Teaching Functional Programming with Soccer-Fun

Peter Achten

Model Based System Development, Radboud University Nijmegen, The Netherlands
P.Achten@cs.ru.nl

Abstract

In this paper we report on our experience with the functional frame-
work Soccer-Fun, which is a domain specific language for simu-
lating football. It has been developed for an introductory course
in functional programming at the Radboud University Nijmegen,
The Netherlands. We have used Soccer-Fun in teaching during the
past four years. We have also experience in using Soccer-Fun for
pupils in secondary education. Soccer-Fun is stimulating because
it is about a well known problem domain. It engages students to
problem solving with functional programming because it allows
them to compete at several disciplines: the best performing football
team can become champion of a tournament; the best written code
can be awarded with a prize; students can be judged on the algo-
rithms used. This enables every student to participate and perform
at her favorite skill. Soccer-Fun is implemented in Clean and uses
its GUI toolkit Object |/O for rendering. It can be implemented in
any functional programming language that supports some kind of
windowing toolkit.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; D.2.2 [Design Tools and Techniques):
Software libraries; D.3.2 [Language Classifications]: Applicative
(functional) languages; 1.6.3 [Simulation and Modeling]: Appli-
cations; 1.6.m [Simulation and Modeling]: Miscellaneous; K.3.1
[Computers and Education]: Computer Uses in Education

General Terms Algorithms, Design, Experimentation

Keywords Clean, education, simulation, soccer

1. Introduction

The bachelor computer science curriculum at the Radboud Uni-
versity Nijmegen, The Netherlands, provides a compulsory intro-
ductory course in functional programming, called “Abstraction and
Composition in Programming”. This second year course has now
been taught for the past four years. As with any introductory course
in any programming language, we first need to teach students the
basic concepts of the programming language. For this course this
is “classic” functional language material and covers topics rang-
ing from simple basic types to recursive algebraic types; (higher
order) functions; overloading; recursion and induction; correctness
proofs, and more. The course is given in the functional program-
ming language Clean [6, 12] and covers also Clean specific top-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

FDPE’08, September 21, 2008, Victoria, BC, Canada.
Copyright © 2008 ACM 978-1-60558-068-5/08/09. . . $5.00

ics such as uniqueness types for programming with effects, apply-
ing strictness annotations, term graph rewriting, and dynamics. The
exercises tend to favor abstract topics such as list processing tasks
to exercise recursion, (syntax) tree operations to exercise algebraic
data types and more recursion, interpreters over these data struc-
tures to exercise abstraction and even more recursion, and equa-
tional reasoning to stimulate thinking about software and, yes, re-
cursion. Every year it turns out that there is a group of students
who have a hard time understanding functional programming due
to its abstract nature. Of course there is also a group of students
who appreciate this style of programming.

Because the course is mandatory, and we think functional pro-
gramming should be fun for everybody, we set out to find and cre-
ate a stimulating range of exercises that would engage all students.
An old statement by Johan Cruijff, a well-known Dutch football
player, in an interview for a paper called De Tijd turned out to be
very inspiring:

“If I play the ball and want to pass it to someone, then
I need to consider my guardian, the wind, the grass, and
the velocity with which players are moving. We compute the
force with which to kick and its direction within a tenth of a
second. It takes the computer two minutes to do the same!”
(De Tijd, 2 mei 1987)

Two aspects are intriguing about this statement:

1. Any programmer will take up the gauntlet to create a program
that computes the force and direction well within a tenth of a
second. This is no longer an interesting challenge, as Johan
Cruijff made this statement in 1987, and computing power
has increased enormously since then. Nevertheless, this timing
aspect plays a role in the requirements of the main exercise later
on (Sect. 7).

2. The most intriguing aspect is that he actually says that every
football player computes a function: given some parameters
(guardian, wind, grass, velocity of all players) compute a pair of
two values (force and direction). Hence, the brain of a football
player can be modeled as a function:

guardian X wind X grass X players — (force, direction).

Note that in Soccer-Fun, we are going to use a different func-
tion (Sect. 3).

Having found this great source of inspiration, the challenge for
us was to create an environment that can be used for teaching
functional programming and design exercises for students. Right
from the start, we decided that the environment had to be graphical,
because seeing is believing. It should have a competitive element to
stimulate students to create better solutions than their competitors,
and, of course, it had to promote functional programming. This has
resulted in Soccer-Fun.

The first three versions were created by the author. We have
used the experience of students with the framework to alter its

design, implementation, and exercises. The fourth version contains
contributions by Wanja Krah [11]. The version that is described in
this paper is the current development version.

Soccer-Fun is implemented in Clean using its GUI library Ob-
ject 1/0 [4, 5]. Where necessary we explain the syntax of Clean.
We refer programmers who are familiar with Haskell [10] to [3]
which is a short list of the most striking syntactical differences be-
tween Clean and Haskell.

Soccer-Fun offers a GUI (see Fig. 1) whose main screen dis-
plays a football field. Teams and referees can be selected via the
menu as well as other options. During a match the football play-
ers are constantly evaluating their brain function to decide what
action to perform. The results of these actions are rendered, allow-
ing the student to see immediately the consequences of her design
and implementation choices. In Fig. 1 a match is played. On the
left hand (west) side the team called Wanjal is playing against the
MiniEffiesE team (on the east side). The first team has been devel-
oped by Wanja Krah as a sparring-partner for student teams. The
second team implements a very simple set of rules: they all run af-
ter the ball and try to kick it in the goal of the opponent. The main
challenge that was set for students is to create the best footballer
brain and football team and to become champion of a tournament
organized at the end of the teaching term.

The remainder of this paper is organized as follows. We start
with a very brief explanation of football in Sect. 2. In Sect. 3 we
introduce the domain specific language (DSL) of Soccer-Fun. This
is the material that the students must work with. The DSL uti-
lizes many type features of the host language: algebraic data types,
record types, function types, and existentially quantified types.
Note that uniqueness types, a distinguishing feature of Clean, plays
no role in programming the brain, because the framework factors
out programming with effects. The brain should be a pure func-
tion. (Analogously, to name just two other functional languages,
a Haskell DSL shouldn’t require the I0 monad, and an ML [13]
approach shouldn’t require ref values.) Given the DSL, we can
concentrate on its semantics. This is done in Sect. 4. We explain
that footballer brains make up actions, which lead to effects. These
are observed by a referee who can interfere in the game in various
ways. Next, we introduce a series of exercises that the students can
do to learn the Soccer-Fun DSL in Sect. 5. The role of the referee
is discussed in more detail in Sect. 6. It turns out that he can be
used for exercises as well. In Sect. 7 we describe the main exer-
cise that was assigned to students. We report on our experience in
using Soccer-Fun in the course, but also as a vehicle for exposing
pupils in secondary eduction with concepts of functional program-
ming in Sect. 8. In Sect. 9 we discuss a number of exercises that
can be given that modify Soccer-Fun, rather than programming
brains. These ideas are discussed separately because we have not
used them in class. Related work is described in Sect. 10, and we
come to conclusions and future work in Sect. 11.

2. Rules of the Game

This section is a brief introduction to football. If you know football,
then you may wish to skip to Sect. 2.1 in which the simplifications
are described that we apply. For full details about the rules of the
game, we refer to the official laws of the game [7] that can be found
on the site of the FIFA at wuw.fifa.com.

Football is a ball game played by two teams each consisting of
at least seven and at most eleven players on a field that is between
100 - 110 metres long and 64 - 75 metres wide. At the two far
sides of the field a goal is placed. The duration of a match is split
into two equal halves. At each half, the game is started by means
of a kick off at the centre of the football field. If a team kicks off
in the first half, then the opponent team kicks off in the second
half. Also, at half time, teams change playing sides to neutralize

possible external effects such as sunlight and weather conditions.
During a match the players attempt to kick the ball in the goal of
the opponent, thereby scoring a goal. If one team has scored a goal,
then the game is paused and starts again with a kick off by the
opponents. The winner of the game is the team that has produced
most goals. If an equal number of goals is scored then the match
comes to a draw.

The goalkeeper guards the goal of his team and attempts to
prevent the opponent from scoring goals. To ease his task, he is the
only player who is allowed to use his arms and hands. However, he
can only do this legally within the penalty-area.

Football is played with one football that is supposed to be on
the football field. If the ball exits the field, the game is paused and
the ball must be put back in play. If a player causes the football
to exit the field along one of the long edges, then an opponent can
throw in the ball from the position where the ball left the field (this
is the only time a field player is allowed to play the ball with his
hands). If a player causes the football to exit on the short edge of
his opponents goal, then the game is resumed by means of a goal
kick. Finally, if a player caused the ball to exit on the short edge of
his own goal, then the opponent team receives a corner kick.

In order to control whether all players adhere to the rules of the
game, a referee and two assistant referees are present. The referee
keeps track of the playing time, the scored goals, and can decide
to pause the game because he has detected a violation of the rules.
The referee can caution an offending player with a yellow or red
card. Receiving two yellow cards equals receiving one red card.
Receiving a red card means a direct exit from the game of the
player. Depending on the offence, usually the opponent team is
awarded with an (in)direct free kick or a penalty kick. A free kick
is direct if a goal can be scored out of it; it is indirect if at least one
other player must be involved.

In football there is a subtle offence called offside. Being in
offside position is not a violation, and is easily defined: a player
is in offside position when he is at the opponents’ half of the field
and “he is nearer to his opponents’ goal line than both the ball and
the second last opponent” [7]. The offence is created when:

“A player in an offside position is only penalised if, at the
moment the ball touches or is played by one of his team, he
is, in the opinion of the referee, involved in active play by:

e interfering with play or
e interfering with an opponent or
® gaining an advantage by being in that position” [7]

The referee can punish the team by rewarding the opponent team
with an indirect free kick. Being in active play is a rather subjective
decision by the referee that must be taken within a split second,
so this decision often creates many comments from the punished
team, spectators, and reporters.

2.1 Simplifications in Soccer-Fun

In Soccer-Fun, a number of simplifications have been incorpo-
rated. There is no real concept of throw in: whenever the ball exits
the field along one of the long edges, it is simply placed at the po-
sition where it left the field, and the opponent team is supposed
to kick the ball first (this is checked by the referee). There are no
penalties or indirect free kicks. Assistant referees are absent, and
the referee even lacks a body. We ignore the weather and the con-
dition of the football field. Although players can get injured, there
are no substitutes for them. All players and referee are panoptic.

3. The Soccer-Fun DSL

In this section we introduce the Soccer-Fun DSL. It consists mostly
of data types describing the entities of football as explained in

M CleanSoccer: Van Gaal's Electronic Notebook
fie Game Referee Teami Team2

‘Ahmadinejad

Jintao,

1st half

0:58 min

viniF s

.
Balkenende LS

Barroso

Referee: Ivanov

Figure 1. The Soccer-Fun framework in action.

Sect. 2 and has a very small set of basic functions for building
brain functions. We start our discussion by first introducing the
function that plays the pivotal role in this paper: our version of
the footballer’s brain. We stick to the idea of Johan Cruijff, hence
it must be a function type. The full type is:

:: FootballerAl memory = FootballField
(Maybe Football)
Home
Half
Team
Team
TeamFootballer
memory
— (FootballerAction, memory)

The function type of a football player’s brain is parameterized with
the type of his memory. It takes eight arguments, one of which is the
memory of the player, and computes two values: a single action that
the player wishes to perform, and an updated memory value (for
very simple brains the :: Void = Void type can be used). Apart from
the memory, the arguments can be divided into three categories:
metrics (Sect. 3.1), the whereabouts of the football (Sect. 3.2), and
the description of all players (Sect. 3.3). The actions that a player
can initiate are described in Sect. 3.4. A few of the most frequently
used functions of Soccer-Fun are described in Sect. 3.5.

We should emphasize that we made the design decision that
it is impossible for footballer brains to communicate, or perform
any I/O operation (via files or messages or whatever means). The
“intelligence” of a team is the sum of the intelligence of its players.

3.1 Metrics

In Soccer-Fun, all distances are given in metres. Because not all
football fields have the same size, it is provided as a separate
argument to the brain:

I Type declarations start with : :. :== Defines a type synonym. Function
types have arity. Arguments are separated by whitespace.

FootballField?
= { fwidth :: !FieldWidth // 64m < width < 75m
, flength :: !FieldLength /7 100m < length < 110m
FieldWidth = Metre
FieldLength :— Metre
Metre =—Real

The football field defines coordinates in a way that is standard
for computer graphics: x-coordinates increase in value from left to
right; y-coordinates from top to bottom. We distinguish between
positions on the football field (Position) and positions above the
football field (Position3D).

Position ={ px :: !XPos, py :: !YPos }
Position3D = { pxy:: !Position, pz :: !ZPos }
XPos — Metre
YPos — Metre
ZPos — Metre

The size of the goal and certain areas of a football field are
provided as constants:

goal_width —7.32
goal_height —=2.44
goal_area_depth = 5.50
penalty_area_depth = 16.50

penalty_spot_depth : = 11.00
radius_penalty_area :=—9.15

Players need to know at what side of the field their goal is. Their
third brain argument (:: Home = West | East) tells this. West is the
left-hand side of the football field, East is the right-hand side.

Angles are given in radians. Due to the flipped orientation of
y-coordinates, angles are also flipped: the angle Om points straight
east, 27 south, 7 west, and 27 north.

Angle :=—Radian

2 Record types are delimited by { and } and contain a non-empty list of field
:: type pairs. ! annotates strictness.

Radian :=— Real

Although the framework and the referee keep track of time,
football players do not. They are only informed whether they are
playing in the first half or second half of a match in their fourth
brain argument (:: Half = FirstHalf | SecondHalf). The duration of
a match is currently a constant value in Soccer-Fun. The user
should be able to set it via the GUI in a future version.

Players and the ball move at a certain speed. As with positions,
we find it useful to distinguish between speed along the surface
of the football field (Speed) and above the football field (Speed3D).
The speed along the surface is given by a direction in radians and a
velocity in metres per second. The speed above the surface includes
a velocity along the z-axis.

!Angle, velocity :: !Velocity }
:: IVelocity }

Speed = { direction ::
Speed3D = { speed2D :: !Speed, speed3D
Velocity :— Real

In Soccer-Fun, players stick to the ground and hence always have
a Speed value, and only the football possesses a Speed3D value.

3.2 The Whereabouts of the Football

The second argument of a footballer’s brain tells him where the
football is. Because the football can be in the air, its position is
given by a Position3D value, and its speed by a Speed3D value:

:: Football = {ballPos :: !Position3D, ballSpeed :: !Speed3D}

We can model the football with this value, and provide it to each
brain. This is what we did in the first versions of Soccer-Fun. It
turned out that this was not at all convenient for programming
brains. In real football, a player can be in possession of the ball.
In this situation a player manipulates the ball in such a way that it
seems as if the ball is glued to his legs and feet. Students noticed
that programming similar ball control was remarkably hard, so we
decided to model this concept directly within the framework. Play-
ers can attempt to gain the ball. At most one player can succeed,
and from that moment on he is in possession of the ball. The ball is
no longer freely available in the game, and this is actually what is
told by the second parameter of each football player’s brain: it is a
value of type (Maybe Football). This value is Nothing if some player
possesses the ball, and is (Just ball) if the ball is freely available.
An invariant of Soccer-Fun is that the football is either freely
available or it is possessed by one player. Hence, in order to know
the whereabouts of the football each brain function needs to inspect
the above parameter as well as every football player to determine
where the football is. For this purpose a utility function is provided,
getFootball, that finds the football. Its exact type is discussed below.

3.3 The Football Players

The fifth, sixth (both of type Team) and seventh (of type TeamFoot-
baller) brain arguments tell the football player where everybody
is, including himself. As said in Sect. 2.1, all players are panoptic.
(It would be interesting to make the framework more realistic and
constrain this knowledge to the viewing range of a player; but this
has not been implemented.) The first Team argument contains all
team members of the player, excluding himself, and the second Team
argument contains all opponents. A team consists of one goalkeeper
and ten field players and belongs to a club:

Team = { clubName :: !ClubName
, keeper :: !Maybe TaggedFootballer
, fielders :: ![TaggedFootballer]
}

ClubName := String

Note that the goalkeeper is a Maybe value because the referee can
hand out red cards to any player, including the goalkeeper. Because

Soccer-Fun does not include substitutes, this means that a team no
longer has a goalkeeper.

A TaggedFootballer is a football player with a player’s number.
By convention, the goalkeeper has number 1, and the player’s num-
bers of all players should be different. A TeamFootballer adds the
clubname to such a football player. For conversion two straightfor-
ward type classes are available.

:: TaggedFootballer = { nr :: !PlayersNumber
, player : IFootballer

:: PlayersNumber — Int

:: TeamFootballer = { club :: !ClubName
, tagged_player :: !TaggedFootballer
}

class® toFootballer a :: 'a—Footballer

instance toFootballer TeamFootballer

instance toFootballer TaggedFootballer

instance toFootballer Footballer

class toTeamFootballer a b :: !'a !b— TeamFootballer
instance toTeamFootballer (ClubName,PlayersNumber) Footballer
instance toTeamFootballer ClubName TaggedFootballer

Football players are defined with a rather extensive set of attributes.

:: Footballer = 3 memory:

{ name :: !String

, length :: !Length

, nose :: !Angle

, pos :: 'Position

, speed :: !Speed

, skills :: !'MajorSkills

, ball :: IMaybe Football

, effect :: ![FootballerEffect]
, fatigue :: !'Fatigue

, health :: !Health

, events :: !Events

, brain : !'Brain (FootballerAI memory) memory

}

:: Brain ai memory = { memory :: memory, ai :: ai }

A football player has a name (need not be unique), and a length (in
metres). He looks in the direction of his nose, is at a position, and
moves with a certain speed. The types of the latter two fields indicate
that a football player is always on the ground.

As explained earlier in Sect. 3.2, a football player can be in
possession of the ball. If he is, and has position p and speed s, then
ball = Just {ballPos=p, ballSpeed=s}; otherwise ball = Nothing. The
function getFootball that was discussed in Sect. 3.2 has type:

getFootball :: !(Maybe Football) ![a] —Football | toFootballer a

It is expected to be applied to the second argument of the brain
function and the list of all football players (which are (Team/Tagged)-
Footballer values). The function fromTeam :: Team— [TeamFootballer]
is useful to obtain all players from a team.

Soccer-Fun includes a fatigue / health model. Both are Real val-
ues between 0.0 (exhausted / in bad health) and 1.0 (fit / in excel-
lent health). Actions decrease the player’s fatigue if they are above
some threshold value, and increase fatigue if below that thresh-
old value. For instance, a dash decreases fatigue, while walking
increases fatigue. Players can get hurt due to actions of their own
or of other players, which decreases their health value. The yield of
every footballer action is affected negatively by both values.

A football player can select three skills as MajorSkills value. The
Skill type enumerates skills:

3 Multi-parameter type constructor classes are introduced by class.

11 MajorSkills :=— (1Skill,!Skill, 'Skill)

:: Skill = Running | Dribbling | Rotating | Gaining | Kicking
| Heading | Feinting | Jumping | Catching | Tackling
| Schwalbing | PlayingTheater

When he performs an action that is governed by a major skill, his
yield will be better than average. In this way, the student can create
a variety of football players easily. A number of skill-dependent
functions are available in Soccer-Fun to determine whether it
makes sense to perform an action. As an example, trying to gain
the ball does not make sense when the ball is out of reach. The
distance depends on your major skills and length:

maxGainReach :: !'MajorSkills !Length— Metre

Every footballer action has an effect: this is what the footballer
has actually done. Even though his brain may want him to run at
20m/s, his body won’t be capable of doing this. Soccer-Fun takes
every action into account and computes a realistic effect. This value
is passed to the football player next time.

Every action has an effect, but there are also events that are
triggered by these actions. This is the case when the player has
fallen, received a reprimand from the referee, or is affected by a
referee action (these are discussed in detail in Sect. 6).

:: Events = { fallenDown :: 1Bool
, reprimands :: ![Reprimand]
, refereeActions :: ![RefereeAction]

:: Reprimand = Warning | YellowCard | RedCard

Finally, the most important attribute of a football player is
his brain. A (Brain memory) value is a pair of his “intelligence”,
the (FootballerAI memory) function, and a matching memory value.
The memory is encapsulated with an existential quantifier. This
prohibits players to “read the mind” of other players.

3.4 Actions and Effects

The goal of the brain function is to compute an appropriate
FootballerAction value, and perhaps update his memory. It should
be noted that an action expresses only the intention to perform that
action; as said earlier, Soccer-Fun computes the actual effect of
each and every action. Soccer-Fun provides the following actions:

:: FootballerAction = Move Speed Angle | Feint FeintDirection

| GainBall | Catch
| KickBall Speed3D | HeadBall Speed3D
| Schwalbe | PlayTheater

| Tackle TaggedFootballer Velocity
:: FeindDirection = FeintLeft | FeintRight

The first two actions cause a player to move: (Move s a) lets him
move at speed s, after rotating his nose (and therefor his body) over
angle a. Moving is most effective in the same direction as his nose,
and least effective in direction nose+7. (Feint d) causes a player to
make a feint manoeuvre either to the left or the right. This is useful
for a striker when trying to sidestep a defender.

Any player can gain possession of the ball with GainBall. Within
his penalty area, the goalkeeper can Catch it. The ball remains
with the player until he either plays it or it is gained by another
player. Note that when the player is in possession of the ball, his
movements are slower.

The ball can be played via kicking (KickBall s) or heading
(HeadBall s). In both cases, s is the intended new speed of the ball,
which becomes freely available in the match.

The final three actions are concerned with unclean play. Per-
forming a Schwalbe causes the football player to fall to the ground,
which is usually followed by PlayTheater, hoping to convince the
referee that an opponent has attacked the player. (Note that for play-
ers who perform these actions, Soccer-Fun decreases their health

value for inspection by the referee.) Performing a (Tackle p v) is an
attempt to bring player p to an abrupt halt. Depending on the veloc-
ity v with which this action is intended to be performed, this may
cause damage to p’s health value. Of course, all of these actions can
cause the referee to reprimand the unfair player, who runs the risk
of receiving a yellow or red card.

For each action an effect is defined, plus a few more:

: FootballerEffect
= Moved Speed Angle | Feinted FeintDirection
| GainedBall Success | CaughtBall Success
| KickedBall (Maybe Speed3D) | HeadedBall (Maybe Speed3D)
| Schwalbed | PlayedTheater
| Tackled TaggedFootballer Velocity Success
| OnTheGround FramesToGo
| Reprimanded Reprimand
| ScoredGoal Home
:: FramesToGo :=— Int
:: Reprimand = Warning | YellowCard | RedCard

The new effects are (OnTheGround 1) which indicates that the player
has fallen to the ground, and will remain lying there for n frames;
when a player receives a reprimand r, then this is reported as
(Reprimanded r); (ScoredGoal h) when a goal has been scored for the
indicated home side h.

3.5 Other Soccer-Fun functions

In addition to the functions that have been described, Soccer-Fun
has a small set of utility functions. The most frequently used are:

angleWithObject :: !Position !'Position — Angle
inPenaltyArea :: !FootballField !'Home !Position— Bool
goal_poles : 1FootballField — (!Metre, !Metre)

(angleWithObject p1 p2) returns the angle between two lines that
intersect at p1, and where the first line has angle 07, and the second
line goes through p>. The result angle can be used for rotating
towards a point po, or for playing the football to p2. (inPenaltyArea
f h p) holds if position p is within the penalty area of side h
of a football field f. (goal_poles f) yields the north and south y-
coordinates of the two goal poles on a football field f, which is
useful for kicking or heading the ball in that goal.

Finally, for inclusion in Soccer-Fun, a student needs to build
a team as a function of type :: Home FootballField — Team. The two
arguments specify at what side of the football field he will start
playing, and what the dimensions of the football field are. These
are necessary for the line-up of the players.

4. Semantics of Soccer-Fun

The state of a match is a value of type Match that consists of two
teams, a football, a football field, a referee, the current playing
half, playing time, time unit, score, random stream, and a flag that
eliminates randomness (the latter two are discussed in Sect. 4.1).

:: Match = { teaml :: 1Team
, team2 :: 1Team
, theBall : IMaybe Football
, theField :: !FootballField
, referee :: |Referee
, playingHalf :: !'Half
, playingTime :: !PlayingTime
, unittime :: !Seconds
, score :: 1Score
, probs :: !RandomStream P
, notdreal :: 1Bool
}
:: PlayingTime :— Minutes
:: TimeUnit = Seconds
:: Minutes = Real
:: Seconds = Real

:: Score = (!Nr0fGoals, !NrOfGoals)
:: NrOfGoals = Int
it P =—Real //00<p<I10

The meaning of a match is just an iteration of a single-step function,
stepMatch :: !Match— (![RefereeEvent],!Match), or, monadically,
stepMatch :: St Match [RefereeEvent] (With :: St s a =—1s— (a,s))
until the referee has decided that the game is over.

Note that stepMatch does not perform any I/O. In Soccer-Fun,
this is done by a separate function that renders a Match value. This
offers the possibility to completely compute the outcome of a match
without providing visual feedback. This is particularly useful when
computing the outcome of a tournament.

The definition of stepMatch is complicated because actions of
football players can interact (for instance, two players who want
to kick the ball) or contradictory (two players both trying to gain
the ball); physical constraints need to be considered (a player can-
not rotate over 7 radians when running at maximum speed, the
movement of a freely available ball must be computed); the fa-
tigue/health model must be applied; the referee interferes during
the match by pausing and restarting the game, replacing and even
expelling players; and so on. This rules out a simple semantics in
which every player computes his action and performs it.

We have chosen the following scheme:

1. The brain of every football player computes an action. This
is an uncomplicated function that needs to pass the proper
arguments to each brain function, and update the player because
his memory may have changed.

playersTurn :: St Match [FootballerWithAction]

FootballerWithAction
= (FootballerAction, (ClubName,PlayersNumber))

We need to know who (identified by clubname and player’s
number) wants to perform what action, hence the result type.

2. Filter actions: at most one of all {GainBall, KickBall, HeadBall,
Catch} actions is selected, using the random stream; only fea-
sible Tackle actions are selected; actions of tackled players are
neutralized.

selectActions :: ![FootballerWithAction]
— St Match ([FootballerWithAction],[FootballerWithAction])

selectActions yields the theater playing actions and the remain-
ing successful actions.

3. The brain of the referee computes his decisions based on the ac-
tions that he “sees”. Only for the referee, the health for football
players who are playing theater (determined by the first argu-
ment) is decreased, depending on their PlayingTheater skill.

refereeTurn :: [FootballerWithAction] [FootballerWithAction]
— St Match [RefereeAction]
The referee (actions) is discussed in more detail in Sect. 6.

4. Compute the effect of all selected player and referee actions and
update players and football accordingly. The function receives
both the intended actions and the successful actions to inform
the player that an intended action may have failed.

performActions :: [FootballerWithAction]
[FootballerWithAction] [RefereeAction]
— St Match Void
This is the “heart” of the Match transition function.
5. Advance playing time, which is a trivial function.

advanceTime :: St Match Void

It is the task of the referee to decide whether a match has ended.
This implies that the playing time can become negative, but this
is what happens in real football matches as well.

Combining the above functions gives the following top-level defi-
nition of stepMatch*:

stepMatch :: St Match [RefereeAction]

stepMatch = do actions «—playersTurn
(theater,pActions) < selectActions actions
rActions «—refereeTurn theater pActions
performActions actions pActions rActions
advanceTime
return rActions

LORE ol o

The RefereeActions are returned for rendering.
performActions is the heart of the Soccer-Fun semantics. This
function also has a heart which is the following transition function:

performAction :: !FootballerWithAction— IdFun (!RandomStream P
,'Maybe Football
,![TeamFootballer]
,! [TeamFootballer]

)
:: IdFun st :=st—st

which computes the effect of each action and applies it to the
football and all players of both teams. After these actions have
been computed, and the ball has become freely available, its next
position and speed is computed. Finally, all referee events are
applied to the new state of the match.

As an illustration of performAction, we show the GainBall rule.

performAction (GainBall,player_id) (probs,mball,teaml,team2) 1
f (teaml,team2)= splitAt (length teaml) 2
(unbreak (map loseBall uneql 3

, new_self 4

, map loseBall uneq2 5.

)) 6.

= (probs,Nothing, teaml, team?2) 7
8

9

where

players = teaml + team2 .
ball = getFootball mball players 10.
(uneql,self,uneq2) 1.
= break (identify_player player_id) players 12.

me = toFootballer self 13.
new_ball = {ball & ballPos = {zero & pxy-me.pos} 14,
, ballSpeed = {zero & speed2D-me.speed}} 1s.

new_me ={me & effect = [GainedBall Success] 16.
, ball = Just new_ball} 17.

new_self = toTeamFootballer player_id new_me 18.

The definition uses two very useful helper functions:

break :: !(a—Bool) ![a] — ([a],a,[a])
unbreak : : '(M[a],a,[a]) — [a]

(break p zs) breaks zs into (as, b, cs), such that Va € as.—(p a),
(p a), and —=(p (hd cs)) if cs is not empty. (unbreak (as, b, cs))
reconstructs zs.

The rule states clearly that the player who gains the ball really
has it in his possession (line 17) and that this effect is reported (line
16). A ball in possession adapts position and speed of its owner
(lines 14-15). No other player has the ball (line 3 and 5).

4.1 Predictable Games

Soccer-Fun uses a stream of pseudo-random values for several
purposes. In the above section we have seen that they are used
to select at most one of simultaneous FootballerActions {GainBall,
KickBall, HeadBall, Catch}. They are also used in performAction to

4 Although Clean does not support do notation, we use it for readability.

increase realism. The effect of an action can deviate from what
was intended. The amount of deviation depends on the skill of the
player, so this should be taken into account.

It is convenient for students to switch off this added bit of re-
alism when they are testing the brains that they have implemented.
In the Soccer-Fun GUI this is done by selecting the Predictable
command, which toggles the not4real field of a Match. In such a
predictable setting no deviations are computed, and randomness is
only used to select actions that are mutually exclusive.

It should be noted that the outcome of a game is fully deter-
mined by the initial random seed value (which is derived from the
time), and the two initial Teams. For replaying an entire game we
only need these values. This characteristic is used within Soccer-
Fun in several ways: the student can step through an entire game
without affecting the outcome; halting and continuing a game also
does not affect the result. The rendering time does not change the
outcome as well, hence the result of a game can be computed with-
out any visual feedback. In earlier versions of Soccer-Fun, when
the referee dialog popped up to inform of a decision, the user could
ask for a replay including a future computation. This is particularly
helpful in case of determining whether a player in offside position
is in active play. The current version of Soccer-Fun does not have
this feature, but this is planned to be re-integrated.

5. Train the Brain

Soccer-Fun is well suited to set up a range of exercises that lead
in a natural way to the final task of creating a successful team.
In order to familiarize the students with Soccer-Fun, it is useful
the start with a number of small basic tasks (Sect. 5.1). Following
this we can concentrate on developing strategies that determine the
behavior of each team player (Sect. 5.2). For the finishing touch,
all teams should obey the rules of the game and respond correctly
to the decisions of the referee. We defer this subject until Sect. 6 in
which the referee and his decisions are presented in detail.

In our experience, it is very helpful to have students first make
an informal description of the brain function that needs to be cre-
ated, and then to create the concrete Soccer-Fun code. The infor-
mal description is expressed in structured natural language, as a
collection of guarded equations (if cond = action). If the brain
function does not require a memory, then action is just a footballer
action, otherwise it is a pair (action,memory). The Soccer-Fun code
closely follows the structure of the informal description, but evi-
dently needs to fill in all the (computational) details. In this section
we adopt this approach.

5.1 Basic exercises

The exercises that we discuss here are small, and can be done in
class together with the students.

5.1.1 Run a (number of) lap(s)

Let the footballer start at the north west corner of the football field.
Make him run laps in clockwise direction within the boundaries of
the football field.

One might think of the following naive solution:

if I am close to a corner = rotate %w clockwise
otherwise = run ahead

There are two problems with this scheme: first, as soon as a corner
is reached, the first condition remains true, and second, it assumes
that the player is able to perform a perfect rotation over %71‘ radians.
A slightly more complicated scheme must be implemented which
memorizes the corner to which the player needs to run:

if I am close to a corner
if nose in right direction =- (run ahead,nextcorner)

otherwise
otherwise

=> (rotate, corner)
=> (run ahead,corner)

This simple brain needs to memorize the desired corner:

:: Corner = NorthWest | NorthEast | SouthEast | SouthWest

nextCorner :: Corner — Corner
dirCorner :: Corner — Angle

nextCorner computes the next corner the player has to go to.
dirCorner yields the direction the player’s nose has to face to reach
that point. With these functions we can define the footballer’s brain:

laps :: FootballerAI Corner
laps {flength = f1,fwidth = fuw}
| close_to_corner

me corner

| nose_ok = (run,nextCorner corner)

| otherwise = (rotate, corner)
| otherwise = (run, corner)
where

{pos,nose} = toFootballer me

{px,py} =pos

diff_corner = dirCorner (nextCorner corner) - nose
close_to_corner = case corner of
SouthEast =px > f1 - 5.0 & py > fw - 5.0
NorthEast = px > f1 - 5.0 & py < 5.0
SouthWest = px < 5.0 & py > fw - 5.0

NorthWest = px < 5.0 && py < 5.0
nose_ok = abs diff_corner < 0.01
rotate = Move zero diff_corner
run = Move {zero & velocity = 5.0} zero

With this brain, a footballer starts rotating as soon as he reaches the
desired corner, and is not facing the right direction. When he faces
the right direction, or is not close to a corner, he runs ahead.

Variations Parameterize laps in such a way that the player runs in
either clockwise or counter-clockwise direction; limit the number
of laps to a given value; generalize the brain in such a way that
he can start at any location on the football field and facing any
direction.

5.1.2 Run to a location

A useful functionality of any player is to run to a certain location
(for instance his default position, or to gain a freely available ball,
or to try to gain the ball from an opponent). The task is to have
the footballer run to a specified location which can be stored in his
memory or passed as an additional argument. For this particular
exercise the latter approach is preferred because it expresses more
clearly the constant nature of the position. Storing the location
in memory has as advantage that it can be changed according to
circumstance: in that case the player automatically runs to the new
location. Let’s assume the value is available as a separate argument.
Now a naive definition is sufficient:

if close to position = stand still
if nose in right direction = run ahead
otherwise => rotate to position

To implement this brain, the students get to know the useful func-
tion angleWithObject (Sect. 3.5).

fix :: Position— FootballerAI m

fix point _ _ _ _ _ _ me memory
| close_to_point = (stand_still,memory)
| nose_ok = (run_ahead, memory)
| otherwise = (rotate, memory)
where

{pos,nose} = toFootballer me

angle_with_point = angleWithObject pos point
diff_nose = angle_with_point - nose

close_to_point =dist pos point < 3.0
nose_ok = abs diff_nose < 0.1*pi

stand_still = Move zero zero
run_ahead = Move {zero & velocity = 10.0} zero
rotate = Move {zero & velocity = 10.0} diff_nose

In order to reach a position at a given point, the brain tells the player
to first rotate towards that point, and when looking in that direction
to run to the point. It is satisfied as soon as the player is within three
metres distance of the given point.

Variations Same as above, but place position in memory; instead
of a single position in memory, use an infinite list of positions that
need to be visited in sequence; use the latter version to implement
the 1aps from Sect. 5.1.1.

5.1.3 Passing the ball

In football, players need to pass the ball to other players, hence
it makes sense to implement a brain that passes the ball correctly
to another player. The task is to implement 1 < n < 11 football
players who are standing on the football field who need to pass
the ball to each other. A player to whom the ball is passed must
first gain the ball before passing it to the next player. For this
exercise the student must switch off the computation of deviations
of footballer actions as described in Sect. 4.1 because otherwise his
players will need to go look for the ball in case it has gone wide.

The footballer’s brain receives as parameter the position of the
next player to whom the ball should be passed after he has gained
possession of the ball. To increase effectiveness, the player rotates
towards the next player. The brain does not require a memory, and
has a concise specification:

if I possess the ball

if I look at target = pass the ball

otherwise = rotate
if I can gain the ball = gain
otherwise = stand still

This brain needs the (Maybe Football) argument and both Team values
to get the whereabouts of the Football. Its new actions are GainBall
and KickBall. To determine whether he possesses the ball, he only
needs to inspect his ball field. To know whether the ball is within
gaining reach, he can use the maxGainReach function (Sect. 3.3). The
interesting question is how hard to kick the ball in order to allow
the next player to gain it. When playing the ball over the field there
is a considerable friction. A simple rule of thumb is to kick the ball
with a velocity that is equal to the distance to the target multiplied
by a factor five. All in all, we get the following brain:

kick :: Position— FootballerAI Void
kick target _ freeball _ _ team opponents me memory

| possess_ball
| look_at_target = (pass_ball, memory)
| otherwise = (rotate, memory)
| close_to_ball = (gain, memory)
| otherwise = (stand_still,memory)
where

{pos,nose, length,ball,skills}
= toFootballer me

possess_ball = isJust ball
v = 5.0%(dist pos target)
{ballPos} = getFootball freeball
[me:fromTeam team -+ fromTeam opponents]
close_to_ball = dist pos ballPos < maxGainReach skills length

angle_with_target = angleWithObject pos target

diff_target — angle_with_target - nose
look_at_target = abs diff_target < 0.1#pi
gain = GainBall

stand_still = Move zero zero
rotate = Move zero diff_target

pass_ball =KickBall {zero & speed2D =
{direction-angle_with_target,velocity=v}}

Variations Instead of playing the ball over the field, play it through
the air; in that case, players should pass the ball via heading.

5.2 Strategy exercises

In a team, players need to act according to a strategy, i.e. a number
of rules they adhere to in order to play good football. In this section
we discuss a number of exercises that are related to strategy.

5.2.1 Active line-up

The line-up of players is an important aspect of football. Players
should place themselves on the field in such a way that their team
can control a significant part of the football field. This can be
achieved by assigning to each player a region of the football field
that he should control. His default strategy then is to move to the
center p of this region when there is nothing else to do. This is just
a matter of evaluating (fix p) that was presented in Sect. 5.1.2.

brain :: Position— FootballerAI Memory
brain p field freeball home half team opponents me m

| otherwise = fix p field freeball home half team opponents me m

Variations Make the line-up dynamic, depending on whether your
team is in possession of the ball. If it is, then the line-up should
advance towards the goal of the opponent. If the opponent team is
in possession of the ball, then the line-up should withdraw towards
their home goal.

5.2.2 Gaining the ball

In a team you need to have an agreement on who is going to try
to gain the ball if it is not possessed by your team. A simple rule
is that the player who is closest to the ball will attempt to gain the
ball. First, he needs to get to the ball, and second, when sufficiently
close to the ball, he should gain the ball.

gain :: FootballerAI m
gain field freeball home half team opponents me m
| close_to_ball = (GainBall,m)
| closest = fix ballPos field freeball home half
team opponents me m
where
{pos,length,ball,skills}
= toFootballer me
possess_ball = isJust ball
{ballPos} = getFootball freeball
[me : fromTeam team -+ fromTeam opponents]
close_to_ball=dist pos ballPos < maxGainReach skills length
closest = dist pos ballPos <
minlist [dist (getPosition fp) ballPos
\\ fp+« fromTeam team

1

Note that the situation may arise that there are several candidates
to go to the ball, because the comparison uses <. However, using <
may result in a situation that nobody goes to the ball. This is clearly
less desirable than having more players run to the ball.

Variations Increase the number of players who try to gain the ball.
Anticipate earlier on gaining the ball: if the ball is moving towards
you, move forward and gain it.

5.2.3 What to do with the ball

When a player is in possession of the ball, he must decide what to
do: he can pass the ball to another player, he can dribble, or he can
try to score a goal.

Let’s work out a brain that decides to pass the ball to the first
team player who is closer to the goal. If no such player is available,
then the player himself is in the best position. If he is to far away
from the goal, he dribbles towards the goal, otherwise he kicks the
ball towards the goal. The informal scheme is:

if I am in best position
if I am close to goal=- kick ball in goal
otherwise = run to goal
otherwise = pass the ball to player in best position

and the corresponding Soccer-Fun realization:

playball :: FootballerAI m
playball field freeball home half team opponents me m
= action field freeball home half team opponents me m
where
action = if in_best_position
(if near_goal (kick goal)

(fix goal)

) (kick best)

in_best_position
= isEmpty better

better = [pos \\ {pos}«players | dist pos goal < d_goal]
best = hd better
goal_x = if (home — East) zero field.flength
goal = {px = goal_x, py = 0.5+field.fwidth}
d_goal =dist (toFootballer me).pos goal

near_goal =d_goal < 20.0
players = fromTeam team

Variations Take into account whether it is safe to pass the ball to a
team player (consider number of opponents between you and team
player and/or the number of defenders of that player). Alternatively,
pass the ball through the air and make sure it ends exactly at the feet
of the team player.

5.2.4 Offside

Despite its simplicity, the above strategy of passing the ball to
players who are in better positions is very effective. However, it
is also too simplistic because it overlooks the offside rule that was
mentioned in Sect. 2. To repeat, a player is in offside position when
he is at the opponents’ half of the field and is closer to the goal line
of his opponents than both the ball and the last two opponents. It is
not hard to define a predicate that defines this:

offside :: Field (Maybe Football) Home Team Team Footballer — Bool
offside field freeball home team opponents me
= home = West && px > maxList metrics ||
home — East && px < minList metrics

where
{px} = (toFootballer me).pos
pxs =sort [(toFootballer fp).pos.px

\\ fp <« fromTeam opponents

x_last_2 = if (home = West) ((reverse pxs)!!1) (pxs!!1)
{ballPos} = getFootball freeball

[me : fromTeam team 4 fromTeam opponents]
metrics = [0.5%field.flength, ballPos.px, x_last_2]

The task is to adapt the brain of Sect. 5.2.3 in such a way that the
ball is passed only to team players who are not in offside position.

Variations The offside trap is a well-known defensive strategy in
which a team deliberately places strikers of the opposing team in
offside position by moving forward just before he is given the ball
by his team players. Prevent football players from running into the
offside trap, and let defenders and goalkeeper open up the offside
trap for strikers.

5.3 Discussion

In this section we have presented a range of exercises that can
be used to create footballer brain functions. They illustrate that
Soccer-Fun is suitable for an incremental approach. This stimu-
lates students to continue improving their teams and challenges
them to invent a better set of rules for their players’ brains. The
use of structured natural language expressions as “sketches” of the
brain function is helpful to let the students think about the brain
function without getting swamped in the details of programming.

The topics that are covered in the exercises cover mainly work-
ing with structured data types such as algebraic types, record types,
and lists. One can use the framework to illustrate applications of
more advanced list processing tasks as well as working with tree
structures. In particular, the exercises that concern implementing
strategies are suited for this purpose. We give two examples.

The first example teaches students point-free programming with
lists. When a football player has a plan, he executes that plan until
it is finished. When finished, he makes a new plan. A player can
make a tactical decision. These need not be the same as the football
actions, so they should be modeled by a new algebraic type. Each
alternative represents a possible decision. Now the player needs to
decide what to do. This can be expressed elegantly in a functional
style: first, concatenate a list of all possible decisions; second, map
a weight function that computes the success rate 0 < r < 1 of
a decision; third, filter out all decisions below a certain threshold
value; fourth, select the maximum element; fifth, map the decision
to a list of footballer actions.

The second example uses a version of min-max trees to make
decisions. The student writes a weight function that computes the
desirability of a complete match state. Next, he constructs a tree
structure, whose nodes are complete match states, and that have an
arbitrary number of child trees. The root of this tree is the current
match state. Its children are computed by applying footballer ac-
tions to their parent state. The next level of children are computed
by applying opponent actions to their states. This continues until
some fixed depth. The best decision is the root decision that is on
a path from the root to a state such that the desirability is maximal
for the player’s team, and minimal for the opponent team.

6. The Referee

In Sect. 4 we have explained where the referee comes in, but we
have not yet properly introduced him. This is done in this section.

Just as a Footballer, a referee has a brain. In fact, besides a name,
that is all he has:

:: Referee = 3 memory:
{ name :: !String
, brain :: !Brain (RefereeAl memory) memory

}

The brain function of the referee is similar to that of a footballer,
and it receives almost the same list of arguments:

:: RefereeAI memory :=— PlayingTime
TimeUnit
FootballField
(Maybe Football)
Half
Team
Team
[FootballerWithAction]
(memory,RandomStream P)
— ([RefereeAction], (memory,RandomStream P))

Because the referee is in charge of the time he receives the intended
playing time and also the time unit. The latter can be relevant in
case the referee wants to replay part of the game, or even predict

the future. The third up to the seventh arguments are the same as for
a footballer brain (the Home argument is missing because it does not
make sense for a referee). The referee needs to judge the actions
of the players, which are provided to him in the eighth argument.
Finally, a referee uses and updates a memory, and consumes the
random stream of the match.

The referee monitors the game and interferes in case of fouls
or other reasons. The interference is expressed as a value of type
RefereeAction, which is a rather large collection of algebraic data
constructors. Seven are concerned with detecting a foul by a
specific TeamFootballer ff: Hands, OwnBallIllegally, DangerousPlay,
Offside, and (Tackle/Schwalbe/Theater)Detected. Such a player re-
ceives a Reprimand r as (ReprimandPlayer ff r). Five actions are con-
cerned with the duration of the match: (Pause/Continue)Game, EndHalf,
GameOver, and (AddTime #), with # minutes of extra playing time. When
the referee registers the scoring of a goal by a team, then this yields
(Goal) with ¢ a value of type :: ATeam = Teaml | Team2. Here, Team1
is the team that started the match on the west side of the football
field, and Team2 is the other team. After a goal has been scored by
team f, a (CenterKick (other 7)) is granted, where other toggles its
argument value. The game can be resumed by a team ¢ at a position
p with a (DirectFreeKick ¢ p) and (ThrowIn ¢ p) or by a (GoalKick f)
and a (Penalty f) (the latter is only registered, planned for future
implementation). The last resumption is via a (Corner ¢) where e
is an :: Edge = North | South value. In case of resumptions, the ref-
eree usually drives the players away to ensure that one player is in
possession of the ball, and all others stay at a reasonable distance.
This updates the positions, directions, speeds, and ball possessions
of teams ¢1 and t2 and is a (ReplaceTeams ¢1 t2) action. Not every
foul causes game suspension if the infringed team ¢ would suffer
from pausing the game. In that case the referee decides to give that
team (Advantage ¢). Finally, for training sessions (Sect. 6.1), the ref-
eree is used to give feedback to the performance of the student’s
implementation of a task. This is a text 7 in (TellMessage 7).

In the exercises that were discussed in Sect. 5, we have ne-
glected referee actions. If you want to create a proper football team,
then you need to obey the actions of the referee. This can be done
in a similar style: players should check whether they are entitled to
play the ball (this is just an extra guard). This only has to be done
for (Center/Goal/DirectFree)Kick and ThrowIn, Penalty, and Corner.

6.1 The referee as a coach

The referee constantly monitors a match. Such a concept is also
very useful to provide the student feedback about the performance
of his implementation of a task. For instance, in case of the running
laps exercise (Sect. 5.1.1), a referee can check whether the foot-
baller is constantly close to an edge of the football field. If he is
not, he issues a message (using the TellMessage referee action).

We have used this idea to define a number of specialized refer-
ees. They can monitor the following exercises:

1. A number of dummy players are standing still on the field.
Another player is standing near the west goal. He has to dribble
in a slalom fashion towards the east goal and score a goal to
end the exercise. The referee checks whether all dummies are
overtaken correctly and if the ball has been kicked in the goal.

2. An exercise similar to 5.1.3: a number of players need to pass
the ball to each other. The referee monitors whether the ball
arrives correctly at each player.

3. A number of opponent players are running over the field in
north-south direction and vice versa. On opposite sides there
are two players. The west side player needs to kick the ball to
the east side player over the football field in such a way that it
is not gained by one of opponents.

4. A number of dummy team players are placed on the football
field. Some of them are covered by opponents, some are not.
It is the task of another team player to pass the ball to a team
player who is not covered by an opponent.

5. This is a special exercise for training the brain of a goalkeeper.
He is standing in the goal area, and is surrounded by a number
of opponents who pass the ball to each other. It is the task of the
goalkeeper to move in such a way that none of the opponents
can kick the ball to the centre of the goal without touching the
goalkeeper. If he fails, the referee detects this, and shows the
error by allowing the opponent to kick the ball in the goal.

The concept of a monitoring referee allows students to work on
exercises until the referee is satisfied. For such exercises, they need
less supervision, and it also reduces the examination time of the
lecturer. He can run the exercise with the desired referee, and only
needs to check whether the exercise passes or fails. Note that in
combination with the fact that the framework can run independently
of rendering, this can be done very quickly.

7. The Main Exercise

The main exercise that was given to students was:

Design and implement your own football team. Do this within
an implementation (.ic/) module with your name, and that exports
(.dcl) a function with the name TeamMyName and following type:

definition module MyName
import Footballer

TeamMyName :: 'Home !FootballField — Team

You can chose the initial line-up of your players. A team consists
of one goalkeeper and ten field players. Incorporate your team in
Soccer-Fun by adding the following lines in module Team.icl:

implementation module Team

import MyName // import your module
allAvailableTeams = [Team_Wanja
, TeamMyName // add your team to team list
1

The footballers must comply to the following requirements:

Goalkeeper: He is not allowed to leave the penalty area. If the ball
is reasonably within reach, then he must intercept it. “Reason-
ably within reach” means that if the goalkeeper can, in prin-
ciple, reach the ball sooner than one of his opponents, he is
obliged to play the ball. This depends on the strategy of his
team players: the goalkeeper is not demanded to interfere with
his team players.

Field players: The field players are not allowed to run after the ball
in a group. Instead, they are required to spread over the football
field in a reasonable way’. A line-up is reasonable when each
player controls an area of the football field, and that the pairwise
intersection between any two areas is nil or very small. They
need to take these positions, which may depend on the state of
the match (e.g. attacking and defending). Field players are not
allowed to be in possession of the ball for a long period. They
are obliged to pass the ball to other players if this is reasonable:
if a team player is in a better position than the player himself,
and is in position, then the ball must be passed to that player.

5This requirement is included to prevent students to submit a simple
minded solution. A strategy in which all players run after the ball is inferior,
but would be legal if not prevented in this way.

Efficiency: Every football brain must be sufficiently efficient, i.e.:
if the created team is playing against itself, then the computa-
tion of all football actions of all players must be done within
2—10 second. You can check this by means of the frame-rate in-
dicator: this is the number that is displayed behind the text
Rounds/sec: in the GUI of Soccer-Fun. This number is not

allowed to decrease below 20 (except when the referee dialog
pops up).

Functional style: The implementation is also judged on “func-
tional style”. This is done as follows: you receive 20 bonus
points. For each piece of code in your implementation for which
an alternative exists that uses functions and data structures from
StdEnv you lose one bonus point.

After all assignments have been submitted and reviewed, there
is a tournament in which all teams compete against one another.
There are two champions: the winner of the competition according
to customary tournament rules and the winner of the “functional
style” prize, which is the contribution with the largest number of
remaining bonus points. Both champions receive a suitable award.

8. Experience

We have used Soccer-Fun in two different contexts: first, in the
compulsory, second year bachelor course “Abstraction and Com-
position in Programming” (Sect. 8.1), and second, for promotional
activities for secondary education (Sect. 8.2). We also reflect on our
other experiences (Sect. 8.3).

8.1 Academic education

The students are second year bachelor students in computer sci-
ence. They have had training in imperative programming (C) and
object orientation (Java). The course “Abstraction and Composi-
tion in Programming” is an introductory course in functional pro-
gramming, using Clean. As is apparent from the DSL of Soccer-
Fun as described in Sect. 3, one can not expose the students im-
mediately to it because it uses many language features. However,
many of the basic exercises that have been discussed in Sect. 5
can be introduced during the course after 5-6 lessons. The students
need to learn a lot of new concepts (see the summary in Sect. 1).
In our experience, the best approach to let the students work with
Soccer-Fun is to gradually work out increasingly complicated exer-
cises, interwoven with the more ‘traditional’ exercises. In this way
students get to learn Soccer-Fun as well as the foundation that is
required for functional programming. This is necessary, because
Soccer-Fun does not contain many functions, and hence students
need to work out most of the functionality themselves.

At the end of the course the students need to do the main exer-
cise. The course is ended with a tournament in which all submitted
teams that meet the requirements of the final exercise compete. This
is done together with all students. This is a nice conclusion of the
course. It always had the atmosphere of a real football tournament.
The tournament finally yields a champion, and (s)he as well as the
“functional style” champion are awarded.

8.2 Secondary education

We have used Soccer-Fun for promotional activities to interest
pupils from secondary education to study computer science at the
Radboud University Nijmegen. Pupils take part in a full day pro-
gram. During this day they receive a crash course on functional
programming. Most pupils have some experience in mostly imper-
ative programming languages, but functional programming is en-
tirely new to them. They also get a brief introduction to Soccer-
Fun. We have developed a number of examples of fairly simple
teams that are very similar to the exercises described in Sect. 5.
In these examples there are many opportunities to improve their

behavior. By paying a lot of attention to the examples using the
guarded equations style, and point out the similarity with the Clean
code, they should be able to make small improvements to one of
the examples.

Pupils respond enthusiastically to Soccer-Fun. They appreciate
the example implementations, and usually come up with improve-
ments quickly. It turns out that really creating these improvements,
and make them work, gives them a hard time. We think we can im-
prove on this by constructing another DSL on top of the current
Soccer-Fun that is much closer to the guarded equations. Pupils
need more basic functionality, and this should be provided as well.

8.3 General experience

Although a framework such as Soccer-Fun could have been real-
ized as a teaching vehicle for imperative or object oriented pro-
gramming, we think that it displays a number of interesting func-
tional language aspects. Soccer-Fun makes good use of the type
system to restrict the set of admissible brain functions that a student
might come up with. The student can not create a brain function
that uses effects, simply because its type does not allow it. We can
use the programming tasks that were described in Sect. 5 also as
a framework to teach more classic programming problems such as
working with lists and manipulation of decision trees. Soccer-Fun
itself is an illustrative example of a typical functional programming
approach: use a domain specific language to formulate solutions,
and define an interpreter to execute the solution.

Soccer-Fun improves the programming skill of most students
because they want to create a better team and therefor they are
motivated and required to express their ideas in a functional lan-
guage. The final task does not prescribe how to do this, so stu-
dents actively need to come up with solutions. Talented students
can show how well they understand functional programming. Less
skilled students can achieve acceptable results.

9. Alternative exercises

So far we have focussed on the original task: to create a brain for
a footballer that can win a tournament. However, Soccer-Fun itself
can also be used for alternative exercises. Here we make a few
suggestions. These have not been tested in practice.

¢ In a similar way as a referee constantly monitors a football
game, one can extend the framework with a commentator who
provides sensible information about the match. The text that he
outputs can be displayed in the Soccer-Fun GUL

One can collect and display match statistic such as the percent-
age of time that a team is in possession of the ball, number of
goals, corners, penalties, fouls, and so on.

e The current rendering of Soccer-Fun is kept very simple: foot-
ball players are depicted as filled circles with a small circle
‘orbiting’ around them to indicate the direction of their nose.
Next to the player their name is displayed. The ‘camera’ is right
above the field. If the ball is higher, then it is rendered larger
than when it is on the field. A first improvement is to render the
game in 2% dimensions. In that way, one can follow the move-
ment of the ball through the air much better.

10. Related Work

Soccer-Fun is a framework in which strategies for footballers are
programmed in the form of a function.

An exemplary framework, that is targeted at teaching object ori-
entation and Java in particular, and with slightly less peaceful in-
tentions, is Robocode [1] by Mathew Nelson in which you pro-
gram a military tank that drives around on a square area, together
with other military tanks. Each tank executes an algorithm which

goal it is to eliminate other tanks by firing granades at each other,
and hopefully survive longest and become champion. Robocode
is around for quite a while (since late 2000). It has very attractive
graphics and sound effects. It effectively uses the OO paradigm
to quickly get programmers up and running with their first tank.
In the past, we have used Robocode ourselves for similar promo-
tional activities as described above. From our experience in using
Robocode, we know that such a framework can be a very effective
teaching tool, as well as stimulating and fun for participants.

Related to Soccer-Fun, but with entirely different technology
is RoboCup [2]. It is the aim of RoboCup that hardware robots
compete with humans in a football match. In this project also
simulator software, the RoboCup Soccer Simulator, is available
in which you can create your own robots.

Going from simulated robots to software robots is a small step.
Yampa [9] is a functional reactive programming language in which
robots can be created. Connecting Yampa with hardware robots
is the language Dance [8], which is a high level language based
on Yampa and Labanotation, which is a formalism to denote hu-
manoid movement. We are not aware of any project that uses
Yampa or Dance to play football in either a competitive or edu-
cational setting, but one would imagine that this is possible. We
speculate that a specification of a footballer is more geared towards
physical movement, which is an avenue that we have not explored
within Soccer-Fun.

11. Conclusions and Future Work

In this paper we have presented Soccer-Fun, which is a functional
framework in which the brain of a footballer is expressed as a pure
function. Soccer-Fun offers a GUI in which teams of football play-
ers are equipped with these brains to play football games. We have
developed Soccer-Fun and used it in education for the past four
years. Soccer-Fun is stimulating because it covers a well known
problem domain, and offers a GUI that despite its simplicity, ef-
fectively shows what the result of executing the brain functions is.
Students get direct feedback about the performance of the brains
that they have created. A special feature of Soccer-Fun is that it’s
model of referees is suited to monitor the performance of student
exercises, and provide feedback to the student. Based on our expe-
rience, we think Soccer-Fun is a welcome addition to the repertoire
of functional programming exercises for any introductory course in
functional programming.

We have used Soccer-Fun also for pupils from secondary edu-
cation. Here, the use of natural language specifications in the form
of guarded equations is very helpful: they capture the intuition of
a possible implementation quickly, and can also serve as a basis
for a real implementation. This only works when a sufficient num-
ber of example implementations are provided, that they can use for
small extensions and changes. We have noticed that although pupils
have no problem in improving examples of players’ brains with the
informal notation, they do have problems with the concrete real-
ization. We want to eliminate this by providing a higher-level of
abstraction over the current Soccer-Fun DSL.

Other future work covers creating exercises that are concerned
with Soccer-Fun itself, rather than programming brains, as ex-
plained in Sect. 9. Not all standard football situations (penalty, in-
direct free kick, and so on) are currently handled by Soccer-Fun.
This needs to be incorporated. We want to develop more referees
that act as judges of exercises, as explained in Sect. 6.1. We wish
to improve the rendering, in such a way that a user can choose
between different kinds of rendering schemes. We wish to experi-
ment with an alternative semantic model, in which the rather com-
plicated computation of all effects of all player actions in one big
step is simplified to a fair scheduling of single player actions. An-
other experiment is to drop panoptic players, and instead introduce

viewing ranges for both players and referees. Note that this does
not change the types, and is also easy to implement, but it does
radically change the footballer brains: they no longer “see” all po-
sitions of all players, and it is likely that they need make a mental
image of the possible locations of all players.

It is clear that the Soccer-Fun project has not reached its final
form yet. We have many ideas for improvements and experiments
and want to get more feedback from students. The ultimate goal,
however, of Soccer-Fun is to let everybody experience that func-
tional programming is fun.

Acknowledgments

The author would first all like to thank Rinus Plasmeijer, who is
co-teacher of the course “Abstraction and Composition in Program-
ming” for his enthusiasm and inspiration. Wanja Krah has devel-
oped parts of the fourth version of Soccer-Fun during this master
thesis project of the computer science study of the Hogeschool Bra-
bant, The Netherlands. We are grateful to the comments and ideas
of students who have used Soccer-Fun. We thank the reviewers for
their constructive comments.

References
[1] The Robocode site. http://robocode.sourceforge.net/.
[2] The RoboCup site. http://www.robocup.org/.

[3] P. Achten. Clean for Haskell98 Programmers — A Quick Reference
Guide —. Available at: http://www.st.cs.ru.nl/papers/-
2007/CleanHaskellQuickGuide.pdf, July 13 2007.

[4] P. Achten and R. Plasmeijer. Interactive Functional Objects in
Clean. In C. Clack, K. Hammond, and T. Davie, editors, Proc. of
the 9th International Workshop on the Implementation of Functional
Languages, IFL 1997, St.Andrews, UK, Selected Papers, volume 1467
of LNCS, pages 304-321. Springer Verlag, Sep 1998.

P. Achten and M. Wierich. A Tutorial to the Clean Object I/O Library
- Version 1.2. Technical Report CSI-R0003, Computing Science
Institute, Faculty of Mathematics and Informatics, University of
Nijmegen, The Netherlands, Feb. 2000. 294 pages.

[6] T. H. Brus, M. C. J. D. van Eekelen, M. O. van Leer, and M. J.
Plasmeijer. Clean: A language for functional graph writing.
In Proceedings of the Functional Programming Languages and
Computer Architecture, pages 364-384, London, UK, 1987. Springer
Verlag.

[5

=

[7

—

Fédération Internationale de Football Association. Laws of the Game
2007/2008. FIFA-Strasse 20, 8044 Ziirich, Switzerland, July 2007.
http://www.fifa.com/.

[8

=

L. Huang and P. Hudak. Dance: A declarative language for the control
of humanoid robots. Technical Report YALEU/DCS/RR-1253, Yale
University, August 2003.

[9] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows,
Robots, and Functional Reactive Programming. In J. Jeuring and
S. Peyton Jones, editors, Advanced Functional Programming, 4th
International School, Oxford, volume 2638 of LNCS, pages 159-187.
Springer Verlag, 2003.

[10] P. Hudak, S. L. P. Jones, P. Wadler, B. Boutel, J. Fairbairn, J. H.
Fasel, M. M. Guzman, K. Hammond, J. Hughes, T. Johnsson, R. B.
Kieburtz, R. S. Nikhil, W. Partain, and J. Peterson. Report on the
Programming Language Haskell, A Non-strict, Purely Functional
Language. SIGPLAN Notices, 27(5):R1-R164, 1992.

[11] W. Krah. FEindverslag Project: CleanShooter. Afstudeerstage,
Academie voor ICT en Media van de Avans Hogeschool te Breda
at Radboud University Nijmegen, March 16 2007. In Dutch.

[12] R. Plasmeijer and M. van Eekelen. Concurrent CLEAN Language
Report (version 2.0), December 2001. http://www.cs.ru.nl/~clean/.

[13] J. Ullman. Elements of ML Programming — ML97 Edition. Prentice
Hall Inc., 1998.

