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Abstract. In this paper we sketch some experiments with the construc-
tion of a simple compiler for a high level intermediate lazy functional
language, with C++ as a target language. Because the compiler is in-
tended for educational and experimental use, simplicity and clearness of
construction are considered to be more important than efficiency. Start-
ing point for the construction is a simple interpreter. In a first step this
interpreter is turned into a simple compiler in a straightforward man-
ner. The performance of a number of compiled benchmarks is analysed
in a comparison with the interpreter and the Clean and GHC compil-
ers. This analysis leads to some suggestions for optimisations. Of these
optimisations tail recursion optimisation and optimisation of numerical
functions and numerical (sub)expressions in functions are implemented.
It turns out that in many cases these optimisations suffice to obtain a
competitive performance.

1 Introduction

The construction of efficient compilers for lazy functional programming lan-
guages like Clean [8] and Haskell [ is a complex task. Compilers like GHC and
Clean are large complicated systems that are too complex for study in introduc-
tionary courses on the implementation of functional programming languages.
Therefore there is a need for simple compilers for educational purposes. Our
main goal is to give the reader some insight in what kind of optimisations are
important for obtaining an efficient implementation of lazy functional languages.

In [2] we constructed a simple but efficient interpreter for the lazy functional
language SAPL. SAPL can be used as an intermediate language for the inter-
pretation of languages like Clean and Haskell. We already constructed a Clean
to SAPL translator. Several versions of the SAPL interpreter exist. One of these
versions is a Java applet implementation that can be loaded in Internet Browsers
and which makes it possible to run Clean programs at the client side of internet
applications ([6] and [7]).

In this paper we investigate how we can extend the SAPL interpreter to a
SAPL compiler with a reasonable performance. We use C++ as target language.
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The construction is made in two steps. In the first step we convert the interpreter
into a straightforward but naive compiler. We then use a number of benchmarks
to analyse the performance of the generated code in a comparison with the
Clean and GHC compiler. It turns out that in some cases the performance is
already quite good but that in other cases the performance is still very bad
(more than 30 times slower). In an analysis of the characteristic of the poor
performing benchmarks, it turns out that they often have some commonalities
like the (heavy) use of tail recursive functions and the presence of many pure
numeric functions or sub-expressions. Therefore, in the second step, we focus
on improving the performance of the compiler by optimising tail recursions and
numeric functions and sub-expressions. The resulting compiler is again compared
with Clean and Haskell and the basic compiler using the same set of benchmarks.
It turns out that the resulting performance is now acceptable in almost all cases.

Summarising, the contributions of this study are the stepwise construction
of a simple compiler for a lazy (intermediate) functional programming language
with the following characteristics:

— The compilers translates to concise and readable C++ functions (for a func-
tional programmer knowing C++) that are in 1-1 correspondence with the
original functions. The C++ functions give the programmer clear insight in
how constructs from functional programming language are implemented.

— It gives the reader insight in what kind of optimisations are important for
obtaining an efficient implementation of lazy functional languages.

— The user can easily add functions to the generated code and can modify
generated functions to experiment with alternative optimisations.

— The performance of the resulting programs is in many cases competitive with
that of Clean and Haskell.

The structure of this paper is as follows. In Section [2] we introduce the inter-
mediate functional programming language SAPL. In Section Bl we sketch an
interpreter for SAPL. This interpreter is the starting point for the construction
of the compiler. The compiler is described in Section[dl We describe the compiler
in a number of steps. First a basic version of the compiler is introduced that is
a straightforward and simple extension of the interpreter. The performance of
a set of benchmarks compiled with this compiler and the Clean and GHC com-
piler is used to make a comparison. The results of this comparison are analysed
and this leads to the proposal of a number of candidate optimisations that are
implemented. In the last section we give some conclusions.

2 The SAPL Programming Language

SAPL stands for Simple Application Programming Language. The basic version
of SAPL has function application as only operation. SAPL is a simple functional
programming language that can be used as an intermediate formalism for the
interpretation of functional programming languages like Haskell and Clean. The
main difference between SAPL and the intermediate formalisms normally used
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for these languages is the absence of algebraic data types and constructs for
pattern matching in SAPL. This makes SAPL a compact and simple language.
More details about SAPL can be found in [2].

In [2] we also showed how to represent data types and pattern-based function
definitions in SAPL. Here we shortly repeat the definition of the list data type
together with the length function.

Nil =ANfg —f
Consxxs= ANfg — gxus
lengthys = ysO0 Az xzs — 1 + length xs)

Now consider a pattern based Haskel function like mappair.

mappair f Nil 28 = Nil
mappair f (Cons  xs) Nil = Nil
mappair f (Cons z zs) (Cons y ys) = Cons (f x y) (mappair f xs ys)

This definition can be transformed to the following SAPL function (using the
above definitions of Nil and Cons).

mappair f as zs = as Nil Az xzs — zs Nil Ay ys —
Cons (f z y) (mappair f zs ys)))

3 An Interpreter for SAPL

The only operations in SAPL programs are function application and a number of
(build-in) integer operations. Therefore an interpreter can be kept small and ele-
gant. The interpreter is based on straightforward graph reduction techniques as
described in Peyton Jones [4], Plasmeijer and van Eekelen [5] and Kluge [3]. We
assume that a pre-compiler has eliminated all algebraic data types and pattern
definitions (as described earlier), removed all let(rec)- and where- clauses and
lifted all lambda expressions to the global level. Only constant let-expressions
are allowed to enable sharing and cyclic expressions. The interpreter is only ca-
pable of executing function rewriting and the basic operations on integers. The
most important features of the interpreter are:

— It uses 4 types of memory Cells. A Cell corresponds to a node in the syntax
tree and is either an: Integer, (Binary) Application, Variable or Function
Call. To keep memory management simple, all Cells have the same size. A
type byte in the Cell distinguishes between the different types. Each Cell
uses 12 bytes of memory.

— The memory heap consists only of Cells. The heap has a fixed size, definable
at start-up. We use mark and sweep garbage collection.

— It uses a single argument stack containing only references to Cells. The C
(function) stack is used as the dump for keeping intermediate results when
evaluating strict functions (numeric operations only).
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— The state of the interpreter consists of the stack, the heap, the dump, an
array of function definitions and a reference to the node to be evaluated next.
In each state the next step to be taken depends on the type of the current
node: either an application node or a function node.

— It reduces an expression to head-normal-form. The printing routine causes
further reduction. This is only necessary for arguments of curried functions.

The interpreter pushes arguments on the stack until a function call is met. In
that case the function body is instantiated while the arguments are substituted,
the top application node is overwritten and evaluation continues on the new
expression until we arrive at a curried call or an integer value.

3.1 Optimisations in the Interpreter

The interpreter can be optimised in several ways. Simple optimisations are the
use of a more efficient memory representations of function calls with 1 or 2
arguments and the marking of curried calls (if possible) to avoid the useless
evaluation of them. Applying these optimisations result in speed-ups up to 50%.

A more significant optimisation can be realized by marking the application of
a function representing an algebraic data type element to its arguments by the
keyword select (semantically equivalent to the identity function). This triggers
the interpreter not to instantiate the entire function body at once, but first to
evaluate the data type and only select and instantiate the relevant part of the
remainder expression (more details can be found in [2]).

As a last optimisation, anonymous functions that are the argument of a select
are not lifted to the global level, but are called inline (see [2]).

As an example we show how the select optimisation is applied in the mappair
function (the lambda expressions in this example are not lifted to the global
level).

mappair f as zs =
select as Nil (A x zs —
select zs Nil (A y ys — Cons (f x y) (mappair f xs ys)))

The select optimisation is essential and may result in speed-ups of more than
100 times. Normally the select annotations are added while translating Haskell
or Clean programs to SAPL, but it is possible to add the select annotations
during a compile time analysis of a SAPL program. During this analysis it is
determined where applications of data type functions to other arguments occur.
This analysis can only be performed in case of complete programs and not for
separately compiled files (modules). For example, if we consider the definition
of mappair in isolation it is not clear that as and zs are selectors. One needs an
example of the usage of mappair to determine that.

3.2 Considerations

The interpreter without the select optimisation and the integer operations is a
pure graph reductor. The only operations are graph reduction (push arguments
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on the stack until a function call is met) and graph instantiation (copy a function
body and meanwhile substitute the arguments from the stack).

Numeric operations are strict in the sense that the arguments have to be
evaluated before the operation can be performed. The same holds for the select
optimisation. Also in this case the first argument of select has to be evaluated
before the operation (selection of the appropriate argument) can take place. The
optimisation prevents the instantiation of large graphs. In the remainder of this
paper we show that many of the optimisations we implement in the compiler
involve the use of strictness to prevent the instantiation of unnecessary graphs.

4 A SAPL Compiler

We present two versions of the compiler: a basic version and an optimised version.
The optimisations are a result of an analyses of the performance of the basic
version for a number of benchmarks.

The benchmarks we use for the comparison are the same we used for com-
paring the SAPL interpreter with several other interpreters and compilers in [2].
We briefly repeat the description of the benchmarks (their code can be found
in [9]):

1. Prime Sieve. The prime number sieve program (primes !! 5000).

2. Symbolic Primes. Prime sieve using Peano numbers (sprimes !! p280).
3. Interpreter. A small SAPL interpreter. As an example we coded the prime
number sieve for this interpreter and calculated the 100th prime number.

4. Fibonacci. The (naive) Fibonacci function, calculating fib 35.

Match. Nested pattern matching (5 levels deep), repeated 2000000 times.
6. Hamming. The generation of the list of Hamming numbers (a cyclic defi-
nition) and taking the 1000th Hamming number, repeated 10000 times.

7. Twice. A higher order function (twice twice twice twice (add 1) 0), repeated

400 times.
8. Queens. Number of placements of 11 Queens on a 11 * 11 chess board.
9. Knights. Finding all Knight tours on a 5 * 5 chess board.
10. Parser Combinators. A parser for Prolog programs based on Parser Com-
binators parsing a 17000 lines Prolog program.
11. Prolog. A small Prolog interpreter based on unification only (no arithmetic
operations), calculating all descendants in a six generations family tree.
12. Sorting. Quick Sort (20000 elements), Merge Sort (200000 elements) and
Insertion Sort (10000 elements).

(@31

Three of the benchmarks (Interpreter, Prolog and Parser Combinators) are re-
alistic programs, the others are typical benchmark programs that are often used
for comparing implementations.

We use C++ as a target language for our compiler. We do not use the object
oriented properties of C++ (classes and member functions). But we use some
specific features of C++ like reference variables. In all versions of the compiler
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there is a one-to-one correspondence between SAPL and C(4+) functions. Be-
cause we want to use the compiler for educational purposes we strive at readable
and understandable generated code.

The generic structure of a translated function is:

int funcname(Reduct t) { instantiate_body; return eval_body; }

Here funcname is the name of the translated SAPL function. We assume that
all arguments of a function are already on the stack when the function is called.
The argument ¢ of the function is a reference to the top node of the call for this
function. To enable sharing we have to overwrite this top node with the result
of the function. The function returns an integer. This is because functions that
result in an algebraic data type have to return the selection number needed in
a select construction. Because we want to use the same type signature for all
functions, all functions have to return an integer. Note that we cannot give the
C function the same arguments as the original function because we can make
curried calls to a function which is, of course, not possible in C.

4.1 A Basic SAPL Compiler

If we take a closer look at the SAPL interpreter, the most obvious candidate
for compilation is the instantiation of function bodies. The interpreter uses a
recursive function instantiate to copy the body and substitute the arguments. It
is straightforward to generate C++ code that does this instantiation directly.
Due to the select optimisation the body of a function containing a select is
not copied at once but in parts. Therefore, in the translation to C++, we add
the control structure (using if or switch/case statements) to enable this copying
in parts. Also the generation of this control structure is entirely straightforward.

Examples. As an example consider the translation of the functions sieve and
el from the prime number sieve program.

sieve xs =cons (hd xs) (sieve (filter (nmz (hd xs)) (¢l xs)))
el nzs =select xs error (A a as — if (eqn0) a (el (subn 1) as))

The translation of sieve results in:

int sieve(Reduct t) {
testmem() ;
setCell(t,SELB,newR (OPFUNC,get (0),0,9) ,newR (0OFUNC,
newR (BPFUNC, newR (OPFUNC, newR (OPFUNC, get (0) ,0,9),0,7),
newR (OPFUNC, get (0),0,10),3),0,5),2);
pop(1);
return eval(t);

}

testmem() checks if garbage collection is necessary. This check is done before
every body instantiation. setCell(t,...) overwrites t. Although the setCell call
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looks quite complicated the only thing that is happening here is the allocation
of a new graph in memory. Due to the memory optimisations for applications
with one and two arguments and the marking of curried applications there are a
large number of cell types (SELB, OPFUNC, etc.). get(i) returns a reference to
the i-th element on the stack. pop(i) removes i elements from the stack. In the
last line eval(t) recursively starts evaluating the resulting expression. The only
thing the ewval function does is pushing arguments on the stack and calling the
resulting function.
The translation of el results in:

int el(Reduct t) {
Reduct res = get(1);
if (eval(res)) {
pushs(res->r); pushs(res->1);
testmem() ;
res = newR(BINOPER,get (2) ,newR(NUM,Reduct(0),0),5);
if(eval(res)) {
testmem() ;
setCell(t,BPFUNC,newR (BINOPER,get (2),
newR (NUM,Reduct (1) ,0),1) ,get (1) ,4);
pop(4);
}
else {overwrite(t,get(0)); pop(4);}
}
else {setCell(t,SFUNC,0,Reduct(0),0); pop(2);}
return eval(t);

}

In this example we see that the control structure of the original function is
clearly reflected in the C++ function. In the first line zs is assigned to res. res
is evaluated. In case the result is a cons (returns 1) the arguments of cons are
pushed on the stack. Next the expression eq n 0 is instantiated and evaluated.
If n /= 0 the expression el (sub n 1) zs is instantiated and the stack is cleared.
In case n == 0, t is overwritten with z. Also in this case the stack is cleared.
The last else handles the case that the list was nal.

We conclude that the basic compiler results in concise code that clearly re-
flects how the graph reduction process is conducted. For a function acting on
a data structure with 3 or more cases a C++ switch statement is generated.
The adaptations to the interpreter needed to generate the C++ functions are
modest. An interesting aspect is that the resulting C++ functions are integrated
in the interpreter environment. The only difference for the user is the increase
in speed (and an extra compilation round before starting the interpreter).

Although the Basic Compiler compiles to C++, it is essentially still an inter-
preter. The way graphs are reduced is the same as in the original interpreter.

In the remainder of this paper we sometimes abbreviate the instantiation of
graphs with: instantiate(‘expression’) or overwrite(t, ‘expression’).
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Pri|Sym/|Inter |Fib|Match|Ham|Twi|Qns|Kns|Parse|Plog|Qsort |Isort|Msort
SAPL Int |6.1{17.6 (7.8 [7.3 8.5 15.7 ({79 [6.5 |47.1{4.4 (4.0 |16.4 |9.4 |44
SAPL Bas|4.3{13.2(6.0 6.5 (5.9 9.8 15.6 |5.1 |38.3|13.8 (2.6 (10.1 (6.7 |2.6
GHC 2.0{1.7 8.2 |4.0|4,1 8.4 6.6 |3.7 |17.7|12.8 (0.7 |4.4 |2.3 |3.2
GHC -O [0.9(1.5 [1.8 |0.2|1.0 4.0 0.1 |04 |5.7 |{1.9 (04 (3.2 (19 |1.0
Clean 0.9/0.8 0.8 (0.2|1.4 24 124104 (3.0 |45 |04 (1.6 (1.0 |0.6

Fig. 1. Comparison Speed of Basic Compiler (Time in seconds)

4.2 Performance of the Basic Compiler

In Fig. [ we compare the performance of the basic compiler with that of the
interpreter and of the GHC and Clean compilers. If we compare the basic com-
piler with the interpreter we see that the basic compiler is about 40% faster
(speed-ups between 10 and 60%).

If we compare the basic compiler with GHC (without optimiser) we see that
in three cases (Interpreter, Mergesort and Twice) the basic SAPL compiler is
already faster. In the other cases GHC is mostly less than 2 times faster. Rel-
atively slow SAPL benchmarks are Symbolic Primes (7 times) and Prolog (3.7
times).

Comparing the basic compiler with GHC -O and Clean we measure large
differences in performance, varying from 10% faster (compared to Parser Com-
binators in Clean) to more than 30 times slower (Fibonacci for Clean, GHC -O
and Twice for GHC -0).

4.3 Analysis of Basic Compiler

Compared with GHC (without optimiser) the Basic Compiler is already doing a
reasonable job. The only poor performing benchmark is Symbolic Primes. This
is an a-typical program, because there is no integer arithmetic in this example
and the functions bodies are all very small. For SAPL this means a lot of inter-
pretation overhead. More important, the performance dominating functions Mod
and Subtract are tail recursive. In the sequel we show that, using tail recursion
optimisation, the performance of this benchmark can be improved significantly.

If we take a closer look at the benchmarks for the comparison with GHC -O
and Clean, we see that there is only one benchmark that performs good in this
comparison: Parser Combinators. This is the most ‘functional’ of all benchmarks
in the sense that it manipulates mostly higher order functions. For a compiler
this means that a lot of closures must be maintained. Closures are represented
by structures comparable to the graphs in SAPL. Every compiler should analyse
(destruct) these closures at a certain moment in a way similar to the way the
Basic SAPL compiler does this.

The worst performing benchmarks are: Symbolic Primes, Fibonacci, Queens
and Twice.

— Symbolic Primes we already discussed above. It contains a number of tail
recursive functions for which SAPL does no optimisations yet.
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Fibonacci is a pure numeric function (numeric arguments and numeric op-
erations only). In SAPL every time the function is called in the recursion,
a complete instantiation of the function body is made (on the heap). The
Clean and GHC -O compilers optimise this function and do not use closures
but instead only use the stack to execute it.

Queens has a number of numeric sub-expressions and has a (hidden) tail
recursion in function safe. Also in this case Clean and GHC -O use strictness
analysis to eliminate the building of many closures.

Twice is a special case. GHC -O has a much better performance than both
SAPL and Clean. If we study the generated code for GHC -O we see that
some very specific inline optimisations are made. We did not make any special
optimisations for this example.

Conclusions and Plan for Optimisations. The basic compiler has already
a nice performance for programs manipulating mostly higher order functions.
Therefore, we may expect that the poorer performance is caused by the overhead
involved in building instantiations (closures) that are not really necessary. The
optimisations we apply are aimed at either preventing the building of closures or
at building smaller closures. In the light of the discussion above we focus on tail
recursive functions and on numeric functions and (sub)expressions, also because
they can be recognized and optimised easily. But before that we look at some
straightforward optimisations.

4.4 Reducing the Size of Closures and Removal of Interpretation

Overhead

Consider the following function g:

gabed = fa(hbe)d

In the basic compiler this is compiled to:

int

g(Reduct t) {

testmem() ;
setCell(t,APP,newR (APP,newR (APP,newR (FUNC,0,0,2),get(0)),

newR (BFUNC,get (1) ,get(2),1)),get(3)) ;pop(4);

return eval(t);

}

In the body of ¢ a large instantiation is build for which eval is called immediately.
eval pushes the arguments of f on the stack and calls the function f. But if we
already know this, we can hard code the pushing of the arguments and the call
to f. In this way we both save instantiation and interpretation overhead.

int g(Reduct t) {
testmem() ;
Reduct a0,al,a2;
a0 = get(0);

al = newR(BFUNC,get(1),get(2),1);
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a2 = get(3);
pop(4);
pushs(a2) ;pushs(al) ;pushs(a0);
return f(t);
}

In this example the number of allocated nodes is reduced from 4 to 1!
We apply this optimisation whenever possible. This means that an, at compile
time, known function should be called with enough arguments.

4.5 Numerical Functions and Expressions

If a function has numeric arguments only and its body is a pure numerical
expression we can avoid the creation of closures altogether. Consider for example
the Fibonacci function:

fivn = if (n < 2)1(fib(n — 1) + fib(n — 2))
The Basic SAPL compiler translates this to:

int fib(Reduct t) {
Reduct res;
testmem() ;
res = newR(BINOPER,newR (NUM,Reduct(2),0),get(0),7);
if (eval(res)) {
testmem() ;
setCell(t,BINOPER,newR (OPFUNC,newR (BINOPER, get (0),
newR (NUM,Reduct (1),0),1),0,35),
newR (OPFUNC, newR (BINOPER, get (0) ,
newR (NUM,Reduct (2),0),1),0,35),0);
pop(1);
}
else {
setCell (t,NUM,Reduct(1),0);
pop(1);
}
return eval(t);

}
In the optimised translation fib is translated to:

int fibh(int n) {

if (n < 2) return 1;

else return fibh(n-1) + fibh(n-2);
}

int fib(Reduct t) {
eval(get(0));
setCell(t,NUM,Reduct (fibh(getNum(get (0)))),0);
pop(1);
return 0O;

}
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fibh is a pure C++ function without any instantiations of cells and fib is a wrap-
per function for calling fibh from a functional context. The speed-up obtained
in this way is more than 30 times. This version of fib now has a performance
comparable to that of Clean and GHC -O.

Numerical expressions with a Boolean result. A special case of numeric
expressions are those with a Boolean result. They often occur in the condition of
an if statement. The el function we studied already before is an example of such
a function. Using the numeric expression optimisation the compiled function
becomes:

int el(Reduct t) {
Reduct res = get(1);
if (eval(res)) {
pushs(res->r); pushs(res->1);
eval(get(2));
if (getNum(get (2) == O){overwrite(t,get(0)); pop(4);}
else {
testmem() ;
setCell(t,BPFUNC,newR (BINOPER,get (2),
newR (NUM,Reduct(1),0),1) ,get(1),4);
pop(4) ;
}
}
else {setCell(t,SFUNC,0,Reduct(0),0); pop(2);}
return eval(t);

}

This saves allocation and interpretation overhead.

4.6 Optimising Tail Recursion Functions

Replacing tail recursions by while loops are a common optimisation also applied

for strict functional and imperative languages. In these cases the optimisation is

used to eliminate calling and stack overhead. But in the lazy functional context

we have an extra benefit. Also the building of a closure (and the destruction of

it) for the recursive call is prevented. Therefore, the speed-up is even higher.
Simple tail recursive functions have the form:

f a arg =if (cond a) (default a arg) (f (dec a) (update a arg))

The recursion runs over a. For the sake of simplicity we assume that there is
only one other argument. The function contains a simple if construction at the
top level. In the else case the same function is called with an ¢ argument that
is in some way smaller than the original argument. We compile this function to
a C++ function containing a while-loop.

int f(Reduct t) {
Reduct res = instantiate(‘cond a’);
Reduct &a = get(0);
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Reduct &arg = get(1);
while(eval(res)) {

arg = instantiate(‘update a arg’);
a = instantiate(‘dec a’);
res = instantiate(‘cond a’);

}
overwrite(t, ‘default a arg’); pop(2);
return eval(t);

}

Note that we use reference variables for a and arg, so they remain on the SAPL
stack, which is necessary for garbage collection purpose. In the while loop we
instantiate the new versions of the arguments and the condition. The while
condition determines if the recursion is finished. Because the arguments of the
tail recursion are maintained by variables we can easily optimise numeric or
Boolean arguments (see Subsection [LH]). As an example, consider the function
length (note the use of an accumulating parameter).

length n xs = select s n (A a as — length (n + 1) as)

This function is translated to:

int length(Reduct t) {

eval(get(0));

int n = getNum(get(0));

Reduct &xs = get(1);

while(eval(xs)) {

n=n+1; Xs=2Xxs ->r;

}

overwrite (t,newR(NUM,Reduct(n),0)); pop(2); return O;
}

Here the argument n is numerical and therefore assigned to the int variable
n. The expression n+1 is not instantiated, but directly translated to C. This
saves an instantiation and a reduction. After the while loop we have to wrap the
numeric result in a cell.

Note that this function also does not build the large closure 0+1+1+1+..
that is only evaluated at the end, which happens in the SAPL interpreter and
the Basic Compiler. In this way a basic form of strictness analysis is realized.
Furthermore, there is another optimisation. The arguments of Cons are not
pushed on the stack, but can be found as the left and right child of zs. In the
while loop of this function no instantiations are made.

A tail recursion may also runs over several arguments. In that case the condi-
tion is a conjunction of all the conditions. As an example, consider the following
definitions of Zero and Suc and the tail recursive function Sub running over 2
arguments, all occurring in the Symbolic Primes benchmark:

Zerof g = f
Sucnfg=gn
Submn = select n m (Apn — select m Zero (A pm — Sub pm pn))
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Sub is translated to:

int Sub(Reduct t) {
Reduct &m = get(0);
Reduct &n = get(1);
while(eval(n) && eval(m)) {
m=m->1;
n=n->1;
}
if(eval(n)) {
overwrite(t, ‘Zero’) ;pop(2) ;return O;
}
else {
overwrite(t, ‘m’) ;pop(2) ;return eval(t);
}
}

Note that after the while we have ‘to check’ why the loop stopped to return the
result of the right stopping case. Note also that we made use of the fact that the
&& operator in C++ is conditional (lazy). Again, no instantiations are made in
the while loop.

Tail recursion that run over 3 or more variables are handled in a similar way.

Hidden Tail Recursions. Sometimes a function can be easily converted to a
tail recursion. For example in the safe function used in the Queens benchmark
an and condition with a recursive call to safe itself occurs.

safe s d x =select xs True
Ayys — and (and (neq z y) (neq (add z d) y))
(and (neq (sub z d) y) (safe ys (add d 1) z)))

safe is translated to:

int safe(Reduct t) {
Reduct xs = get(0);
eval(get(1)); eval(get(2));
int d = getNum(get(1));
int x = getNum(get(2));
int y;
while(eval(xs) && (eval(xs -> 1),y = getNum(xs -> 1),x != y) &&
(x+d!=y) & (x-4d !'=y) {

XS = Xs -> r;
d=d+ 1;
¥
if (eval(xs)) {
setCell(t,FALSE,0,0);
pop(3);
return 1;

}



}

}
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else {
setCell(t,TRUE,0,0);
pop(3);
return O;

Also in this case we make use of the conditionality of the && operator in C++-.

4.7 Results and Discussion

Figure 2] gives the results of the comparison of the optimised compiler with the
other compilers and the Interpreter. We see that the optimisations result in a
significant speed-up in almost all cases. We briefly discuss the speed-up obtained
for the benchmarks.

1.

X NS otk

©

Prime Sieve. Speed-up 1.65: numeric optimisations and a tail recursion in
elem.

Symbolic Primes. Speed-up 7.3: tail recursions in functions Mod, Gt, Negq
and Sub.

Interpreter. Speed-up 1.82: tail recursions in length, drop and elem and
several small numeric optimisations.

Fibonacci. Speed-up 33: pure numeric function.

Match. Speed-up 1.9: numeric optimisations.

Hamming. Speed-up 1.66: small numeric optimisations.

Twice. Speed-up 1.24: small numeric optimisations.

Queens. Speed-up 5.7: tail recursion in safe and several numeric optimisa-
tions.

Knights. Speed-up 2.1: numeric optimisations.

. Parser Combinators. Speed-up 1.3: small numeric optimisations and mi-

11.

12.

nor tail recursions.

Prolog. Speed-up 2.0: tail recursions in several (minor) functions and some
numeric optimisations.

Sorting. Quick Sort (1.7), Merge Sort (2.2) and Insertion Sort (2.7): numeric
optimisations.

Pri|Sym|Inter|Fib|Match|Ham|Twi|Qns|Kns |Parse|Plog|Qsort|Isort | Msort

SAPL Int (6.1]17.6(7.8 [7.3|8.5 15.7 179 6.5 |47.1|14.4 |4.0 |16.4 |94 |44

SAPL Bas|4.3|13.2]6.0 6.5 (5.9 9.8 |5.6 |5.1 |38.3|13.8 |2.6 [10.1 |6.7 |2.6

SAPL Opt|2.6/1.8 [3.3 (0.2 3.1 5.9 [4.5 (0.9 |18.0{29 [1.3 |6.0 |25 |1.2

GHC 2.0/1.7 |8.2 [4.0]4,1 84 6.6 3.7 |17.7|12.8 (0.7 |44 |2.3 (3.2

GHC-O (0.9|1.5 |1.8 |0.2(1.0 4.0 |0.1 |0.4 |5.7 {19 |04 (3.2 |1.9 [1.0

Clean 0.9]0.8 |0.8 10.2|1.4 24 (24104 (3.0 (45 |04 |1.6 |1.0 (0.6

Fig. 2. Comparison Speed of Optimized Compiler (Time in seconds)
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Even for the higher order examples Twice and Parser Combinators there is a
(small) speed-up due to the numeric optimisations. The greatest speed-up is ob-
tained for the Fibonacci benchmark. An interesting speed-up is obtained for the
Symbolic Primes benchmark. This result could be obtained because the functions
Mod and Sub are tail recursive and dominate the performance of the benchmark.
Also for Queens a high speed-up is obtained because the tail recursive safe func-
tion dominates the performance.

Compared with GHC the optimised compiler is faster in almost all cases. Only
for Primes, Prolog and QSort GHC is slightly faster. For Fibonacci, Interpreter,
Queens and Mergesort the optimised SAPL compiler is much faster (more than
2.5 times).

Compared with GHC -O we see that only for Twice GHC -O is an order of
magnitude faster (45 times). The GHC -O optimiser recognizes the repetition in
this higher order function and replaces it with an iteration. Note that GHC -O
is also much faster than Clean in this case. In all other cases the difference is
less than 3 times and in several cases SAPL is even competitive. On the average
the difference in performance stays within a factor of 2.

Compared with Clean we see that the greatest difference in performance stays
within a factor of 6 (Knights). On the average Clean is about 2.5 times faster.
For Parser Combinators the SAPL compiler is faster (1.5 times).

Considering only the more realistic applications (Interpreter, Parser Combi-
nators and Prolog) we see that for Parser Combinators the SAPL compiler has
competitive performance. For Interpreter the SAPL compiler is competitive with
GHC and GHC -O but is 4 times slower than Clean. In case of Prolog the SAPL
compiler is significant slower than all others. This is not surprising, because the
performance dominating function unify in Prolog cannot be optimised with the
techniques used in the SAPL compiler. Here more sophisticated optimisations
based on strictness analyses are needed.

5 Conclusions

In this paper we presented a compiler for lazy functional languages for educa-
tional and experimental use, based on a straightforward interpreter. For optimis-
ing this compiler we did not use the more sophisticated techniques normally used
for compilers but took a more opportunistic approach, applying only two easy
to detect and apply optimisations. This has as an advantage that the generated
functions have a simple structure. This makes it possible for the user to inspect
how the optimisations are applied and it also enables the user to experiment
with other (hand-made) optimisations.

The compiler generates comprehensible C++ code that gives the program-
mer clear insight in how contructs from functional programming languages are
implemented. This in contrast with the GHC compiler that also uses C as an
intermediate language, but for which the generated C code is difficult to under-
stand and looks more like assembly than like an ordinary C program.
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We have learned that sometimes applying simple optimisations result in sig-
nificant speed-ups (e.g Fibonacci and Symbolic Primes), but in other cases the
optimisations do not suffice. In these examples (e.g. Prolog) the difference with
Clean and GHC is still too big. We also learned that optimising a function
always boils down to trying to prevent the building of unnecessary graphs (clo-
sures). In our approach this was always realized by replacing ‘functional code’
by ‘imperative code’ in the generated C++ functions.

An interesting question is, if it is possible to extend the set of optimisations
in such a way that the performance becomes competitive to that of GHC and
Clean in all cases while maintaining readable and comprehensive generated code.
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