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Abstract—Model-based testing of state based systems is known
to be able to spot non-conformance issues. However, up to half
of these issues appear to be errors in the model rather than
in the system under test. Errors in the specification at least
hamper the prompt delivery of the software, so it is worthwhile
to invest in the quality of the specification. Worse, errors in
the specification that are also present in the system under test
cannot be detected by model-based testing. In this paper we show
how very desirable properties of specifications can be checked
by systematic automated testing of the specifications themselves.
We show how useful properties of specifications can be found by
generalization of incorrect transitions encountered in simulation
of the model.

I. INTRODUCTION

Software systems tend to become larger and more complex.
The requirements for the system are changing rapidly, often
during the construction of the system. Finally, the time to
market should be reduced. These factors can easily hamper
the quality of the product. Systematic testing is by far the
most used and effective way to determine the quality of
a software system. In model-based testing, MBT, the test
cases are generated on the fly from a formal specification.
This ensures that the test suite is always up-to-date with
that specification. More testing for improved confidence in
the quality of the software is achieved by just changing a
parameter in the test system.

Experience shows that writing a formal specification is an
useful activity on its own. Many inaccuracies and miscon-
ceptions in the informal or semiformal specification/design of
the system are found during the creation of such a formal
specification. Testing real world systems also reveals that a
significant fraction of the issues found during testing (on
average 25%) is due to issues in the formal specification rather
than the system under test (sut). Since a specification is a
formal artefact similar in nature to the actual software, this
is not astonishing. When a specification differs from a sut
the issue is spotted during the tests and can be corrected.
Nevertheless, the analysis and correction of issues in the
specification is time-consuming and hence delays the release
of the sut. It is therefore desirable to have high quality
specifications before testing the sut is started.

In our model-based test system G∀st [12], [13], we use a
transition function in the high level functional programming
language Clean [15] as specification. The reasons to use a
functional programming language as carrier of our models are:

• Functional languages exclude side-effects. This implies
pure and clear semantics.

• Functions appear to be concise models. As shown in this
paper they can be easily composed and transformed.

• Clean offers a complete set of high level programming
primitives and very useful libraries. The rich type system,
particulary the tailor made (recursive) data types, enables
us to write very clear and expressive models. Parameter-
ized types are especially useful if we model an extended
state machine (a model with an unbounded number of
states, inputs or outputs). By using an existing language
all these things are obtained for free.

• The static type system of Clean will check that all
identifiers that are used in the specification are defined
and that they are used in a type correct way.

• The generic programming facilities (see appendix for a
short introduction) of Clean enable us to define operations
like equality, printing and generation of data elements that
are needed in each test once and for all. This implies that
the tester can derive these operations automatically for
tailor made types in its test rather defining them manually.
If the test engineer has specific wishes she can, of course,
define her own algorithms instead of using the generic
versions.

• Clean is a very efficient language, both as implementa-
tion and for the generated code. This implies that the
execution of tests is efficient, and that the turn around
time after changes in the model or testing parameters is
extremely short.

Before we can start testing, the Clean-system checks the spec-
ification for matters like type correctness and whether all used
identifiers are properly defined. This definitely contributes to
the quality of the specifications used for testing. Still there can
be many things wrong with a specification. A specification can
prescribe unintended behavior in a formally completely correct
way. These kind of issues cannot be detected automatically
and have to be found by human inspection, perhaps supported
by simulation of the execution based on the model. But the
specification can also contain errors of a more technical nature
which are trackable by a technical approach. For instance, a
state based specification of the system can be partial while
the specification is assumed to be total, or it can be non-
deterministic while it is assumed to be deterministic. Other
potential problems are that some transitions violate certain
(domain specific) constraints.

In this paper we show that many of these technical issues
in the specifications can be found by systematic testing of the
specifications themselves. When the properties and invariants



of the specification are stated explicitly, the logical based
branch of our test tool is able to test these properties of the
specification independent from any implementation, even be-
fore an implementation exists. The advantage of this approach
over model checking is that we can stay within the formalism,
no transformation of models is needed.

In order to make this paper self contained we introduce
the specification and testing of reactive systems in section II.
In section III we illustrate the kind of specifications used by
two examples. They will be used in the rest of this paper as
running examples. Section IV shows that some properties can
be obtained by a transformation of the specification. Testing
of individual functions is discussed in section V. The testing
of more general properties of specifications (such as deter-
minism and reachability of states) is discussed in section VI.
Verifying domain specific constraints is illustrated with some
examples in section VII. Next we show how domain specific
properties can be obtained by generalization of errors found
by interactively developing an expanded state chart. In section
IX we discus related work. Finally, we draw conclusions.

II. MODEL-BASED TESTING OF SYSTEMS WITH A STATE

This section handles mathematically the kind of specifica-
tions used in our MBT approach. A reactive system has an
internal state that can be changed by inputs and is preserved
between the inputs. This implies that the reaction on the
current input can depend on previous inputs. E.g. the system
gets a number as input and the response is the number of
inputs seen. A pure function can be specified without a state:
the response is completely determined by the arguments. The
reactive systems that are discussed here can be nondeterminis-
tic. During the tests we look only at the inputs and responses
of the reactive system, the internal state is not known. This is
called Black Box Testing, BBT.

The reactive system tested is the System Under Test, sut.
Since the state of the sut is hidden, stating properties relating
input, output and state is not feasible. We specify reactive
systems by an extended state machine and require that the
observed behavior of the sut conforms to this specification.

An Extended State Machine, ESM, as used by G∀st consists
of states with labeled transitions between them. A transition
is of the form s

i/o−−→ t, where s, t are states, i is an input
which triggers the transition, and o is a, possibly empty,
list of outputs. A transition s

i/o−−→ t is formalized as a
tuple (s, i, o, t). The set δr contains all allowed transitions
in the specification. The transition function is defined by
δf (s, i) = {(o, t)|(s, i, o, t) ∈ δr}. The type of this function
is: S × I → P(O × S) where S is the type of states, I is the
type of inputs, and O is the type of outputs. We use PX as
notation for a set of elements of type X .

In order to obtain a compact representation it is often more
convenient to use functions from output sequences to states as
result of δf , rather than enumerating all possible tuples. For a

single transition we have: s
i/o−−→ t ⇔ ∃f ∈ δF (s, i)∧t ∈ f(o).

In this way, a single function can represent arbitrary many
output target-state tuples.

A specification is total or complete if for every s ∈ S
and i ∈ I there is at least one output and target state
defined. Specifications are partial if they are not total. Hence,
a specification is partial if for some state s and input i,
δf (s, i) = ∅. If a specification is nondeterministic there are
s ∈ S and i ∈ I with more than one associated target state.
A specification is deterministic if for all states and inputs
the size of the set of targets contains at most one element:
# δf (s, i) ≤ 1.

A trace σ is a sequence of inputs and associated outputs
from the given state. A trace is defined inductively: the empty
trace connects a state to itself: s

ε=⇒ s. We can combine a trace
s

σ=⇒ t and a transition t
i/o−−→ u, to the trace s

σ;i/o====⇒u. An
input trace contains only the input elements of a trace.

We define s
i/o−−→ ≡ ∃t.s i/o−−→ t and s

σ=⇒ ≡ ∃t.s σ=⇒ t. All
traces from state s are defined as: traces(s) ≡ {σ|s σ=⇒}.

The inputs allowed in some state are given by init(s) ≡
{i|∃o.s i/o−−→}. The states after applying trace σ in state s are
given by s after σ ≡ {t|s σ=⇒ t}. We overload traces , init ,
and after for sets of states instead of a single state by taking
the union of the notion for the members of the set. When the
transition function, δf , to be used is not clear from the context,
we add it as subscript.

A. Conformance

This section defines the conformance relation between the
specification and the sut. It is not required that the sut and
the specification have exactly the same behavior. On parts that
are not covered by the specification, any behavior of the sut
is allowed. On the other hand, it is not necessary that the sut
shows all allowed traces for nondeterministic specifications.

The sut is modeled as a black box transition system. One
can observe its traces, but not its state. The sut, and its
specification need not have identical input output behavior in
all situations to say that the sut conforms to the specification.

Conformance of a sut to a specification spec is defined as:

sut conf spec ≡ ∀σ ∈ tracesspec(s0),
∀i ∈ init(s0 afterspec σ), ∀o ∈ O

(t0 aftersut σ)
i/o−→⇒ (s0 afterspec σ)

i/o−→
Here s0 is the initial state of spec, and t0 the initial state of sut.
Intuitively the conformance relation reads: if the specification
allows input i after trace σ, then the observed output of the
sut should be allowed by the specification. The initial state t0
of the sut is generally not known. The sut is assumed to be
in state t0 when we switch it on and when we reset it during
testing.

The specification spec can be partial: nothing is specified
about the behavior for some state and input combinations. The
conformance relation allows any behavior of the sut if nothing
is specified. Since everything is allowed, it makes no sense to
test this. The sut cannot refuse inputs: in every state the sut
should accept any input.
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B. Testing Conformance

The conformance relation covers all possible traces. How-
ever, most extended state machines can show an infinite
number of traces and each of these traces can have an un-
bounded length. Hence, it is generally impossible to determine
conformance by investigating all traces completely. A test
system approximates conformance by checking a finite number
of finite traces. G∀st tests an initial part (by default 1000 steps)
of a finite number (by default 100) of traces. The test system
records that set of last states of the traces, rather than the
complete traces. The actual trace is only recorded to give
information about a conformance problem if it is detected.
G∀st is able to generate inputs, also for complex user defined
recursive data types, fully automatically. However, the user
can guide this generation completely if that would be desired.
The details are not relevant for this paper. See [13], [11].

C. Representation of Specifications in G∀st

As shown above two types of specification functions are
used: S × I → P(O × S) and S × I → P(O → PS). These
specification functions are represented in G∀st by functions in
the functional programming language Clean. The type of all
specifications is given by the type synonym Spec. We use type
variables (s, i, and o) to abstract from concrete types for state
(S), input (I) and output (O). This guarantees that the test
tool G∀st is able to test specifications of any type for state,
input and output. The main test functions only impose some
restrictions on these types. These restrictions guarantee for
instance that these types can be printed (in order to generate
traces) and that there is an equivalence relation to compare
output elements. The algebraic data type Trans captures the fact
that a specification yields a set of tuples or functions when it
is given the current state and input. In the Clean representation
of the transition functions we use lists of outputs, [o], rather
than single output elements, o, for two good reasons. First,
this gives a compact and convenient notation for no output.
Without the list we either had to extend each output type with
an element indicating that there is no output, or we had to use
a type like Maybe O which lifts the domain O with a Nothing value
in case of no output, and (Just O) values otherwise. Second, in
contrast to the Maybe type, the lists allow sequences of outputs
which is often handy.
: : Spec s i o :== s→ i→ [Trans o s]
: : Trans o s = Pt [o] s | Ft ([o]→[s])

We give some examples in section III below.

III. EXAMPLES

In this section we introduce two examples. These examples
illustrate the kind of specifications used by G∀st and will be
used in this paper to illustrate how these specifications can be
transformed to give the desired properties and we show how
properties of these specifications can be tested.

The first example consists of some variants of a vending
machine that occurs in many papers about MBT. The second
example is a larger and more realistic specification that models
a system giving information about telephone numbers.

A. Example 1: Vending Machines

Figure 1 shows two extended state machines modeling
vending machines. The global specification of these vending
machines is that it can deliver tea or coffee after insertion of
coins with a sufficient value, and pressing the correct button.

Fig. 1. The vending machine on the left delivers tea, the right one coffee.

An input is either a nickel, a dime, or pressing the tea or
coffee button. The output is either tea or coffee. The state
of the machine is recorded in the algebraic data type State ,
which records the amount of money inserted as an integer.
: : In =Nickel | Dime | ButC | ButT
: : Out =Coffee | Tea
: : State= S Int

The specification of both vending machines in G∀st is:
specC : : State In→ [Trans Out State]
specC (S n) Dime = [Pt [] (S (n+10) ) ] / / insert dime
specC (S n) ButC / / on pushing the coffee button:

| n≥10= [Pt [Coffee] (S (n−10) ) ] / / produce coffee if sufficient balance
= [Pt [] (S n)] / / do nothing if balance is insufficient

specC s i= [] / / otherwise no transition defined

specT : : State In→ [Trans Out State]
specT (S n) Nickel= [Pt [] (S (n+5) ) ]
specT (S n) ButT

| n≥5 = [Pt [Tea] (S (n−5) ) ]
= [Pt [] (S n)]

specT s i= []

The last line (e.g. specC s i= []) of both specifications indicates
that nothing is specified for other combinations of state and
input. If nothing is specified for a combination of state and
input any behavior is allowed, see section II-A. The existence
of the alternative [Pt [] (S n)] for (S n) ButC that is chosen
on insufficient balance is important. Without that alternative
anything is allowed according to the conformance relation,
including the delivery of the required product. By design both
specifications are partial, e.g. specC does not specify what ought
to happen on the inputs Nickel and ButT.

B. Example 2: Qui-Donc

This example is adapted from [16]. Qui-Donc (French
for who there?) is a service of France Telecom that finds
the person associated to a telephone number. We model the
behavior of the Qui-Donc system by an ESM.

Initially the system is in the Wait state. When the user
dials the number of this service, the user receives a Welcome
message and the system goes to the Stars state. If the user does
nothing for six seconds the system gets a TimeOut event. After
the third TimeOut the system returns to the Wait state with
NotAllowed message. After an other Timeout the system repeats
the Welcome message. After entering a Star the system is in
the Digits state and produces an Enter message. In this state the
user can enter a maximum of 10 digits and a Hash (#). If the
user waits too long the system receives a TimeOut and repeats
the Enter message. After three time outs the call is terminated
with a Bye message. If the user enters an emergency number
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Fig. 2. State diagram of the Qui-Donc system.

terminated with a Hash the system gives an explanation and
waits for a Star. After the Star the user can do a new search.
For a known 10-digit number the system gives information
about the owner of that number. For other numbers the system
gives an Error message and waits for a new number. In any
state the user can Hangup, and the Qui-Donc system returns
to its Wait state. The ESM depicted in figure 2 is specified
with G∀st in figure 3. A telephone Number is a type synonym
for a list of integers. The timeout count, TOcount is an integer.
The specification uses parameterized algebraic data types for
the state of the system, its input and output:
: : Number :== [Int]
: : TOcount :== Int

: : QDstate= Wait | Stars TOcount | Digits Number TOcount
| Info (Maybe Person) TOcount | Emergency

: : QDin = Dial | Star | Hash | Digit Int | TimeOut | Hangup
: : QDout =Welcome | NotAllowed | Enter | Error | EmInfo | Sorry

| QSstring String | Help | Addr Number | Bye | InfoText

This specification for the Qui-Donc system is nondeter-
ministic. In state Digits ds 10 two transitions are possible for
input Hash. The result Ft anyName accepts any input. It models
the situation that the number occurs in the database of the
real Qui-Donc system but is not known by the specification,
while Pt [Sorry] (Digits [] 0) models the situation that the given
number does not occur in the database. The specification
allows both possibilities since it does not know the contents
of the database.

Compared with the FSM and EFSM specification in [16]
our specification captures the behavior of the complete Qui-
Donc system, while Utting’s specification only captures the
proposed tests. Since we use extended state machines rather
than a FSM, our specification is more compact. For instance
the FSM states Star1, Star2 and Star3 are all represented by
our state Star n. The state Digits Number TOcount holds 1010 different
phone numbers, each with 4 timeout count values.

QDspec : : QDstate QDin→ [Trans QDout QDstate]
QDspec Wait Dial = [Pt [Welcome] (Stars 0)]
QDspec (Stars n) Star = [Pt [Enter] (Digits [] 0)]
QDspec (Stars n) TimeOut

| n< maxTO = [Pt [Welcome] (Stars (n+1) ) ]
= [Pt [NotAllowed] Wait]

QDspec (Digits [] n) TimeOut
| n< maxTO = [Pt [Enter] (Digits [] (n+1) ) ]

= [Pt [Bye] Wait]
QDspec (Digits ds n) (Digit d)

| 0≤d && d≤9 && length ds< maxDigits
= [Pt [] (Digits (ds++ [d]) 0)]

QDspec (Digits ds n) Hash
| isMember ds emergencyNrs= [Pt [EmInfo] Emergency]
| length ds==maxDigits

= case findPers persons ds of
Just p = [Pt [Str (p.surname)] (Info (Just p) 0)]
Nothing= [Pt [Sorry] (Digits [] 0) , Ft anyName]

= [Pt [Error] (Digits [] 0)]
where anyName [Str s] = [Info Anybody 0]

anyName other = []
QDspec Emergency Star = [Pt [Enter] (Digits [] 0)]
QDspec Emergency TimeOut = [Pt [Bye] Wait]
QDspec (Info p n) TimeOut

| n<maxTO = [Pt [InfoText] (Info p (n+1) ) ]
= [Pt [Bye] Wait]

QDspec (Info p n) Star = [Pt [Enter] (Digits [] 0)]
QDspec (Info Anybody n) (Digit 1) = [Ft λlist→ [Info Anybody 0]]
QDspec (Info (Just p) n) (Digit 1)

= [P (spell (p.surname)) (Info (Just p) 0)]
QDspec (Info Anybody n) (Digit 2) = [Ft λstr→ [Info Anybody 0]]
QDspec (Info (Just p) n) (Digit 2) = [Pt [Str p.address] (Info (Just p) 0)]
QDspec state Hangup = [Pt [] Wait]
QDspec state input = [] / / otherwise no transition defined

Fig. 3. Model of the Qui-Donc system for G∀st.

IV. TRANSFORMATION OF SPECIFICATIONS

In our approach specifications are functions. Functions are
first class citizens in the functional programming language
Clean. This enables the transformation of specifications (by
transforming the functions representing them). These transfor-
mations are used to give specifications some specific desirable
properties, like being total. As an example we show a function
that joins two specifications. Using the appropriate instance of
the operator + it is even possible to add specifications with an
expression like s+t. The specification obtained by s+t contains
the transitions in s as well as the transitions in t.
instance + (a→b) | + b where (+) f g= λx.f x + g x
instance + [a] where (+) l m= l++m

Using this operator we can define a vending machine specV that
combines the behavior of specT and specC, or a vending machine
specC2 that allows the user to pay coffee with two nickels as:
specV : : Spec State In Out
specV= specT + specC

specC2= specC + nickel

nickel (S n) Nickel= [Pt [] (S (n+5) ) ]
nickel s i = []

The machine modeled by specV is able to produce coffee as well
as tea. Note that specV also allows the user to pay coffee with
two nickels and is able to produce two teas for a dime. Even if
the user restricts herself to tea, the behavior of specV is different
(allows paying with dimes) from specT. The combined system
specV has the same type of states (State) as its components
specT and specC, this is exactly what we want. In the traditional
composition of FSMs [17], the new state is usually the product
of the old states, here this would be (State, State)

In a similar way one can define the difference of specifica-
tions, that is all behavior of one model that is not shown by
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another model.
As defined above, a specification is total if it contains at

least one transition for each state and input. The default way
to make a specification total is to add a transition with an
empty output sequence that preserves the state if nothing else
is defined. Using a higher order function it is easy to define a
function that makes any given specification total:
mkTotal : : (Spec s i o) → Spec s i o
mkTotal spec= λs i. case spec s i of

[] = [Pt [] s]
t = t

It might be tempting to define mkTotal spec= spec + λs i. [Pt [] s],
but that adds the do-nothing transition to each and every state.
In a similar way we can make a specification deterministic by
selecting only the first state if there is more than one target
state. In [11] we use this technique to transform specifications
of thin client web-applications without browser navigation to
specifications that cover browser navigation.

Apart from transforming specifications in order to give it
desirable properties such as totality and determinism, it is
also possible to test whether a specification possesses these
properties. We will use the possibilities of G∀st to test logical
properties. Testing logical properties is briefly revisited in
section V. In section VI we use these techniques to verify
properties of specifications.

V. TESTING LOGICAL PROPERTIES

Not all desirable properties of specifications can be guar-
anteed by a transformation of the specification. Nevertheless,
we often want to know whether a specification possesses a
property (e.g. like being deterministic). We will show that
automated systematic testing can reveal whether a specification
possesses a property and give examples for several important
properties. In this section we review automated systematic
testing introduced in [12].

Apart from state machine based testing, G∀st is also able
to test logical properties like ∀x : N.x + 1 > x. In G∀st
such a property is represented by a function. The function
arguments represent its universally quantified variables. For
our example we use the type Int to represent N. This implies
that the predicate has type Int→ Bool. The body of the function
representing this property is just p x= x+1> x.

A universally quantified property is tested by evaluating
the corresponding function for a large number of arguments.
The function test in G∀st initiates testing. A simplified, but
correctly executing, version of this function is:
test : : p→ Bool | holds p
test p= and (take MaxTests (holds p))

class holds a : : a→ [Bool]
instance holds Bool where holds b= [b]

instance holds (a→b) | gen{|∗|} a & holds b / / Forall
where holds p=diagonal [holds (p a) \\ a←gen{|∗|} ]

: : For a b= FOR infix 0 (a→b) [a] / / the infix for operator
instance holds (For a b) | holds b / / for a given test suite
where holds (For p t) =diagonal [holds (p a) \\ a←t]

The text in the type signatures after | are context restrictions.
Identifiers followed by {|∗|} refer to instances of generic func-
tions, see appendix, for the given type. Identifiers without such

suffix refer to ‘ordinary’ overloaded functions. An expression
like [f a b\\a←l, b←m|p a b] is a list-comprehension,
it computes the list of all values f a b for all values a coming
from list l and b from list m that satisfy the predicate p a b.
There can be any positive number of generators (of the form
a←l) and the predicate is optional.

The function test takes MaxTests elements from the list of
booleans produced by holds p. The function and yields true if all
these booleans are true and false otherwise. Here we need only
three instances of the class holds. The instance for booleans
just yields the list containing that boolean. The instance for
a function corresponds to a universally quantified property.
The list of test values is generated by gen{|∗|} , see appendix.
The final instance uses the given test suite instead of the one
generated by gen{|∗|} . The property is applied to each of these
test values, p a. We apply holds on this result; either a boolean
value, or another universally quantified argument. The function
diagonal takes a fair mix of values from multiple generators for
properties with more than one generator, like ∀x.∀y.x + y =
y + x.

By default the number of tests, MaxTest, to be done is 1000.
The actual test algorithm gives more information than just true
or false (Fail). The result is Proof if the property holds for
all elements in the generated test suite (proof by exhaustive
testing). The value Pass indicates that the property holds for
the first MaxTest values, there are untested values in the test
suite. If the result is Fail, G∀st also indicates the number of
tests done and the test values that cause the counterexample
found. Apart from these universal quantified properties G∀st
contains a library with all operators from first order logic. As
example, to test the property p for all integers from 1 to 100
we execute:
Start= test (p For [1 . .100])

The result is Proof: success for all arguments after 100 tests. When
we want to test the property for an unbounded number
of odd values we evaluate test (p For [1,3 . . ] ) . The result is
Passed after 1000 tests. If we have no strong opinion about the
test values to be used we can leave it to the generic algorithm
of G∀st to generate the test values by executing Start= test p.
Now the result is Counterexample 1 found after 5 tests: 2147483647.
The property p holds in mathematics, but not for the finite
precision approximation of integers used in computers. The
counterexample found is maxint in 32-bit integers. Because
values such as 0, 1 and maxint often cause problems in
properties, these test values are generated quickly by G∀st.

VI. TESTING THE QUALITY OF SPECIFICATIONS

In this section we show how automated systematic testing
as introduced in the previous section can be applied to models
of state machines to determine whether relevant properties
known from the literature holds for these specifications. This
analysis of specifications can reveal errors in the specification,
or increase the confidence in its correctness and consistency.

In the next subsection we define the generation of states and
inputs used in the tests. Since an ESM used as specification
can have an infinite number of states, it is convenient to define
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equivalence classes. The behavior of the specification in only
one state in such an equivalency class needs to be tested. In
subsequent subsections testing of a number of well known
properties is discussed.

A. State Space Equivalence Classes
For many specifications the state space or the number of

possible input values is unbounded. Tailor made definitions
of the generation of instances for these types makes the tests
more effective and efficient. For instance we can consider only
the states with multiples of 5 cents for the vending machine
and obtain a sensible maximum amount of 200 cents in the
machine by:
gen{|State|} n r= [S i \\ i←[0,5 . .200]]

Similarly, in the tests of the Qui-Donc specification we use
only states with digits that are on track to one of the few
known numbers, the emergency number, or the invalid number
that contains ten zeros. This is by no means a restriction of
G∀st, it is used as an illustration. The inputs for the vending
machines can just be derived by gen. For the inputs of Qui-
Donc we make sure that only the numbers [0 . .9] are used as
argument for Digit.

A key idea to test many properties effectively is to define
equivalence of states and inputs for the tests. In the tests we try
to take at least one representee of each (important) equivalence
class. This approach is inspired by abstract interpretation in
proof systems [4] and collapsing of states in model checkers
like Spin [6] and Uppaal [2].
class equiv a : : a a→ Bool

For example, in vending machines all states that represent
more than 200 cents of inserted money are considered to be
equivalent. These states represent the situation that relatively
much money has been inserted.
instance equiv State where equiv (S n) (S m) = n> 200 && m> 200 || n== m

We will use this equivalency of states in Sect. VI-E and Sect.
VI-G. In the rest of this section we discuss a number of
properties of state machines known from literature and how
these properties can be tested by G∀st.

B. Testing whether a Specification is Total
As defined above, a specification is total if a transition is

defined for each combination of input and output. We can
easily test this by requiring that the number of transitions
should not be empty:
isTotal : : (Spec s i o) s i→ Bool | gen{|∗|} s & gen{|∗|} i
isTotal spec s i=∼(isEmpty (spec s i))

We test the coffee vending machine for this property by eval-
uating test (isTotal specC). The test result is Counterexample 1 found

after 4 tests: (S 0) ButT. When we make the specification com-
plete by mkTotal as defined above we test isTotal (mkTotal specC).
Testing yields Proof: success for all arguments after 164 tests. Since
we use mkTotal this is hardly a surprise, it is more a check of the
specification transformer mkTotal. Testing whether the combined
vending machine is total by evaluating test (isTotal specV) gives
an identical proof result, which is less evident. The proofs
are only possible due to the finite number of states generated.
When generation of states would have been derived the result
of the last test is Pass.

C. Testing whether a Specification is Deterministic

A specification is deterministic if there is at most one output
and target state defined for each combination of state and input.
By design G∀st can handle nondeterministic specifications.
Even deterministic systems can be specified by nondetermin-
istic specifications due to lack of information in the specifica-
tion. The Qui-Donc system is supposed to be deterministic, but
its specification is nondeterministic because we do not model
the database containing the number information. This implies
that the specification has to allow the situation that the number
is known as well that it is unknown to the system.

Nevertheless, it can be important to know whether a spec-
ification is deterministic or not. It is tempting to test this
by requiring that the length of the yielded list of transitions,
[Trans o s], is at most one. However that is too simplistic for two
reasons. First, a yielded transition can be a function, Ft f. Such
a function f is supposed to accept any output as argument.
Hence it cannot be deterministic. The second problem by
testing the length of the list of resulting transitions is that it can
contain the same pair of output and target state (Pt o t) twice,
for instance by composing specifications as in specV+SpecT. So, a
good test for checking whether a specification is deterministic
verifies that all pairs in the list of transitions are identical and
that this list does not contain functions:
isDeterministic : : (Spec s i o) s i→ Bool | gEq{|∗|} o & gEq{|∗|} s
isDeterministic spec s i=unique (spec s i) Nothing
where

unique [] pair = True
unique [Ft f:r] pair = False
unique [p] Nothing =unique r (Just p)
unique [p:r] (Just q) = p=== q && unique r (Just p)

Using this property G∀st proves that specT, specC, specV, and
specT+specV are deterministic. Even testing the combination of
specC2 and specT for determinism yields proof, although the
specification contains the transition for a nickel twice. The
Qui-Donc specification is not deterministic, the first coun-
terexample found by G∀st is Counterexample 1 found after 182 tests:

(Info Nothing 1) (Digit 1).

D. Testing whether a Specification is Consistent

Transitions of the form Ft f deserve some special attention.
The function f has type [o]→[s], that is given an output (list
of element of type o) it yields the list of allowed target states
of type s. For a successful conformance test the list of target
states is supposed to be nonempty. It is tempting to require
that the list of target states of all functions of this kind is
nonempty, but that is too restrictive. It should be allowed
to have a specification of the form spec s i= [Ft f,Ft g], where
the functions f and g together cover all possible outputs. The
results of f and g for individual arguments can be empty.
Moreover, returning an empty list is a convenient way to
indicate a nonconformance of the sut.

So, making it impossible to return an empty list is too
restrictive, but it is interesting to know if a given specification
yields an empty list of target states for some state, input and
output. This can be tested by the property isConsistent.
isConsistent : : (Spec s i o) [[o]] s i→ Property | TestArg o
isConsistent spec outputs s i
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= case [f \\ Ft f← spec s i] of
[] = prop True
fs=defined (foldl1 (+) fs) For outputs

where defined f o=∼(isEmpty (f o))

Testing the vending machines yields pass. One can argue that
the tests containing multiple products as output are not very
useful. We can test only single product output by evaluating
test (isConsistent specT [[Coffee] , [Tea] ] ) . G∀st proves this property
in 164 tests. Since these specifications do not contain func-
tions, these test results are not very exciting. A tea vending
machine containing a function is:
specT2 : : State In→ [Trans Out State] 1

specT2 (S n) Nickel= [Pt [] (S (n+5) ) ] 2

specT2 (S n) ButT = [Ft λo. i f (n≥5 && o== [Tea]) [S (n−5)] [ ] ] 3

specT2 s i = [] 4

Testing this specification for consistency by evaluating test

(isConsistent specT2) finds a counterexample for the arguments
(S 20) ButT [] after 4 tests. This test result indicates that the
transition on line 3 yields an empty set of target states starting
from state (S 20) on input ButT and the empty output. The
specification can be corrected by replacing the empty list ([])
on line 3 by [S n]: for this state and input the state should be
unchanged on an empty output.

Testing the Qui-Donc specification for consistency yields
counterexamples for outputs that are not a single string. We
restrict the tested outputs to some known names by letting G∀st
evaluate test (isConsistent QDspec [[Str "Koopman"] , [Str "Plasmeijer"] ,

[Str "Achten"] ] ) . The result of this test is Proof after 644 tests.

E. Testing the Reachability of States

The reachability of specific states can reveal important
information about a specification. The vending machines will
not work as desired if they cannot reach a state where an item
can be the output. Similar Qui-Donc will not work properly
if the state Info cannot be reached. Reachability of states is a
typical property that is usually verified by model-checkers.

The function reachable yields the list of all states that are
reachable in n steps according to specification spec starting
from states. This function does a breadth first search of the
state space of the specification. Since many specifications
have a huge state space (e.g. above 1010 for Qui-Donc),
we provide some help to limit the number of states. The
argument eq defines equality on states to remove similar states
as introduced at the start of this section. The function input

defines the inputs to be used at the given state. Similarly, the
function out generates the outputs for a transition of the form
Ft f in the given specification.
reachable : : Int (Spec s i o) [s] (s s→Bool) (s→[i]) (s i→[[o] ] )

(s→Bool) → [s]
reachable n spec states eq input out pred=states++r n states []
where
r 0 states seen= []
r n states seen= new++r (n−1) new (new++seen)
where new=rmEquiv eq [t \\ s← states, i← input s, p← spec s i

, t← targets p s i out
| ∼(member eq seen t) && pred t]

We use auxiliary functions member: : (x x→Bool) [x] x→ Bool and
rmEquiv: : (x x→Bool) [x] → [x]. Both functions are parameterized
by an equivalence relation of elements. The function member

checks if the given element occurs in the given list. The

function rmEquiv removes elements from the given list that are
equivalent to an element previously occurring in that list.

For the Qui-Donc specification we have lists listQDin of
all interesting inputs, and listQDstate of the interesting states.
To determine reachabilty in Qui-Donc we try all inputs in
each state by using the anonymous function (s.listQDin) as
the argument input of reachable. We use only states that are
interesting by the predicate member equiv listQDstate. Using this we
can verify that the state Emergency (corresponding to the number
112) is not reachable in 5 steps, but is reachable in 6 steps.

F. Testing whether a Specification is Initially Connected

A state machine is initially connected if each state can
be reached from the initial state. Testing the reachabilty for
all interesting states can be done by the function reachable

from the previous subsection. It is more informative to know
which states are unreachable than just the information that
a specification is initially connected or not. The unreachable
states from the given list of allstates are delivered by:
unreached : : (Spec s i o) [s] (s s→Bool) (s→[i]) (s i→[[o] ] )

(s→Bool) [s] → [s]
unreached spec states eq input out pred allstates
= [ x \\ x← allstates | ∼(member eq reachedStates x)]

where reachedStates=reachable 100000 spec states eq input out pred

Testing initially connectedness is now just checking whether
the list of unreached states is empty. All specifications in this
paper appear to be initially connected for the states considered.
It is clear that specC cannot reach states like S 5 and S 15, since
it accepts only dimes. This is found promptly by G∀st.

G. Testing whether a Specification is Strongly Connected

A state machine is strongly connected if every state can
be reached from every other state. This is a rather strong
restriction on state machines that is sometimes unwanted. If
we know already that a state machine is initially connected
it is strongly connected if the initial state is reachable from
every other state.
connected : : (Spec s i o) s (s s→Bool) (s→[i]) (s i→[[o] ] ) (s→Bool) [s]

→ Bool
connected spec initState eq input out pred allstates
= and [member eq (reachable 10000 spec [s] eq input out pred) initState

\\ s←allstates]

All state machines treated in this paper appear to pass the test
for strong connectedness if we restrict ourselves to interesting
states that are equivalent.

VII. DOMAIN SPECIFIC PROPERTIES

The properties handled in the previous section are problem
independent in the sense that we can determine for each
state machine whether these properties hold. With some effort
one can also determine problem specific properties and test
whether these properties hold for the specification at hand.
Testing the specification for such a property increases the
confidence in its correctness. We illustrate this with some
simple examples.

We require that our vending machines are fair: they should
not lose money. This implies that the amount of money n

in state S n is a fair representation of the difference between
the amount of money inserted and the value of all products
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obtained. Instead of checking this property for many traces,
we check it for all transitions. If it holds for all transitions
and the initial state S 0, it will hold forever by induction. First
we define a class value and the appropriate instances. The key
instances cover the input In and output Out of the specification.
instance value State where value (S n) = n
instance value In where value i= case i of Nickel= 5; Dime= 10; _= 0
instance value Out where value o= case o of Coffee= 10; Tea= 5

Some additional instances are needed, e.g. to compute the
value of a list of elements. Now the key property is easily
defined. For all inputs and outputs of a given specification the
value of the input and the current state has to be equal to the
value of each transition (i.e. output plus target state) that is
defined by the specification. This is expressed by:
propFair : : (Spec State In Out) State In→ Property
propFair spec s i= p For spec s i where p t= value s + value i== value t

Testing with this property shows that mkTotal is not as innocent
as it looks. If we test mkTotal specC, the first counterexample
(S 5) Nickel (Pt [] S 5) is found after 5 tests: the user inserts
money but the state remains unchanged. The specification
mkTotal specC is unfair!

In the same way we define a property that states that the
amount of money in all reachable target states is non-negative
when we start with a non-negative amount of money.
propNoDebit : : (Spec State In Out) State In→ Property
propNoDebit spec s=: (S n) i= n≥0=⇒((λ(Pt o (S m) ) .m≥0) For spec s i)

For the states generated as described above, G∀st proves this
property. However, if we leave the generation of states to
G∀st by stating derive gen State, G∀st finds the counterexample
2147483647 Dime (Pt [] S−2147483639) after 6 tests. The problem is
caused by integer overflow in the counter of the state.

VIII. FINDING DOMAIN SPECIFIC PROPERTIES

Above we have shown that it is possible to find issues in a
state based specification by testing logical properties of such
a specification. Some of these properties are universal and
can be used for (almost) any specification, these properties
are typically looked up in textbooks. This leaves us with the
problem of finding domain specific logical properties. In our
experience an effective way to obtain such domain specific
properties for specifications is by simulating or inspection
of the specification. When we manually find an incorrect
transition, we can often find a domain specific logical property
of the specification by generalization of the behavior we
require instead of the erroneous transition.

The esmViz tool [10] can simulate and visualize the models
used by G∀st for MBT. Using this tool we can interactively
generate an expanded state diagram of the specified extended
state machine. In a diagram of an extended state machine all
states that differ only in a parameter are mapped to the same
node in the graph, e.g. the states S n in figure 1 and the states
Digits l n in figure 2. In an expanded state diagram states that
differ in only a parameter are drawn as separate nodes, e.g.
the states On 20 and On 30 in figure 4.

We demonstrate this with the specification of a vending
machine that should be able to produce tea for 10 cents, coffee
for 20 cents and chocolate for 30 cents. The user can insert

coins up to a value of 40 cents. A specification containing
almost as many nasty errors as we could slip in is:
: : State = Off | On Int
: : Input =SwitchOn | SwitchOff | Coin Int | But Product
: : Product =Coffee | Tea | Chocolate
: : Output = Cup Product | Return Int

vSpec : : State Input→ [Trans Output State]
vSpec Off SwitchOn = [Pt [] (On 0)]
vSpec s SwitchOff= [Pt [] Off]
vSpec (On s) (Coin c)
| s<Max = [Pt [] (On (s+c) ) ]

= [Pt [] (On s)]
vSpec (On s) (But coffee) | s≥20 = [Pt [Cup Coffee] (On (s−20) ) ]
vSpec (On s) (But Tea) | s≥10 = [Pt [Cup Coffee] (On (s−10) ) ]
vSpec (On s) (But p) = [Pt [] (On s)]
vSpec state input= []

Max= 40

Fig. 4. Expanded state diagram of vSpec as generated by esmViz.

An expanded state diagram of this machine is depicted in
figure 4. The transitions shown in this diagram correspond
to inputs chosen by the user of the tool esmViz. Hence, the
expanded state transition diagrams are often incomplete. This
has the advantage that they are concise and the user can focus
better on specific behavior. Based on a specification like vSpec

the tool presents the inputs allowed in the current states, and
draws an expanded state diagram of the transitions chosen by
the user. If we look carefully at the transitions in this diagram
we see some issues.

1) Wrong product: In figure 4 the delivered product in
transition On20

But Tea/[Cup Coffee]−−−−−−−−−−−−→ On0 is not the required
product. This is caused by the variable coffee in the function
alternative vSpec (On s) (But coffee). Here the constructor Coffee

(starting with an upper case) was needed. As a general property
we state that the delivered product should always be equal to
the required product:
pProduct : : State Product→ Property
pProduct s p=checkProd For vSpec s (But p)
where checkProd (Pt [Cup q] t) = p=== q

checkProd _ = True

Testing this reveals many issues containing Tea or Chocolate as
required product and states with a values On n with n≥20.

2) All products: Given this erroneous transition, we might
wonder if the specified machine is able to produce tea. More
general: we expect that for all products p in the type Product

the machine is able to produce a cup of that product for the
input But p.
pAllProducts : : Product→ Property
pAllProducts p
=Exists λs. ∼(isEmpty [p \\ (Pt [Cup q] t) ← vSpec s (But p)|p=== q])

In this property we use the keyword Exists to indicate an
existentially quantified property (∃), rather than an universally
quantified property (∀). G∀st produces the counter examples
Tea and Coffee. The test suite is generated using the generic
algorithm by derive gen Product, hence it is known to contain all
possible products.
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3) Losing money: Note that the machine loses the value of
the input coin in the transition On50

Coin 10/[ ]−−−−−−→ On 50. As a
general version of this issue we state that all transitions must
be fair as introduced in section VII. Also for this property G∀st
finds 12 issues. They correspond to 1) the transition for vSpec

(On s) (Coin c) where s ≥ Max (the unfair transition observed). 2)
the second class of issues is caused by switching the machine
off in a state On s with s>0. 3) also the production of coffee
instead of tea is caught by this property since the value of
coffee, 20, is unequal to the amount of the state change (10).

4) Illegal states: From the presence of a state On 50 in this
diagram we conclude that it is possible to reach a state with
too much money in the machine. The general property states
that for all reachable states, the value of the target state after
a transition is less or equal to Max. We can easily generate only
allowed states by:
gen{|State|} = [Off: [On v \\ v← [0,5 . .Max] ] ]

Exactly the same approach is used to verify that the amount
of money in the machine is never negative as demonstrated in
the previous section.

A. An improved specification

An improved version of this specification reads:
vSpec2 : : !State !Input→ [Trans Output State]
vSpec2 Off SwitchOn = [Pt [] (On 0)]
vSpec2 s SwitchOff= [Pt [Return (value s)] Off]
vSpec2 (On s) (Coin c)

| s+c≤Max = [Pt [] (On (s+c) ) ]
= [Pt [Return c] (On s)]

vSpec2 (On s) (But p)
| s≥value p= [Pt [Cup p] (On (s−value p) ) ]

= [Pt [] (On s)]
vSpec2 state input = []

Within a split second G∀st proves that all listed properties hold
for this specification even if we enlarge Max to 4000.

We have successfully used the same approach for the Qui-
Donc system. This system has more than 1010 states. The
expanded state diagram becomes completely unreadable if we
try to draw a significant fraction of these states. Fortunately
it is not needed to draw large amounts of states. To our
rescue we noted that all interesting traces contain about 20
transitions or less. For these experiments it appeared useful,
but not essential, to use 5-digit internal phone numbers rather
than the 10-digit numbers used in the full specification. The
esmViz tool contains several operations to prune the obtained
diagram in order to keep it small and clear.

IX. RELATED WORK

It is widely recognized that the quality of specifications in
software engineering is important and not self-evident. Using
MBT to determine the quality of models however is rare. Back
in the 80’s there was some initial work [8], [9], but after that
people seem to rely on inspection by humans (as part of the
pretest quality assurance) or model checkers like Uppaal [2].
Using a proof system requires a transformation of the G∀st-
model to a format understood by the model checker. Usually
the model must be simplified to enable the model checker to
prove the specified properties. Our approach has as advantage
that the same model can be used for MBT of a sut and as

subject of testing properties. For finite cases G∀st is able to
produce a proof by exhaustive testing. If the search space is too
large for exhaustive testing, our test system can still increase
the confidence by doing many useful tests.

An ESM used as specification can be depicted as UML state
chart. This is fine to get an overview, but it is cumbersome
to make such a state chart a complete specification. None of
the UML tools offers an expressive power similar to Clean.
Hence the state chart has to be restricted, or entered as free
text. Moreover, specifications in UML cannot be changed and
composed like the models in G∀st. ProB [14] is able to verify
properties like consistency and refinement of specifications in
the language B by automatic testing. In our approach it is much
easier to add domain specific properties, and our specifications
can directly be used in simulations and to test the sut.

The Quickcheck [3] tool is only able to test logical prop-
erties, not the state based systems used here. Also Alloy [7]
handles logical properties.

X. CONCLUSIONS

MBT of state based systems often reveals issues in the
system under test as well as in the model used as basis
for testing. This is not very strange: the software and its
specification are similar formal artifacts, and it is known that
humans do make errors in creating them. High level languages
and analysis, like static type systems, reduce the number of
errors, but do not eliminate them completely. If the tested
system and the model do not contain the same error an issue
is found during the test. This implies that not all errors in
the specification pass unnoticed. But, late detection of errors
in the specification can delay the software process. Even if
the errors in a specification are found, it hampers progress.
So, it is worthwhile to spend additional effort in improving
and verifying the quality of specifications. As a rule of thumb
test managers say that 40% of the issues found in automatic
testing (executing scripts) correspond to errors in the sut.
In our Model-Based testing experience with G∀st this is on
average 75% which is already an important improvement.
Using the techniques introduced here we are able to improve
our models significantly. This should increase the fraction of
issues that indicate errors in the sut, but we have not yet
enough experience to give figures.

In this paper we have shown how we can give specification
properties like being total by specification transformations.
More important, we show how the logical branch of the test
system G∀st can be used to express desirable properties of
specifications for state based systems. Using some examples
we demonstrated that issues in such a model can indeed
be found by testing. Manual verification is still needed to
detect domain specific issues. If we generalize these issues
to constraints that should hold, G∀st is able to spot similar
issues quickly and accurately.

Our approach heavily builds on modeling specifications as
functions in a functional programming language. The advan-
tages of this approach are clear semantics, concise specifi-
cations, the language compiler checks many aspects of the
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specifications. In this paper we have shown that it is possible to
check additional properties of specifications, domain specific
as well as more general properties, within the same framework.
There is empirical evidence that people without any back
ground in functional programming are able to write design
required properties, implement them in the test tool and find
issues within two weeks.

APPENDIX

GENERIC PROGRAMMING

Generic programming [5], [1] enables us to write algorithms
once and then use these algorithms for any type. This tech-
nique builds on a uniform representation of types within the
language and compiler generated transformation to and from
that representation. The minimal set of types needed for the
generic representation of any type is:
: : UNIT = UNIT / / any constructor
: : PAIR x y= PAIR x y / / glue types x and y together
: : EITHER x y= LEFT x | RIGHT y / / a choice between types x and y

The real implementation of generics in Clean uses some
additional constructs to represent information about types and
constructors. These are not essential to understand generic
programming. As example we consider a user defined poly-
morphic data type List defined as:
: : List x= Nil | Cons x (List x)

The generic system generates a consistent representation of
the constructors Nil and Cons using the generic types defined
above. The generic list, Listg, is just the choice between
these constructors (Nilg and Consg).
Nilg = LEFT UNIT
Consg a x= RIGHT (PAIR a x)
: : Listg x=EITHER UNIT (PAIR x (List x))

The ubiquitous generic programming example is equality. If
we define equality for the generic types in the obvious way,
Clean can derive equality for lists by first transforming the lists
to their generic representation and then compare these generic
representations. A more interesting example is the generation
of lists of the inhabitants of a type. We start out by defining the
generic type and instances for the basic generic types defined
above.
generic gen a : : [a]

gen{|UNIT|} = [UNIT]
gen{|PAIR|} xs ys= map (λ(x,y) .PAIR x y) (diag2 xs ys)
gen{|EITHER|} xs ys= fuse True xs ys
fuse True [x:xs] ys= [LEFT x:fuse False xs ys]
fuse False xs [y:ys] = [RIGHT y:fuse True xs ys]
fuse b [] ys = map RIGHT ys
fuse b xs [] = map LEFT xs

The only possible element of type UNIT is the constructor
UNIT. Hence the generic generator gen generates a singleton list
containing only this constructor. For a PAIR we need to combine
elements from two lists. The generic system provides these
lists as the arguments xs and ys. Using the library function
diag2 we combine these lists in a breadth-first way. For the
type EITHER we take elements from both provided lists in turn.
We use a boolean to indicate the turn. After these definitions
we can derive the generation of elements of type List as:
derive gen List

For basic types like Bool we have to specify the possible values.

gen{|Bool|} = [False, True]

After these preparations the Clean system is able to generate
Lists of Booleans. These (List Bool) values are used by G∀st to
test properties over these lists. The initial fragment of this list
is: [Nil, Cons False Nil, Cons True Nil, Cons False (Cons False Nil) , . . .
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