
iEditors: Extending iTask with Interactive
Plug-ins

Jan Martin Jansen1, Rinus Plasmeijer2, Pieter Koopman2

1 Netherlands Defence Academy,
Faculty of Military Sciences,
Den Helder, the Netherlands,

2 Institute for Computing and Information Sciences (ICIS),
Radboud University Nijmegen, the Netherlands

jm.jansen.04@nlda.nl, {rinus, pieter}@cs.ru.nl

Abstract. The iTask library of Clean enables the user to specify web
enabled workflow systems on a very high level of abstraction. Details like
client-server communication, storage and retrieval of state information,
HTML generation, and web form handling are all handled fully automat-
ically. For any task one can also define where it should be processed:
on the server, or on the client. Client task are handled by a full Clean
interpreter residing at the client side of the web application.
Using standard HTML elements and web browsers also has a disadvan-
tage: they do not offer the same level of interaction as we are used from
desktop applications. However, browser plug-ins can be used to fill this
gap. Plug-ins not only offer the possibility to play animations, music,
and movies, they also offer more interactive functionality e.g. allow users
to make drawings. In this paper we explain how plug-ins can be nicely
integrated in the iTask system. A very special feature of the integration
is the possibility for a plug-in the use Clean functions as call-back mech-
anism for the handling of events, where call-backs can be handled on
the server as well as on the client. Events that demand an immediate
response are handled on the client, while others can be handled on the
server. As a result we are now able to create interactive iTask applications
using plug-ins like graphical editors. Although complicated distributed
multi-user applications can be created in this way, reasoning about the
program remains easy since all code is generated from one and the same
source: the high-level iTask specification in Clean.

1 Introduction

The internet has become an important platform for the deployment of applica-
tions. Despite this popularity for an application programmer it is still hard to
write web applications. To overcome this the iData [10] and iTask [11] toolkits
are developed. They enable the development of web applications at a high level
of abstraction, where the programmer can focus on the essence of the application
without having to deal with web details like, HTML generation and client-server
communication. An iData application automatically generates output (HTML)

2

and automatically handles user changes made in a HTML form. iTask adds the
concept of tasks to iData. An application can now be considered as a structured
collection of tasks to be performed by one or more users. In iTask the flow of
control and information between tasks can be expressed. To enhance the perfor-
mance of iTask applications the possibility to handle tasks at the client side of a
web application was added. For this the SAPL interpreter [12] was extended to
a full Clean interpreter [7].

iData and iTask make use of standard HTML elements. In many cases these
standard elements do not suffice. Plug-ins can be used to overcome this. Ex-
amples of plug-ins are media players for playing music and movies and Java
Applets that offer the possibility to run Java programs at the client side of web
applications.

When developing a web application using a plug-in the programmer has to
deal with the following issues:

– How to include de plug-in in the web application?
– How to load relevant data into the plug-in?
– How to obtain relevant data from the plug-in?
– How to do specific processing for the plug-in?

For the inclusion of plug-ins in web applications standard solutions in HTML
exist. The other issues are mostly handled on an ad hoc basis, depending on the
kind of application being developed.

In this paper we focus on a more systematic solution for the last three issues.
The focus is on the inclusion of Java Applet plug-ins into iTask applications using
generic programming techniques. The presented techniques are not restricted to
Java Applets alone but can also be used for communication with other kind of
plug-ins, e.g. Flash players. For incorporating Java Applets into iTasks, a generic
(read: poly typical) framework is developed. The benefits for an application
programmer are:

– A Java Applet plug-in can be used with a minimum of programming effort.
Generic functions take care of the conversion of Clean data structures to
Java objects and back. They also take care of the communication between
the web application and the plug-in;

– One can define call-backs for the plug-in in the Clean application which can
be handled either on the server or on the client. Server handling can be used
for executing more time consuming functions and client handling can be used
for less time consuming functions like mouse event handling (saving client-
server communication overhead). For client side evaluation of call-backs the
SAPL interpreter is used;

– Plug-in tasks behave like every other iTask; If a suitable plug-in exists or is
already made, the application programmer only has to invoke a Clean iTask
editor with an initial value of proper type, as usual. No programming of
HTML, JavaScript or Java is necessary.

The technical contributions are:

3

– The implementation of a generic way to exchange data between Clean and
Java. On the Clean side this is realized by standard generic print and parse
functions. On the Java side this is realized by the Java reflection mechanism;

– The use of Clean and SAPL dynamics [14] for realizing fine grained con-
trol over call-back function handling. The call-back closures are serialized to
strings that can be de-serialized to SAPL closures and executed;

– The seamless integration of plug-in tasks in the iData and iTask formalisms.
This is realized by adapting the HTML generation and data type update
functions. This all in a completely transparent way for the application pro-
grammer.

The structure of this paper is as follows. We start with a short survey on the iTask
system. We then discuss the issues to be dealt with for including plug-ins. We
give two examples of the use of iTask plug-ins. Then the implementation aspects
of plug-ins and the exchange of data between Clean and Java are discussed. We
compare our solution with other approaches that use client side evaluation and
end with some concluding remarks.

2 The iTask toolkit

The iTask toolkit [11] is a web-based combinator library written in the lazy,
purely functional programming language Clean. The novel and declarative con-
tributions that this toolkit provides, which cannot be found in the existing com-
mercial systems, are:

– workflows are constructed fully dynamically instead of statically: they can
depend on the intermediate inputs and outputs that are yielded by workers
and computations;

– workflows can be higher-order, i.e. yield partially evaluated tasks which can
be passed around for further evaluation to other workers at other locations;

– workflow cases are specified as pure, strongly-typed functional expressions,
using the predefined iTask combinators;

– the workflow application can handle multiple workers, multiple tasks, and
multiple clients dynamically, yet everything is controlled by one, single Clean
application running on the server;

– the specification of the workflow is executable; all implementation details
like web-page generation, web-page handling, client-server communication
and database storage handling is handled fully automatically by making
intensive use of generic programming techniques [2, 6]: from the types being
used the required code is generated fully automatically.

In the iTask system all software is generated from one single source in Clean. To
understand what the application is doing, one only needs to look at the iTask
specification. It is a specification on a very high level of abstraction which can
be read as if we are dealing with an ordinary simple desktop application.

In [12] we showed how we can partially update web pages and reduce the
overhead of client server communication in iTask applications by adding Ajax

4

[4] and client side evaluation of tasks. For the client side evaluation we use the
SAPL interpreter [7]. For this the complete Clean application is also compiled to
the formalism of the SAPL interpreter and loaded into the SAPL interpreter at
start-up of the web application.

2.1 Examples of iTask Applications

To give an idea of the iTask system we give some small examples. Creating a
task in iTask is simple. With the editTask function one can turn an element of
an arbitrary data type into a task. As a result the user can edit the data type
element in a web form. The result of the edit action is fed back to the iTask
system as an element of the data type and can be further processed. editTask
has two arguments: the name of the button that the user should press to end
this task and the initial value of the editor. Here two examples of the use of this
function are given: one for an integer argument and one for an element of type
Person (together with the definition of Person).

simpleInt :: Task Int

simpleInt = editTask "Ok" 0

:: Person = { name :: String

, e_mail :: String

, dateOfBirth :: HtmlDate

, gender :: Gender

}

:: Gender = Female | Male

simplePerson :: Task Person

simplePerson = editTask "Ok" createDefault

Fig. 1 shows the resulting editors. Note that Person has createDefault as initial

Fig. 1. editTask for Int (left) and Person (right)

value. The fields in the form will now get default values generated by the system.
As a second example consider the following multi-user example:

5

addMultiUserTask :: Task Int

addMultiUserTask

= 0 @:: editTask "First number" 0

=>> \v -> 1 @:: editTask "Second number" 0

=>> \w -> 2 @:: editTask "Sum" (v+w),

User 0 has to enter a number, then user 1 has to enter a second number, then
user 2 gets the sum of these number, but can still edit the result. =>> is the iTask
equivalent of the monadic ‘bind’ operator. n @:: task assigns a task to user n.
The user number must be selected with a drop down box on the page, but can
also be associated with a user login.

3 Plug-ins in iTask

Standard HTML elements are often not sufficient to deal with all situations. For
example interactive drawing, playing of movies, animations and music are not
supported by standard HTML components. To overcome this it is possible to
plug in applications into web browsers. Examples of plug-ins are media players
to display movies and music and Java Applets or Flash plug-ins for interactive
drawing and animation. Plug-ins have to be installed by the user of the browser.
Ones this is done they are automatically loaded when needed. The use of plug-
ins complicates the development of web applications. The developer has to take
care that the plug-in is loaded and that the data needed by the plug-in is passed
to the plug-in. In some cases also data from the plug-in has to be passed back
to the web application or events occurring in the plug-in have to be handled by
the web applications (e.g. mouse events).

In this paper we discuss how plug-ins can be integrated into iTask applications
in a seamless way.

3.1 Use of Plug-ins from a Programmers Perspective

In a basic iTask an element of a data type is turned into an editable HTML form
by the function editTask and the result of editing the form is automatically
turned into an updated instance of the data type. This way of working is main-
tained for plug-ins. More concretely, the information exchanged with a plug-in
must also be represented by a data type and the use of the plug-in should lead
to an updated instance of this data type. Because editTask has no means for
distinguishing a data type intended for a plug-in from any other data type and
also because we need information about how to load and display the plug-in we
have to wrap the content data type into the PlugIn data type. Below we first
give two examples of how to include plug-ins into iTask applications.

3.2 A Text Editor Plug-in for iTask

As a first example we look at a text editor plug-in. Basic HTML text editor
components are rather primitive. More sophisticated text editor plug-ins exist
or can be made for example in Java.

6

The first step for making an iTask application that communicates with a text
editor plug-in is the construction of a data type in Clean that represents the
information that has to be exchanged between Clean application and plug-in.
On the plug-in side there should be a corresponding data type where this data
type can be mapped on (more details see Sec. 4). For this example the content
data type is rather simple. The content of an text editor is represented by a
string:

::TextEdit = TextEdit String

We wrap this data type into the SimplePlugIn data type:

::SimplePlugIn ct

= {plugininfo :: PlugInInfo, content :: ct}

In this type all information is captured that is needed to construct the HTML
representation of the plug-in (plugininfo) together with its content (content).
The following Clean task contains a text editor plug-in:

textedittask :: Task String

textedittask = editTask "Ready" texteditplugin

=>> \pi -> return_V pi.content

texteditPlugIn :: SimplePlugIn TextEdit

texteditPlugIn = (plugininfo = editorplugin,

content = TextEdit "this is the initial text"}

We assume that editorplugin contains all information needed to create a HTML
representation of the editor plug-in(how can it be loaded, what is its size, how it
is initialized, etc.). The content field is filled with the initial content of the editor.
When the user clicks the ‘Ready’ button the content field in the SimplePlugIn
data structure is automatically updated with the result of the editor and this
result becomes available to the remainder of the iTask application. If we com-
pare this example with the previous examples we see that the only difference is
that the data type to be edited is now wrapped into the PlugIn data type. All
communication with the plug-in is handled automatically.

3.3 A Graphical Editor Plug-in for iTask

In the previous example the plug-in did all necessary processing for constructing
its content. We now look at an example where external processing is needed for
this construction. The example is a simple graphical editor. We assume we have
a plug-in that is capable of displaying simple graphics (lines, ovals, text, etc.)
and that can generate events for mouse and button actions. The processing of
these events depends on what kind of graphical editor we want to make (vector
graphics, diagrams etc.). Of course, it is possible to create a dedicated plug-in for
each kind of editor. But by using Clean for doing event handling we can adapt
the behaviour of the application by only changing the Clean source, without
the need to adapt the plug-in. The key idea is that events are passed to the

7

web-application by a call-back function call. The call-back function can either
be executed on the server by the Clean application or on the client by the SAPL
version of the Clean program. The programmer can choose for each type of event
where it must be handled (e.g. computation intensive events on the server and
often occurring, less processing demanding, events on the client).

The Clean source code for a task containing this plug-in is:

::GraphState = NewLine | NewPolyLine | NewRect | NewOval

::GraphObject = GraphLine Int Int Int Int | GraphOval Int Int Int Int |

GraphRect Int Int Int Int | GraphPolyLine [Pnt] |

GraphButton String

::Pnt = Pnt Int Int

::GraphEvent = MouseDown Int Int | MouseDrag Int Int |

MouseUp Int Int | ButtonEvent String

graphtask :: Task (GraphState,[GraphObject])

graphtask = editTask "Ready" graphPlugIn

=>> \gpe -> return_V (gpe.state, gpe.content)

graphPlugIn :: PlugIn [GraphObject] GraphEvent GraphState

graphPlugIn = {plugininfo = grapheditplugin,

content = initpicture,

events = [],

state = NewLine,

eventHandling = ServerEvents [MouseUp 0 0],

callback = doEvents}

// initial picture only contains buttons

initpicture = [GraphButton "Line",GraphButton "PolyLine",

GraphButton "Rectangle",GraphButton "Oval"]

// Event handler for mouse and button events

doEvents :: (GraphState,[GraphObject]) [GraphEvent] ->

(GraphState,[GraphObject])

doEvents (_,figs) [ButtonEvent "Line":evs]

= doEvents (NewLine,figs) evs

// Oval, Rectangle, PolyLine in a similar way

doEvents (NewLine,figs) [MouseDown x y:evs]

= doEvents (NewLine,[GraphLine x y x y:figs]) evs

// Oval, Rectangle, PolyLine in a similar way

doEvents (a,[GraphLine v w _ _: figs]) [MouseDrag x y:evs]

= doEvents (a,[GraphLine v w x y: figs]) evs

// Oval, Rectangle, PolyLine in a similar way

doEvents (a,figs) [e:evs] = doEvents (a,figs) evs // ignore other events

doEvents (a,figs) [] = (a,figs) // return result

8

Fig. 2 shows us a screen shot of the application. In this example a drawing is
represented by a list of GraphObjects. We distinguish several types of figures
and simple butons. GraphEvent is the type of events that can occur in the editor.
We distinguish mouse (down, up, drag) and button events. We assume that the
plug-in is capable of displaying elements of GraphObject and that it can turn
mouse events into elements of GraphEvent. GraphState is a state data type
that maintains that part of the state that is not passed to the plug-in but that
is needed by the call-back function. In this example it maintains the type of
the figure to be drawn at a mouse down event. The type PlugIn contains all
information needed for the creation of, and communication with the plug-in:

::PlugIn ct et st = {plugininfo :: PlugInInfo,

content :: ct, events :: [et], state :: st,

eventHandling :: EventHandling et,

callback :: (st,ct) [et] -> (st,ct)}

– plugininfo: information for constructing the HTML representation of the
plug-in;

– content: content of the editor;
– events: events that have to be processed by the call-back function;
– eventHandling: indication where events have to be handled. Here only the

type matters. In our example mouseUp events are handled on the server, all
other events are handled on the client;

– state: value of the state to be maintained between call-back calls;
– callback: call-back function that handles the generated events;

The call-back function takes the current state, the current content and the gen-
erated events as input and returns a new state and a new content. The state is
maintained for the next call of the call-back. The call-back function is automati-
cally called from the plug-in whenever an event occurs (see Sec. 4). The call-back
can either be handled by the client or the server.

For indicating where events have to be handled we use this data type:

::EventHandling et = AllServer | AllClient |

ClientEvents [et] | ServerEvents [et]

EventHandling has the actual event type as parameter. The programmer can
choose to have all events handled on the client or on the server, or can indicate
which events should be handled on the server or on the client.

The user can stop editing the figure by clicking the “Ready” button. The
current content and state are now passed to the remainder of the iTask applica-
tion.

To show that the plug-in task just behaves like a normal iTask we give a small
variation of the previous program:

graphtask :: Task (PlugIn [GraphObject] GraphEvent GraphState)

graphtask = 0 @:: editTask "0 Ready" grapheditor

=>> \ge -> 1 @:: editTask "1 Ready" ge

=>> \ge -> 0 @:: editTask "Ok" ge

9

In this case two users are involved. User 0 starts with making an initial drawing.
The result is passed to user 1. User 1 can further edit the drawing. If this task
is ready the result is passed back to user 0 who can continue editing.

Again we see that the programmer only has to specify the (content, state and
event) types and the call-back function needed for handling events. The plug-in
iTask again behaves like an ordinary iTask. All communication with the plug-
in is handled in a, for the user, transparent way. Also in this case the plug-in
should have matching types for the content and events types. The mapping of
the elements of these types onto each other is done automatically (see Sec. 4 and
5).

Fig. 2. Screen shot of the Drawing Application

4 Implementation of Plug-ins

From the examples it is clear that the use of plug-ins is straightforward for the
application programmer. In the implementation of plug-ins we face a number of
challenges:

– How to fit a plug-in into the iData/iTask architecture?
– How to exchange data between server, plug-in and client?
– How to invoke call-back functions from the plug-in for the server and client?

We concentrate on the implementation of PlugIn with call-backs. The imple-
mentation of SimplePlugIn is a simplified version of this.

4.1 Fitting a Plug-in into the iTask/iData architecture

Each plug-in has a specific representation in HTML that describes the plug-in to
be loaded and some initialisation parameters like size, identification, etc. In this

10

HTML representation it is also possible to add extra parameter tags. We use these
extra tags for storing other information we need. Examples are the content, state,
information about the call-back function, information about where to handle
events (client or server). We should generate this HTML representation from the
PlugIn data type. For this generation we need a closer look at some details of
iData and iTask. The iData library is based on the following two principles:

– Each data type can be turned into an (editable) web form in a generic way
by using the gForm function. The web form is generated on the server and
transported to the browser as (part of) a web page.

– Each user edit action in such a web form is automatically transformed into
an updated instance of its underlying data type by the generic gUpd function.
The user edit action is uploaded to the web server and further handled by
generic functions that update the data type.

The programmer can change the default generation of web forms by giving a
specific instance of the gForm function for a data type. Also the generic updat-
ing for data types can be adapted by the programmer by specifying a specific
implementation of gUpd for a data type. This is exactly what is needed for cre-
ating a plug-in from the PlugIn data type. We have to adapt gForm in such a
way that the HTML needed for the plug-in is generated. gUpd has to be adapted
in such a way that the results of a plug-in are included into the original data
representation and that, if necessary, the call-back function is executed. The
Clean data structures SimplePlugIn and PlugIn should contain all information
necessary to realize this.

All communication between server, client and plug-in is done via a number of
JavaScript functions, like this is done for Ajax and Client side handling of iTasks
(see [12]). These functions are generic in the sense that they do not depend on
the specific plug-in. The JavaScript functions are responsible for passing data
from plug-in to server and client and vice-versa, but also for making the call-back
and deciding where the call-back must be handled. In JavaScript the following
functions callable from the plug-in are available:

– syncServer(String content), to be called for a direct synchronization of
the plug-in with the server. The argument is a (serialized) string version of
the content type;

– doCallback(String content, String events), to be called whenever an
event occurs. The first argument is the serialized version of the current con-
tent. The second arguments is a serialized version of the list of the events
that must be processed. This JavaScript function now takes case of making
the actual call-back (see Sec. 4.3).

The plug-in itself should implement the function setContent(String content),
callable from JavaScript, to set its content, again with as argument a (serial-
ized) string representation of the content. It is common for plug-ins to have a
JavaScript interface.

11

4.2 Data exchange between client, plug-in and server

Although we have Clean programs running at both the server and client side,
the internal representations of data types are completely different. Therefore we
use the generic print and parse functions for the exchange of data between the
Clean programs at the server and client side.

For data exchange with the plug-in we also use the generic print and parse
functions on the Clean side (on server and client). This means that also the
plug-in must have a generic way to parse and unparse the strings representing
the event and content data types. In Sec. 5 we discuss how this is realized for
Java.

4.3 Handling call-backs

Call-backs can be made to either client or server. The plug-in makes the call-
back by calling the (generic) Javascipt function doCallBack with the serialized
content and events as arguments. The JavaScript function determines whether
the call must be handled on the server or the client. For the server case the
PlugIn data type is updated in a similar way as for an ordinary update for
iData [10]. The adapted version of gUpd applies the call-back function before
updating the PlugIn data structure.

We can use the same strategy for the client side, but we can (and must) do
it in a much more efficient way. Because we have an interpreter at the client side
we can execute an arbitrary Clean expression. We use this to directly execute the
call-back function call and to make a direct update of the content of the plug-
in. In this way we short-circuit the use of gUpd and the whole iTask machinery
needed for finding out which task is updated [11]. This optimisation is absolutely
necessary for often occurring events with small (less processing intensive) event
handling functions like mouse drag events. For making the direct call-back on
the client we use Clean dynamics [14]. With dynamics it is possible to serialize
a Clean expression (closure) to a string, store the string somewhere, retrieve the
string at a later moment, turn it into a Clean expression again and execute it.
We extended the dynamics features of Clean in such a way that it is also possible
to serialize an expression in a Clean executable and de-serialize it in the SAPL
interpreter and execute the expression there. This is a powerful feature, because
it makes it possible to migrate execution of a Clean program from server to client.
We already used this feature for the client side evaluation of iTasks[12]. In this
case the serialized call-back function is stored in one of the parameters of the
plug-in HTML representation. Not only the call-back function itself is serialized,
but also the parse and unparse functions for its arguments (content, state and
events). This is necessary because the arguments are passed to the call-back as
serialized strings from the plug-in via the doCallBack function and the result
must be passed back in serialized form too.

The actual call to SAPL is made with the generic doSaplCallBackWrap func-
tion that gets the serialized call-back, parse and unparse functions and the seri-
alized state, content and events as arguments. It de-serializes all functions and

12

uses them to: parse the call-back arguments, apply the call-back function and
unparse the state and content again. The content is handed back to the plug-in
directly (via setContent) and the state is maintained as an HTML parameter
in the plug-in representation in the web-page.

4.4 Evaluation of Effiency of handling call-backs

In the graphical editor application we used the call-back function to handle
mouse down and drag events in the SAPL interpreter. Mouse drag events often
occur in quick sequences (in the order of 5-10 events per second). The whole
call-back machinery was capable of keeping track of these events on a 1.6 GHz
Core Duo 2 machine. Attempts to handle the drag events by the server lead to
a crash of the browser due to a client-server communication overload.

5 Implementation for Java Applets

A special kind of plug-ins are Java Applets [1]. All modern web browsers offer the
possibility of Applet plug-ins. In this way it is possible to incorporate complex
Java applications into web pages. We already used the Java Applet mechanism
for loading the SAPL interpreter at the client side of iTask for handling client
tasks. Although Java Applets can offer rich functionality they are less popular
because it is difficult to integrate them with the remainder of a web application.
Using the iTask plug-in techniques we have a generic strategy which simplifies
the communication with Java Applets.

To include a Java Applet in an iTask application we have to deal with the
following issues:

– We have to find a way to map Clean types on corresponding Java data types;
– We have to take care that we offer the interface needed for communication

with JavaScript.

Because it is possible to call JavaScript functions from Java and Java functions
from JavaScript the second issue can easily be realized.

5.1 Mapping Clean and Java Data Types onto each other
In order to exchange information between a Clean and Java application there
must be a way to map a Clean data type onto a Java data type and back. To save
the programmer from writing boilerplate data transformation code we included
generic code in Clean and Java to handle this data transformation. Not all Clean
and Java data types can be mapped onto each other. For example, Java only
support first order data types (it has no function types). For Java we have the
following restrictions.

– A class may be a subclass of another class or implement an interface, but all
superclasses and the class itself must obey the rules mentioned here;

– For a class member field the following types are allowed:
• primitive types (int,long,float,double,boolean,char);

13

• the String type;
• all subtypes of List (they are all mapped on a Clean list;
• other Java types that obey these rules;

– Other types, like Map, other container types and arrays are not (yet) allowed
at this moment. For these classes an ad-hoc mapping must be made (like
this is done for List).

From the Clean point of view the automatic conversion of Clean data types
to Java types is restricted to first order data types that can be described by
standard Algebraic Data Types. Records are not allowed yet, but they can be
simply added. If a Clean type is mapped onto a Java type hierarchy the fields
of the Clean type should match the union of all fields in the class hierarchy in
the order of the hierarchy (fields of superclass before fields of subclass).

Consider the following algebraic data type definition in Clean:

::typename t1 .. tk = C1 t11 .. t1n_1 | .. | Cm tm1 .. tmn_m

t1..tk are type parameters, C1..Cm contructor names and tik types or type
parameters. We map this type definition to a Java interface and m Java classes:

interface typename {}

class<t1,..,tk> C1 implements typename {t11 a1; .. t1n_1 an_1;}

...

class<t1,..,tk> Cm implements typename {tm1 am; .. tmn_m an_m;}

Each constructor is represented by a separate Java class with as name the con-
structor name and with as fields the arguments of the contructor with their
type.

For the actual exchange of data we use the standard generic print and parse
functions at the Clean side (gPrint and gParse) and refelction on the Java side.

5.2 Java Applet Plug-In Interface
At the Java side we implemented the class CleanJavaCom, which contains mem-
ber functions that can be used for parsing and unparsing objects and functions
for handling the communication with JavaScript. The CleanJavaCom class is
generic and can be used for every Java Applet to be included in an iTask appli-
cation.

public class CleanJavaCom<CT,ET> {

private String writeClassToString(Object object) throws Exception {...}

private Object readClassFromString(String inp) throws Exception {...}

public CT getContent() {...}

public void setContent(String ser_content) {...}

public void handleEvents(List{ET> events) {...}

public void syncServer() {...}

...

}

The class is parametrised by the Java versions of the content (CT) and event (ET)
types.

14

– writeClassToString generates a string representation of an object that
exactly fits the Clean representation;

– readClassFromString parses a string representation generated by gPrint
to the corresponding Java object;

– getContent to be used by the remainder of the Applet to obtain the content;
– setContent to be called from JavaScript to set the content. The content

string is de-serialized by a call to readClassFromString. The result can be
obtained by a call of getContent;

– handleEvents to be called by the Applet after one (or more) event(s) have
occurred. The function takes care of serializing the content and events and
calling the doCallBack function in JavaScript. The result is passed back by
a call from JavaScript for setContent.

– syncServer can be called by the Applet to synchronize its content with the
Clean application. This is necessary if the plug-in updates its content in
another way then by calling doCallBack.

For the implementation of writeClassToString and readClassFromString the
Java reflection mechanism is used.

6 Related Work

The iTask toolkit allows high-level specification of multi-user workflows. Forms
are generated generically from type information, which considerably decreases
the amount of HTML programming. Complex dynamic workflows can be created
that can be evaluated at both the client and the server without any restriction.
In this paper we extended the iTask toolkit with a generic framework for the
inclusion of plug-ins, with the possibility to make call-backs from the plug-in to
the Clean application. Call-backs can be executed either on client or server. We
are not aware of any other functional system that has these features. However,
there are functional approaches for handling web pages. Links [3] and its exten-
sion formlets is a functional language based web programming language. Links
compiles to JavaScript for rendering HTML pages, and SQL to communicate
with a back-end database. A Links program stores its session state at the client
side. In a Links program, the keywords client and server force a top-level func-
tion to be executed at the client or server respectively. In Links processes can
be spawned, and these processes can communicate via message passing. Client-
server communication is implemented using Ajax technology, like we do. In iTask
processes are not created explicitly as in Links programs. In the iData and iTask
toolkits, forms are generated generically for every data type, whereas in Links
and formlets these need to be coded by the programmer.

Another functional language based web programming language is Hop [13,
9]. Just as Links, Hop is compiled to JavaScript. It implements a strict sepa-
ration between programming the user interface and the logic of an application.
The main computation runs on the server, and the GUI runs on the client(s).
These components can invoke each other (from GUI client to server via function
calls, from server to client via signalling events). In particular the latter feature
increases the expressive power of web applications, which are usually driven by

15

the browser client side. Additional server logic can be invoked as a Hop service,
which makes the design very modular. This has been implemented with Ajax. In
the iData and iTask toolkits, we do not require a stratified language approach to
divide our attention to GUI programming versus application logic, because the
GUI is mainly generated generically. The relation between plug-in and Clean ap-
plication is comparable to that of GUI and server in Hop, because of the explicit
calls the plug-in can make to the Clean application.

The Flapjax language [8] is an implementation of functional reactive pro-
gramming in JavaScript. Many of its features are comparable with those of Hop,
and indeed both are designed to create intricate web applications. The main
difference with our approach is that the iTask system is geared for distributed,
multi-user, workflow systems in which the coordination and interaction of work is
defined in a highly declarative style. The enabling technology of client-side eval-
uation in the iTask toolkit is SAPL. In principle the complete Clean application
can be compiled to SAPL. This enables our approach to use the full expressive
power of Clean to perform intricate computations at the client side for tasks and
call-backs. A much more restricted approach has been implemented in Curry [5]:
only a very restricted subset of Curry is translated to JavaScript to handle client
side verification code fragments only.

7 Conclusions

Plug-ins are often an essential part of more interactive web applications. In this
paper we discussed a generic way for including plug-ins in iTask. All communi-
cation between iTask application and plug-in is on the level of exchanging and
updating data types, which is entirely consistent with the normal way iTask
works. Plug-in tasks behave like ordinary tasks. No adaptations of iTask where
necessary to incorporate them, only a orthogonal extension of the gForm and
gUpd functions. Communication with a plug-in is realized by putting the data
types used for the exchange of information into a PlugIn wrapper type and, if
necessary, specifying a call-back function in Clean.

An important feature is that the plug-in can make call-backs to the Clean
application that can be handled on either server or client. This gives the pro-
grammer fine-grained control over the behaviour of the plug-in without the need
to adapt the plug-in itself. In this way the plug-in only has to implement func-
tionality that cannot be implemented in Clean.

A small number of JavaScript functions are provided that act as an interme-
diair between Clean application and plug-in. For Java Applets a straightforward
to use generic class is provided that handles all interaction of the plug-in with
Clean including the (de)serialization of data types and the handling of call-
backs. Plug-ins of other type should implement the JavaScript interface and the
(de)serialization of the data types used for the exchange of information.

We have maintained the declarative approach of the iTask toolkit. Everything
is still generated from an annotated, single source specification with a low burden
on the programmer because the system itself switches automatically between
client and server side evaluation of tasks and call-backs when this is necessary.

16

The iTask system integrates all mentioned technologies in a truly transparent
and declarative way.

References

1. The Java Home Page. java.sun.com.
2. A. Alimarine and M. J. Plasmeijer. A generic programming extension for Clean. In

Implementation of Functional Languages, IFL 2001, volume 2312 of Lecture Notes
in Computer Science, pages 168–185. Springer, 2001.

3. E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web programming without
tiers. In Proceedings of the 5th International Symposium on Formal Methods for
Components and Objects, FMCO ’06, volume 4709 of Lecture Notes in Computer
Science, pages 266–296. Springer, 2006.

4. J. Garrett. Ajax: A new approach to web applications.
www.adaptivepath.com/ideas/essays/archives/000385.php.

5. M. Hanus. Putting declarative programming into the web: Translating Curry to
JavaScript. In Proc. of the 9th International ACM SIGPLAN Conference on Prin-
ciple and Practice of Declarative Programming (PPDP’07), pages 155–166. ACM
Press, 2007.

6. R. Hinze. A new approach to generic functional programming. In Proceedings of the
27th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, January 2000.

7. J. M. Jansen, P. Koopman, and R. Plasmeijer. Efficient interpretation by trans-
forming data types and patterns to functions. In H. Nilsson, editor, Proceedings
Seventh Symposium on Trends in Functional Programming, TFP 2006, Notting-
ham, UK, 19-21 April 2006, The University of Nottingham, volume 7 of Trends in
Functional Programming. Intellect Publisher, 2006.

8. S. Krishnamurthi. The Flapjax site, 2007. www.flapjax-lang.org.
9. F. Loitsch and M. Serrano. Hop client-side compilation. In Trends in Functional

Programming, TFP 2007, New York, pages 141–158. Interact, 2008.
10. R. Plasmeijer and P. Achten. The implementation of iData. In A. Butterfield,

C. Grelck, and F. Huch, editors, Implementation and Application of Functional
Languages, 17th International Workshop, IFL 2005, Dublin, Ireland, September
19-21, 2005, Revised Selected Papers, volume 4015 of Lecture Notes in Computer
Science, pages 106–123. Springer, 2006.

11. R. Plasmeijer, P. Achten, and P. Koopman. iTasks: Executable specifications of
interactive work flow systems for the web. In N. Ramsey, editor, Proceedings of
the 2007 ACM SIGPLAN International Conference on Functional Programming,
Freiburg, Germany, October 1-3, 2007, volume ICFP’07 of International Confer-
ence on Functional Programming, pages 141–152. ACM, 2007.

12. R. Plasmeijer, J. M. Jansen, P. Koopman, and P. Achten. Declarative Ajax and
client side evaluation of workflows using iTasks. In Principles and Practice of
Declarative Programming, Valencia, Spain, July 2008, volume PPDP 08, 2008.

13. M. Serrano, E. Gallesio, and F. Loitsch. Hop: a language for programming the web
2.0. In ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2006), Portland, Oregon, USA, October
22-26 2006, pages 975–985, 2006.

14. A. van Weelden. Putting Types To Good Use. PhD thesis, Radboud University
Nijmegen, the Netherlands, 2007.

