage and retrieval of their instances.

In this section we discuss a set of generic algorithms which implement the basic

CRUD (create,read,update,delete) operations, for the types we have derived in

chapter 2. With these operations available for each of our types, we can implement

a rudimentary information system without writing any database access code.

We cover the operations in the order “read, create, update, delete” instead of the

order “create, read, update, delete”, because the read operation illustrates the

basic principles behind these operations best, and is therefore explained first.

4.1 The read operation

Before we can manipulate any data in a database, we first need to read that

data from the database into our Clean data structures. For the types that we

have derived in the previous chapters, we know that they can be mapped to a

relational database, since we have derived their relational schema from the types

themselves. Because the database schema is derived from the types, we know the

relation between the types and the database, and can write an algorithm which

reads instances of our types from the database.

Reading a data structure from a database is very similar to the parsing of a string

or file. In both cases, a tree like structure is created from a serialized list of tokens,

but instead of reading characters, we parse a list of values that have been fetched

31
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from a database. A big difference however, is that instead of having the input

stream completely available when we start parsing, as we do with parsing a string

or a file, we can only read the input stream just in time during parsing. This is

because the input values are not stored together as a sequential stream, but are

scattered over different tables in the database. In order to find all these values

in the various tables in the database we need information about the type of the

(sub) data structure we are constructing, which is only available during parsing.

Because of this, we cannot simply first read all values and then parse it into a data

structure, but need to do a combined read and parse operation in which what is

read next from the database, is guided by the parse process.

The token stream that we use to build our values can be viewed as a concatenated

list of database rows, and therefore a list of different type of values. The actual

token type we use does not only have constructors for value tokens which hold one

SQLValue1 value, but also special tokens such as list terminators which are required

to guide the parsing process.

As we have seen in the chapter 2, the building blocks of our representation types

are scalar values, records, lists and Maybes. The rest of this section shows how

each of these building blocks is constructed from a list of tokens.

4.1.1 Constructing scalar values

The easiest part of the read operation is the construction of scalar values. To

create a scalar value, we simply have to examine the head of the token list. If it

is an appropriate SQLValue token, we can use the value to construct our output

value. If it is not, the parser fails. When the construction succeeds we remove

the token from the head of the list.

For example, if we need to construct an Int and the head of the token list is

SQLVInteger 42 we return 42. But if we need to construct an Int and the head of

token list is SQLVReal 3.03, we are not able to create an Int and fail.

For the Maybe versions of scalar fields we do almost the same. We look at the head

of the token list to see if it is SQLVNull. In this case we yield Nothing. If the head

is an appropriate value to construct the scalar we yield Just that value.

4.1.2 Constructing records

While the construction of scalar values is necessary to create the “leaves” of our

data structures, they are of little use without construction of the “nodes” that

define the structure. The records in the representation types are the building

blocks which provide this structure.

1See appendix A for a complete reference of the SQL library
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To construct a record, we obviously need to recursively construct all of its fields.

But, we cannot demand that all the tokens needed to recursively construct the

fields, are already in the stream. This is because we start the read operation with

an empty stream and read tokens as we go along. Luckily, we do not need to have

the tokens for each field in the stream. Because, in our representation types, the

first field of a record is always considered to be a unique identifier, we can look up

the tokens for the other fields when we only have the token for this key field.

The tokens for a field in a record are found by creating and executing an SQL

query which retrieves these tokens. Because of the design of our representation

types, we have all the information we need to construct such a query available

encoded in the type of the record we are constructing. Depending on the type and

name of the field we need different pieces of information to create the query for

that field. The cases we distinguish are the same as those we have seen in the

description of the entity records in section 2.4.2.

• ¡entity name¿ ¡value name¿
For fields of this form the SQL query is very simple. Since the key field is

always of this form, we simply look up a record by matching on the column

of the id field. The query we generate has the form:

SELECT ¡value name¿

FROM ¡entity name¿

WHERE ¡value name of key¿ = ¡value of key¿

For example:

SELECT description FROM project WHERE projectNr = 2.

• ¡entity name¿ ofwhich ¡match name¿
Fields of this form are a little more complex. In this case we know the

column to match and the table from the field name, but we do not know

which column we should select. To obtain this column, we need to look at

the type of the field. If it is a record, we select the ¡value name¿ part of

the key field of that record. If it is a list or a maybe, we use the key field of

the record inside the list or Maybe. Thus, the query will be of the following

form:

SELECT ¡value name of key of nested record¿

FROM ¡entity name¿

WHERE ¡match name¿ = ¡value of key¿

For example:

SELECT taskNr FROM task WHERE project = 2.

Note that the tokens we read for this field, are nothing more than the

identification values of the entities or reference in that field. Reading of

the entities themselves does not happen until the read operation is applied

recursively.

• ¡relation name¿ ¡match name¿ ofwhich ¡match name¿
Fields of this form are easier again since we have all the information available

in the field name. The only extra information we need is the value of the
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current record’s key field. The query is then of the form:

SELECT ¡first match name¿

FROM ¡relation name¿

WHERE ¡second match name¿ = ¡value of key¿.

For example:

SELECT employee FROM projectworker WHERE project = 2.

In this case, the query also just gives us the identification values of the

entities or references.

After execution of the query, it depends on the type of the record field how we

deal with the result returned from the database. If the type of the field is a list

of entities or references, we retrieve all rows and add the values in the rows as

value tokens to the stream. After that, a special terminator token is added to the

token list to indicate the end of the result set. If the field is not a list, the result

set consists of exactly one row and we can add the value in the row to the token

list. Otherwise, an error is raised and the entire read operation fails. Note that in

this case we do not need to add a terminator token because the amount of tokens

needed to construct the field is fixed.

4.1.3 Constructing lists

The construction of lists is straightforward. As we have seen in the previous

section, the tokens needed to construct a list are always terminated by a special

terminator token. Therefore, when we want to construct a list of type a and the

head of the token list is a terminator token, we remove that terminator from the

token list and yield an empty list. If the head of the token list is not a terminator,

we construct a list where the head is the result of constructing a value of type a

with the token list, and the tail is the construction of a list of a with the rest of

the token stream.

4.1.4 Initializing the token stream

The final step of the read operation is the initialization of the token stream.

Because additional tokens are read at the construction of a record, we only need a

token list with one value token to get the read operation going. This single value

is the unique identifier of the data structure we want to read from the database.

To create this token list, we do the inverse of the construction of scalar values. If

we are given a certain scalar, we add the corresponding value token to the head

of the list.
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4.1.5 Putting it together

We now have all the parts needed to do a read operation for our representation

types. Given a scalar value which identifies an entity we initialize a token stream

and start constructing the entity. During the construction of the entity we consume

the token stream, except during the construction of a record. In those cases, we

infer from the types of the fields of that record where the data for construction

of those fields can be found. We then fetch that data, and recursively construct

the fields.

4.2 The create operation

The “create” operation creates the database records for a data structure which

has no counterpart in the database yet. This is achieved by doing more or less

the inverse of the “read” operation. Where the read operation can be viewed as a

parsing problem, the create operation can be viewed as a printing problem. In this

case we “print” a data structure to a stream of tokens. But the create operation is

not an exact inverse of the read operation, because of some rather subtle details.

The first issue which complicates the create operation is the use of “auto incre-

ment” functionality of a database engine. This option, which is common in most

database engines, is used to let the database assign automatically incrementing

numbers to a key field when a new record is inserted. When the value NULL or 0

is used as the value of the key field in an INSERT statement, this value is replaced

by a newly assigned number. After the statement has been executed, the value

that has been inserted can be retrieved from the database. When multiple users

concurrently create records in a database this feature is very useful because it

guarantees that each record receives a unique key value.

If we want to allow the use of this feature in our representation types we need to

be very careful in what order we execute the various INSERT statements that are

needed to store our Clean data structures in the database. Since identification

values are not known until a record has been created in the database, and that

identification may be required for the creation of related entities, the order in

which that entity and the related ones are created matters.

Another related issue which adds to the complexity of the operation is the existence

of integrity constraints in the database. In chapter 3 we have not only derived

the database tables from our representation types, but also a set of foreign key

constraints. These constraints help to enforce the integrity of our data. But, these

constraints also impose a certain order on the execution of INSERT statements

because some records may only be created when another record already exists.
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4.2.1 Creating scalar values

Just as in the read operation scalar values are only taken from the token list and

not actually read from the database, during the create operation scalar values are

not actually created in the database but merely accumulated in the token list.

When an Int is “created” an SQLVInteger value token is appended to the token

list.

For maybe values, an SQLVNull value token is added when the value is Nothing. If

the value is Just x then x is created.

4.2.2 Creating records

When we apply the create operation to an entity record, a corresponding record

is created in the database. Because of the constraints on the order in which we

create the records in the database, the create operation consists of two recursive

passes. Whether a field is handled in the first or the second pass depends on the

“form” and type of the field. In the first pass, the create operation is applied

recursively to a selection of the fields in the record. After this pass, the token list

contains all values that are stored in the same table as the key field of the record.

At this point a record in the database is created and the value of the key field of

the current entity record is determined. If the value is zero, we check if an auto

incrementing key value was assigned, if not we simply use the value we found in

the entity record’s key field. When the record in the database has been created

we remove the “used” values from the token list and only leave the key value.

The last thing we need to do is the second pass with the fields that were ignored

during the first pass. Since for these fields it is necessary to know the key value

of the current record, we add special “override” tokens to the front of the token

stream that contain the identification value of the current record and the fields to

which they have to be applied.

Depending on the form of a record field they are dealt with slightly different. We

therefore conclude this description of the create operation with a more detailed

explanation for the three different cases.

• ¡entity name¿ ¡value name¿
Fields of this form are dealt with during the first pass. The create operation

is applied recursively which yields the value token for this field in the token

list. When the INSERT statement is executed after the first pass, the column

named ¡value name¿ is assigned the value from this token. In some cases,

the create is not applied recursively to get the value of the token. If at the

front of the token list a special “override” token is found whose name equals

the current field name, we add the value from this override token to the list

instead of recursing. In this way the override tokens make it possible to pass

key values from one record down the recursion to a sub data structure.
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• ¡entity name¿ ofwhich ¡match name¿
Fields of this form are handled in the second pass. They have to be, because

the key value of the current record is required to create fields of the form

¡entity name¿ ¡match name¿ in the sub record(s) within the field. We

achieve this by adding an override token for that field name to the front of

the token list.

• ¡relation name¿ ¡match name¿ ofwhich ¡match name¿
Record fields of this form are used for many-to-many relations which are

mapped to a separate table. This table links the two entities in the relation.

Because the relation is stored in a separate table we do not only need to

create the “content” of the field in the database, but also link the “content”

of the field to the current entity record. These fields are therefore also

delayed until the second pass. At this point the identifier of the current

entity record has been determined after the first pass. We now recursively

apply the create operation to the field to get the identifier(s) for the other

side of the relation. With both sides of the relation known, we link the

entities by creating the “link record” using the following SQL statement:

INSERT INTO ¡relation name¿

(¡first match name¿,¡second match name¿)

VALUES (¡value of field¿, ¡value of key¿)

4.2.3 Creating lists

The create operation for lists is also the inverse of the read operation on lists. In

this case we are given the actual list and apply the read operation recursively to

all of its elements. This leaves us with values for each element in the token list.

To indicate the end of the field, we now add a terminator token to the token list.

4.2.4 Putting it together

The create operation reduces entity records to a single scalar value in the token list

by first recursively applying the create operation to fields which can immediately

be stored, followed by applying the create operation on the fields which need the

identifier value of the current record. For fields of type Maybe, the create operation

is only optionally applied and for lists the create operation is applied to all elements

of the list. When the create operation is completed, the token list contains exactly

one value: the identifier value of the entity record that was stored in the database.

This value is finally converted to a “real” value by applying the read operation on

the singleton token list.
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4.3 The update operation

The update operation is similar to the create operation in the sense that it also

traverses a data structure and writes the values to the database. There is a

difference however, that makes it the most complex of all four operations. When

a relation between entities is mapped to a field in which the related entities are

included as a list of records, we need to deal with the addition of new entities or

removal of existing entities in that list.

As we did before for the read and create operations, we cover the update operation

for each of the building blocks of the representation types separately.

4.3.1 Updating scalar values

The update operation for scalar values is equal to that of the create operation. Be-

cause interaction with the database happens only during the processing of records,

the update operation on scalars just turns values into tokens and nothing more.

4.3.2 Updating records

As with the read and create operations, the interesting part of the operation is

the update of records. The update of a record is done in three passes, where the

first and second pass are almost equal to the two passes of the create operation.

Before the first pass, the fields of the record are read from the database. These

are kept until after the second pass to determine of entities have been removed

from list or maybe fields. After this read, the first pass recursively updates the

fields which have to be stored in the record. When this is completed, the record

in the database is updated with an SQL UPDATE statement. Because it is possible

that the entity we are updating was a new entity added to a list, we need to check

in the database if we have actually updated an existing database record. If this

was not the case, we do an insert of that record as if we were doing a create

operation. The second recursive pass is now be performed with the identification

of the updated/inserted record passed along as override tokens. During this pass,

the fields which refer to the current record in the database are updated. After

the second pass, the link records are created in the database for those fields that

represent many-to-many relations. When a link record already exists, no action is

performed.

The last step of the update operation on records is a third recursive pass. This

pass is only done in the update operation and garbage collects entities that have

been removed from a list or a maybe field in the database. During this third pass,

we compare for each field the new values we got from the first and second pass

to the original values we read before the update. If the field is a list, we filter out

the values that were present in the original list, but are no longer in the updated
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list. We then recursively apply the delete operation to those values. If the value

is of type Maybe we check if the original value was a Just but the updated value is

Nothing. In this case the delete operation is applied to the value in the Just.

As with the create operation, we are only interested in the record’s identification

value after the update is complete. This is therefore the only token that is added

to the token stream.

4.3.3 Updating lists

Unsurprisingly, updating lists is also similar to creating lists. The update operation

is applied to each member of the list which add their share to the token stream.

After that a terminator token is added to the token list to indicate the end of the

items.

4.4 The delete operation

The final operation we need, to complete our set of basic operations, is the delete

operation. This operation is very similar to the read operation, but instead of just

reading records from the database we remove them after we have read them. In

order to delete all information about an entity we need to find everything in the

database. Therefore, we can just as easily construct the entity we are deleting

as a welcome side effect. The delete operation thus returns almost the same

value as the read operation, but alter the database while it reads. The read data

structure is almost, but not entirely the same as the result of the read operation.

This is because the database does not delete all the records in the database that

represent an entity at once, it does this step by step while traversing the data

structure. This incremental nature causes the effect that when a record deep in

the structure is read from the database, the relations of that record with entities

higher up in the structure are already deleted. These relations are therefore not

present in the constructed data structure.

For the last time, we now explain the delete operation for each of the building

blocks of our representation types.

4.4.1 Deleting scalar values

The delete operation for scalar values is the same as the read operation for scalar

values. The tokens that have been read during the processing of records are

consumed to construct the data structure.
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4.4.2 Deleting records

While deleting records is similar to reading records, there are once again some

subtleties that need to be taken into account.

Because of the integrity constraints in the database, we cannot delete records

when other records still reference them. Therefore we apply a multi-pass strategy

again. Records that are not referenced by other records are read and then deleted

immediately. Records who are referenced by others are first read, and only later

deleted.

If the delete operation is applied on a record during the read or combined read-

/delete pass, the values for this record are read first. After this the operation is

applied recursively to the fields of the record. Depending on if a field references

another entity, the recursive call does an only read pass or a combined read/delete

pass. If the delete operation on the current record was during an only read pass,

we are done. For a combined read/delete we need to delete the current record.

Because we have the identification value of this entity in the token list, as we had

with the read operation, and records in the database are uniquely identified by this

key value we, can perform the deletion with the following SQL statement:

DELETE FROM ¡entity name¿ WHERE ¡value name¿ = ¡key value¿.

The ¡entity name¿ and ¡value name¿ are determined from the name of the

key field of the current record, which always has the form ¡entity name¿ ¡value

name¿

When we have deleted the record from the database we can now perform a garbage

collection pass to delete the fields which were only read during the first pass.

When a garbage collection pass of a delete operation is performed on a record,

we assume that the tokens to construct the record are already in the token list,

because they have been read during a previous pass, and construct the data struc-

ture. We then delete the record from the database in the same way we did as in

the combined read/delete operation.

4.4.3 Deleting lists

As with the read operation on lists, we construct an empty list when the head of

the token list is a terminator, and apply the operation recursively on the token list

otherwise to construct the elements of the list.
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4.5 Implementation of the operations in Clean

The operations described in the previous section outline the general recipe for

reading, creating, updating and deleting entities in a database. But, they are

not a working implementation yet. To show that the operations not only work in

theory but can actually be used in a program, they have have been implemented

in a Clean library. This library, called “GenSQL” implements the four operations

by means of a generic function and a set of wrapper functions.

4.5.1 Basics first: A database API for Clean

Because the standard library of Clean has no support for working with databases

and no suitable other libraries were available, the first step in the implementation

was the development of a database API for Clean. This API has been designed

based on the DB API 2 of Python [12], but adapted to fit the functional paradigm

instead of the Object Oriented approach of the Python version. This library spec-

ifies and implements various general data types and functions for working with

databases, and defines the functions for the actual interaction with a database. It

can be implemented for various database backends. For this thesis only a backend

for MySQL [14] has been implemented, but the API abstracts over the details of

different database systems and other backends can be implemented easily.

4.5.2 Jack of all trades

A limitation of the generics mechanism in Clean is that it is not possible for

generic functions to call other generic functions. In the design of the GenSQL

library this was a severe limitation, because the various operations have some

overlap in their functionality. The update operation, for instance, uses the delete

operation during a garbage collect step. An even larger piece of functionality, is

the extraction of type information about record fields, which happens in all the

operations. Some of the operations also traverse the data structures in multiple

passes. While these passes do different things, we are unable to define them as

separate generic functions which call each other.

To deal with this limitation of the generics mechanism, all operations have been

combined into one “Jack of all trades” function. The type signature of this func-

tion, gSQL, is as follows:

generic gSQL t ::

!GSQLMode !GSQLPass !(Maybe t) ![GSQLFieldInfo] ![GSQLToken] !*cur

→ (!(Maybe GSQLError) , !(Maybe t) ,![GSQLFieldInfo] ,![GSQLToken] ,!*cur)
— SQLCursor cur

The first two arguments of this function are the mode and pass of the oper-

ation we want gSQL to perform. The modes are either one of the four opera-
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tions GSQLRead, GSQLCreate, GSQLUpdate, GSQLDelete or the type information mode

GSQLInfo or GSQLInit. This last mode is an extra operation which “prints” a refer-

ence value to the token list in order to start a read or delete operation.

The next three arguments are the data structures on which the gSQL function

operates. All three are both input and output parameters and depending on the

mode, are either produced or consumed. The first argument is an optional value

of type t. This is the generic type variable, which means that it is different

for each type of value we apply this function on. During the read and delete

operations, this argument is Nothing in the input and Just in the output because

values are constructed from the token list. During the create, update, info and

init operations, the argument is Just in the input because values are “printed” to

the token or info list. The second argument is the token list. In this list tokens

are accumulated during the “printing” or “parsing” of the data structures. The

third argument is the info list. In this list, the type information about record fields

is accumulated.

The last argument of the gSQL function is a unique database cursor. This is a

handle which is used to perform queries and statements on the database.

The return type of the gSQL function is a tuple which contains an optional error and

the possibly modified value of type t, the token list, the info list and the database

cursor. The optional error can have two causes, as expressed by the GSQLError

type:

:: GSQLError = GSQLDatabaseError SQLError

— GSQLTypeError String

The most likely error, is that something went wrong with the database. If this

happens, the SQLError from the database is embedded in the GSQLError. The other

thing that can cause an error, is the use of the gSQL function on values which type

is not a representation type. Since generic functions by definition are defined for

every type, we can only detect at runtime that a programmer applied the function

to a type for which it was not meant. In these cases an GSQLTypeError is returned

which contains a string explaining the error.

4.5.3 Convenient wrappers

Because of the all-in-one design of the gSQL function, it is not very practical to

use. For the read and delete operations, it even has to be called twice. First in

the init mode to prepare the token list, and then in the read or delete mode to do

the actual work.

To hide all of this nastiness from the programmer, the GenSQL library provides

wrapper functions for each of the four operations. These self explanatory wrappers

are defined as follows:

gsql˙read :: !a !*cur→ (!(Maybe GSQLError) , !(Maybe b) , !*cur)
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— gSQL{|?|} a & gSQL{|?|} b & SQLCursor cur & bimap{|?|} cur
gsql˙create :: !b !*cur→ (!(Maybe GSQLError) , !(Maybe a) , !*cur)
— gSQL{|?|} a & gSQL{|?|} b & SQLCursor cur & bimap{|?|} cur

gsql˙update :: !b !*cur→ (!(Maybe GSQLError) , !(Maybe a) , !*cur)
— gSQL{|?|} a & gSQL{|?|} b & SQLCursor cur & bimap{|?|} cur

gsql˙delete :: !a !*cur→ (!(Maybe GSQLError) , !(Maybe b) , !*cur)
— gSQL{|?|} a & gSQL{|?|} b & SQLCursor cur & bimap{|?|} cur

Thanks to Clean’s overloading mechanism we can use these wrapper functions for

any entity for which we have derived gSQL for its identification (a) and entity record

(b) type.

4.5.4 Performance

By using the generic mapping, the programmer no longer has to do write the SQL

queries to read or write in the database. The four operations are essentially a

black box, which either take or yield data structures. How these structures are

read or written, is out of the programmer’s control. Because of this black box

nature of the mapping, it is easy to forget that there is actually a lot work going

on under the hood.

It is important to realize that the current operations are not optimized to be effi-

cient in the amount of database interaction that is done to perform the operation.

Because the mapping operations only minimally look ahead, a lot of information

that could be retrieved or updated in one query is now spread out over multiple

queries. The worst performance disadvantage that the current mapping suffers

from, is the way it handles lists of related entities. For example when a Project

is read, then in order to read the Tasks related to that Project, a query is done

to get all the identification values of the related Tasks. Then the read operation

recursively reads the tasks where for each Task a number of queries is done to fill

the fields of the Task record. In this approach, the number of queries is linear in the

amount of related Tasks. When the mapping was not used, one could retrieve all

the Task information with a single query “SELECT * FROM task WHERE project

= ?”, thus the number of queries is constant in the amount of related Tasks. When

a Project has a lot of Tasks, this is a serious performance issue, which puts a lot

of extra stress on the database engine.

Another performance issue which is mostly noticeable in the memory consumption

of applications using the mapping, is the overhead that is introduced by the use

of generic functions. Because of the translation to and from the generic domain,

generic functions always have some overhead in both memory and execution time

when compared to normal functions. However, when optimization techniques [3]

are applied in the compiler, this generic overhead can be completely removed.

Unfortunately, the Clean compiler does not support this yet.
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4.6 Intermezzo: An elegant way to share

The operations we introduced in this chapter are designed for information systems.

In these systems the use of a relational database for storage is taken for granted.

But when viewed in a different context, they can be seen as a solution for one of

the more difficult issues in functional programs: sharing of data. Where it is easy

in imperative or object oriented languages to create a series of data structures in

memory which reference each other, and in that sense share data between those

structures, this is harder to realize in a functional language.

Because the representation types contain just enough information to be able to

manipulate an entity, which is related to other entities in the database, there is no

need to create a data sharing structure in your Clean program. All sharing of data

is handled in the database and is elegantly hidden from the functional programmer.

For applications that need a way to maintain some structure of related entities,

the right combination of types and tables plus the generic operations might save

a lot programming effort.



Chapter 5

Mapping relational models to
types

Even though we now have every step to get from a conceptual schema to a collec-

tion of types, a corresponding relational schema, and a set of generic operations to

automatically map between them, we still have an important question to answer:

Can we, and if so, how can we, apply these results to existing databases?

Because there are many different methods for designing the database of an in-

formation system, it is unlikely that an arbitrary database was designed based on

an ORM model using just the subset defined in this thesis. It is more likely that

the database was designed using another modeling technique or even no modeling

technique at all. It may even be the case that, while the database was originally

designed using a formal conceptual modeling technique, the models have been

lost, or have become outdated.

In these cases, we have no conceptual model to derive our types from. Fortunately,

not all is lost. Because a relational model can always be extracted from a database

itself, we can still use our generic functions if we can derive the types from this

relational model instead.

In this chapter we see what properties a database must have in order to be used

with our generic operations, and how we can derive the representation types from

a relational model instead of a conceptual one.

5.1 Preconditions

Because our mapping operations have been designed under the assumption that

the database to which they are applied has been derived from the representation

types, we can only deal with databases that could have been derived from a set of
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representation types. In order to apply our mapping to an existing database, we

need to be able to construct a set of representation types which, when we would

apply the procedure of chapter 3, would yield that database.

5.1.1 Table and column names

The mapping operations determine table and column names based on the names

of the record fields of the representation types. These names consists of several

parts separated by underscore characters and the ofwhich keyword. The first part

is used as table name, and the second and optionally third part indicate columns

in the database. A consequence of this mandatory naming convention for record

fields is that the names of tables and columns in an existing database are not

allowed to contain any underscores. Another consequence is that a column can

not have the name “ofwhich”. If a table does not meet these requirements we are

not able to map it to representation types.

The fact that we cannot use “ofwhich” as a column name, is a limitation that will

not likely be a problem. The exclusion of underscores from table and column names

is a bigger problem however. Because it not uncommon to use them to separate

names consisting of multiple words, it is very likely that an existing database

contains tables or columns with underscores. Luckily, there are no reasons other

than readability why the parts in a record field are separated by an underscore. One

could simply use another character or even a string of characters to separate the

parts. In the current implementation of the mapping, one can change the separator

string by simply changing a single macro definition in the library’s definition file.

5.1.2 Table structure and keys

Not only are the names of tables and columns limited, but the structure of tables

and the types of columns are somewhat limited as well. When the tables are

derived for a set of representation records, there are two categories of tables.

The first type of tables are tables that represent entities. In these tables all facts

and relations that can be stored in a single value are collected for an entity. The

first column of these tables is always the primary key and is used to identify the

entities. The other type of tables are the link tables. These tables are used

to represent many-to-many relations between entities and always consist of two

columns containing the identifications of the entities involved in the relation. The

primary key of these tables always spans both columns.

If we want to use our mapping with an existing database, we can only map the

tables from this database that can be put in one of the two categories mentioned

above. If a table is neither an entity record nor a link record, we cannot map it to

a representation type.

The final precondition on the structure of the tables, is that the data types of
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columns is limited to the column types that are supported by the mapping. In

the current implementation of the mapping we are limited to the column types

CHAR, VARCHAR and INTEGER which are used to map the Clean types Char, Int,

Bool and String. This limitation however is merely a practical one. It is trivial

to extend the mapping to include other scalar types.

5.1.3 Relation between tables

In the representation types, the relation between entities can be inferred from the

types of the record fields. These relations are enforced with foreign keys in the

derived database tables. In existing databases there do not need to be any foreign

key constraints. This does not mean however, that there are no relations between

tables. It is very well possible, and even likely, that some columns do not represent

attributes of an entity, but refer to the primary key or another entity. If there are

no foreign keys, we cannot know to which other table the values in such a column

refer. If we want to use the full potential of our mapping, we need to know which

entities are related to determine the types of the representation type record fields.

So the database we want to use has to either have foreign keys from which we infer

the relation between entities or another source of knowledge about the relations in

the database has to be available. Such a source could be informal documentation

of the existing system or an interview with a maintainer of the system.

5.2 The mapping algorithm

If the database we want to use fulfills the preconditions defined in the previous

chapter, we are able to derive the representation types from its relational schema

using the following algorithm:

1. Determine which tables represent entities, and which ones are link tables

representing relations between entities.

2. For each entity table define an entity record type and add fields to the record

for each column in the table.

• The name of the record type is the capitalized table name

• The names of the fields in the records are of the form

¡table name¿ ¡column name¿

• The types of the field are the Clean scalar types that correspond to the

SQL data types of the columns.

3. Create an identification record for each entity record by defining a new record

type which has one field which has the same name and type as the entity

record. The name of the identification record is that of the entity record

with an ID suffix.
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4. For each field in the entity records of which we know it is a reference to

another entity, change the type of the field from the scalar type to the

identification record type of the entity that is referred to. Whether a field

references another entity can be either inferred from a foreign key constraint

on the table, or external knowledge about the database.

5. For each entity that is referenced by another entity, add fields of the form

¡entity name¿ ofwhich ¡field name¿ to the entity record where

¡entity name¿ is the entity type that refers to this entity type, and ¡field

name¿ is the column name of the field in that entity record that references

this entity type. The type of these fields is list of the identification record

type of the entity that references this entity.

6. For each link table determine the entities that are referenced by each column

in the table. Create a field of the form

¡table name¿ ¡column name¿ ofwhich ¡column name¿ in the entity type

records of both the entities involved in the relation. ¡table name¿ is the

name of the link table and the two ¡column name¿ fields are the names

of the columns in the link table where the last is the name of the column

referencing the entity to which we are adding the field. The type of the field

is list of the identification type record of the entity referenced by the first

column.

7. The final optional step is the replacement of references by includes of en-

tities. Each identification record type may be replaced by an entity repre-

sentation type as long as no inclusion cycles are introduced. That is, the

current entity (in which we are changing a reference to an include), may not

be directly or indirectly included in the entity record type we want to include.

Just as we have done for the mapping algorithm based on conceptual models in

chapter 2, we illustrate the algorithm by means of an informal flow chart in figure

5.1.
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Figure 5.1: The mapping algorithm as flowchart
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Chapter 6

Example: A Project
Management System

To demonstrate the power of the generic mapping operations and to test the

implementation of the GenSQL library, the project management system introduced

in chapter 1 has been implemented. This small web based information system is

built on a MySQL database and a set of representation types that are derived

using the methods of chapters 2 and 3.

6.1 Application Design

The project management application is designed as CGI web application. A single

Clean program is run each time an HTTP request is made and generates a re-

sponse. Because of the web based approach, the application has been structured

as a collection of pages. Each page is implemented as a function, which given a

request and a database cursor, generates the title and content of a page. When

the program is run, it parses the request, determines what page function should

be evaluated, and finally wraps the result of that function in a layout and outputs

a response.

In the application, only two of the three entity types are used as “entry points”:

projects and employees. You can only browse a list of projects and a list of

employees, but not a list of tasks. This is because tasks are always related to

exactly one project and have no meaning outside the context of a project. They

are therefore included in the “show” and “edit” pages of projects.

The url that is requested determines which page function is executed. Figure 6.1

shows a tree structure of the mapping between urls and page functions. The two

main branches are “/projects” and “/employees” which have pages for the basic

operations beneath them.
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Figure 6.1: The page tree of the project management application

The user interface in this system is defined by hand for each page. For both

projects and employees there is a function which generates an HTML form from

a Project or Employee data structure, and a function which parses the result of

submitting that form to a data structure again.

6.2 Types and Tables

The types and tables in this implementation differ little from those we have already

seen in the examples in chapters 2 and 3. We start again with the ORM model

in figure 1.2 and apply the procedure from chapter 2. This time we are a little

more careful with the replacement of references by includes. Because we want

to link employees to projects and vice versa, but do not want that projects are

deleted when they are removed from an employee data structure, or only new

employees can be added to a project instead of existing ones, we use references

in the projectworkers relation. Tasks, on the other hand, are always related to

a single project and are therefore safely included in the Project type.

When we make these choices during the derivation, we get the following set of

representation types:

:: Employee = { employee˙name :: String

, employee˙description :: String

, projectworkers˙project˙ofwhich˙employee :: [ProjectID]

}

:: EmployeeID = { employee˙name :: String

}

:: Project = { project˙projectNr :: Int

, project˙description :: String

, project˙parent :: (Maybe ProjectID)

, task˙ofwhich˙project :: [Task]
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Figure 6.2: Screenshot of the project edit page

, project˙ofwhich˙parent :: [ProjectID]

, projectworkers˙employee˙ofwhich˙project :: [EmployeeID]

}

:: ProjectID = { project˙projectNr :: Int

}

:: Task = { task˙taskNr :: Int

, task˙project :: ProjectID

, task˙description :: String

, task˙done :: Bool

}

:: TaskID = { task˙taskNr :: Int

}

Since the choice of using references or inclusions does not affect the database that

is derived from these types, we can apply the procedure of chapter 3 again to get

the same tables and primary and foreign keys as shown in tables 3.2, 3.3 and 3.4.

6.3 The mapping in action

A nice example where we see the GenSQL mapping in action in this system is the

“edit” page of projects which is shown in figure 6.2. This page is implemented by

the following Clean function:
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editProjectPage :: !Int !HTTPRequest !*cur

→ (Maybe (String,String) , !String, [HtmlTag] , !*cur)
— SQLCursor cur & bimap{|?|} cur

editProjectPage pid req cursor

— req.req˙method == ”POST”

] project = editProjectUpd req.arg˙post

] (mbErr,mbId, cursor) = gsql˙update project cursor

— isJust mbErr

= (Nothing, ”Error” , [Text (toString (fromJust mbErr))] ,cursor)

= (Just (”/projects/”+++ toString (int (fromJust mbId)) ,

”Successfully updated project ”+++ toString pid) ,”” , [ ] ,cursor)

— otherwise

] (mbErr, mbProject, cursor) = gsql˙read pid cursor

— isJust mbErr

= (Nothing, ”Error” , [Text (toString (fromJust mbErr))] ,cursor)

— isNothing mbProject

= (Nothing, ”Error” , [Text (”There is no project with project nr ”

+++ toString pid)] , cursor)

] project = fromJust mbProject

] (projects, cursor) = getProjectOptions cursor

] (employees,cursor) = getEmployeeOptions cursor

= (Nothing, project.project˙description,

[editProjectForm False project projects employees] ,cursor)

The structure of this function is relatively straightforward. When a form is posted,

the data in that post is parsed to create a Project data structure. Then, the

generic mapping is used to propagate the update to the database, and the user

is redirected back to the “show” page with a friendly message. When nothing is

posted, the generic mapping is used to read a project from the database, and a

form is created.

Most of the code in the above function deals with showing messages and other trivi-

alities. The only interesting parts of are the calls to editProjectUpd, editProjectForm,

gsql˙read and gsql˙update. The first two functions are not trivial, but have an ad-

hoc implementation for our types. The last two functions are the wrappers of

the GenSQL library that implement the generic database operations. Because the

nested structure of the Project type is not visible in this function, the complexity of

these operations is not immediately apparent. However, the Project data structure

is constructed using information from three different tables and requires updates

in all of those tables and some garbage collection when a project is edited.

The complexity of the update operation on projects becomes clear when we look

at a hand written update function for projects:
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updateProject :: Project !*cur→ (Maybe SQLError, *cur) — SQLCursor cur
updateProject project =: {Project — project˙projectNr = pid} cursor
//Update the project record

] (mbErr,cursor) = sql˙execute

”UPDATE project SET description = ?, parent = ? WHERE projectNr = ?”

pvalues cursor — isJust mbErr = (mbErr, cursor)

//Update/create the linked employees

] (mbErr, ids, cursor) = linkEmployees

project.projectworkers˙employee˙ofwhich˙project cursor

— isJust mbErr = (mbErr, cursor)

//Garbage collect linked employees

] (mbErr,cursor) = sql˙execute

(”DELETE FROM projectworkers WHERE project = ?”+++ ematch ids)

(evalues ids) cursor

— isJust mbErr = (mbErr, cursor)

//Update/add the tasks

] (mbErr,ids,cursor) = updateTasks project.task˙ofwhich˙project cursor

— isJust mbErr = (mbErr, cursor)

//Garbage collect tasks

] (mbErr,cursor) = sql˙execute

(”DELETE FROM task WHERE project = ?”+++ tmatch ids) (tvalues ids) cursor

— isJust mbErr = (mbErr, cursor)

= (Nothing, cursor)

where

pvalues = [SQLVVarchar project.project˙description

,pparent project.project˙parent

, SQLVInteger project.Project.project˙projectNr]

pparent Nothing = SQLVNull

pparent (Just {ProjectID— project˙projectNr = x}) = SQLVInteger x

linkEmployees [ ] cursor = (Nothing, [ ] , cursor)

linkEmployees [{EmployeeID — employee˙name = e}:es] cursor
] (mbErr, cursor) = sql˙execute

”SELECT * FROM projectworkers WHERE project = ? AND employee = ?”

[SQLVInteger pid, SQLVVarchar e] cursor

— isJust mbErr = (mbErr, [ ] ,cursor)

] (mbErr, num, cursor) = sql˙numRows cursor

— num == 0

] (mbErr, cursor) = sql˙execute

”INSERT INTO projectworkers (project,employee) VALUES (?,?)”

[SQLVInteger pid, SQLVVarchar e] cursor

— isJust mbErr = (mbErr, [ ] ,cursor)

] (mbErr,ids,cursor) = linkEmployees es cursor

= (mbErr, [e:ids] ,cursor)

— otherwise

] (mbErr,ids,cursor) = linkEmployees es cursor

= (mbErr, [e:ids] ,cursor)

ematch [ ] = ””

ematch ids = ” AND NOT (employee IN (”+++

(text˙join ”,” [”?” \\ x← ids]) +++ ”))”
evalues ids = [SQLVInteger pid: map SQLVVarchar ids]
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updateTasks [ ] cursor = (Nothing, [ ] , cursor)

updateTasks

[{Task—task˙taskNr = taskNr,task˙description=description,task˙done = done}:ts]
cursor

— taskNr == 0

] vals =

[SQLVVarchar description, SQLVInteger ( i f done 1 0)

,SQLVInteger pid]

] (mbErr, cursor) = sql˙execute

”INSERT INTO task (description,done,project) VALUES (?,?,?)” vals

cursor

— isJust mbErr = (mbErr, [ ] , cursor)

] (mbErr, i, cursor) = sql˙insertId cursor

— isJust mbErr = (mbErr, [ ] , cursor)

] (mbErr, ids, cursor) = updateTasks ts cursor

= (mbErr, [i:ids] , cursor)

— otherwise

] vals =

[SQLVVarchar description,SQLVInteger ( i f done 1 0)

,SQLVInteger pid,SQLVInteger taskNr]

] (mbErr, cursor) = sql˙execute

”UPDATE task SET description = ?, done = ?, project = ? WHERE taskNr = ? ”

vals cursor

— isJust mbErr = (mbErr, [ ] , cursor)

] (mbErr, ids, cursor) = updateTasks ts cursor

= (mbErr, [taskNr:ids] , cursor)

tmatch [ ] = ””

tmatch ids = ” AND NOT (taskNr IN (”+++

(text˙join ”,” [”?” \\ x← ids]) +++ ”))”
tvalues ids = map SQLVInteger [pid:ids]

This function is not very difficult to write and is not really special, but it is rather

long. It is also written specifically for this data type and the related database

tables. Without the generic mapping, we would need to write eight of these

functions. One for each CRUD operation of both projects and employees. Even

for such a small system, this is a lot of code.



Chapter 7

Conclusions

Now that we have seen that it is possible to apply generic programming to auto-

mate the mapping between data structures and databases, it is time to take a step

back and reflect on what we have accomplished. In this final chapter we evaluate

the results of the project to see what we have contributed, and ponder upon some

of the future challenges that may spring from this project.

7.1 Evaluation

First, let us take a critical look at the mapping approach we have developed so

far. To do so, we first look at the mapping from the viewpoints of some different

quality criteria. We then look at how our mapping compares to the related work

mentioned in chapter 1.

7.1.1 Applicability

We start with looking at the applicability of our work. By this we mean the range of

problems to which the mapping can be applied. For our current mapping approach

and implementation we divide this range into two categories: As basis for new

information systems specified by an ORM model, and existing databases for which

we want new interfaces.

The first area where we can use our approach, is in the construction of new

information systems. If the universe of discourse is simple enough to be captured

by the ORM subset we defined, our approach provides a way to systematically

derive both the database and the core data types of the system from an ORM

model. If they do so, they do not need to program any database interaction

code, because all database input and output is handled by the type driven generic
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function. This might prove to be a good incentive to encourage developers to

first make a conceptual model of a system instead of immediately start building

databases and writing code.

The second way in which our mapping can be used, is by using the representation

types as a view on an existing database. If an existing database meets the precon-

ditions defined in section 5.1, we can define types based on the relational model of

the database which reflect the entities stored in the database. The generic func-

tions are then used to propagate changes in the views, the representation types

actually, to the database. This alternative use of the mapping makes it possible

to reduce the amount of database interaction code, even for systems that have to

work with an existing database.

7.1.2 Usability

A more vague quality attribute of our mapping is usability. This attribute is usually

used to “measure” how easy it is for end users of a system to use it. In our case,

the users of the mapping are not the end users of an information system, but the

designers and developers of the system. The aim of the mapping was to relieve

programmers of a lot of repetitive and error prone work. Therefore the work one

has to do when the mapping is used should be less than without the mapping. For

a typical update of an entity in the database, the work one has to do could be

summarized as follows:

Without the mapping:

• Do all SQL queries to retrieve the information about the entity

• Convert the returned lists of SQL values to a convenient data structure

• Manipulate the data structure

• Do all SQL queries to propagate the changes in the data structure to the

database

With the mapping:

• Call gsql˙read to retrieve all information about the entity in the form of a

representation data structure for that entity.

• Manipulate the data structure

• Call gsql˙update to propagate the changes to the database.

If we compare these two lists, we see that the programmer no longer has to do

SQL queries anymore and that there is no need to do a conversion from the results

returned by the database to a convenient data structure. The obvious advantage
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is that a programmer no longer needs to write SQL. In fact, he no longer even

needs to know SQL. Not having to convert between the flat database results and

a more convenient structure also saves a lot of boring work.

An additional advantage of the mapping is that it helps to prevent programming

errors. Because the mapping executes all SQL statements that are necessary to

propagate changes in the data structures to the database, it is impossible to make

programming errors in an SQL statement, or even forget to execute a statement at

all. Because of the repetitive nature of this programming work, it is very likely that

a human programmer makes such mistakes every once in a while. The mapping

therefore also saves debugging and testing effort and helps to protect the integrity

of the database.

But what is the price we have to pay for these benefits? The first thing that we

lose is control over the SQL queries that are executed. It is no longer possible

to use clever queries that get the most information in as little queries as possible.

As have seen in chapter 4, the current implementation is not the most efficient

one, in terms of performance. But it is possible to optimize the mapping to get

better performance. The second price the programmer has to pay, is that he is

no longer free to choose a data structure to represent an entity. The data types

used to represent entities are defined by the mapping and have to follow the rules

of the mapping. The biggest disadvantage here is that the names of record fields

can become annoyingly long. For example, updating a record field with the name

projectworkers˙employee˙ofwhich˙project means a lot of typing and long lines of

code in your programs.

7.1.3 Generic mapping vs. object-relational mapping

To anyone that is familiar with object-relational mapping systems, such as for

example Hibernate [9] in Java, the generic mapping presented in this thesis will

appear very similar. On a certain level this true, because from a programmer’s

perspective they both serve the same purpose. Namely, the automation of SQL

programming work to deal with the storage and persistence aspects of a system.

From that point of view one could argue that the generic mapping is the functional

language equivalent of object-relational mapping.

However, there is a subtle but important difference between the two approaches.

This difference is the focus on what is mapped to what. In object-relational

mapping, the object model is mapped to the relational model to make objects

persistent. From a design perspective, this means that objects remain the key

abstraction on which systems are built. The world is modeled in terms of objects,

and some of these objects can be stored and retrieved from a relational database.

In our generic mapping we do not try to map all abstract data types to a repre-

sentation as a relational model, nor do we try to just map a relational model of a

database to abstract data types. Instead, we realize that in an information system

the world can be modeled on a conceptual level in terms of objects having rela-
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tions which can be expressed as facts. In order to implement a system to record

these facts, we need a relational model in which conceptual entities and relations

can be stored, as well as a representation as data structure to manipulate them.

Both of these representations are “shadows” of the same conceptual entities and

can thus be mapped. Thus, the mapping we introduced does not map all types

to a relational model, nor does it map all relational models to types. Instead it

provides both a storage and a manipulation representation of conceptual entities

and enables transparent mapping between these two representations.

7.1.4 Generic mapping vs. type safe SQL

The other existing technique which shares some goals with our generic mapping is

the embedding of SQL inside a functional language to enable type safe expression

of SQL queries and statements. The similarity is in this case that both approaches

hide the “low-level” string manipulation of creating SQL statements from the

programmer. The big difference here is that the embedding of SQL, while very

useful to detect errors at compile time, stays on the level of relations and tables.

Our mapping approach on the other hand, provides representations that reflect

the conceptual structure of entities.

For the four CRUD operations, the need for compile time checking of SQL queries

disappears because they are generated by our generic functions. For queries, which

are not covered by our mapping, type safe SQL could complement our mapping.

If a type safe SQL library for Clean had been available, it could have even been

possible to built the mapping on top of it.

7.2 Contributions

The main contribution of this thesis is that it shows that given the right choice of

types and database layout, it is possible to use generic programming to automate

the mapping between entities stored in a database and their representation as data

structures in Clean.

In order to do so we have shifted the focus away from both the database and the

data types, towards the conceptual level of ORM models. Thereby at the same

time introducing a way to use ORM models not only as basis for the design of

databases, but for the design of the data types of programs that work with these

databases as well.

The implementation of the mapping should be considered a proof-of-concept.

Because of the limited applicability and the performance issues outlined in the

previous section, it is not ready for production systems, but might prove to be a

valuable tool for rapid prototyping.
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7.3 Future research

In this thesis we have only scratched the surface of what is possible in the au-

tomation of the construction of information systems. Therefore we conclude this

thesis with some suggestions for further work, that is inspired by the work on this

project.

7.3.1 Improvement of the mapping

Since the state of the mapping at this point is that of proof-of-concept, a lot

of further research can be done on improving the approach. The obvious issues

are an extension of the ORM subset that can be handled, and improvement of

the performance of the implementation. But one could also think of extension of

the scope of the mapping. The current mapping focuses on operations on single

entities. It would be interesting to extend this to operations on sets of entities. For

example, the automatic selection of the set of entities available in the database

that are candidates for a certain relation. Another interesting improvement is the

possibility of mixing references and includes of related entities. In this way one

could select both existing entities by reference, and add new ones by value during

a single update of an entity.

7.3.2 Beyond data models

In this project we focused on conceptual data models to use as the basis for au-

tomating a part of the work involved in constructing an information system. These

models, however, are just a part of the specification of an information system. In-

teresting further research is therefore the integration of our mapping with other

generic approaches that focus on other aspects of an information system, such

as the user interface [17] or work flow [18] of the system, to work towards fully

model based development of information systems.
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Appendix A

The Clean Database API

The standard library of Clean does not have any support for working with relational

databases. There were some partial solutions available as part of other projects,

such as a very basic ODBC interface as part of the iData framework [17], but no

general purpose database API which abstracts over the specific database engines

available.

This library, which is inspired by the Python database API version 2 [12], provides

a set of data types and functions for working with relational databases and defines

a set of type classes that define the functions a database library must implement.

Basic Types

The first part of the database API defines the types which are used in interaction

with a database. Because the result rows of a database query often consist of

fields of different types, the SQLValue type is defined which wraps the scalar data

types found in various databases. Result rows are lists of SQLValue and statements

are just plain strings.

:: SQLStatement :== String

:: SQLValue = SQLVChar String

— SQLVVarchar String

— SQLVText String

— SQLVInteger Int

— SQLVReal Real

— SQLVFloat Real

— SQLVDouble Real

— SQLVDate Date

— SQLVTime Time

— SQLVTimestamp Int

— SQLVDatetime Date Time
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— SQLVEnum String

— SQLVNull

— SQLVUnknown String

:: SQLRow :== [SQLValue]

Errors

In interaction with databases a lot can go wrong. To capture these problems and

adequately deal with them, the API defines an SQLError type.

:: SQLError = SQLWarning Int String

— SQLInterfaceError Int String

— SQLDatabaseError Int String

— SQLDataError Int String

— SQLOperationalError Int String

— SQLIntegrityError Int String

— SQLInternalError Int String

— SQLProgrammingError Int String

— SQLNotSupportedError

The Int and String parts of the error constructors are a database dependent error

code and a human readable error message.

The following table describes the meaning of the different constructors.

Error Description

Warning Non fatal errors, you can still continue

InterfaceError Error related to the interface, not the database

itself

DatabaseError Error related to the database that can not be

classified as Operational error or Internal error

DataError Error due to problems with the data

OperationalError Error due to operational problems with the

database. E.g. disconnects, memory full etc.

IntegrityError Errors related to data integrity, e.g. key con-

straint violations

InternalError Errors related to internal problems in the

database library

ProgrammingError Errors of the end user, e.g. syntax errors in

SQL statements

NotSupportedError An operation is not supported by the database

library
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Environments, Contexts and Connections

Communication with a database usually requires some initialization. In the Clean

SQL API, this is done in three phases. First you initialize a database library

in an SQLEnvironment, this will give you an SQLContext in which you can open an

SQLConnection. You can open multiple connections in a single context, so you

have to initialize the library only once. Finally you can open an SQLCursor on a

connection. This cursor can be used as a handle which allows you to interact with

a database.

Since the API abstracts over different database libraries, the SQLEnvironment, SQLContext,

SQLConnection and SQLCursor are defined as type classes.

class SQLEnvironment env ctx

where

sql˙init :: !*env → (!(Maybe SQLError) , !(Maybe *ctx) , !*env)
sql˙end :: !*ctx !*env→ (!(Maybe SQLError) , !*env)

class SQLContext ctx con

where

sql˙openConnection :: !String !String !String !String !*ctx

→ (!(Maybe SQLError) , !(Maybe *con) ,!*ctx)
sql˙closeConnection :: !*con !*ctx → (!(Maybe SQLError) , !*ctx)

class SQLConnection con cur

where

sql˙openCursor :: !*con → (!(Maybe SQLError) , !(Maybe *cur) , !*con)
sql˙closeCursor :: !*cur !*con → (!(Maybe SQLError) , !*con)

Except for the sql˙openConnection function, the arguments of the functions in

these type classes should be self explanatory. The first four String arguments of

sql˙openConnection are respectively: the host name of the database server, a user

name, a password and the name of the database to use.

Cursors

Database cursors are used to interact with the database. The functions that can

be used with a cursor handled are defined in the SQLCursor type class.

class SQLCursor cur

where

sql˙execute :: !SQLStatement ![SQLValue] !*cur

→ (!(Maybe SQLError) , !*cur)
sql˙executeMany :: !SQLStatement ! [ [SQLValue] ] !*cur

→ (!(Maybe SQLError) , !*cur)
sql˙numRows :: !*cur → (!(Maybe SQLError) , !Int, !*cur)
sql˙numFields :: !*cur → (!(Maybe SQLError) , !Int, !*cur)
sql˙insertId :: !*cur → (!(Maybe SQLError) , !Int, !*cur)
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sql˙fetchOne :: !*cur → (!(Maybe SQLError) , !(Maybe SQLRow) , !*cur)
sql˙fetchMany :: !Int !*cur → (!(Maybe SQLError) , ![SQLRow] , !*cur)
sql˙fetchAll :: !*cur → (!(Maybe SQLError) , ![SQLRow] , !*cur)

The arguments and return values of these functions are not immediately clear, so

the following table explains them each individually.

Function Description

sql execute This function executes an SQL statement. In

this statement “?” markers may be placed

which are replaced by the values from the sec-

ond argument. The length of the list of values

must be equal to the number of “?” markers

in the SQL statement. If not, a programming

error is returned.

sql executeMany This function does the same as the previous,

but multiple times. Therefore a list of lists of

values is given. Depending on the possibilities

of the database, this can be implemented as

executing a single query multiple times, or op-

timized by sending the query once, and just the

values multiple times.

sql numRows This function has a different meaning depending

on the type of statement that was sent last. If it

was a SELECT statement, the number of found

rows is returned. If it was an INSERT statement

it returns the number of inserted rows. When

an UPDATE or DELETE statement was executed,

the returned value is the number of rows match-

ing the WHERE selection part of the statement.

sql numFields This function returns the number of fields that

the result set rows will have. In other words,

the length of the result rows.

sql insertId When a record is inserted in a table with an

auto-incrementing primary key, this function re-

turns the last inserted number.

sql fetchOne This function returns the next result row after

executing a statement, or Nothing if there are

no result rows left.

sql fetchMany This function returns at most the next n result

rows. If there are less then n left, everything

that could be fetched is returned.

sql fetchAll This functions returns all the result rows after

executing a statement.
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Database Layout

The Clean Database API does not only specify types and functions for interacting

with an existing database, it also defines types for representing the structure of

databases themselves.

:: SQLDatabaseName :== String

:: SQLTableName :== String

:: SQLColumnName :== String

:: SQLType = SQLTChar Int

— SQLTVarchar Int

— SQLTText

— SQLTInteger

— SQLTReal

— SQLTFloat

— SQLTDouble

— SQLTDate

— SQLTTime

— SQLTTimestamp

— SQLTDatetime

— SQLTEnum [String]

— SQLTUnknown Int

:: SQLTable = { name :: SQLTableName

, columns :: [SQLColumn]

, primary˙key :: SQLPrimaryKey

, foreign˙keys :: [SQLForeignKey]

}

:: SQLColumn = { name :: SQLColumnName

, type :: SQLType

, null :: Bool

, default :: Maybe SQLValue

}

:: SQLPrimaryKey :== [SQLColumnName]

:: SQLForeignKey = { columns :: [SQLColumnName]

, ref˙table :: SQLTableName

, ref˙columns :: [SQLColumnName]

, update˙action :: SQLRefAction

, delete˙action :: SQLRefAction

}

:: SQLRefAction = SQLCascade

— SQLRestrict

— SQLNoAction

— SQLSetNull

— SQLSetDefault
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class SQLTableInfo con

where

sql˙tables :: !*con → (!(Maybe SQLError) , ![SQLTableName] , !*con)
sql˙describe :: !SQLTableName !*con

→ (!(Maybe SQLError) , !(Maybe SQLTable) , !*con)

If a database library provides an instance of the SQLTableInfo class for its connection

type, the structure of a database can be extracted.

Utility functions

Finally the Clean SQL API module gives instances for equality and string formatting

for the commonly used types.

instance toString SQLType

instance toString SQLValue

instance toString SQLError

instance == SQLType

instance == SQLValue



Appendix B

The GenSQL library

Basic Types

The generic gSQL works on a token list, and maintains a field type information list.

Since it also is actually six functions at once, there are also types to instruct the

function what to do. In normal usage of the GenSQL library, you never need to

deal with these types. They are exported only for the rare cases that the generic

function has to be specialized for a non standard scalar.

:: GSQLMode = GSQLCreate

— GSQLRead

— GSQLUpdate

— GSQLDelete

— GSQLInfo

— GSQLInit

:: GSQLPass :== Int

:: GSQLToken = GSQLValue SQLValue

— GSQLTerminator

— GSQLOverride String SQLValue

:: GSQLFieldInfo = { fld˙table :: String

, fld˙select :: Maybe String

, fld˙match :: Maybe String

, rec˙table :: String

, rec˙key :: String

, val˙list :: Bool

, val˙maybe :: Bool

, val˙fields :: [GSQLFieldInfo]

, val˙id :: Bool

}
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Errors

In working with the mapping, two things can go wrong. The first, most likely

problem, is that a problem in the database. In this case, the error the database

API returned is simply passed along. Another thing that can be wrong, is misuse

of the mapping by the programmer. Because the generic function is by definition

defined for every type, it can be applied to values which make no sense in a database

context. In other words, these types are not part of the set of representation types.

In these cases a run time type error is given.

:: GSQLError = GSQLDatabaseError SQLError

— GSQLTypeError String

The Generic function

All the real mapping work is performed by the gSQL generic function. It has already

been explained in detail in chapter 4 and needs no further explanation.

generic gSQL t ::

!GSQLMode !GSQLPass !(Maybe t) ![GSQLFieldInfo] ![GSQLToken] !*cur

→ (!(Maybe GSQLError) , !(Maybe t) ,![GSQLFieldInfo] ,![GSQLToken] ,!*cur)
— SQLCursor cur

Operation Wrappers

The generic mapping is used by means of the operation wrapper functions. There

use has also been explained in chapter 4, and demonstrated in chapter 6.

gsql˙read :: !a !*cur→ (!(Maybe GSQLError) , !(Maybe b) , !*cur)
— gSQL{|?|} a & gSQL{|?|} b & SQLCursor cur & bimap{|?|} cur

gsql˙create :: !b !*cur→ (!(Maybe GSQLError) , !(Maybe a) , !*cur)
— gSQL{|?|} a & gSQL{|?|} b & SQLCursor cur & bimap{|?|} cur

gsql˙update :: !b !*cur→ (!(Maybe GSQLError) , !(Maybe a) , !*cur)
— gSQL{|?|} a & gSQL{|?|} b & SQLCursor cur & bimap{|?|} cur

gsql˙delete :: !a !*cur→ (!(Maybe GSQLError) , !(Maybe b) , !*cur)
— gSQL{|?|} a & gSQL{|?|} b & SQLCursor cur & bimap{|?|} cur

Utility functions

Finally the GenSQL library also defines one utility function. Namely the instance

of toString for the GSQLError type.

instance toString GSQLError
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