
Validating Specifications for Model-Based Testing
Submitted to SERP 2008

Pieter Koopman
Software Technology

Radboud University Nijmegen
The Netherlands

Phone/Fax: +31 24 3652(483/525)
Email: pieter@cs.ru.nl

Peter Achten (contact)
Software Technology

Radboud University Nijmegen
The Netherlands

Phone/Fax: +31 24 3652(483/525)
Email: P.Achten@cs.ru.nl

Rinus Plasmeijer
Software Technology

Radboud University Nijmegen
The Netherlands

Phone/Fax: +31 24 3652(644/525)
Email: rinus@cs.ru.nl

Keywords: functional programming, model-based testing, validation
tools, quality of specifications

Abstract—In model-based testing the behavior of a system
under test is compared automatically with the behavior of a
model. A significant fraction of issues found in testing appear
to be caused by mistakes in the model. In order to ensure that
it prescribes the desired behavior, it has to be validated by a
human. In this work we describe a tool, esmViz, to support
this validation. Models are given in a pure, lazy functional pro-
gramming language. esmViz provides an interactive simulator
of the model, as well as diagrams of the observed behavior. The
tool is built on the iTask toolkit which results in an extremely
concise GUI definition. Experiments show that esmViz helps to
gain understanding of a model and to detect and remedy errors.

I. INTRODUCTION

In model-based testing the behavior of a system under test,
sut, is compared automatically with the behavior of its specification.
Examples of model-based test tools are G∀st [5], QuickCheck
[2], TorX [9], T-Uppaal [7]. The specification is a possibly non-
deterministic state transition system used as model in the tests. The
number of states, inputs and outputs can be infinite. The sut is
assumed to be a state transition system with a hidden state. One
can only apply inputs to the system and observe the corresponding
output. Key advantages of model-based test tools are the significant
reduction of the amount of manual testing; increase of test speed due
to automation; and reuse of specifications for regression testing.

Model-based test systems execute a finite number of traces. For
each trace the sut and the specification start in their initial state. An
input is selected that is covered by the specification, it is applied
to the sut, and the allowed states of the specification are computed.
If, during this process, the test system discovers that no states are
reachable for the specification, then the sut has shown behavior that
is not covered by the specification. In test jargon it is said that an
issue is found.

Ideally, each issue indicates an error in the sut. However, in
practice a significant fraction of issues appear to be caused by
problems with the specification: it does not correctly capture the
intentions of the users and the sut does something different. Even
though the fraction of issues depends on a lot on factors such as the
kind of system and the effort spent in creating the model, we estimate
that the specification has to be blamed for about 25% of the issues.

Incorrect specifications are a problem for several reasons. First,
if an issue is found it is not clear whether we have to blame
the specification or the sut. Finding and correcting errors in the
specification takes time during the test phase of the project. Second,
errors in the specification are only found during model based testing if

the behavior of the sut differs from the specified behavior. Third, any
change in the specification during the testing phase can cause major
implementation changes to the sut. Finally, any change in model or
sut invalidates in principle all previous test results. Hence, errors in
the specification can be very expensive and it is worthwhile to invest
effort to ensure its quality.

In the model-based test system G∀st the pure, lazy functional
language Clean serves as specification language. Due to its high
abstraction level it is possible to write concise specifications which
contributes to their quality. It allows the test engineer to model arbi-
trarily large state, input, and output domains exactly as desired. The
advantages have been presented earlier ([4], [6]). The Clean compiler
checks quality aspects like type correctness and consistent definition
of used identifiers. Other quality aspects such as the reachability
of states, determinism and completeness, and the preservation of
constraints can be checked by systematic testing [?].

The use of a high level specification language does not rule out the
possibility that the specification prescribes the wrong behavior in a
consistent way. Hence, these kinds of errors can not be found by the
above mentioned techniques. In order to ensure that the specification
prescribes the desired behavior, it has to be validated by a human. In
this work we introduce the tool esmViz to support validation of G∀st
models. This simulator enables the user to execute the specification.
Such an interactive execution appears to be more illustrative than
reviewing the specification. Second, it is possible to record the traces
of the specification executed in the simulator. The states visited and
their transitions can be visualized in an expanded state transition
diagram. Since the type of states, inputs and outputs can be infinite
and different in each and every specification, doing this conveniently
is not straightforward. The key to the solution is to use generic
definitions such that operations on these types can be derived instead
of defined manually.

The layout of the paper is as follows: in Sect. II we introduce
the concepts and notation that will be used throughout this paper. In
Sect. III we discuss the issues that arise when testing against a formal
specification. In Sect. IV we describe esmViz. Its implementation
is discussed in Sect. V. Related work is discussed in Sect. VI. We
present user experiences in Sect. VII, and conclude in Sect. VIII.

II. MODEL-BASED TESTING

In model-based testing the test tool compares the observed behav-
ior of the system under test, sut, with the model in order to judge the
correctness of the behavior. Any deviation of the observed behavior
of the sut from the behavior allowed by the model is called an issue.
In this section we review the models used by the model-based test
tool G∀st.

The models used by G∀st for testing state based systems are
extended state systems, ESMs. An ESM consists of some initial state

s0 and a set of transitions of the form s
i/o−−→ t. In such a transition

s is the source state, i is the input triggering this transition, o is the
output of the system associated with this state and input, and t is
the target state of the system. The sets of possible states S, possible
inputs I , and possible outputs O of the ESM can all be infinite. The
i/o combination is also called the label of the transition from s to t.

A trace s
σ

=⇒ t is a sequence of labels. The empty trace contains
no labels. If we have a trace s

σ
=⇒ t and a transition t

i/o−−→ u we
can construct the trace s

σ;i/o
====⇒u. If we are not interested in the

target state, we will occasionally write s
i/o−−→ ≡ ∃t.s i/o−−→ t and

s
σ

=⇒ ≡ ∃t.s σ
=⇒ t. All traces from a given state are defined as:

traces(s) ≡ {σ|s σ
=⇒}. The init of a state s is the set of inputs i,

such that there is an output o and target state t in the ESM such that
there exists a transition s

i/o−−→ t. The after of a state s is the set of
possible target states t, reachable after the given trace σ: s after σ ≡
{t|s σ

=⇒ t}. We overload traces, init, and after for sets of states
instead of a single state by taking the union of the set members.

A. Conformance
In model-based testing we try to determine conformance of the

sut and the model called spec. The sut is assumed to be a transition
system, but treated as a black box: one can observe its traces, but
not its internal state. During tests, all observed traces of the sut have
to be traces of the specification to say that the sut conforms to the
specification. Formally, this relation is defined as:

sut conf spec ≡ ∀σ ∈ tracesspec(s0),

∀i ∈ init(s0 afterspec σ),

∀o ∈ O.

(t0 aftersut σ)
i/o−→⇒ (s0 afterspec σ)

i/o−→
Here s0 is the initial state of spec, and t0 the initial state of sut.
Intuitively the conformance relation reads: if the specification allows
input i after trace σ, then the observed output of the sut should be
allowed by the specification. If spec does not specify a transition for
the current state and input, anything is allowed. Because the sut is
a black box, its initial state t0 is generally not know explicitly. We
assume that the sut is in this abstract state when we switch it on, or
we reset it.

Limiting the applied inputs to the init of the states of the current
traces allows for partial specifications spec.

B. Testing Conformance
The conformance relation defined above covers all traces. Most

interesting systems contain cycles, so traces can become infinitely
long. Due to the possible infinite types for input and output, there
can be even infinitely many traces of finite length. It is clear that in
general a test system cannot prove conformance by executing tests.
The test system G∀st approximates the conformance of the sut to
the model by executing a finite number of traces of finite length.

To increase efficiency the test system records the set of allowed
states, s0 after σ, rather than the trace σ. If at some point in the test
this set of states becomes empty we have found an issue: a trace
that shows that there is no conformance between sut and the model.
Clearly this way of testing is sound, each trace leading to an issue
during testing shows that there is no conformance between the sut
and the model. This way of model-based testing is also complete, if
there is no conformance between sut and the model, there are one
or more traces indicating this. Such a trace can be found by testing
(if the allowed length during tests is sufficiently large).

C. Representation of the transitions
To represent the ESM in the model-based test tool G∀st we

need a finite (preferably small) and flexible representation, even if
the set of transitions is infinite. Furthermore it should be easy to

determine the init of the set of actual states, or to determine if
an input is in this set, since this information is needed before we
can apply an input during model based testing. The crucial step
is to use a function to model the transitions rather than a data
structure containing individual transitions. Each function alternative
with variables in its patterns captures a family of related transitions.
As usual lists represent sets. To define init easily we use specifications
of type S × I → [Trans O S].

A basic assumption in G∀st is that a transition always contains
a sequence (list) of output symbols. This gives some additional
flexibility as well as a suitable notation for no output (the empty list).
Usually it is most convenient to specify the sequence of outputs and
the target state in a transition. However, the number of allowed output
sequences for one input can get huge, which makes it infeasible to
state them explicitly. For instance in an authentication procedure a
typical step is to ask for a challenge (the input), the response is a
64 bit number. Listing all possible outputs and target states explicitly
requires 264 transitions. In such a situation we prefer one function of
type [O] → [S] rather than all individual transitions. Here the list of
states as result has the usual meaning: all states (zero or more) that
correspond to the given output sequence. Again, a single function
captures a family of related transitions. In Clean these types are:

:: Spec s i o :== s i→ [Trans o s]
:: Trans o s = Pt [o] s | Ft ([o] → [s])

Note that we use type parameters to allow any concrete type to be
used for state (s), input (i), and output (o).

1) Example: As an example specification we show the model of
a beverage vending machine that supplies coffee and tea (see Fig. 1).
Initially the machine is in a state calledOff. After the inputSwitchOn

Fig. 1. The intented specification of the beverage vending machine

it enters state On 0 without producing any output. The integer in this
state is used to record the amount of money inserted. Now the user
can either insert a coin with a value given as parameter as long as
the counter in the state remains less then Max, or press a button to
receive a product. If there is enough money the user gets his product
and the value of the counter is decreased accordingly. The types used
in this model are:

:: Money :== Int
:: State = Off | On Money
:: Input = SwitchOn | SwitchOff

| Coin Money | Butt Product
:: Product = Coffee | Tea
:: Output = Cup Product | Return Money

A possible specification is given as the function vSpec below. We
deliberately introduce some errors and strange transitions in this
specification, later we return to it in an attempt to find these problems.

vSpec :: !State !Input→ [Trans Output State]
vSpec Off SwitchOn = [Pt [] (On 0)]
vSpec s SwitchOff = [Pt [] Off]
vSpec (On s) (Coin c)

/ / condition should be s+c<Max
| s<Max = [Pt [] (On (s+c))]
/ / output should be Return c

2

= [Pt [] (On s)]
/ / pattern should be (Butt Coffee)

vSpec (On s) (Butt coffee)
| s≥20 = [Pt [Cup Coffee] (On (s-20)) ,Pt [] (On s)]
vSpec (On s) (Butt Tea)

/ / we get Coffee instead of Tea
| s≥10 = [Pt [Cup Coffee] (On (s-10))]
/ / do nothing for other buttons

vSpec (On s) (Butt p) = [Pt [] (On s)]
/ / otherwise: nothing defined

vSpec state input = []

This specification is partial (e.g. the effect of pressing a product
button when the machine in the state Off is not defined), and
nondeterministic (if there is enough money in the machine and the
user asks for coffee, the machine either produces coffee, or does
nothing at all). Non-determinism models limited knowledge of the
state of the real machine: e.g. if there are coffee beans it will
produce coffee, otherwise it cannot produce coffee and waits for a
new command.

III. ISSUES FOUND IN MODEL BASED TESTING

Issues are traces that show that there is no conformance between
the sut and the specification. Ideally each issue found indicates an
error (bug) in the sut, but that is not always the case. Other sources
of issues are inaccuracies in the model, problems in the interface
between the test system and the sut, and internal faults in the test
tool. One wishes to eliminate these other sources of issues before
actual testing starts.

In ordinary automatic testing the test tool executes a manually
specified or recorded trace. As a rule of thumb test engineers say
that 40% of the issues found in this kind of tests indicates a real
error in the sut. A tiny fraction of these issues is caused by the test
tool itself, or the interface with the sut. Most issues are caused by
the fact that the trace used does not correspond to the current version
of the specification, or the specification itself is incorrect.

In model-based testing the traces are generated automatically and
on-the-fly from the specification. This guarantees that the traces used
during the tests always correspond to the current specification. As one
expects this implies that a larger fraction of the issues found indicate
errors in the sut. In our experience about 75% of the issues found
during model-based testing indicate errors in the sut. The fraction
of actual errors depends on the amount of effort spent on making
a high quality specification, the quality of the informal specification
and requirements used as basis, and the size and complexity of the
system.

The specification is a Clean function, hence the compiler can
readily check relevant properties: i) are all used identifiers properly
defined, ii) is the entire specification type correct, iii) are all alter-
natives (transitions) reachable. Still, well typed specifications can go
wrong. The problems with specifications that cannot be detected by
the compiler can be divided in the following classes.

1) Relevant behavior of the system is not covered in the speci-
fication. Since the test system is carefully designed to handle
partial specifications, this cannot be detected. Missing parts of
the behavior are not covered in the tests.

2) The specification contains design errors. Typically a family of
transitions is too large or too small, or leads to the wrong target
state. If the sut does a better (or at least different) job, the
test system will notice the difference if an appropriate trace
occurs and hence reports an issue. Consider the alternative
for vSpec (On s) (Coin c) in the example of the previous
section. The wrong condition and forgotten return of money if
the state becomes too large are probably design errors.

3) The transitions are designed correctly, but the implementation
is incorrect. A typical example is the use of lowercase iden-
tifiers (variables) where an uppercase identifier (constructor)

is intended, or vice versa. Another source of problems is
copy-paste programming used to define similar transitions,
where not all necessary changes are made. In our example this
occurs in the transitions for vSpec (On s) (Butt coffee),
and vSpec (On s) (Butt Tea).

All these problems result in well typed models. If the implementation
is based on such a model, it is not possible to detect the problems
by testing. Nevertheless, they must be found and preferably before
model-based testing starts.

Various approaches to find these kind of problems are: Inspection
or reviews of the specification. Problems can be found by manual
inspection of the specification. As the model tells the whole story,
there is nothing that prevents these errors from being detected by
reviewing the code. However, due to their subtle nature, they might
be missed.
Model checking. If we have the right properties and the specification
is available in a form suited for model checking, the problems can
be found by model checking. Limiting factors are the availability of
the model in a form suited for a particular model checker, and the
availability of properties to check. If the problems are known we
can often find such a set of properties quite easily, but that is too
late. In our example we can require: p1) every transition preserves
the amount of money, p2) the amount of money in the machine is
always less then Max, and p3) if we receive a product, it must be
equal to the requested product. Finding a complete set of properties
that reveals all problems is in general quite tricky.
Testing properties of the specification. Properties on transitions
can be tested by the logical branch of G∀st. The advantage is
that everything can be done within the same framework, especially
the Clean specification function can be used as subject of tests.
The drawback is that testing gives less certainty for large systems
(although for small specifications the logical test system provides a
proof by exhaustive testing).
Validation by simulation. The specification can be used as basis for
an interactive simulation. With some effort the simulator not only
displays the current transition, but also depicts the state space that is
covered in the current simulation. Such a simulation can reveal that
(important) parts of the behavior are missing, as well as problems
with individual transitions. This requires a thorough observation of
the shown behavior. Since the state space is discovered step-by-step
by the user, the chances of finding the problems are quite good.

Each of the above methods can in principle find problems in the
specification, but none of them can guaranteed this. Each method
either requires human spotting of problems, or human formulation of
properties revealing the problems.

In the remainder we describe esmViz. It combines model-checking
of properties on transitions with validation by step-wise simulation.
Together with G∀st, this covers a broad range of tools to investigate
the quality of models.

IV. VALIDATION OF SPECIFICATIONS WITH esmViz

In this section we describe the web browser-based simulation
tool, esmViz, that we have created to determine the quality of
specifications. The tool also gives an impression of the behavior
specified by the model, and checks user defined predicates on the
transitions encountered. Simulation is useful to give non-experts a
good impression of the specified behavior. The GUI of esmViz is a
screen with the following elements (Fig. 2(a)): 1. A list of found
issues. The list is empty in Fig. 2(a). 2. The explored model as
an Extended State Diagram (ESD). 3. Within the ESD the set of
possible active states determines the inputs that can be given. These
are enumerated as buttons that the user can press to advance the
system one step. In Fig. 2(a) the active states are S = {0, 20}, and
init (S) = {ButtCoffee, ButtTea, Coin10, Coin20, SwitchOff}.
4. Commands for navigation purposes, resetting the exploration, and
so on. 5. The current trace, as explained in Sect. II. Here the trace

3

Fig. 2. (a) The validation tool in action with the beverage vending machine case. (b) ESD showing some of the issues in the beverage vending machine.

has length 4. 6. Finally, a legend that tells what the elements of the
rendering are.

The tool esmViz creates an ESD of the behavior encountered
during simulation which is rendered as a directed graph. In ESM
diagrams a parameterized state is drawn as one state, in the ESD a
state is created for each value of the parameters encountered during
simulation. In the beverage vending machine example the states
(On 10) and (On 20) are different in the ESD, but they are one state
in the ESM (Fig. 1). A transition s

i/o−→ t is rendered as an arrow
between state s and state t, and has label i/o at its edge.

A. The ESM description
The ESD is created by esmViz based on an ESM and instances

of generic functions used for instance to display and compare values
of the data types used for states S, input I and output O. The ESM
as described in Sect. II is a Clean value of type (ESM S I O):

:: ESM s i o = { s_0 :: s
, d_F :: Spec s i o
, out :: s i→ [[o]]
, pred :: (SeenTrans s i o) → [[String]]}

:: SeenTrans s i o :== (s,i, [o] ,s)

Fields_0 is s0, andd_F is δF . The function out is needed to generate
the output sequences to be used when esmViz encounters a transition
of type [o] → [s]. If such transitions can not occur in the used
specification, this field can be undefined. Field pred is a predicate
over the transitions seen during simulation as discussed in Sect. III.
Each problem detected is reported as a nonempty list of strings.

While exploring esm, the tool collects all visited states, transitions
and issues. This results in a partially known automaton, and is
captured concisely with the following type:

:: KnownAutomaton s i o
= { trans :: [SeenTrans s i o]

, issues :: [(SeenTrans s i o , [String])] }
Encountered states can be extracted easily from the seen transitions
and are not recorded separately. Transitions that correspond to an
issue are drawn in red.

The tool esmViz also indicates the transitions that are part of
the current traces. For a nondeterministic specification there can be
multiple traces active. We record this as a list of transitions that is
possible in each step of the trace.

:: Trace s i o :== [[SeenTrans s i o]]

Trace transitions are drawn in blue with larger arrowheads.
For implementation reasons it is convenient to record the set of

active states. For a nonempty trace these are exactly the states in

the after set of the current traces. Let this set after k steps be
Sk. Each state in Sk is rendered with a red interior. States are
displayed as circles, where esm.s_0 has a double border. Initially,
S0 = {esm.s_0}.

The user can choose one input of init(Sk), which is the set of
all possible inputs. This set of inputs is empty for a final state. The
number of possible inputs is limited (by default 50). Given a concrete
choice i ∈ init(Sk), esmViz adds all transitions from the current
states that correspond to this input. For transition specified by Pt o t
in spec, the output and target state to be used are immediately clear.
For transitions specified by a function Ft f of type [o]→[s], the
function esm.out is used to determine the outputs and target states
of transitions. If the target states of these transitions exist the arrows
go to the existing states, otherwise the states are added to the ESD.
If the transitions are already in the ESD, they just have to be painted
red, otherwise they are added. The new transitions are also added
to the traces, and the existing part of the trace is pruned to reflect
the new extensions. The set of new states Sk+1 is computed with
Sk+1 = {t|s ∈ Sk ∧ s

i/o−→ t ∈ δF }.
The system determines for each known state whether the user has

‘discovered’ all outgoing edges, i.e. all edges with i in the init of that
state. In that case, the state is rendered with a blue interior instead
of a light grey default one. This provides a strong clue which part of
esm has been fully explored.

Pressing the button labeled Back removes the last transition from
each trace. The known automaton is not affected by going back in the
trace. The browser’s back button acts as undo action. With the Add all
button all transitions leaving from the current states are added. These
transitions are not added to the trace, nor effect Sk. Using an integer
edit field, adding transitions can be done recursively n steps deep.
Pressing Prune removes all transitions and associated issues that do
not belong to the current trace. The Reset button brings the esmViz
tool in its initial state, only the state s0 is displayed. The trace can
be removed by the button Clear trace, the states and transitions in
the ESD are not effected by this action.

The current state can be changed by clicking on a state in the
diagram. If this state is part of the trace or reachable from an active
state in one step the trace will be adapted accordingly, otherwise a
new trace starts at that node.

B. Example

Here is the beverage vending machine esm specification:

vendingESM :: ESM State Input Output
vendingESM
= { s_0 = Off, d_F = vSpec, out = undef, pred = healthy }

4

wherehealthy checks p1 – p3 (Sect. III). An ESD showing all issues
discribed by healthy is depicted in Fig. 2(b).

healthy :: (SeenTrans State Input Output) → [[String]]
healthy (s,i,o,t)
= [i f (vs+vi 6= vo+vt) / / value preservation in transition? (p1)

["value is not preserved in this transition, "
,"value s+value i=" , toString (vs+vi)
,", and value o+value t=" ,toString (vo+vt)] []

, i f (vt>Max) / / value of target state within bound? (p2)
["Value of target state " ,toString vt
," larger than Max (" ,toString Max,")."] []

, case (i,o) of / / obtained the ordered product? (p3)
(Butt p, [Cup q]) | p =!= q

= ["The required product is unequal"
," to the delivered product!"]

_ = []
]

where vs = value s; vi = value i
vo = value 0; vt = value t

V. IMPLEMENTATION

The esmViz tool has been written in Clean, using the iTask
toolkit [8]. Despite its conciseness (800loc) it offers a fair amount
of functionality (see also other tools in Sect. VI). In this section we
present the most interesting parts of the implementation. These are
the main structure of the GUI (Sect. V-A) and the integration of the
ESD rendering tool Graphviz [3] that we used in the application
(Sect. V-B).

A. The Main GUI Structure: Iterating iTasks
The main GUI structure of esmViz is an iteration of the main tool

task function DiGraphFlow. As discussed in Sect. IV, it provides the
user with a number of elements, expressed as a list of choices (the
arguments oforTaskL below which folds the basic iTask-||- choice
operator over the list):

DiGraphFlow (ka,as,trace,n) 1.

= orTaskL 2.

[issuesToHtml ka.issues !>> state 3.

,chooseTaskV (sortBy (λ(a,_) (b,_).a<b) 4.

[(render i,step i) \\ i←possibleInputs esm as]) 5.

,chooseTask 6.

[("Back" , back) 7.

, ("Prune" , prune) 8.

, ("Reset" , return_V (newKA, [esm.s_0] , [] ,n)) 9.

, ("Clear trace" , return_V (ka,as, [] ,n))] 10.

,stepN <<! traceHtml trace <<! legend] 11.

Note the correspondence between this definition and the GUI as
displayed in Fig. 2(a). The list of found issues are displayed before
the ESD editor (line 3); the possible inputs init Sk are defined in
lines 4–5; the navigation commands are summarized in lines 6–11;
and finally, the trace and legend are displayed in line 11. The state
task is given below:

state 1.

= editTask "OK" 2.

(mkDigraph ThisExe 3.

(ka, esm.s_0, as, allEdgesFound esm ka, 4.

map fst ka.issues, flatten trace)) 5.

=>> λdig→ l e t 6.

(as‘ ,trace‘) = findSelectedStates dig ka as trace 7.

in return_V (ka,as‘ ,trace‘ ,n) 8.

The iTask editTask l v combinator creates an editor with initial
value v with which users can create new values of the same type as
v’s type. When the button labeled with l has been pressed, then the

new value is returned by this editor and the task is done. As discussed
in Sect. IV, the user can select a new state. For reasons of space, we
do not show the code of the other functions.

B. The Rendering of the Explored Automaton
By far the most intricate component of the GUI is the ESD editor.

Creating attractive renderings of directed graphs is known to be a
hard problem. Fortunately, we can rely on other tools to solve this
problem. Here we have used the Graphviz tool set [3]. Directed
graphs are described using the DOT language. Given a DOT text file,
the dot tool can be invoked to create a rendering in various formats
(we will use the gif output). Note that this interface is text-based,
whereas editors in the iTask toolkit are type based. We can embed
the text based tools of Graphviz in the type based iTask toolkit in a
compositional way by defining a suitable collection of data types that
describe an ESD as a directed graph. This collection of data types
captures the DOT language. The relevant top level type definitions
are:

:: Digraph = Digraph String [GraphAttribute]
[NodeDef]
(Maybe SelectedItem)

:: NodeDef = NodeDef Int [NodeAttribute] [EdgeDef]
:: EdgeDef :== (Int, [EdgeAttribute])
:: SelectedItem = Node Int

A (Digraph name atts nodes item) value represents a directed
graph. A directed graph has nodes, each of which is identified by
a number, and is connected with other nodes by means of edges.
Graphs, nodes, and edges have attributes. Graphviz supports an
extensive set of attributes (almost 150) that can be used to alter and
tweak the output. In DOT, attributes are specified as name = value
pairs. Some attributes are shared by graphs, nodes, and edges. We
have represented attributes separately for graphs, nodes, and edges,
each as a list of unary data constructors. For instance, for graph
attributes we have GAtt_name value pairs. A single generic function
prints these values as correct DOT expressions. The result is that
we have both a typed representation of DOT expressions (Digraph
values) as well as a textual representation (printing such a value with
toString). The function mkDigraph yields the Digraph value that
represents the currently explored ESD.

The iTask editor for Digraph values performs the following
actions for a d :: DiGraph value identified by name. First, compute
e = toString d and save e in file name.dot. Second, invoke dot on
name.dot, which yields a rendering as name.gif. Third, invoke dot to
create a name.map file to allow the user to select states. Fourth, alter
the lines in name.map to invoke a script that sends the label of the
selected state to the server application. Finally, generate the proper
HTML to be included in the application page. The server application,
when receiving the label of a selected state, updates the corresponding
Digraph value to reflect the change. Now the application continues
with the new Digraph value.

VI. RELATED WORK

The mCRL2 tool set [?], [?] uses a process algebraic specifica-
tion language, mCRL2 [?], to describe distributed, communicating
systems. It has a functional style data language with recursive types,
data constructors, functions, lambda-abstraction, and structured data.
It comes with an extensive number of tools (15) for analysis purposes.
Five are relevant to our work: with xsim a user can explore a
linearized mCRL2 specification in a similar way as with our tool,
using a GUI (the simulation tool sim has a command line interface):
the user can select actions, after which the tool shows the resulting
state. Besides interactively exploring the mCRL2 specification, the
tool set also allows to render the complete state space: NoodleView
(for 2D rendering) and FSMView (for 3D rendering). Before this is
possible, the state space needs to be generated with lps2lts.

5

The TorX tool set [9], [?] is a model based test tool to check
conformance of real suts, based on the ioco theory of testing. The
specification is a Labeled Transition System (LTS), or one that is
derived from a higher level specification language that converts to
LTS (e.g. mCRL2 described above). The tool uses the specification
to automatically determine inputs, observe outputs from the sut, and
make a final verdict. In this sense, it is not useful for exploring a
specification. However, once a test run has been created, the user
can explore the actual trace which is depicted as a message sequence
chart.

The Uppaal tool set [1], [7] can be used for both validation and
verification (using model checking) of time-based systems. Validation
is done by means of a graphical simulator of a time-based automaton
specification. The automaton specification is basically a labeled
transition system with timing constraints. Uppaal allows for simple
data types, clocks, and constraints on these clocks. The user can create
specifications in an intuitive, graphical way. The user can stepwise
direct the system’s behavior, or generate a random trace.

The esmViz tool differs with the mCRL2 approach in that we
use a single modeling formalism. Except for the 3D rendering all
of the functionality of the mCRL2 tool set is available in esmViz.
The TorX tool set is really a model based testing harness, and is less
suited for exploration purposes. Specifications within Uppaal can be
created graphically. In esmViz specifications are given as a function,
out of which a graphical approximation is ‘discovered’ by the user or
by the system. In our opinion this combines the best of both worlds:
the succinctness of functional programming with the intuitive appeal
of a graphical rendering.

VII. EXPERIENCES

In order to judge the quality of esmViz 10 master students in
computer science studied some test cases with and without esmViz.
These students are literate Clean programmers, have a basic un-
derstanding of model-based testing with G∀st and the specifications
needed (but no hands-on experience). After an introduction to esm-
Viz and playing with an example similar to the beverage vending
machine in this paper the students were asked to locate problems
in two other case studies. The examples were heavily parameterized
specifications of a number guessing game and a telephone number
database that contains potentially over one million states. Drawing
all these states makes finding the problems only harder. The errors
in the specification can however all be found by traces of about ten
to twenty transitions.

The students found esmViz very handy to get a feeling for the
behavior of the specified system. Everybody found it much easier
to understand a specified system with the tool than without. Finding
errors in the specification by simulation remains hard, but the tool
makes it easier. The same holds for finding the source of issues found
by G∀st. This is consistent with the general observation in all kinds of
testing: finding issues is one thing, but finding their cause is another.

VIII. CONCLUSIONS

There are two kinds of conclusions from the work described
in this paper. First, the specification simulator esmViz described
in this paper really helps a lot to understand the behavior of the
extended state machines used as specification in model-based testing.
Although the compiler of the statically typed functional programming
language used as carrier of these specifications checks the models,
the models can still contain errors. Finding these semantical errors
is hard. The simulator helps in locating these problems, especially if
an appropriate constraint on transitions or states is known. Second,
implementing such a tool with iTasks is a real pleasure. Integrating
Graphviz with iTasks turned out to be smooth. Implementing a
browser interface for esmViz using the iTask system imposes some
restrictions on the layout of the GUI, but works well. The different
possible user actions are modeled each by an iTask. The iTask system

is well suited to compose these tasks in a flexible way and takes care
of rendering them.

REFERENCES

[1] G. Behrmann, A. David, and K. G. Larsen. A tutorial on UPPAAL. In
M. Bernardo and F. Corradini, editors, Formal Methods for the Design
of Real-Time Systems: 4th International School on Formal Methods for
the Design of Computer, Communication, and Software Systems, SFM-
RT 2004, number 3185 in LNCS, pages 200–236. Springer–Verlag,
September 2004.

[2] K. Claessen and J. Hughes. Quickcheck: A lightweight tool for random
testing of haskell programs. In Proceedings of the 2000 ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00), pages
268–279. ACM Press, 2000.

[3] E. R. Gansner and S. C. North. An open graph visualization system
and its applications to software engineering. Software — Practice and
Experience, 30(11):1203–1233, 2000.

[4] P. Koopman. Testing with functions as specifications. In E. Brinksma,
W. Grieskamp, and J. Tretmans, editors, Perspectives of Model-Based
Testing, number 04371 in Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany,
2005.

[5] P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic
automated software testing. In R. Peña and T. Arts, editors, The 14th
International Workshop on the Implementation of Functional Languages,
IFL’02, Selected Papers, volume 2670 of LNCS, pages 84–100. Springer,
2003.

[6] P. Koopman and R. Plasmeijer. Fully Automatic Testing with Functions
as Specifications, volume 4164 of LNCS, pages 35–61. Springer, Eotvos
Lorand University, Budapest, Hungary, July 4-16 2006.

[7] K. Larsen, M. Mikucionis, and B. Nielsen. Online Testing of Real-Time
Systems Using UPPAAL. In J. Grabowski and B. Nielsen, editors, Formal
Approaches to Software Testing, 4th International Workshop, FATES 2004
- Revised Selected Papers, volume 3395 of LNCS, pages 79–94. Springer,
September 21 2004.

[8] R. Plasmeijer, P. Achten, and P. Koopman. iTasks: Executable Specifica-
tions of Interactive Work Flow Systems for the Web. In Proceedings
of the 12th ACM SIGPLAN International Conference on Functional
Programming (ICFP 2007), pages 141–152, Freiburg, Germany, Oct 1–3
2007. ACM.

[9] G. J. Tretmans and H. Brinksma. Torx: Automated model-based testing.
In A. Hartman and K. Dussa-Ziegler, editors, First European Conference
on Model-Driven Software Engineering, Nuremberg, Germany, pages 31–
43, December 2003.

6

