Model-Based Testing of Thin-Client Web
Applications and Navigation Input

Pieter Koopman, Peter Achten, and Rinus Plasmeijer

Software Technology, Nijmegen Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands
{pieter, P.Achten, rinus}@cs.ru.nl

Abstract. More and more software systems use a browser as the univer-
sal graphical user interface. As a consequence these applications inherit
browser navigation as part of their interface. Typical browser actions are
the use of the back- and forward-button and the cloning of windows.
Browser navigation is difficult to deal with because it has effects that
are noticed indirectly by the application logic. It is easy to forget or
misunderstand the consequences of this aspect in the construction of a
program. Hence, testing the correct behavior of the application is very
desirable, preferably with an automatic model-based test tool. For this
kind of model-based testing a specification including browser navigation
is needed. We introduce a transformation to lift the specification of a pro-
gram without browser navigation to one with browser navigation. This
reduces the specification effort considerably. The distinguishing feature
of our method is that it allows the test engineer to specify only the ex-
ceptions to the general rule. We show how this lifting of specifications
is used for some examples and how errors are found in real web applica-
tions. The described system builds on the model-based test tool GVST.

1 Introduction

Equipping software systems with an HTML-based browser interface has many
advantages: the interface becomes platform independent, the look and feel is
familiar to new users, and it is often less work to implement a browser based
GUI instead of some traditional GUI library. Moreover, the new application ob-
tains browser navigation (cloning of windows and the possibility to go back and
forward between previous states of the GUI) for free. The browsers provide this
new GUI navigation without any help from the web application by maintaining
a stack of previous pages. The possibility to review previous states in the inter-
action can be very convenient for the user. It is even possible to go to a previous
page and give a new input in that state of the GUI to investigate several options
or to undo mistakes.

A consequence of using a browser as GUI is that the application, and hence
its state, becomes divided between the browser (handling rendering and browser
navigation) and the web application (handling the events and all other interfaces
of the program) on the server. In thick-clients the browser handles even a larger

part of the application by executing (Java) scripts, but that is outside the scope
of this paper. We focus on thin client web applications. By returning to a previous
page the current part of the state stored at the client site is replaced by a
previous version as well. Since the web application at the server is unaware of
this browser navigation, the part of the state stored at the server is unaffected.
Whether some part of the state should be changed on browser navigation is
problem dependent. Parts of the state representing actions or objects in the real
world, like purchases in a web shop, can usually not be undone by the user.
Hence these parts of the state should not be changed by going to a previous
page, this is achieved by storing them on the server. Other parts of the state,
like the contents of the basket in a web shop, can safely be changed by browser
navigation and hence should be stored in the page. Storing some part of the
state at the wrong place is usually harmless without browser navigation, but
using browser navigation reveals the problem, see also [4]. Hence, it is desirable
to include browser navigation in the tests of software with a web interface.

In this paper we extend our approach for model-based testing of web app-
lications [6] to the additional behavior imposed by browser navigation. A web
application to be tested is modeled by an extended state machine. The test
system automatically determines conformance between the web application and
its model by generating inputs. The corresponding output is checked by the test
system using the model. Many other existing models used for testing browser
navigation, like [1], cover only the input elements available in the web-page and
are not able to check the correctness of the new page obtained.

The effects of browser navigation on the models needed for testing are severe.
Even if the original implementation under test, iut, can be adequately modeled
by a finite state machine, an infinite state machine is needed for testing with
browser navigation buttons. Each state in the model without browser naviga-
tion has to be replaced by an unbounded number of states where the difference
between those states is the history of previous pages reachable with the back-
button and the forward-button. It would be tedious if the behavior corresponding
to this browser directed navigation must be specified for each and every system.
Fortunately the behavior is very similar, but not necessarily identical, for most
web applications. This enables us to define a model transformer that adds de-
fault behavior for the back and forward-button to each state in the model. We
have chosen to take the model where all state information is local in the current
web page as the default. This default corresponds to the browsing of simple old
fashioned web-pages. If other behavior is required for specific states or inputs,
the test engineer has to specify only the exceptions to the default behavior.

The organization of this paper is as follows. Section 2 rephrases testing of
thin-client web applications in order to make this paper more self contained.
In section 3 we elaborate on the special behavior associated with the back-
and forward-button. Section 4 introduces a general model transformer to turn
a model of a web application without browser navigation into a model with
default behavior for the back- and forward-button. This is illustrated by two
simple examples, for the first one (section 4.1) the automatic transformation

does everything wanted, for the second example (section 4.2) exceptions of the
default behavior are specified. Other forms of browser navigation are briefly
touched in section 5. In section 6 we discuss related work. Finally we draw
conclusions.

2 Model Based Testing of Thin Client Web Applications

In this paper we use the automatic model-based test tool GVST [5]. GVSTuses
functions in the functional programming language Clean® [8] as specification.
Distinguishing features of GVST are the fully automatic generation of tests, their
execution and the generation of verdicts. Input generation for arbitrary types
can be derived automatically using generic programming as well as specified
explicitly by the test engineer.

Reactive systems such as web applications are modeled with an Extended

State Machine, ESM. An individual transition is written as s 3o, t, where s
is the source state, t is the target state, 7 is the input value, and o the asso-
ciated output. An ESM is similar to a Mealy Finite State Machine, FSM, but
can have an infinite number of states, inputs and outputs. Moreover, an ESM
can be nondeterministic, i.e. there can be multiple transitions for each state and
input. Sometimes the output determines the target state, but there exist also

systems with transitions s i: t; and s i: to for some s, i and o with ¢1 # to.
From a single source state s there exist two (or more) transitions with identical
labels (input and output), but different target states. An ESM used as specifi-
cation in model-based testing can be nondeterministic for two reasons. Either
the system specified is nondeterministic, or the system is deterministic but there
is incomplete state information in the specification. Consider for instance the
purchase of an item from a webstore. If the goods in stock are unknown in the
specification, the model has to allow the response to situation where the item is
in stock as well as the situation where the item is not available. The webstore
itself will be deterministic; if the item is available it will be sold. The specifica-
tion of this transition in model-based testing however, must be nondeterministic
due to the incomplete state information. Such a situation with incomplete state
information in the specification is common in model-based testing.

A specification is partial if there is a combination of a reachable state and
a valid input that does not occur in any of the specified transitions. The con-
formance relation defined in section 2.1 states that any behavior of the system
under test is allowed if the specification does not cover the current state and
input. Since anything is allowed, testing such a transition is useless. GVYST is
able to handle these partial specifications.

For the specification of a web application the state can be freely chosen
by the test engineer. The type HtmlInput represents input elements in a web-
page like: buttons, links, drop-down lists and edit-boxes. One can use any de-

! See http://www.st.cs.ru.nl/papers/2007/CleanHaskellQuickCGuide.pdf for the main
differences between Clean and Haskell.

sired type for inputs in the model if one provides an instance of the class
transInput i :: i — HtmlInput for that type. Using a tailor made type instead
of HtmlInput is convenient in the generation of test data. For instance, the test
engineer can construct a data type to generate only integers values between 0
and 10, and define an instance of transInput that puts these values in the desired
edit-box. The output is always an element of type Html. This type is an abstract
syntax tree for HTML-code rather than a textual representation. We reuse the
type for HTML from the iData toolkit [7], Clean’s tool for generic web-page
generation.

For the specification of the output of a web application we do not want to
specify the HTML after each input completely. That would be much too de-

tailed and restrictive. Instead of modeling a single transition s 3o, t by a tuple
(s,1,0,t) and the entire specification §, by a set of tuples §, C S x I xO* xS, we
use a function. This specification function dz takes the current state and input as
argument and yields a function that takes the output of the web application as ar-
gument and yields the set of allowed target states. In this way, the output can be
used to determine the target states. Instead of a single function, d yields a list of
functions. Hence, the type of the specification is 0p(s,i) € S x I — P(O* — PS).
In this representation the empty set conveniently models partial specifications.
The set of functions is convenient in the composition and transformation of
specifications as shown below. Moreover, in this representation it is much easier
to determine the set of inputs that are allowed in a state s (the init defined
below) then in a representation of the specification as a function dr of type
Sx I — O* — PS). Mathematically these types of specifications are equivalent,
but for a test system the first version is much more convenient. Finally, this
representation makes it easier to mix it with the existing specification format
used by GVST where one specifies the combinations of outputs and target states

S xI—P(O*x09).

A specification of the form S x I — P(O* x S) is similar to a classical
Mealy machine were the output function S x I — P(O*) and state transition
function S x I — PS are joined to a single function. Classical Mealy machines
are deterministic, i.e. these functions have types S x I — O* and S x [— S.
Moreover, classical Mealy machines handle finite state machines, that is the sets
S, I, and O should be finite. For a nondeterministic specification it is essential to
join the output and transition function to a single specification function in order
to make the connection between outputs and target state on nondeterministic
transitions. Using functions of type S x I — P(O* — PS) for the specification
instead of functions yielding a list of tuples has as advantage that is is possible
to use a small function as specification instead of a very long list of tuples. In the
specification of a web application the type O represents the HTML-pages allowed.
In general one does not want to specify the produced output of a web application
until the last bit of the HTML output. Details like the background color of the
page are usually completely irrelevant and one does not want to specify those
particulars. Listing all allowed outputs would at least be nasty and annoying. In
such situations a function of type S x I — P(O* — PS) is much more convenient,

the functions O* — PS can implement a predicate over the produced HTML. Of
course it is still possible to model a finite state machine in this representation. If
the web application at hand should be a finite state machine, we can still test it
as a finite state machine. In general the web application is modeled as an ESM,
which shows richer behavior. ‘

For a single transition our specification reads: s /LN t < 3f €dp(s,i) Nt e
f(0). For web applications the functions f yielded by dr(s,4) are predicates over
the HTML output of the web application. Such a predicate typically verifies some
key aspects of a web-page, like the availability of buttons and specific text fields.
We show some examples in section 4.1.

Although technically superfluous, it turns out to be convenient to have the
possibility to specify one additional predicate P relating the output and target
state in each and every transition. This predicate checks whether the combination
of HTML and target state is well formed?. That is s ot o Af € ép(s,i) Nt €
f(o) A P(o,t).

The set of inputs allowed in a state s is init(s) = {i|0r(s,7) # 0}. A trace is
a sequence of inputs and associated outputs from some start state. The empty
trace connects a state to itself: s :€> s. A trace s = t can be extended with a
transition ¢ 3o, u to the trace s 2% u. If we are not interested in the target
state we write s dlo, = dt.s i, tor s = = 3t.s = t. All traces from state
s are: traces(s) = {o|s =}. All reachable states after a trace o from state s
are: safterc = {t|s = t}. We overload traces, init, and after for sets of states
instead of a single state by taking the union of the individual results. When the
transition function, g, to be used is not clear from the context, we add it as
subscript to the operator.

2.1 Conformance

Here the implementation under test, iut, is a web application. The iut is modeled

as a black box transition system. One can observe its traces, but not its state.

The iut and its specification need not have identical input output behavior in all

situations to say that the web application conforms to the specification.
Conformance of the iut to the specification spec is defined as:

iut conf spec = Vo € tracesspec(S0), Vi € init(sg afterspec 0), Vo € O*.

(to afteryt 0) Ao, = (50 afterspec o) o,
Here sg is the initial state of spec. The initial state of the iut, tg, is generally
not known. The iut is in this abstract state when we select its url for the first
time. Intuitively the conformance relation reads: if the specification allows input
1 after trace o, then the observed output of the iut should be allowed by the

2 In the implementation this function is able to yield an error message if the combi-
nation of output and target state is invalid, rather than having a plain boolean as
result.

specification. If spec does not specify a transition for the current state and input,
anything is allowed.

For the specification spec it is perfectly legal to be partial. That is nothing is
specified about the behavior for some state and input combinations. The inter-
pretation in the conformance relation is that all behavior of the iut is allowed.
Since everything is allowed, it makes no sense to test this.

The iut cannot refuse inputs. In every state the iut should give some response
to any input. This response can be an error message or an empty sequence.
During testing for conformance only inputs occurring in the specification after
a valid trace will be applied.

This conformance relation is very similar to Tretmans ioco (Input Output
Conformance) relation. The original ioco relation [9] handles conformance of
labeled transition systems (LTS). The essential difference between a LTS (as
used in the ioco relation) and a ESM is that the input and output are separate
actions in a LTS. This implies that a LTS allows for instance two consecutive
inputs without an (probably empty) output of each of these inputs. Exactly
one input and the associated output are combined to a single transition in an
ESM. Moreover, an ESM has rich states where the “state” of an LTS is given
by the current location in the LTS and the value of a set of global variables.
For the abstraction level of web applications used here, the ESM-based view is
more appropriate than a LTS-based view: we always want to consider the output
associated to a given input.

2.2 Testing Conformance

The conformance relation states that for all inputs allowed after all traces of the
specification, the input-output pair obtained from the iut should also occur in
the specification. Since the number of different traces is unbounded for a general
ESM, it is impossible to determine conformance by exhaustive testing. For a
general ESM the real conformance can only be determined by model checking the
specification and a model of the web application. That is a completely different
technique from model-based testing. Here we want to treat the web application
as a black box. We can apply an input to the web application and observe the
generated output. No detailed model of its behavior is known. Hence, model
checking is not an option.

Testing can however give a fair approximation of conformance. Moreover, a
large number of correct transitions increases the confidence in the correctness of
the iut. Experience shows that nonconformance is very often found rather quickly.
Errors are found most often within thousands or even hundreds of transitions,
rather than millions of transitions. Nevertheless, it is easy to design an iut with
an error that can only be found with an enormous testing effort, but these kind
of errors appear to be rare in practice.

Since checking the conformance by testing all possible traces is generally
impossible, we test conformance by verifying a fixed number of traces. For each
trace we check a finite number of transitions with the following algorithm:

testConf : N X P Sgpee X Sjyr — Verdict
testConf (n, s,u) = if s =10
then Fail
else if n=0Vinit(s) =0
then Pass
else testConf (n — 1,¢,v)
where i € init(s); (o,v) =iut(u,i); s oy
In this algorithm n € N is the number of steps still to be tested in the current
trace, s € PSypec is the set of possible states in the specification, u € Sjy; is the
abstract state of the iut, and Verdict is the result type that contains the elements
Fail and Pass. Since the iut is a black box, the state u cannot be observed. We
assume that the iut is available as a function of type (S;u: X I) — (O* x S;yt). The

consistency predicate P(o,t) is incorporated in the transition s e, t. Since the
transition function yields a function, the new set of possible states is actually
computed as t = {z|Vs; € s,YVf € 0f(s;,i),Vz € f(0),P(o,x)}. Due to the

overloading of the transition notation we can write it concisely as s ile, t.
Testing of a single trace is initiated by testConf (N, {so}, S?,,), where N is the
maximum length of this trace, sq the initial state of the specification, and S, , the
initial abstract state of the iut. The input ¢ used in each step is chosen arbitrarily
from the set init(s). In the actual implementation it is possible to control this
choice. The default algorithm generates input elements in pseudo random order

and uses the first input element that is in init(s), i.e. 3z € s.0¢(x,i) # 0.

2.3 Implementation

Apart from the representation of the specification the conformance relation used
here is identical to the conformance relation implemented previously in GVST.
The type of specifications handled by GVST are functions of type Spec s i o.
Given a state s and an input i, the specifications yields a list of functions. Each
of these functions yields a list of allowed targets states [s] after it receives the
output obtained from the iut.

:: Spec s i 0 : =8 — i — [[o]—]s]]

Since s, i, and o are type variables, one can choose any type for states inputs
and outputs. In order to test web applications the test system has to behave as
a browser for the web application. The web application expects an input and
yields a new HTML-page as response. GYSTis extended by a module that selects
the indicated input element from the current page and sends an input to the
web application as if it were generated by a real browser. The page received as
answer from the iut is used in the test of conformance. The additional predicate
to check the consistency of the page and the states of the specification can be
given as an option to the main test function:

testHtml :: [TestSMOption s i Html] — (Spec s i Html) — s —
(xHSt — (Html,*HSt)) — xWorld — xWorld

The first argument is the list of test options. The options can control the num-
ber of traces used in the test and their length, the amount of detail written
in log-files, the input selection algorithm etcetera. It is also possible to add a
predicate checking the consistency of the current HTML-page and the state of
the specification. GVST has reasonable defaults for all these parameters. Hence,
it is often possible to leave this list of options empty. The second argument is
the specification as shown above. The next argument is the initial state of the
specification. The final arguments are the web application and Clean’s world.

In order to facilitate testing of the received page, there are functions to
query the data structure representing the HTML-page. For instance it is possible
to obtain the list of all texts from the page, and to retrieve all text labeled with
some name. These names are the anchors that are used in the page. Requiring
anchors with specific names appears to be very convenient, but not necessary, in
the testing of web-pages. For example htmlTxts "Answer", applied to the current
page yields the list of all strings labeled "Answer".

3 Browser Navigation

In order to use our model-based test tool GVST to test web applications with
browser navigation, we need a model of the desired behavior. First we determine
the requirements for such a specification. An unattractive option is to add inputs
Back and Forward to each specification and let the test engineer completely specify
the semantics of these actions. Requirement 1: it should be easy to transform
a specification ignoring browser navigation to a specification prescribing default
behavior for browser navigation.

Even if the web application itself is a simple finite state machine with one or
more loops the specification needs an unbounded amount of memory to record
the potentially infinite number of browser navigation actions. Requirement 2:
there is no artificial limit on the number of browser navigation actions.

Next we argue that using the back-button is not an undo of the previous
transition in the specification. Consider the left state machine in figure 1. Sup-
pose we know that the specification is in state Sy. When we apply the input
i1 to the iut and observe the output O; the set of possible states is {S1, 52}
After observing a transition i5/Os the state is Sy. Hence the previous state was
Ss. The back button brings the specification in this state Sy via the transition
So Jock/On Sy and not in {S7,S52}. This implies that if we apply the input iy
again the only allowed output is O3. Requirement 3: the back-button is a normal
transition for the specification, not an undo action for the specification.

If the transition labeled i3 /02 should be allowed after the trace i1 /O1; i2/Os3;
Back /01, we need a specification as depicted on the right in figure 1.

3.1 Persistent states

In the discussion above we have assumed that the web application stores its state
in the web-page. This state can either be stored in visible parts like edit boxes

and radio buttons, or in so-called hidden fields in the web-page. This content is
invisible for the user in a normal browser window, but readable and writable for
the web application. If the entire state of the web application is stored in the
web-page, the web application goes to its previous state if the user goes a page
back with the back-button of the browser.

Consider what would happen if the base converter (introduced in section
4.1) stores the number to be converted, the latest contents of the edit-box, in
a persistent memory location, like in a cookie or some storage location on the
web-server. If the user uses the back-button the browser displays the previous
page, but the number to be converted is not changed even if it is different on
the previous page which becomes actual. When the user chooses now a different
base on this page not the displayed number is converted, but the number from
the persistent memory.

For the number to be converted this is considered as undesirable behavior,
but for a counter that keeps track of the total number of conversions done in
this session this is exactly what is needed. This implies that the designer of the
web application should determine the desired behavior for each variable in the
web application.

In order to perform a model-based test of such a web application the model
should reflect the persistent or volatile behavior of the modeled components of
the state. Instead of splitting the state of each web application explicitly in a
persistent and a volatile part, we ask the user to define a function that composes
the new state of the specification from the last state and the previous state
on a transition corresponding to a back-button. The default function yields the
previous state. This corresponds to a complete volatile memory without any
persistent component.

4 A Model Transformer to Model Browser Navigation

In this section we present a specification transformer that converts a specification
without browser navigation to a specification that covers browser navigation.
The transformed specification states that a Back just returns to the previous
state in the specification without any state change corresponding to persistent

Fig. 1. Two nondeterministic state machines with back transitions.

9

state components. The Forward in the specification is always the undo of the
corresponding Back-action, independent of the existence of persistent components
in the state of the web application. The user can easily specify exceptions to this
rule.

Web applications are specified most concisely using tailor made types for their
input and state. Instances of the class transInput transform a tailor made type
for inputs to the type HtmlInput required by the test system. It is undesirable
to extend all types for inputs with their own back and forward buttons, and
all types for state with their own history. This problem is solved by using a
polymorphic type BFInput i. This type states that the input is either an element
of the input type of the specification, a backward button from the browser, or a
forward button from the browser.

:: BFInput i = SpecIn i | BrowserBack | BrowserForward

In a similar way we lift the type of a single state of the specification to a state
with a history, past, and a future, next.

: BFState s = {past :: [s], next :: [s]}
By convention the current state is the first state in the past:

toBFState :: s — BFState s
toBFState s = {past = [s], next = []}

Lifting a specification from an ordinary state s to a state BFState s that is also
able to handle browser navigation is done by the function toBackForwardSpec.
This function transforms both the state and the input to the types given above.

toBackForwardSpec :: (Spec s i Html) (s—Bool) (Maybe (s—s— [Html]—s))
— (Spec (BFState s) (BFInput i) Html)
toBackForwardSpec s v Nothing = toBackForwardSpec s v (Just (Ac p o—p))
toBackForwardSpec spec v (Just back) = BackForwardSpec
where
BackForwardSpec {past=[c,p:r],next} BrowserBack
= [Xo—[{past=[back ¢ p o:r],next=[c:next]}]]
BackForwardSpec {past,next=[n:r]} BrowserForward
= [Mo—[{past=[n:past],next=r}]]
BackForwardSpec {past=[c:r],next} (SpecIn i)
= [do—[{past=if (v ¢) [n,c:r] [n:r],next=[]}\\n—f o]\\f«spec c i]
BackForwardSpec {past,next} input = []
The predicate v checks whether the state to be stored is valid. Only valid states
are stored in the history. Particularly the initial state used to startup the web ap-
plication is usually regarded to be invalid. The optional function s—s— [Html] —s
can is used to copy persistent parts of the current state to the previous state for
a BrowserBack input. Note the rather complex behavior specified for an ordinary
input: each new state receives its own copy of the history.

4.1 Example: base converter

The first example is a web application that converts a decimal number to some
other base. The bases supported are 2 (binary), 8 (octal), 12 (duodecimal), and

10

16 (hexadecimal). The base to be used is selected by the corresponding button.
The number to convert is given in an integer edit box. In figure 2 a screen shot
and the transition diagram of the Extended State Machine are given.

This example is clearly not a classic HTML-page, it contains buttons and
performs computations rather than simple text and links. The state of the spec-
ification of this web application contains just the number to be transformed
and the base to be used for this transformation. The state is represented by a
record of type State containing the number and the base as an element of the
enumeration type Base.

: State = {n :: Int, b :: Base}
: Base = Bin | Oct | Duo | Hex

The behavior of this web application is specified by the function BaseConvSpec:

BaseConvSpec :: State In — [[Html] — [State]]
BaseConvSpec s (BaseButton b) = [checkN2 {s&b=b} b s.n]
BaseConvSpec s (IntTextBox i) = [checkN2 {s&n=i} s.b i]

checkN2 :: State Base Int [Html] — [State]
checkN2 state b n html

| findHtmlTexts "n2" html — [convert (toInt b) n] = [state]
| otherwise =]
convert :: Int Int — String
convert b i
| i<o = "-" 4 convert b (~i)
| i<b = baseDigits b !! i

| otherwise = convert b (i/b) + baseDigits b !! (i rem b)

After each transition the specification checks whether the string labeled "n2" in
the HTML-code received from the web application is equal to the string obtained
by transforming the current number to a string in the current base. This example
shows how we can use information from the parameterized state of the model
and the actual HTML-code of the web application in the construction of the
target state of the model. The initial state of the specification is:

initState = {n = 0, b = Bin}

@ -9 -6 0 Q0w
'Base Converter

‘The number 50 in base Duo is 42,

Fig. 2. Screen shot of the base converter and its Extended State Machine.
11

After these preparations we can test an iData-based implementation of the
base converter, called converter, by executing:

Start :: *World — x*World
Start world = testHtml [] BaseConvSpec initState converter world

The web application is run by executing:

Start :: xWorld — xWorld
Start world = doHtmlServer converter world

Testing the web application converter with the specification BaseConvSpec does
not reveal any issues. All observed traces are allowed by the specification.

The base converter with browser navigation For the base converter we
are happy with an implementation that treats the back-button of the browser
as an undo of the last change. This implies that the implementation can store
its entire state in the current page. That is the default choice of the iData, so
converter can ignore browser navigation completely.

Using the specification transformer introduced here it is very easy to test
whether the web application converter shows indeed the desired behavior. The
specification transformer toBackForwardSpec imposes exactly the desired behav-
ior. In order to execute the model-based tests one executes:

Start :: *World — x*World
Start world = testHtml [] (toBackForwardSpec BaseConvSpec Nothing)
(toBFState initState) converter world

The results of this test show that the converter has the behavior prescribed by
the specification lifted to the domain of browser navigation.

4.2 Example 2: a number guessing game

As a slightly more advanced example we show a number guessing game imple-
mented as web application. The player has to determine a number chosen by the
web application in the least number of guesses possible. A smart player will use
binary search to complete this task in O(logn) steps where n is the number of
possible values. After entering the right number the web application shows a list
of fame: the names of players and the number of guesses needed by them. This
application is one of the standard examples in the iData-library. After successful
manual testing it was assumed to be correct.

The required behavior of this web application is described by the function
ngSpec below. The specification keeps track of the upper and lower bound of the
possible correct answer. The specification also counts the number of tries and
checks if this is correctly reported by the web application for a correct answer.

: NGState = {upB :: Int, lowB :: Int, tries :: Int}

newNGState = {upB = up, lowB = low, tries = 0}
initState = {newNGState & tries = —1}

12

= Mozilla Firefox

Type in your name and guess a number between 1 and 10| _/_;upB=10;lowB=0;tries=0

Pieter
5

Sormy , Pieter, your guess number 1 was wrong.

Int i / tooLow; tries+=1 | i<lowB
Int i / tooHigh; tries+=1| i>upB
Inti/ correct | i==upB && i== lowB
Int i/ [tooLow, tooHigh, correct]

| lowB <i && i < upB

String n/_

The number to guess is larger . Your last guess is 5.

Fig. 3. The number guessing web application and a sketch of its state machine.

ngSpec :: NGState In — [[Html]— [NGState]]

ngSpec s input | s.tries<O = [\ html = [newNGState]| // used at startup
ngSpec s (StringTextBox n) = [\ html = [s]]
s

ngSpec s (IntTextBox i)
| i < s.lowB = [tooLow t]
| i > s.upB = [tooHigh t]
| i = s.upB & i = s.lowB = [correct]
| otherwise = [tooLow {t & lowB = i+1},tooHigh {t & upB = i—1} correct]

where t = {s & tries = s.triest1}

tooLow t html | htmlTxts "Hint" html — ["larger"]
&& htmlTxts "Answer" html — ["Sorry"]| = [t]
| otherwise =]
tooHigh t html | htmlTxts "Hint" html — ["smaller"|
&& htmlTxts "Answer" html — ["Sorry"]| = [t]
| otherwise =]
correct html | htmlTxts "Answer" html—|"Congratulations"] = [newNGState]
| otherwise =[]

Using this specification we tested the iData-implementation of this game.
Testing shows an error: in contrast to the specification the web application
chooses a new number to be guessed if the user enters a new name. Both choices
for the behavior after a name change can be defended, but the choice in the spec-
ification and implementation has to be consistent. This shows that model-based
testing of web applications is able to find data-related inconsistencies.

The number guessing game with browser navigation Using browser nav-
igation, it seems attractive to cheat in this game in order to enter one’s name
high in the list of fame. A player guesses numbers until she knows the correct
value. Then the user presses the back button until she is back to the HTML-page
showing this task for the first time. Now she can enter the correct number im-
mediately. In order to prevent this kind of cheating we require that the number
of tries is stored in persistent memory (file, database or cookie) instead of in
the page. If the number of tries is stored outside the HTML-page, going to the
previous page does not affect the number of tries. Hence the player is not able
to cheat in this way. In an iData-application such a change is just a matter of
indicating a different storage option for the associated counter.

When we lift the specification ngSpec to the level of browser actions we need
to deviate from the general rule that states that all components of the state

13

are stored in the page. The number of tries in the previous state p should be
identical to the number of tries in the current page c. Using our specification
transformer this is expressed as:

liftedSpec = toBackForwardSpec ngSpec valid (Just backNumGuess)
valid s = s.tries > 0
backNumGuess ¢ p o = {p & tries = c.tries}

Several other issues were found using model-based testing with this specification.
1) The first issue is found by the predicate that the number of tries as text in
the page should always be identical to number of tries in the specification. The
first use of the back-button spoils this property. 2) If one does not play the
game to the end and starts a new one later, the web application continues with
the old number of tries in persistent memory. 3) Entering the same input twice
in a row is counted as one try in the web application, but as two tries in the
specification. 4) The number to be guessed is stored in persistent memory by the
web application, but the bounds are part of an ordinary state in the specification.
This leads to inconsistencies in answers if one browses with the back-button over
a correct guess and then continues with guessing. The specification prescribes
consistency with the old bounds, while the answers of the web application are
based on a new target. During the correction of these problems several small
errors were introduced accidently and found by GVST.

Even testing a simple application that was assumed to be correct raised a
number of serious issues. This shows that this framework is able to spot issues
in real web applications. Testing with browser navigation often reveals issues
related to the kind of storage used for parts of the state of the web application.

To demonstrate the possibilities of introducing additional changes in the
lifted specification, we show how we can prevent going back to a previous game
in the tests (corresponding to additional issue 4 above).

liftedSpec2 ls=:{past=[s,t:r|} | s.tries=—0 = liftedSpec2 {ls & past=[s]}
liftedSpec2 s = toBackForwardSpec ngSpec valid (Just backNumGuess) s

If the number of tries in the current state is zero this implies that a new game is
started. Going back to previous states is prevented by removing these states from
the lifted specification. Note that only this additional requirement is defined, the
general specification transformation keeps track of everything else.

By this additional requirement we only omit this behavior in the model. A
real user might still provide this trace. When the model does not specify any
behavior for such a trace, anything is allowed as behavior of the web application.
So, if we have an opinion an the behavior of the iut in such a situation, we should
specify it rather than remove it from the model.

5 More browser navigation

Most browsers provide more ways of browser navigation than just going a single
page back or forward. A fairly standard option is to select one of the pages from

14

the history or future to go n pages back or forward. It is straightforward to model
such an transition and hence to test it using our model-based testing approach.

Most browsers allow also the possibility to clone a page. At any moment a
user can decide to switch from the current page to such a clone or back and starts
giving inputs from that page. This is slightly different from just going n pages
back since a new input removes all forward pages (if they exist). A cloned page
is not effected by a new input in some other page. In order to test this behavior
we have to model it. This implies that we have to maintain a set of BFStates
instead a single BFState. At the input Clone we copy the current state from the
current BFState to a new BFState. At the input Switch the model makes another
BFState the current state. Testing proceeds as before using this new state in the
specification.

6 Related Work

Many other test tools for web applications exist, see www.softwareqatest.com
for an overview. They often execute user-defined test scripts (like HttpUnit [2]
see also httpunit.sourceforge.net). Browser navigation is only tested if it is ex-
plicitly included manually in the scripts. Our tool generates traces on-the-fly
from the specification instead of executing predefined scripts. Other tools verify
the HTML-code generated by the application, or the existence of the links in a
generated page.

The paper by Andrews et al. [1] also specifies web applications by state
machines in order to test the web applications. They argue that a huge number
of errors is introduced by browser navigation. Hence, it is very worthwhile to
test this. An important restriction of their approach is that they do not solve
the oracle problem: their specification only specifies the inputs that should be
accepted by the web application. The result of applying an input is not specified
and cannot be tested. The reason the oracle problem is not solved is that an
input to a web application can have many effects: e.g. an order can be printed
or stored in an database. Hence, it is next to impossible to determine all effects
of applying an input to a web application. Moreover, even the effect of input
to the new HTML-page can be large. Usually we do not want to pinpoint every
detail of the HTML-code that should be produced by the web application.

In our approach we cannot specify all effects of an input to a web application.
Instead, we write a predicate over the resulting HTML-page. With a predicate
we can specify the amount of detail needed, ranging from nothing at all to
every detail of the HTML-code. Moreover, we use parameterized state machines
rather than finite state machine like Andrews. This implies that we can store
much data-related information (like counters, values and names) compactly in a
parameterized state. This paper shows that we can specify elements of the page
using this information and test these data by the model-based test tool GVST.
As future research we will investigate how other effects of the web application
on the world can be specified and tested.

15

Another popular approach to specifying transition systems is based on la-
beled transition systems, most notably the ioco approach and its variants as
introduced by Tretmans [9]. In such a system the input and associated output
have to be modeled by two separated actions. In our model of web applications
the input and output are directly coupled: each input produces a new page as
result. This is very convenient for the level of abstraction we want to consider
here. In [3] Frantzen et al. describe the basis of an approach to test web services
(instead of the web applications handled here). They use a Java like language
as carrier for their specification which makes it less suited for function transfor-
mations that are the key of our approach. The state of the specification in their
current implementation is mapped to a single integer. This implies that both
examples used in this paper cannot be handled by their tooling.

We plan to extend GVST with asynchronous transitions in order to specify
and test systems where the input and output are not necessarily tightly coupled.
This would allow the handling of timeouts and web applications based on AJAX-
technology.

7 Conclusions

It is a trend that new applications start using a browser as their universal graph-
ical user interface. By design or not, these applications receive an interface with
browser navigation. It is important to specify and test this behavior. We intro-
duce a specification transformer that makes it easy to lift a specification that
ignores browser navigation to a version that includes browser navigation. Only
exceptions to the general behavior have to be specified explicitly. In this paper
we demonstrate that this technique is capable of spotting errors in real web ap-
plications. We have shown that it really matters where the state of an application
is stored. If the entire state is stored in the page the back-button corresponds
to an undo-action. A state stored at the server is not influenced at all by using
the back-button. The desired behavior of such a web application needs to be
prescribed in a specification.

Specifying web applications by extended state machines has been shown to
be a good basis for model-based testing. Representing the extended state ma-
chines by functions in a functional programming language yields very compact
and elegant specifications. Due to the use of parameterized types and compu-
tations with these parameters, the specifications are clearer and more compact
than corresponding graphical representations of the specification. Moreover, the
representation of specifications by a function is much better suited for transfor-
mations, like lifting to the domain of browser navigation.

We show that this technique is able to spot issues in real web applications. In
this paper we used web applications constructed with Clean’s iData library, but
that is not an inherent limitation of the technique described. For an arbitrary
web application the test system will receive a textual version of the page in HTML
rather than the data structure used here. The iData system contains a parser
that is able to transform the textual representation to the data structure used

16

here. If the test engineer would prefer, she can also use the textual representation
of HTML (or any other representation preferred) in the specification and hence
in the tests.

The formal treatment of conformance is improved in this paper. In our pre-
vious work [6], the predicate that checks the consistency of the output and the
target state was added rather ad-hoc to the test algorithm. In this paper this
predicate is part of the transition relation, and in that way smoothly integrated
in the conformance relation and the test algorithm.

References

1. A. Andrews, J. Offutt, and R. Alexander. Testing Web Applications by Modelling
with FSMs. Software Systems and Modeling, 4(3), August 2005.

2. E. Burke and B. Coyner. Java Extreme Programming Cookbook. O’Reilly, 2003.

3. L. Frantzen, J. Tretmans, and R. d. Vries. Towards model-based testing of web
services. In A. Polini, editor, International Workshop on Web Services - Modeling
and Testing (WS-MaTe2006), pages 67-82, Palermo, Italy, June 9th 2006.

4. P. Graunke, R. Findler, S. Krishnamurthi, and M. Felleisen. Modeling Web Interac-
tions. In P. Degano, editor, Proceedings 12th European Symposium on Programming,
volume 2618 of LNCS, pages 238-252, April 7-11 2003.

5. P. Koopman and R. Plasmeijer. Testing reactive systems with GAST. In S. Gilmore,
editor, Trends in Functional Programming 4, pages 111-129, 2004.

6. P. Koopman, R. Plasmeijer, and P. Achten. Model-based testing of thin-client web
applications. In K. Havelund, editor, Proceedings Formal Approaches to Testing
and Runtime Verification (FATES/RV06), volume 4262 of LNCS. Springer, 2006.

7. R. Plasmeijer and P. Achten. iData For The World Wide Web - Programming
Interconnected Web Forms. In Proceedings FEighth International Symposium on
Functional and Logic Programming (FLOPS 2006), volume 3945 of LNCS, 2006.

8. R. Plasmeijer and M. van Eekelen. Concurrent CLEAN Language Report (version
2.0), December 2001. http://www.cs.ru.nl/~clean/.

9. J. Tretmans. Testing Concurrent Systems: A Formal Approach. In J. Baeten and
S. Mauw, editors, CONCUR’99, volume 1664 of LNCS, pages 46—65. Springer, 1999.

17

