
iTasks: Executable Specifications of Interactive Work Flow
Systems for the Web

Rinus Plasmeijer Peter Achten Pieter Koopman
Software Technology Department, Institute for Computing and Information Sciences, Radboud University Nijmegen, Toernooiveld 1,

6525ED Nijmegen, Netherlands
{rinus,P.Achten,pieter}@cs.ru.nl

Abstract
In this paper we introduce the iTask system: a set of combina-
tors to specify work flows in a pure functional language at a very
high level of abstraction. Work flow systems are automated sys-
tems in which tasks are coordinated that have to be executed by
humans and computers. The combinators that we propose support
work flow patterns commonly found in commercial work flow sys-
tems. Compared with most of these commercial systems, the iTask
system offers several advantages: tasks are statically typed, tasks
can be higher order, the combinators are fully compositional, dy-
namic and recursive work flows can be specified, and last but not
least, the specification is used to generate an executable web-based
multi-user work flow application. With the iTask system, useful
work flows can be defined which cannot be expressed in other sys-
tems: work can be interrupted and subsequently directed to other
workers for further processing.

The implementation is special as well. It is based on the Clean
iData toolkit which makes it possible to create fully dynamic, in-
teractive, thin client web applications. Thanks to the generic pro-
gramming techniques used in the iData toolkit, the programming
effort is reduced significantly: state handling, form rendering, user
interaction, and storage management is handled automatically. The
iTask system allows a task to be regarded as a special kind of per-
sistent redex being reduced by the application user via task com-
pletion. The combinators control the order in which these redexes
are made available to the application user. The system rewrites the
persistent task redexes in a similar way as functions are rewritten
in lazy functional languages.

Categories and Subject Descriptors D.2.11 [Software Engi-
neering]: Software Architectures—Domain-specific architectures;
D.1.1 [Programming Techniques]: Applicative (Functional) Pro-
gramming; D.3.2 [Programming Languages]: Language Classi-
ficationsApplicative (functional) languages; H.4.1 [Information
Systems Applications]: Office Automation—Workflow manage-
ment; H.5.3 [Information Interfaces And Presentation]: Group
and Organization Interfaces—Web-based interaction

General Terms Design; Languages

Keywords Clean; iData; iTask

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’07 October 1–3, 2007, Freiburg, Germany
Copyright c© 2007 ACM 978-1-59593-815-2/07/0010. . . $5.00
Reprinted from ICFP’07, Proceedings of the 2007 ACM SIGPLAN International
Conference on Functional Programming, October 1–3, 2007, Freiburg, Germany,
pp. 141–152.

1. Introduction
The iData toolkit (Plasmeijer and Achten 2006a,b) is a high level
library for creating interactive, thin client, web applications. It is
a domain specific language embedded in the pure, lazy functional
programming language Clean. In order to validate the expressive-
ness of the toolkit, a number of non-trivial web applications have
been developed, such as a web shop, a project administration sys-
tem (Plasmeijer and Achten 2006b), and a conference management
system (Plasmeijer and Achten 2006c). Based on these case stud-
ies, we observe that the iData toolkit is well suited to create com-
plex GUI forms, which can be used to create and change values of
complex data types. However, the iData toolkit does not provide
special support for the specification of complex control flows. An
iData web application runs on a server and is started from scratch
each time a page is demanded from a client. To realize a control
flow, the application programmer needs to keep track of the current
application state by means of data storages. This can lead to pro-
grams that are difficult to comprehend and maintain, and it does not
scale well.

In order to include control flow to the iData toolkit, we have
been inspired by contemporary work flow systems. Work flow sys-
tems are automated systems in which work flow situations are spec-
ified (typically in a graphical way) that need to be executed by hu-
mans and computers. Current commercial work flow systems (such
as Business Process Manager, COSA Workflow, FLOWer, i-Flow
6.0, Staffware, Websphere MQ Workflow, and YAWL) mainly deal
with control flow rather than data. Hence, it is not cut and clear
whether the data flow oriented approach of the iData toolkit is suit-
able to support work flows.

In this paper we present the iTask system. It is a combinator li-
brary for the specification of interactive multi-user web-based work
flows. It is built on top of the iData toolkit, and both can be used
within the same program. It covers all known work flow patterns
that are found in contemporary commercial work flow tools (van
der Aalst et al. 2002), and is thus suited to describe real-world ap-
plications. Moreover, we introduce a number of novel combinators
to specify dynamic, higher-order, and recursive work flows. The
iTasks system makes good use of the functional host language, and
extend these patterns with strong typing, higher-order functions,
lazy evaluation, and a monadic style of programming. Its founda-
tion upon the generic (Hinze 2000; Alimarine 2005) features of the
iData toolkit yields compact, robust, reusable and understandable
code. Work flows are defined on a very high level of abstraction. It
truly is an executable specification, as much is done and generated
automatically. This requires a significant amount of explanation be-
fore we show the expressive power in the examples.

We start with a short overview of the iData toolkit in Sect. 2. By
making use of generic programming techniques, web forms (iData

141

elements or editors) are generated and handled automatically for
the used types. Arbitrarily complex dependencies between iData
elements can be defined in a functional style. Such editors behave
in a similar way as cells in a spreadsheet: making a change in one
of the editors automatically affects the contents of every editor that
depends on its value. In Sect. 3 we explain why this standard behav-
ior of an editor is not suitable to express control flows conveniently
and we show how this is solved in a suitable way: data editors be-
come task editors. The concepts and their implementation are ex-
plained in a stripped down version of the iTask system: the iTask
Core System. In Sect. 4 we illustrate the power of the full system
by giving a representative set of work flow examples. In Sect. 5 we
reveal the most interesting aspects of the real implementation of the
iTask system. We end with the discussion of related work in Sect.
6 and conclusions in Sect. 7.

2. The iData Toolkit
In this section we present the ‘classic’ iData toolkit. With this
iData toolkit one can create dynamic interactive web applications.
These web applications are geared towards the manipulation of
data, typical examples are calculators and web shops. The web ap-
plication at the server side performs all essential work, the browser
at the client side just displays the HTML-code produced by the
web application and passes the user input to the web application.
This distribution of work is called a thin client architecture. First,
we give an informal explanation of iData elements, which are the
building blocks of the iData toolkit (Sect. 2.1). Second, we present
the programming paradigm (Sect. 2.2).

2.1 iData elements
iData elements are the fundamental building blocks of the iData
toolkit. An iData element is a typed unit that provides the applica-
tion user with a GUI (an HTML form) that allows her to edit values
of that given type only. This editor can be derived automatically
from the (recursive) type using the generic programming facilities
of Clean. If the generic behavior is not the desired one, the pro-
grammer can define a tailor made form for all values of a specific
type or even for individual values. In this paper, we use a few of the
available toolkit functions to create iData elements.

An iData element is created with a function of synonym type
HStIO that transforms an opaque environment of type *HSt into a
tuple containing its form and the new *HSt:

:: HStIO d :== *HSt→ (Form d,*HSt)

A Form contains state information about the iData element as well
as the associated HTML code for the form corresponding to the
iData element. *HSt is an opaque environment that contains the
internal administration that is required for creating HTML pages
and handling forms. It can be updated destructively, hence the
uniqueness type attribute *. Please consult (Plasmeijer and Achten
2006a) for details of HSt. Passing a unique *HSt around between
iData elements orders the manipulations of the iData elements.
This effect is similar to using the IOmonad in Haskell, but uniquely
attributed states are passed around explicitly.

The overloaded function mkIData creates an iData element.
mkIData is an explicit HSt environment transformer function. Its sig-
nature is (in Clean, type classes are enumerated at the end of a type
signature, after the | symbol):

mkIData :: (InIDataId d)→HStIO d | iData d

class iData d | gForm {|?|}, iCreateAndPrint, gParse{|?|}
, gerda {|?|}, TC d

class iCreateAndPrint d | iCreate, iPrint d
class iCreate d | gUpd {|?|} d
class iPrint d | gPrint{|?|} d

mkIData uses generic functions (in this case of kind ?) to create
iData elements (do not confuse this kind with the uniqueness
attribute). These are collected in the type class iData which gathers
the six generic cornerstone functions of the iData toolkit. They can
be used for values of any type to automatically create an HTML
form (gForm), to handle the effect of any edit action with the browser
including the creation of default values (gUpd), to print or serialize
any value (gPrint), to parse or de-serialize any value (gParse), to
store, retrieve or update any value in a relational database (gerda),
or to serialize and de-serialize values and functions in a Dynamic

(using the compiler generated TC class).
mkIData is applied to an (InIDataId d) argument that describes the

type and value of the iData element that is to be created:

:: InIDataId d :== (Init, FormId d)
:: Init = Const | Init | Set

mkFormId :: String d→FormId d

The function mkFormId creates a default (FormId d) value, given a
unique identifier string1 and the value of the iData element. Note
that in Clean the arity of functions is denoted explicitly by white-
space between the arguments, hence the arity ofmkFormId is two. The
Init value describes the use of that value: it is either a Constant or it
can be edited by the user. In case of Init, it concerns the initial value
of the editor. Finally, it can be Set to a new value by the program.
A (FormId d) value is a record that identifies and describes the use
of the iData element:

:: FormId d = { id :: String, ival :: d
, lifespan :: Lifespan, mode :: Mode }

:: Lifespan = Database | Persistent | PersistentRO
| Session | Page | Temp

:: Mode = Edit | Submit | Display | NoForm

The lifespan field controls the storage of the value of the iData
element: it can be stored persistently on the server side on disk
in a relational database (Database) or in a file (Persistent with RO

read-only), it can be stored locally at the client site in the web
page (Session, Page (default)), or one can decide not to store it at
all (Temp). Storage and retrieval of data is done automatically by the
system. The mode field controls the rendering of the iData value: by
default it can be Edited which means that every change made in the
form is communicated to the server, one can choose for the more
traditional handling of forms where local changes can be made that
are all communicated when the Submit button is pressed, but it can
also be Displayed as a constant, or it is not rendered at all (NoForm).

To facilitate the creation of non-default (FormId d) values, the
following straightforward type classes have been defined:

class (<@) infixl 4 att :: (FormId d) att→FormId d
class (>@) infixr 4 att :: att (FormId d)→FormId d
instance <@ String, Lifespan, Mode
instance >@ String, Lifespan, Mode

For instance, (mkFormId "answer!" 42 <@ Display) describes an iden-
tifier for an iData element of type Int that has label "answer!", value
42, and cannot be edited by the user.

When evaluated, (mkIData (init, iDataId)) basically performs
the following actions: it first checks whether an earlier incarnation
of the iData element (identified by iDataId.id, i.e. the name of the
iData element) exists. If this is not the case, or init equals Set, then
iDataId.ival is used as the current value of the iData element. If it
already existed, then it contains a possibly user-edited value, which
is used subsequently. Hence, the final iData element is always up-
to-date. This is recorded in the (Form d) record:

1 The use of strings for form identification can be a source of (hard to locate)
errors in the iData system. The iTask system eliminates these issues by an
automated systematic identification system.

142

:: Form d= { changed :: Bool, value :: d, form :: [BodyTag] }
The changed field records the fact whether the application user has
previously edited the value of the iData element; thevalue is the up-
to-date value; form is the HTML rendering of this iData element
that can be used within an arbitrary HTML page. BodyTag is an
algebraic data type that maps one-to-one to the HTML-grammar.

As an example, consider the following function:

iDataF label= mkIData (Init, mkFormId label default)

The function default uses the generic gUpd function to create a value
of the desired type:

default :: d | iCreate d

This generic default function plays a significant role in both the
iData and iTasks toolkits: it allows us to always create a value of
the correct type. The type of the context in which iDataF is applied
determines what value is created and then displayed. Just by giving
it type String→HStIO Int we obtain an Int editor, and by giving it
some other type, such as String→HStIO Person with:

:: Person= { firstName :: String, surname :: String
, dateOfBirth :: HtmlDate, gender :: Gender }

:: Gender= Male | Female

we obtain a Person editor. See Fig. 1 for screen shots.

Figure 1. (a) An Int editor. (b) A Person editor.

A web application is any function that computes an HTML
page, using an *HSt environment. Hence, its type is *HSt→ (Html,
*HSt). The function mkHtml, when given a string (to name a page) and
HTML code (the body of the page), is such a function. The wrapper
function doHtmlServer transforms it into an interactive program.

doHtmlServer :: (*HSt→ (Html,*HSt)) *World→*World
mkHtml :: String [BodyTag] *HSt→ (Html,*HSt)

As an example, we show the complete code of a web application
that allows users to edit integer values (see Fig. 2(a) for a screen
shot). In Clean,] is a non-recursive let-definition which scope
extends downwards.

module singleIntegerEditor
import StdEnv, StdHtml

Start world= doHtmlServer tiny world

tiny :: *HSt→ (Html,*HSt)
tiny hst
] (intF,hst) = mkIData (Init,mkFormId "answer!" 42) hst
= mkHtml "Simple Example" intF.form hst

Notice that whenever the user commits a change in one of the
forms on a page with iData, the information is sent to the server
which then starts the corresponding Clean application from scratch.
The application automatically recovers the (possibly persistent)
values of all iData elements, including those that may have been
edited by the user. In the tiny application, the effect is that the
previous change made by the user is noticed and shown. This
is not exciting, but by connecting iData elements, we can make
interesting applications.

Figure 2. (a) A single integer editor. (b) Display the sum of two
integer input fields.

2.2 Interconnecting iData

An interactive web application programmed with iData usually
consists of a collection of interconnected iData elements. Inter-
connecting means that the value of iData elements may depend on
the value of others. We express this dependency as a function. The
application programmer can exploit two important aspects of iData
elements. First, the behavior of iData elements (discussed in Sect.
2.1) implies that they can be shared, i.e.: multiple occurrences of
the same iData identifier within the interconnection relation all re-
fer to the same iData element. Second, the rendering of an iData el-
ement (the .form field of its Form record) is perfectly separated from
its behavior. The rendering can be used arbitrarily many times, or
even not at all. Each rendering refers to the same iData element.
We exploit these features in the iTasks toolkit in the next sections.

As stated at the end of Sect. 2.1, the web application is restarted
from scratch every time a user event is posted to it from the client
side. The interconnection relation determines dynamically which
iData elements recover their, possibly edited, states and also de-
termines what HTML output should be returned to the client side.
The ability to recover all of its states is a crucial feature of the
iData system, because a web application is restarted on each event
and hence has no notion of the previous state at that moment.

As an example of interconnecting iData elements, consider a
program that creates two integer edit boxes and an integer display
containing the sum of values of the two edit boxes (Fig. 2(b)):

Start world= doHtmlServer add world 1.

add :: *HSt→ (Html,*HSt) 2.

add hst 3.

] (i1F,hst) = mkIData (Init,mkFormId "i1" 0) hst 4.

] (i2F,hst) = mkIData (Init,mkFormId "i2" 0) hst 5.

] (i3F,hst) = mkIData (Set, mkFormId "sum" 6.

(i1F.value + i2F.value)<@Display) hst 7.

= mkHtml "Sum" [STable [] [i1F.form,i2F.form,i3F.form]] hst 8.

The two input elements are activated in lines 4–5. Their possibly
edited values are used by the sum display in lines 6–7. Their forms
are displayed in a single column in line 8.

Notice the declarative nature of interconnecting iData elements:
one specifies two input boxes and the display of their sum in a third,
and this is indeed what we get over and over again whenever a user
changes one of the input values. In that sense, the behavior of an
iData application can be compared with value changes made in a
cell of a spreadsheet. The rendering and handling of input is done
automatically. Notice that making of a HTML-table that contains
the forms of the three iData elements is separated from the creation
of the elements themselves.

3. Introduction to iTasks
The following iData exercise was given to us by Phil Wadler:

“Suppose that you want two integer forms to appear one
after another on the screen and then show the sum of them,
how do you program this using iData?”

143

The key concept in the iData toolkit is that an interactive appli-
cation is a collection of interconnected editors. From this point of
view, the concept of a ‘terminated’ editor is not the standard be-
havior of an iData editor. Instead, the collection of editors stays
alive after each edit operation, allowing the user to enter other data
as is also common in a spreadsheet. The exercise above illustrates
the need to specify the control flow between editors as well. This is
technically possible since all editors are created dynamically. How-
ever, there is no specific support in the iData library to do this con-
veniently and in our case studies we have encountered similar situ-
ations in which control flows could be defined with iData elements,
but in an ad-hoc way.

In this section we explain the principle of the iTasks toolkit. We
first show in Sect. 3.1 how a standard iData editor can be changed
into an iTask editor by extending it with a storage for its evaluation
state and a confirmation button, which can be used by the user to
confirm that the iData element is no longer required. This is defined
entirely within the iData toolkit. With this technique, an ad-hoc
solution to Wadler’s exercise can be constructed. This solution,
however, does not scale up with real programs. In Sect. 3.2 we
show a solution to Wadler’s exercise using an extended editor and
a monadic combinator library in a way that does scale well.

3.1 Handling a Sequence of Forms in iData

We define a special function to make a taskEditor. It is an ‘ordinary’
editor extended with a Boolean iData state in which we record
whether the editor task is finished. It is not up to an iData editor
to decide whether a task is finished, but this is indicated by the user
by pressing an additional button. Hence, a standard iData editor is
extended with a button and a boolean storage. These elements are
created by the library functions simpleButton and mkStoreForm:

simpleButton :: String String (d→d)→HStIO (d→d)
mkStoreForm :: (InIDataId d) (d→d)→HStIO d | iData d

(simpleButton l name f) creates an iData element whose appearance
is that of a push button with given name. It is identified with label l.
When pressed (which is an edit operation by the user), its value is
the function f, otherwise it is the identity function. (mkStoreForm iD
f) creates an iData element that applies f to its current state.

With these two standard functions from the iData toolkit we can
enhance any iData editor with a button and boolean storage:

taskEditor :: String String a *HSt→ (Bool,a, [BodyTag] ,*HSt) 1.

| iData a 2.

taskEditor btnName label v hst 3.

] (btn, hst) = simpleButton btnLabel btnName (const True) hst 4.

] (done, hst) = mkStoreForm (Init,mkFormId storeLabel False) 5.

btn.value hst 6.

] (f, btnF) = i f done.value ((>@) Display,Br) (id,btn.form) 7.

] (idata,hst) = mkIData (Init,f (mkFormId editLabel v)) hst 8.

= (done.value,idata.value,idata.form++ [btnF] ,hst) 9.

where editLabel = label +> "_Editor" 10.

btnLabel = label +> "_Button" 11.

storeLabel= label +> "_Store" 12.

In the function taskEditor we create, as usual, an iData element
for the value v (line 8). The label argument is used to create
three additional identifiers for the value (editLabel), the button
element (btnLabel), and the boolean storage element (storeLabel).
In Clean, Strings are arrays of unboxed Chars. For convenient String
concatenation, the overloaded operators (x+>str) and (str<+x) are
used which concatenate the string representation of x and str.

The trigger button (line 4) is a simple button that, when pressed,
has the function value (const True), and which is the identity func-
tion id otherwise. The boolean storage is created as an iData stor-
age (lines 5–6). It is interconnected with the trigger button by its
value: it applies the function value of the button to its boolean

value (initially False). Therefore, the value of the boolean storage
becomes True only if the user presses the trigger button. If the user
has indicated that the editor has terminated, then the trigger but-
ton should not appear (Br encodes
), and the iData element
should be in Display mode, and otherwise the trigger button should
be shown (btn.form) and the iData element should still be editable
(line 7). In this way, the user is forced to continue with whatever
user interface is created after pressing the trigger button.

By using taskEditor instead of a regular editor we can formulate
a solution to Wadler’s exercise.

sequenceIData :: *HSt→ (Html,*HSt)
sequenceIData hst
] (done1,v1,form1,hst) = taskEditor "Done" "v1" 0 hst
] (done2,v2,form2,hst) = taskEditor "Done" "v2" 0 hst
= mkHtml "Naive solution:"

[BodyTag form1
, i f done1 (BodyTag form2) EmptyBody
, i f done2 (BodyTag [Txt "+" ,Hr [] ,toHtml (v1+v2)]) EmptyBody
] hst

In this solution, different HTML code is generated depending on
which iData element is finished. In this case, the exercise was not
hard, but the resulting code is not very declarative either. We have
to explicitly analyze in which state the program is (which tasks
are finished or not). Clearly, this style of programming will not
scale to programs where many different control flows are possible.
Additionally, we need to invent unique identifiers ("v1", "v2", . . .)
for every iData element.

However, the basic idea of extending iData elements with a
boolean storage and trigger button turns out to be a valid one. We
use it in the next section to create a scalable solution.

3.2 The iTask Core System
The reason why most web applications are much harder to pro-
gram, read and understand when compared with desktop applica-
tions is that desktop applications can directly interact with the en-
vironment at any point in time because they are directly connected
with that environment. Due to the client-server architecture, a web
application cannot do this. A web application emits an HTML page
and terminates. It has to store information somewhere to handle the
next request from the user in an appropriate way. It has to recover
the relevant states, find out what it was doing and what it has to do
next. The resulting code is hard to understand.

A conceivable alternative approach is to adopt the Seaside ap-
proach (Ducasse et al. 2004). If the application can automatically
remember where it was, programs become easier to write and read.
Since a Clean application is compiled to native code, suspending
execution, as Seaside does, involves creating core dumps of the
run-time system. However, a work flow system needs to support
several users that work together. The action of one user can influ-
ence the work of others. A core dump only reflects the work of one
user. For this reason, we propose a simpler set-up of the system:
we start the same application from scratch, as we already did, and
use iData elements to remember the state for all users. For a pro-
grammer, the application still appears to behave as if it continues
evaluation after an I/O request from a browser.

In this section we introduce the main principles of the iTasks
system. For didactic reasons we restrain ourselves to a strongly
simplified iTasks core system. This core system is single user and
has limited possibilities to manipulate tasks. With the core system,
we create a satisfying solution to Wadler’s exercise. In Sect. 4 we
extend this to a full fledged multi-user system.

3.2.1 Editors as Primitive iTask in the Core System
iTasks are defined on top of iData. An iTask is a state transition
function of the following type:

144

:: Task a :== *TSt→ (a,*TSt)

Later in this section we show how tasks can be sequentially com-
posed. iTasks work on a unique state *TStwhich extends the unique
iData state *HStwith a boolean value activated to indicate the status
of a task (when a task is called it tells whether it has to be activated
or not, when a task has been evaluated it tells whether it is finished
or not), a tasknr for the automatic generation of fresh task iden-
tifier values, and html which accumulates all HTML output. For
each of these fields, we introduce corresponding update functions
(set_activated, set_tasknr, and set_html).

:: *TSt = { hst :: *HSt
, activated :: Bool
, tasknr :: TaskID
, html :: [BodyTag] }

:: TaskID :== [Int]
set_activated :: Bool *TSt→*TSt
set_tasknr :: TaskID *TSt→*TSt
set_html :: [BodyTag] *TSt→*TSt

We first introduce a function that lifts an extended iData ele-
ment, as described in Sect. 3.1, to an iTask:

editTask :: String a→Task a | iData a
editTask name a= doTask editTask‘
where
editTask‘ tst=:{tasknr,hst,html}
] (done,na,nhtml,hst) = taskEditor name (toString tasknr) a hst
= (na,{tst & activated= done, hst= hst, html= html++ nhtml})

editTask takes an initial value of any type and delivers an iTask of
that type. When the task is activated, an extended iData element
is created by calling taskEditor. Any iData element automatically
remembers the state of any edit action, no matter how complicated
the editor is. The HTML code produced by taskEditor is added to
the accumulator of the iTask state. In the end all HTML code of
all iTasks can be displayed by showing the HTML of the top-task.
There can be many active iTasks, so in practice this is probably not
what we want. However, for the core system this will do.

The function doTask is an internal wrapper function that is used
within the iTasks toolkit for every iTask (note that o is function
composition).

doTask :: (Task a)→Task a | iCreate a
doTask mytask = evalTask o incTaskNr
where evalTask tst=:{activated, tasknr}

| not activated= (default, tst)
] (val, tst) = mytask tst
= (val,{tst & tasknr= tasknr})

doTaskfirst ensures that the task number is incremented. In this way,
each task obtains a unique number, which eliminates the shortcom-
ing that was mentioned in Sect. 3.1. Tasks are numbered system-
atically, in the same way as chapters, sections and subsections are
numbered in a book or in this paper: tasks on the same level are
numbered subsequently with incTaskNr below, whereas a subtask
j of task i is numbered i.j with subTaskNr below. Fresh subtask
numbers are generated with newSubTaskNr. We use a reversed list of
integers for this administration.

incTaskNr tst= {tst & tasknr= case tst.tasknr of
[] → [0]
[i:is]→ [i+1:is] }

subTaskNr i tst= {tst & tasknr= [i:tst.tasknr]}
newSubTaskNr tst= {tst & tasknr= [-1:tst.tasknr]}
The systematic numbering is important because it is also used for
garbage collection of subtasks (see Sect. 5).

Next doTask checks whether the task indeed is the next task to be
activated by inspecting the value of tst.activated:

• If not activated, the default value is returned. This explains the
overloading context restriction of doTask. As a consequence, an
iTask always has a value, just as an iData element.

• If activated, the task can be executed. This means that the
user can select this task via the web interface, and proceed
by generating an input event for this task. Task definitions
are compositional, so the started tasks may consist of many
subtasks of arbitrary complexity. When a task is started, it is
either activated (or re-activated for further evaluation) or, in
case the task has already been finished in the past, its result
is stored as an iData object and is retrieved. In any of these
cases, the result of a task (either finished or not yet finished) is
returned to the caller of doTask and the task number is reset to
its original value.
It is assumed that any task sets activated to True if the task is
finished (indicating that the next task can be activated), and to
False otherwise. In the latter case the user still has to do more
work on it in the newly created web page.

3.2.2 Basic Combinators of the Core System
Now we introduce iTask combinators for the sequential composi-
tion of iTasks. Thanks to uniqueness typing we can freely choose
how to thread the unique iTask state *TSt: either explicitly in the
Clean style or implicitly using a monadic style. In the implemen-
tation of the iTask system we have chosen for the explicit style:
it gives more flexibility because we have direct access to both
the unique iTask state *TSt and the unique iData state *HSt as is
shown in the definition of editTask. However, to the application pro-
grammer *TSt is an opaque environment, and for her we provide a
monadic interface.

(=>>) infix 1 :: (Task a) (a→Task b)→Task b
(]>>) infixl 1 :: (Task a) (Task b)→Task b
return :: a→Task a

It is convenient to have an alternative return_D function that also
displays the returned value. Its definition is straightforward:

return_D :: a→Task a | gForm{|?|}, iCreateAndPrint a
return_D a= doTask (λtst→ (a,{tst & html= tst.html++ toHtml a})

When a task is in progress, it is useful to provide feedback to
the user what she is supposed to be doing. For this purpose two
combinators are introduced. (p ?>>t) is a task that displays prompt
p as long as task t is running, whereas (p !>> t) always displays
prompt p as soon as task t is activated.

(?>>) infix 5 :: [BodyTag] (Task a)→Task a | iCreate a
(?>>) prompt task= prompt_task
where

prompt_task tst=:{html= ohtml,activated}
| not activated= (default,tst)
] (a,tst=:{activated,html= nhtml}) = task {tst & html= []}
| activated = (a,{tst & html= ohtml})
| otherwise = (a,{tst & html= ohtml++ prompt++ nhtml})

(!>>) infix 5 :: [BodyTag] (Task a)→Task a | iCreate a
(!>>) prompt task= prompt_task
where

prompt_task tst=:{html= ohtml,activated}
| not activated = (default,tst)
] (a,tst=:{html= nhtml}) = task {tst & html= []}
= (a,{tst & html= ohtml++ prompt++ nhtml})

With these definitions, the solution to Wadler’s exercise, given by
sequenceITask in Fig. 3, becomes surprisingly simple. Notice that
the solution not only works for integers, since sequenceITask is
overloaded. It works for any type on which iData and + are defined.
The implementation is concise, which is completely due to the
power of the underlying iData library.

145

sequenceITask :: Task a | iData, + a
sequenceITask
= editTask "Done" default=>> λv1→
editTask "Done" default=>> λv2→
[Txt "+" ,Hr []]
!>> return_D (v1+v2)

Figure 3. The sum exercise, as an iTask application.

The screen shot shows that the iTasks implementation adds a
tracing option at the top of the window. For each user, the main
tasks are displayed in a column. The selected main task is displayed
next to this column.

3.2.3 Reflection (Part I)
The behavior of the described core system is a combination of re-
evaluating the application and having the extended iData elements
retrieve their previous states that are possibly updated with the
latest changes done by the application user. The Clean application
is still restarted from scratch when a new page is requested from
the browser. However, the application will now automatically find
its way back to the tasks it was working on during the previous
incarnation. Any iTask editor created with editTask automatically
remembers its contents and state (finished or not) while the other
iTask combinators are pure functions which can be recalculated
and in this way the system can determine which other tasks have
to be inspected next. Tasks that are not yet activated might deliver
some default value, but it is not important because it is not used
anywhere yet, and the task produces no HTML code. In this way
we achieve the same result as in Seaside, albeit that we reconstruct
the state of the run-time system by a combination of re-evaluation
from scratch and restoring of the previous edit states.

3.2.4 Work Flow Pattern Combinators of the Core System
The core system presented above is extendable. The sequential
composition is covered by the combinators =>> and]>>. In this
section we introduce parallel composition, repetition and recursion.
In Sect. 6 we discuss their relation with work flow patterns found
in contemporary work flow tools.

The infix operator (t1 -&&- t2) activates subtasks t1 and t2
and ends when both subtasks are completed; the infix operator
(t1 -||- t2) also activates two subtasks t1 and t2 but ends as soon
as one of them terminates, but it is biased to the first task at the
same time. In both cases, the user can work on each subtask in any
desired order. A subtask, like any other task, can consist of any
composition of iTasks.

(-&&-) infixr 4 :: (Task a) (Task b)→Task (a,b) | iCreate a
& iCreate b

(-&&-) taska taskb= doTask and
where

and tst=:{tasknr}
] (a,tst=:{activated=adone}) = mkParSubTask 0 tasknr taska tst
] (b,tst=:{activated=bdone}) = mkParSubTask 1 tasknr taskb tst
= ((a,b) ,set_activated (adone && bdone) tst

(-||-) infixr 3 :: (Task a) (Task a)→Task a | iCreate a
(-||-) taska taskb= doTask or
where

or tst=:{tasknr}
] (a,tst=:{activated=adone}) = mkParSubTask 0 tasknr taska tst

] (b,tst=:{activated=bdone}) = mkParSubTask 1 tasknr taskb tst
= (i f adone a (i f bdone b default)

,set_activated (adone || bdone) tst
)

mkParSubTask :: Int TaskID (Task a)→Task a
mkParSubTask i tasknr task

= task o newSubTaskNr o set_activated True o subTaskNr i

The function mkParSubTask is a special wrapper function for sub-
tasks. It is used to activate a subtask and to ensure that it gets a
correct task number.

Another iTask combinator is foreverTask which repeats a task
infinitely many times.

foreverTask :: (Task a)→Task a | iCreate a
foreverTask task

= doTask (foreverTask task o snd o task o newSubTaskNr)

As an example, consider the following definition:

t = foreverTask (sequenceITask -||- editTask "Cancel" default)

In t the user can work on sequenceITask, but while doing this, she
can always decide to cancel it. After completion of any of these
alternatives the whole task is repeated.

More general than repetition is to allow arbitrary recursive work
flows. A crucial combinator for recursion is newTask.

newTask :: (Task a)→Task a | iCreate a
newTask task= doTask (task o newSubTaskNr)

(newTask t) promotes any user defined task t to a proper iTask
such that it can be recursively called without causing possible non-
termination. It ensures that t is only called when it is its turn to be
activated and that an appropriate subtask number is assigned to it.
Consider the following example of a recursive work flow:

getPositive :: Int→Task Int
getPositive i= newTask (getPositive‘ i) 1.

where 2.

getPositive‘ i= [Txt "Type in a positive number:"] 3.

?>> editTask "Done" i=>> λni→ 4.

i f (ni> 0) (return ni) (getPositive ni) 5.

Function getPositive requests a positive number from the user. If
this is the case the number typed in is returned, otherwise the task
calls itself recursively for a new attempt. This example works fine.
However, it would not terminate if getPositive‘ calls itself directly
in line 5 instead of indirectly via a call to newTask. Remember that
every editor returns a value, whether it is finished or not. If it
is not yet finished, it returns default. The default value for type
Int happens to be zero, and therefore by default getPositive‘ goes
into recursion. The function newTask will prevent infinite recursion
because the indicated task will not be activated when the previous
task is not yet finished. Hence, one has to keep in mind to regard
getPositive as a task that can be recursively activated, and not as a
plain recursive function.

The combinator repeatTask repeats a given task, task, until the
predicate p holds.

repeatTask task p= t default
where

t v= newTask (task v) =>> λnv→ i f (p nv) (return_D nv) (t nv)

Using this combinator the task getPositive can be expressed as:

getPositive= repeatTask (λi→ [Txt "Type in a positive number:"]
?>> editTask "Done" i) (λx→x>0)

Note the importance of the place of newTask. If it would be moved
to the recursive call, by replacing (t v) by newTask (t v), the task
would always be executed immediately for a first time (i.e. without
waiting for activation). This is generally not the desired behavior.

146

3.2.5 Reflection (Part II)
With the combinators presented above, iTasks can be composed as
desired. As discussed in Sect. 3.2.4, one can imagine all kinds of
additional combinators. For all well-known work flow patterns we
have defined iTask combinators that mimic their behavior. In the
next section we discuss the most important ones and show their
usage. The actual implementation of the combinators in the iTask
library is more complicated than the combinators introduced in the
core system. There are additional requirements, such as:

Presentation issues: One can construct complicated tasks that
have to be presented to users systematically and clearly. The
system needs to prompt the user for information on the right
moment, remove feedback information when it is no longer
needed, and so on. A user might have to work on several tasks
in any order she wants. Such tasks have to be presented clearly
as well, e.g. by creating a separate web page for each task and
a button to navigate between these tasks.

Multiple users: A work flow system is a multi-user system. Tasks
can be assigned to different users, persistent storage and re-
trieval of information in a database needs to be handled, think
about version control, ensure consistent behavior by ruling out
possible race conditions, ensure that the correct information is
communicated to each user, inform a user that she has to wait
on information to be produced by someone else, and so on.

Efficiency: Real world work flow systems run for years. How
can we ensure that the system will scale up and that it can
reconstruct itself efficiently?

Features: One can imagine many more options one would like to
have. For instance, it might be important that tasks are per-
formed on time. A manager might want to know which tasks
and/or persons are preventing the completion of other tasks.

In the next section we present the iTask combinators including sup-
port for these features. The consequences this has for the imple-
mentation of our core system is described next.

4. Overview of the iTasks System
In this section we present the main concepts of the iTasks toolkit by
means of a number of examples. Please note that despite their small
size, they do represent complex work flow situations that occur
in the real world. Some of these situations can not be handled by
contemporary work flow specification tools.

4.1 Sequence and choice: a single step coffee machine
Coffee vending machines are popular examples to illustrate se-
quencing and choice. We present an example of a coffee machine
that offers the user either coffee or tea. After choosing, the user
pays the proper amount of money and obtains the selected product.
This also terminates the coffee machine:

Start world= doHtmlServer (singleUserTask coffeemachine) world

coffeemachine :: Task (String,Int)
coffeemachine
= [Txt "Choose product:"]
?>> chooseTask [(p <+ ": " <+ c, return prod)

\\ prod=:(p,c)←products
] =>> λprod=:(p,c)→

[Txt ("Chosen product: " <+ p)]
?>> pay prod (buttonTask "Thanks" (return prod))

where
products = [("Coffee",100),("Tea",50)]
pay (p,c) t= buttonTask ("Pay " <+ c <+ " cents") t

The combinators that are used in this example are:

buttonTask :: String (Task a) →Task a | iCreateAndPrint a
chooseTask :: [(String, Task a)]→Task a | iCreateAndPrint a

(buttonTask l t) enhances a task t with a push button labeled with
l that needs to be pressed first by the user before she can do t.
Choosing between alternatives of labeled actions li and tasks ti is
given by chooseTask [(l0 ,t0). . . (ln ,tn)]. The resulting value is the
value of the selected task ti.

The function singeUserTask is a wrapper function that converts
an iTask to an iData environment transformer function:

singleUserTask :: (Task a) *HSt→ (Html,*HSt) | iCreate a

4.2 Repetition, recursion and state: a coffee machine
The coffee machine in the previous example offers a single bever-
age, and terminates. It is extended to an eternal vending machine
with the foreverTask combinator:

Start world
= doHtmlServer (singleUserTask (foreverTask coffeemachine)) world

The previous example abstracted from the paying task: the function
(pay (p,c) t) offers a labeled action to pay the full amount of
money, and then continues with task t. In a more refined model,
the user is able to insert coins until the inserted amount of money
exceeds the cost of the product. Moreover, she can also choose to
abandon the paying task and not get the selected drink at all. This
is suitably modeled with a recursive task specification:

getCoins :: ((Bool,Int,Int)→Task (Bool,Int,Int))
getCoins= repeatTask get (λ(cancel,cost,_)→cancel || cost≤ 0)
where
get (cancel,cost,paid)

= newTask "pay" ([Txt ("To pay: " <+ cost)]
?>> chooseTask [(c +> " cents" , return (False,c))

\\ c←coins
]

-||-
buttonTask "Cancel" (return (True,0))

=>> λ(cancel,c)→return (cancel,cost-c,paid+c))
coins = [5,10,20,50,100,200]

The crucial combinator in this definition is newTask which was
introduced in Sect. 3.2.4 (the additional string argument is used
for tracing). Clearly, we regard getCoins not as a common recursive
function, but as a definition of a recursive task that has to be
activated when the previous task, which might be the previous
invocation of getCoins, is finished.

We can now redefine the pay function of Sect. 4.1:

pay (p,c) t= getCoins (False,c,0) =>> λ(cancel,_,paid)→
[Txt ("Product= "<+if cancel "cancelled" p

<+". Returned money= "<+(paid-c))]
?>> t

It should be noted that getCoins and pay illustrate that tasks may
depend on the actual values that are generated within the system.
These kind of workflows are hard to model with current day work
flow specification tools.

4.3 Multi-User Workflows
The solution to Phil Wadler’s exercise that was given in Sect. 3,
was a single user application. Work flow systems usually involve
arbitrarily many users. This is supported by the iTask system.

multiUserTask :: Int (Task a) *HSt→ (Html,*HSt) | iCreate a
:: UserID :== Int

We identify users with index values i ≥ 0. The wrapper function
(multiUserTask n t) creates a work flow system, defined by t for

147

users 0 . . . n − 1. For quick testing, it provides an additional user
interface for selecting the proper user.

By default, tasks store their information on the client side. If
one wants to use the system with multiple users over the net, one
has to store iTask information persistently on the server side. To
conveniently control this, we introduce similar operations as <@ and
@>(Sect. 2.1).

class (<<@) infix 3 att :: (Task a) att→Task a
class (@>>) infix 3 att :: att (Task a)→Task a
instance <<@ Lifespan, Mode
instance @>> Lifespan, Mode

The operators can be applied to any task or task expression to set the
attributes of all underlying iData elements. So, (task<<@Persistent)
stores the information of all the underlying iData in files while
(task<<@Database) stores the information in a relational database.
Storage and retrieval is handled automatically (Sect. 2).

Assigning a task t to user i with some motivation m is done by
(m ,i)@:t. If there is no motivation, then one uses i@::t.

(@:) infix 3 :: (String,UserID) (Task a)→Task a | iCreate a
(@::) infix 3 :: UserID (Task a)→Task a | iCreate a

Suppose that the first integer editing task in Wadler’s exercise
should be performed by user 1, the second by user 2, and the result
is shown to user 0 (the default user). The code becomes:

sequenceMU :: Task a | iData, +, zero a
sequenceMU
= ("Enter a number",1) @: editTask "Done" zero=>> λv1→

("Enter a number",2) @: editTask "Done" zero=>> λv2→
[Txt "+" ,Hr []] !>> return_D (v1 + v2)

Start world
= doHtmlServer (multiUserTask 2 sequenceMU <<@ Persistent) world

The iTask system ensures that each user sees only tasks assigned
to them. This is essentially a filter of the full task tree, because any
task may decide to assign tasks to any other user.

4.4 Speculative tasks and multiple users: deadlines
Work flow systems need to handle time-related tasks: some task t
has to be finished before a given time T or it is canceled. In this
example we show how this is expressed with the iTasks toolkit.
The time related combinators are the following:

waitForDateTask :: HtmlDate→Task HtmlDate
waitForTimeTask :: HtmlTime→Task HtmlTime
waitForTimerTask :: HtmlTime→Task HtmlTime

The algebraic types HtmlDate and HtmlTime are elements of the iData
toolkit that have been specialized to show user convenient date and
time editors. waitForDate(Time)Task terminates in case the given date
(time of day) has passed; waitForTimerTask terminates after a given
time interval.

In our example, we use the latter combinator to delegate work:

delegateTask who time t 1.

= ("Timed Task" ,who)@: 2.

waitForTimerTask time]>> return Nothing 3.

-||- 4.

[Txt ("Please finish task before" <+ time)] 5.

?>> (t =>> λv→return (Just v)) 6.

) 7.

(delegateTask i dt t) assigns a task t to user i that needs to be fin-
ished before dt time (line 5–6) is passed. If the user does not com-
plete the task on time, delegation fails, and should also terminate
(line 3).

The main work flow situation is modeled as follows:

deadline :: (Task a)→Task a | iData a 1.

deadline t 2.

= [Txt "Choose person you want to delegate work to:"] 3.

?>> editTask "Set" (PullDown size (0 ,map toString [1..n])) 4.

=>> λwho→ 5.

[Txt "How long do you want to wait?"] 6.

?>> editTask "SetTime" default =>> λtime→ 7.

[Txt "Cancel delegated work if you get impatient:"] 8.

?>> delegateTask who time t 9.

-||- 10.

buttonTask "Cancel" (return Nothing) =>> check 11.

where
check result 12.

= case result of 13.

(Just value)→ [Txt ("Result of task: " <+ value)] 14.

?>> buttonTask "OK" (return value) 15.

Nothing→ [Txt "Task expired/canceled; do it yourself!"] 16.

?>> buttonTask "OK" t 17.

The main task consists of selecting a user to whom a task t should
be delegated (lines 3–5), deciding how much time this user is given
for this exercise (lines 6–7), and then delegating the task (line 9).
We also model the situation that the current user gets impatient,
and decides to abandon the delegated task (line 11). Either way,
we know whether the task has succeeded and display the result and
terminate (lines 14–15), or the current user has to do it herself (lines
16–17).

The work flow described by (deadline t) defines a single dele-
gation. It can be transformed into an iteration with the foreverTask

combinator that we have also used in Sect. 4.2. We are obviously
creating a multi-user system, and hence use the multiUserTaskwrap-
per function for some constant n > 0. As example task we reuse
the task getPositive from Sect. 3.2.4. This finalizes the example:

Start world
= doHtmlServer

(multiUserTask n
(foreverTask (deadline getPositive) <<@ Database)) world

4.5 Parameterized tasks: a reviewing process
In this example we show that iTasks and iData cooperate in close
harmony. We present a reviewing process in which the product
of a user is judged by a reviewer who can either approve, reject,
or demand rework of the product. The latter is described with an
algebraic data type:

:: Review= Approved | Rejected | NeedsRework TextArea

TextArea is an algebraic data type that is specialized by the iData
toolkit as a multi-line text edit box that can be used by the reviewer
to enter comments.

A reviewer inspects the product v that needs to judged, and
makes a decision. This is defined concisely as:

review :: a→Task Review | iData a
review v
= [toHtml v]
?>> chooseTask
[("Rework" , editTask "Done" (NeedsRework default) <<@ Submit)
,("Approved" , return Approved)
,("Reject" , return Rejected)
]

Any task result that can be displayed can also be subject to review-
ing, hence the restriction to the generic iData class.

The main task is to produce a product v according to some task t
that can be judged by a reviewer u. If the reviewer demands rework
of v, the task should be restarted with that particular v, because the
user would have to completely recreate a new product otherwise.
Therefore, the product and the task to produce it are given as a pair

148

(a, a→Task a), and the result of the main task is to return a product
and its review (a,Review). This is done as follows:

taskToReview :: UserID (a,a→Task a)→Task (a,Review) | iData a 1.

taskToReview reviewer (v,task) 2.

= newTask "taskToReview" 3.

(task v =>> λnv→ 4.

reviewer @:: review nv=>> λr→ 5.

[Txt ("Reviewer " <+ reviewer <+ " says ") ,toHtml r] 6.

?>> buttonTask "OK" 7.

case r of 8.

(NeedsRework _)→taskToReview reviewer (nv,task) 9.

else →return (nv,r) 10.

)

The task is performed to return a product (line 4), which is reviewed
by the given reviewer (line 5). Her decision is reported (line 6), and
only in case of a demanded rework, this has to be repeated (line 9).

For the example, we select a two-user system (multiUserTask 2)
in which user 0 creates the product, and user 1 reviews it:

Start world
= doHtmlServer (multiUserTask 2 (taskToReview 1 (default,t))) world

t v = [Txt "Fill in Form:"] ?>> editTask "TaskDone" v <<@ Submit

Note the high degree of parameterization and therefore reusability
of the code: taskToReview handles any task, and by providing only a
type signature to t above, we get a form task for values of that type
for free. For example, when t is of type Person (Sect. 2.1) an editor
for this type is created automatically.

4.6 Higher order tasks: shifting work
A distinctive feature of the iTask system is that tasks can be higher
order: data can be communicated but also (partially evaluated) tasks
can. One can create task closures, i.e. tasks that already have been
partially evaluated by someone and ship them to some other user
who can continue to work on it.

:: TClosure a= TClosure (Task a)

(-!>) infix 4 :: (Task s) (Task a)→Task (Maybe s, TClosure a)
| iCreateAndPrint s & iCreateAndPrint a

The proper generic functions have been specialized for type
TClosure such that it acts as a container of tasks. Any task can be
put in a value of this type, but we want to be able to put a partially
evaluated task in it. Therefore we need a way to interrupt a task that
is being evaluated. (stop -!> t) (the implementation of -!> is dis-
cussed in Sect. 5.4) is a variant of an or-task which takes two tasks:
whenever stop is done, t is interrupted and this possibly partially
evaluated task is delivered as result. However, t can also finish nor-
mally, and the fully completed task is delivered. The result of stop,
therefore, is only returned when it finishes before t.

delegate :: (Task a) [UserID]→Task a | iData a 1.

delegate task set= newTask "delegate" doDelegate 2.

where 3.

doDelegate 4.

= findSomeone=>> λwho→ 5.

who @:: stopTask -!> task=>> λ(stopped,TClosure task)→ 6.

i f (isJust stopped) (delegate task set) task 7.

findSomeone 8.

= orTasks [("Wait " <+ who 9.

, who @:: buttonTask "I will do it" (return who)) 10.

\\ who←set] 11.

stopTask= buttonTask "Stop" (return True) 12.

The function delegate first tries to findSomeone to perform the task
(line 5). All persons in set are asked whether they want the task.

The first user who accepts the task obtains it and she can work on
it. However, the work can be interrupted by completion of stopTask
which ends when the user has pushed the Stop button. If this is the
case, all persons are asked again to volunteer for the job. The one
who accepts, obtains the task in the state as it has been left by the
previous worker and she can continue to work on it. The whole
recursively defined process finally ends when the delegated task is
fully completed by someone.

The conditions for stopping a task can be arbitrarily complex.
For instance, by using stop2 not only the user herself can stop the
task, but someone else can do it for her as well (e.g. the user who
delegated the task in the first place), or it can be timed out.

stop2 user time= stopTask -||- (user @:: stopTask) -||- timer time
timer time = waitForTimerTask time]>> return True

5. Implementation
As mentioned earlier in Sect. 3.2.5, the actual implementation is
more complicated because it needs to support more features. We
discuss the most interesting aspects by building on the core system.

5.1 Handling Multiple Users
On each event every iTask application is (re)started for all its
users. All tasks are recalculated from scratch, but only for one
user the tasks are shown. By default, tasks are assigned to user 0.
As presented in Sect. 4.3, users can be assigned to tasks with the
operators @: and @::. We give the HTML accumulator within the TSt
environment (Sect. 3.2.1) a tree structure instead of a list structure,
and we keep track of the user to whom a task is assigned, as well
as the identification of the application user:

:: *TSt = { . . .
, myId :: UserID / / id of task user
, userId :: UserID / / id of application user
, html :: HtmlTree } / / accumulator for html code

:: HtmlTree= BT [BodyTag]
| (@@:) infix 0 (UserID,String) HtmlTree
| (-@:) infix 0 UserID HtmlTree
| (+-+) infixl 1 HtmlTree HtmlTree
| (+|+) infixl 1 HtmlTree HtmlTree

defaultUser= 0

(BT out) represents HTML output; ((u ,name)@@:t) assigns the html
tree t to user u where name is the button with which the user can
select this task; (u-@:t) also assigns the html tree t to user u, but now
t should not be displayed. The remaining constructors (t1+-+t2)
(and (t1+|+t2)) place output t1 left (above) of output t2.

In a single-user application, the only user is defaultUser; in a
multi-user application, the current user can be selected with a menu
at the top of the browser window. This feature is added for testing,
for the final application one needs of course to add a decent login
procedure. Initially, myId is defaultUser, userId is the selected user,
and the accumulator html is empty (BT []). After evaluation of a
task, the accumulator contains all HTML output of each and every
activated iTask. It is not hard to define a filtering function that
extracts all tasks for the current user from the output tree.

Version management is important as well for a multi-user web
enabled system. Back buttons of browsers and cloning of browser
windows might destroy the correct behavior of an application. For
every user a version number is stored and only requests matching
the latest version are granted. An error message is given otherwise
after which the browser window is updated showing the most recent
version. Since we only have one application running on the server
side, storage and retrieval of any information is guaranteed to be
indivisible such that problems in this area cannot occur.

Another aspect to think about is that the completion of one
task by one user, e.g. a Cancel action, may remove tasks others are

149

working on (see e.g. the deadlines example in Section 4.4). This
effects the implementation of all choice combinators: one has to
remember which task was chosen to avoid race conditions.

5.2 Optimizing the Reconstruction of the Task Tree
An iTask application reconstructs itself over and over each time
a client browser is manipulated by someone. The more progress
made in the application, the more tasks are created. Hence, the
evaluation tree increases in size and it takes longer to reconstruct it.
For a real world work flow application this is unacceptable.

We optimize the reconstruction process similar to the normal
rewriting that takes place in the implementation of functional lan-
guages such as Clean and Haskell. When a closure is evaluated,
the function call is replaced by its result. Similar, when a task is
finished, it can be replaced by its result. We have to store such a
result persistently, for which we can of course again use an iData
element. However, it is not necessary to optimize each result in
order to avoid the creation of too many iData storages. We can
freely choose between recalculation (saving space) or storing (sav-
ing time). In the iTask toolkit we have decided to optimize “big”
tasks only. Combinators such as repeatTask produce only interme-
diate results and can be replaced by the next call to itself. For these
kinds of combinators the task tree will not grow at all. However,
user defined tasks that are created with newTask are likely being used
to abstract from such “big” tasks.

Here is what the actual newTask combinator does, as opposed to
the core version of Sect. 3.2.4.

newTask :: (Task a)→Task a | iData a 1.

newTask t = doTask (λtst=:{tasknr,hst} 2.

] (taskval,hst) = mkStoreForm (Init,storeId) id hst 3.

] (done,v) = taskval.value 4.

| done = (v,{tst & hst= hst}) 5.

] (v,tst=:{activated= done,hst}) 6.

= t {tst & tasknr= [-1:tasknr] ,hst= hst} 7.

| not done = (v,{tst & tasknr= tasknr}) 8.

] (_,hst) = mkStoreForm (Init,storeId) (const (True,v)) hst 9.

= (v,{tst & tasknr= tasknr, hst= hst}) 10.

) 11.

where storeId = mkFormId (tasknr +> "_New") 12.

(False,default) <@ Session 13.

A storage is associated with task t (line 3) that initially has a default
value (lines 12–13). If the task was finished in the past, it is not re-
evaluated. Instead, its value is retrieved from the storage (line 4
and 5), otherwise it needs to be evaluated (lines 6–7). If the user
actions have not terminated task t, then it has not produced a final
value yet, thus the storage need not be updated (line 8). If the user
has terminated the task, then the storage is updated with the final
value (line 9), and a boolean mark to prevent re-evaluation of this
particular “redex”.

5.3 Garbage Collection of iData Objects
The optimization described above will prevent the task evaluation
tree from growing, but all persistent iData objects created in previ-
ous runs are not garbage collected automatically. Although certain
results are not needed for the computation of the task tree anymore,
one nevertheless might want to keep them for other reasons. Con-
sider the gathering of statistical information such as “who has per-
formed a certain task in the past?” and “which tasks have taken a
long time to complete?”, or one wants to remember a result of a
task, but not of any of its subtasks. For this reason, we have pro-
vided an option that can be switched on and off to automatically
take care of the garbage collection of tasks and their subtasks, no
matter where they are stored. The numbering discipline plays a cru-
cial role in identifying which subtasks belong to a given task, such
that any choice of garbage collection strategy can be implemented.

5.4 Higher-Order Tasks
A distinctive feature of the iTask toolkit is the ability to commu-
nicate higher-order tasks that have been partially evaluated (Sect.
4.6). In the real world it is obvious that work that has been done
partially can be handed over to other persons who finish the work.
This is not one of the standard work flow patterns that can be found
in contemporary work flow tools (see (van der Aalst et al. 2002)).
We show that the iTask toolkit does support this work flow pattern,
and that it does so in a concise way. The complete realization of the
(p-!>t) is as follows:

(-!>) infix 4 :: (Task s) (Task a)→Task (Maybe s,TClosure a) 1.

| iCreateAndPrint s & iCreateAndPrint a 2.

(-!>) p t = doTask (λtst=:{tasknr,html} 3.

] (v,tst=:{activated= done,html= task}) 4.

= t {set (BT []) True tst & tasknr= taskId} 5.

] (s,tst=:{activated= halt,html= stop}) 6.

= p {set (BT []) True tst & tasknr= stopId} 7.

| halt = return (Just s, TClosure (close t)) 8.

(set html True tst) 9.

| done = return (Nothing,TClosure (return v)) 10.

(set (html +|+ task) True tst) 11.

| otherwise= return (Nothing,TClosure (return v)) 12.

(set (html +|+ task +|+ stop) False tst) 13.

) 14.

where close t = t o (set_tasknr taskId) 15.

set html done= (set_html html) o (set_activated done) 16.

stopId = [-1,0:tasknr] 17.

taskId = [-1,1:tasknr] 18.

Both the suspendable task t and the terminator task p are evalu-
ated (lines 4–5 and 6–7). Their current renderings are task and stop

respectively, and they both contain the most recent user edit oper-
ations. The most exciting spot is line 8: if p is finished (condition
halt is true), then the task t as far as it has been evaluated has
to be returned. However one has to realize that a task t is only a
recipe that is executed by applying it to its state. When a task is
executed, it always returns a result and a state, even if the task is
not yet finished. This also holds for task t when it is activated in
line 5. There actually are no partially evaluated task closures in this
system, there are only tasks and when they are applied they return
their result. The crucial issue is how to return a partially evaluated
task if none exist? The answer is given in line 15! Remember that
an iTask application can reconstruct itself completely from scratch.
This property also holds for any iTask expression in the applica-
tion. The only thing we need is the task recipe and the state of a
task, and in particular, the task number stored in this state. Given
a task number and a task we can reconstruct the work done so far!
So by passing the task function and the task number to somebody
else, the work can be reconstructed and the person can continue the
work. Line 15 assures that an interrupted task is reapplied on the
original task number when it is restarted.

6. Related Work
In the realm of functional programming, many solutions that have
been inspiring for our work have been proposed to program web ap-
plications. We mention just a few of them in a number of languages:
the HaskellCGI library (Meijer 2000); the Curry approach (Hanus
2001); writing XML applications (Elsman and Larsen 2004) in
SMLserver (Elsman and Hallenberg 2003). One sophisticated sys-
tem is WASH/CGI by Thiemann (2002), based on Haskell. Here,
HTML is produced as an effect of the CGI monad whereas we con-
sider HTML as a first-class citizen, using data types. Instead of
storing state, WASH/CGI logs all user responses and I/O opera-
tions. These are replayed when needed to bring the application to
its desired, most recent state. In iTasks, we replay the program once
instead of the session, and restore the state of the program on-the-

150

fly using the storage capabilities of the underlying iData. Forms
are programmed explicitly in HTML, and their elements may, or
may not, contain values. In the iTask toolkit, forms and tasks are
generated from arbitrary data types, and always have a value. In-
terconnecting forms in WASH/CGI is done by adding callback ac-
tions to submit fields, whereas the iData toolkit uses a functional
dependency relation.

Two more recent approaches that are also based on functional
languages are Links (Cooper et al. 2006) and Hop (Serrano et al.
2006). Both languages aim to deal with web programming within a
single framework, just as the iData and iTask approach do. Links
compiles to JavaScript for rendering HTML pages, and SQL to
communicate with a back-end database. A Links program stores its
session state at the client side. Notable differences between Links
and iData and iTasks are that the latter has a more refined control
over the location of state storage, and even the presence of state,
which needs to be mimicked in Links with recursive functions.
Compiling to JavaScript gives Links programs more expressive
and computational power at the client side: in particular Links
offers thread-creation and message-passing communication, and
finally, the client side code can call server side logic and vice versa.
The particular focus of Hop is on rendering graphically attractive
applications, like desktop GUI applications can. Hop implements
a strict separation between programming the user interface and the
logic of an application. The main computation runs on the server,
and the GUI runs on the client(s). Annotations decide where a
computation is performed. Computations can communicate with
each other, which gives it similar expressiveness as Links. The main
difference between these systems and iTasks (and iData) is that the
latter are restricted to thin-client web applications, and provide a
high degree of automation using the generic foundation.

iData components that reside in iTasks are abstractions of
forms. A pioneer project to experiment with form-based services is
Mawl (Atkins et al. 1997). It has been improved upon by means of
Powerforms (Brabrand et al. 2000), used in the <bigwig> project
(Brabrand et al. 2002). These projects provide templates which,
roughly speaking, are HTML pages with holes in which scalar data
as well as lists can be plugged in (Mawl), but also other templates
(<bigwig>). They advocate compile-time systems, because this al-
lows one to use type systems and other static analysis. Powerforms
reside on the client-side of a web application. The type system is
used to filter out illegal user input. The use of the type system is
what they have in common with our approach. Because iData are
encoded by ADTs, we get higher-order forms for free. Moreover,
we provide higher-order tasks that can be suspended and migrated.

Web applications can be structured with continuations. This has
been done by Hughes (2000), in his arrow framework. Queinnec
(2000) states that “A browser is a device that can invoke contin-
uations multiply/simultaneously”. Graunke et al. (2001) have ex-
plored continuations as one of three functional compilation tech-
niques to transform sequential interactive programs to CGI pro-
grams. The Seaside (Ducasse et al. 2004) system offers an API for
programming web pages using a Smalltalk interpreter. When wait-
ing for new information from the browser, a Seaside application is
suspended and continues evaluation as soon as input is available.
To make this possible, the whole state of the interpreter’s run-time
system is stored after a page has been produced and this state is
recovered when the next user event is posted such that the applica-
tion can resume execution. In contrast to iTask, Seaside has to be a
single user system by construction.

Our approach is simpler yet more powerful: every page has a
complete (set of) model value(s) that can be stored and recovered
generically. An application is resurrected by restarting the very
same program, which recovers its previous state on-the-fly.

Our combinator library has been inspired by the comprehensive
analysis of work flow patterns by van der Aalst et al. (2002) of over
more than 30 contemporary commercial work flow systems. These
patterns are typically based on a Petri-net style, which implies that
patterns for distributing work (also called splitting) and merging
(joining) work are distinct and can be combined more or less
arbitrarily. In the setting of a strongly typed combinator style such
as iTasks, it is more natural to define combinator functions that pair
splitting and merging patterns. For instance, the two combinators
-&&- and -||- that were introduced in Sect. 3.2.4 pair the and split –
and join and or split – synchronizing merge patterns. Conceptually,
the Petri-net based approach is more fine-grained, and should allow
the work flow designer greater flexibility. However, we believe
that we have captured the essential combinators of these systems.
We plan to study the relationship between the typical functional
approach and the classic Petri-net based approach in the near future.

Contemporary commercial work flow tools use a graphical for-
malism to specify work flow cases. We believe that a textual spec-
ification, based on a state-of-the-art functional language, provides
more expressive power. The system is strongly typed, and guaran-
tees all user input to be type safe as well. In commercial systems,
the connection between the specification of the work flow and the
(type of the) concrete information being processed, is not always
well typed. Our system is fully dynamic, depending on the val-
ues of the concrete information. For instance, recursive work flows
can easily be defined. In a graphical system the flows are much
more static. Our system is higher order: tasks can communicate
tasks. Work can be interrupted and conditionally moved to other
users for further completion. Last but not least: we generate a com-
plete working multi-user web application out of the specification.
Database storage and retrieval of the information, version manage-
ment control, type driven generation of web forms, handling of web
forms, it is all done automatically such that the programmer only
needs to focus on the flow specification itself.

7. Conclusions
The iTask system is a domain specific language for the specifica-
tion of work flows, embedded in Clean. The specification is used
to generate a multi-user interactive web-based work flow manage-
ment system.

We hope to have convinced the reader that the notation we of-
fer is concise as well as intuitive. For functional programmers the
monadic style of programming should look familiar. Users of com-
mercial work flow systems, who design work flows, typically use
a graphical formalism for this purpose. For this group of potential
users a text based approach is likely to be harder to understand.
It should be investigated in what way a mapping from a graphical
approach to the textual approach can be constructed.

The iTask toolkit covers all standard work flow patterns in a
combinatorial style. Moreover, it adds further expressive power in
terms of a strongly typed system, dynamic run-time behavior, and
higher-order tasks that can be suspended, passed on to other users,
and continued. At the same time it generates a multi-user interactive
web-based application that automatically handles sessions, state
and state storage, HTML rendering, and more.

This latter feature is due to building the iTask toolkit on top of
the iData toolkit. This project provides further evidence that the
iData concept is a versatile, elementary unit to create interactive
web applications. One particular helpful design decision was to
separate handling values and constructing the rendering of the
application in the iData toolkit. This allows the iTask toolkit to
separately handle the flow of information and the filtering of the
correct HTML code for the end user. The iData enabled us to do
“task rewriting” in a similar way as expressions are rewritten in
languages such as Clean and Haskell. Finally, iTasks profit from

151

these advantages, and strengthen them by extending the expressive
power by defining work flow system on a sophisticated high level
of abstraction.

Future work will be the investigation of more “unusual” useful
work flow patterns. We will investigate how the system will scale
up in terms of performance when applications run longer and have
more users. Also we are working on a new option for the evaluation
of tasks on the client side using Ajax technology in combination
with an efficient interpreter for functional languages (Jansen et al.
2006).

Acknowledgments
The authors would like to thank Phil Wadler for his inspiring
exercise, Erik Zuurbier for the many discussions on the state-of-
art of contemporary work flow systems and as a source of many
examples, Wil van der Aalst for commenting on the difference
between the combinator approach and contemporary work flow
specification languages, Maarten de Mol and Arjen van Weelden
for reading the draft version of the paper, and the anonymous
reviewers for their constructive comments.

References
Artem Alimarine. Generic Functional Programming - Conceptual

Design, Implementation and Applications. PhD thesis, Univer-
sity of Nijmegen, The Netherlands, 2005. ISBN 3-540-67658-9.

David Atkins, Thomas Ball, Michael Benedikt, Glenn Bruns, Ken-
neth Cox, Peter Mataga, and Kenneth Rehor. Experience with a
Domain Specific Language for Form-based Services. In Usenix
Conference on Domain Specific Languages, October 1997.

Claus Brabrand, Anders Møller, Mikkel Ricky, and Michael I.
Schwartzbach. Powerforms: Declarative client-side form field
validation. World Wide Web Journal, 3(4):205–314, 2000.

Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The
<bigwig> Project. In ACM Transactions on Internet Technol-
ogy (TOIT), 2002.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop.
Links: Web programming without tiers. In Proceedings of the
5th International Symposium on Formal Methods for Compo-
nents and Objects (FMCO’06), CWI, Amsterdam, The Nether-
lands, 7 - 10 November 2006. Springer-Verlag. to appear.

Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli. Sea-
side - A Multiple Control Flow Web Application Framework.
In Stéphane Ducasse, editor, Proceedings ESUG 2004 Interna-
tional Conference – Research Track, volume Technical Report
IAM-04-008, pages 231–254. Institut für Informatik und Ange-
wandte Mathematik, University of Bern, Switzerland, November
7 2004.

Martin Elsman and Niels Hallenberg. Web programming with
SMLserver. In Fifth International Symposium on Practical
Aspects of Declarative Languages (PADL’03). Springer-Verlag,
January 2003.

Martin Elsman and Ken Friis Larsen. Typing XHTML Web appli-
cations in ML. In International Symposium on Practical Aspects
of Declarative Languages (PADL’04), volume 3057 of LNCS,
pages 224–238. Springer-Verlag, June 2004.

Paul Graunke, Shriram Krishnamurthi, Robert Bruce Findler, and
Matthias Felleisen. Automatically Restructuring Programs for
the Web. In M. Feather and M. Goedicke, editors, Proceedings
16th IEEE International Conference on Automated Software
Engineering (ASE’01). IEEE CS Press, September 2001.

M. Hanus. High-Level Server Side Web Scripting in Curry. In
Proc. of the Third International Symposium on Practical Aspects
of Declarative Languages (PADL’01), pages 76–92. Springer
LNCS 1990, 2001.

Ralf Hinze. A new approach to generic functional pro-
gramming. In The 27th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
119–132. Boston, Massachusetts, January 2000. URL
urlciteseer.nj.nec.com/hinze99new.html.

John Hughes. Generalising Monads to Arrows. Science of Com-
puter Programming, 37:67–111, May 2000.

Jan Martin Jansen, Pieter Koopman, and Rinus Plasmeijer. Effi-
cient Interpretation by Transforming Data Types and Patterns to
Functions. In H. Nilsson, editor, Proceedings Seventh Sympo-
sium on Trends in Functional Programming, TFP 2006, pages
157–172, Nottingham, UK, The University of Nottingham, April
19-21 2006.

Erik Meijer. Server Side Web Scripting in Haskell. Journal of
Functional Programming, 10(1):1–18, 2000.

Rinus Plasmeijer and Peter Achten. The Implementation of iData
- A Case Study in Generic Programming. In A. Butterfield, edi-
tor, Proceedings Implementation and Application of Functional
Languages - Revised Selected Papers, 17th International Work-
shop, IFL05, LNCS 4015, Department of Computer Science,
Trinity College, University of Dublin, September 19-21 2006a.

Rinus Plasmeijer and Peter Achten. iData For The World Wide
Web - Programming Interconnected Web Forms. In Proceed-
ings Eighth International Symposium on Functional and Logic
Programming (FLOPS 2006), volume 3945 of LNCS, Fuji Su-
sono, Japan, Apr 24-26 2006b. Springer Verlag.

Rinus Plasmeijer and Peter Achten. A Conference Management
System based on iData. In Z. Horvath and V. Zsok, editors,
Proceedings of the 18th International Symposium on Implemen-
tation and Application of Functional Languages, IFL’06, Bu-
dapest, Hungary, Eotvos Lorand University, Faculty of Infor-
matics, Department of Programming Languages and Compilers,
Sept 4–6 2006c. To appear in Springer LNCS.

Christian Queinnec. The influence of browsers on evaluators or,
continuations to program web servers. In Proceedings Fifth In-
ternational Conference on Functional Programming (ICFP’00),
September 2000.

Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop, a lan-
guage for programming the web 2.0. In Proceedings ACM SIG-
PLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 2006),
pages 975 – 985, Portland, Oregon, USA, October 22-26 2006.

Peter Thiemann. WASH/CGI: Server-side Web Scripting with Ses-
sions and Typed, Compositional Forms. In S. Krishnamurthi
and C.R. Ramakrishnan, editors, Practical Aspects of Declara-
tive Languages: 4th International Symposium, PADL 2002, vol-
ume 2257 of LNCS, pages 192–208, Portland, OR, USA, Jan-
uary 19-20 2002. Springer-Verlag.

W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and
A.P. Barros. Workflow patterns. QUT Technical report, FIT-TR-
2002-02, Queensland University of Technology, Brisbane, 2002.

152

