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Abstract. In this paper we show how to generate terms in the λ-calculus that match a
given number of function argument result pairs. It appears that the number of λ-terms
is too large to find terms reasonably fast based on the grammar of λ-calculus alone. By
adding knowledge such as the desired number of arguments it is possible to synthesize
λ-terms effectively for some interesting examples. This yields surprising terms that are
unlikely to be found by a human.

An interesting subproblem is the determination of suitability of candidate terms based
on equivalence of terms. We used an approximation of equivalence by a finite number
of reduction steps. This implies that the test for equivalence can also yield the value
undefined. Fortunately the test system used is able to handle undefined test results.

For Henk Barendregt on his sixtieth birthday

1. Introduction

In computer science one often looks for reducts of λ-expressions (the λ-expression is
seen as a functional program representing the desired value), or general properties of λ-
calculus (like the famous Church-Rosser property). The construction of λ-terms possessing
some desirable property is commonly done manually. In this paper we describe a technique
to synthesize such λ-terms automatically. Typical examples are: find a term Y such that
∀f. Y f = f (Y f), or find a term s such that ∀n ≥ 0. s n =

∑n
i=0 i. This technique can

be used to find rather complicated terms, or terms that are not very intuitive. Although
the (mathematical) examples shown in this paper are merely a proof of concept. There
exists also serious applications of this kind of synthesis techniques, like the generalization of
behavior in adaptive systems. In this paper we concentrate on untyped λ-terms as described
by Barendregt in [1] extended with numbers and some operations on numbers. See [3] for
an introduction to typed λ-calculus.
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The approach to generate λ-terms obeying some property is inspired by our previous
work [9]. In that paper we described how one can synthesize functions matching a property
such as f 4 = 5 ∧ f 5 = 8. In general there are umpteen functions matching a given
set of input-output pairs. In program synthesis it is our goal to find small functions that
generalize the given behavior. We prefer a nonrecursive function over a recursive function,
and a recursive function is highly preferred over a sequence of conditionals that exactly
coincides with the given argument result pairs (like f x = if (x == 4) 5 (if (x == 5) 8 0)).
The approach in [9] is to define a data type that represents the grammar of the candidate
functions, for our example primitive recursive functions of type Int→Int will do. Using the
generic generation of instances of this type, abstract syntax trees of candidate functions are
generated [8]. Such a syntax tree is turned into the equivalent function. The suitability
of these functions is determined by the automatic test system G∀st [7]. The test system
is used to find functions f matching the desired property, by stating that such a function
does not exists, e.g. ∀f.¬(f 4 = 5 ∧ f 5 = 8). The counterexamples found by G∀st are
exactly the functions wanted. For f 4 = 5 ∧ f 5 = 8 the test system finds the function
f x = i f (x≤1) 1 (f(x−2)+f(x−1)), the well known Fibonacci function.

In this paper we do not define a specific grammar for candidate functions, since we want
to find ordinary λ-terms matching the given property. For the synthesis of λ-terms we start
with the same approach. First we define a data type representing λ-terms and synthesize
instances of this type from small to large as candidates. Then we check with the test
system if these instances of the data type represent a function (λ-term) obeying the given
constraints. However, there are some significant differences compared to the generation of
the functions mentioned above. These difference corresponds to problems that needs to be
tackled in order to make the systematic synthesis of λ-terms work. First, the termination
of computations needed to determine the suitability of candidate λ-terms is an issue. In
the generation of ordinary functions, we constructed the functions such that termination of
reduction is guaranteed. In our new approach it is not possible to guarantee termination
of reduction without too serious restrictions on the terms considered. Second, in order
to obtain interesting λ-terms (corresponding to recursive functions) it is essential to have
higher order functions. The use of higher order and potentially nonterminating expressions
makes the equivalence of λ-terms an issue. Theoretically it is known that the equivalence of
λ-terms is in general undecidable. Third, the λ-terms corresponding to recursive functions
like the Fibonacci function mentioned above are relative large as well. This is caused by
the fine grain computations in λ-calculus. Experience shows that the number of candidate
terms to be considered becomes impractically large. Hence we need some guidance in the
generation of candidate terms. A fourth difference with previous work is that we will use
also logical properties like ∀x, y . k x y = x instead of only input-output pairs like k 1 2 = 1.

Problem one and two are covered by using normal order (left most) single step reduction
in the comparison of equations. If equivalence is not found in a given number of steps, the
equivalence is decided to be undefined. The test system G∀st is well equipped to handle
these undefined test results. The third problem is handled by a simple yet effective and
flexible generation algorithm for candidate terms. Although the data type used allows
more terms, the synthesization algorithm used generates only instances of a grammar that
allows a smaller number of terms. Since we still handle terms prescribing potentially infinite
computations, transforming the terms to ordinary expressions and evaluating these is unsafe.
For the reduction algorithm however, it is crucial that all terms used are described by a
small and simple data type.
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In the remainder of this paper we first give a quick overview of testing logical properties
using the test tool G∀st. In section 3 we introduce the data structure that will be used to
represent λ-terms. The equivalence of λ-terms is treated in section 4. Next we use the
generic algorithm from G∀st to generate λ-terms in section 5 and look at the effectiveness of
this approach with some examples. In section 6 we introduce more effective algorithms to
generate λ-terms matching a given condition. Finally, there is a conclusion and a discussion
of related work in section 7.

2. Testing logical properties with the test tool G∀st

The test system G∀st checks properties in first order logic by evaluating the property
for a (large) number of arguments. G∀st is implemented as a library for the functional
programming language Clean [10]. This library provides operators corresponding to the
logical operators from logic as well as a class of functions called test to check properties.

The test system treats every ordinary function argument as a universally quantified
variable if the function is used as a logicalproperty. Consider the function pAbs n = abs n≥0,
where abs is a function from the standard library that computes the absolute value of
integer arguments. This function is interpreted by G∀st as the property ∀n ∈ Int . pAbs n.
By unfolding the function definition this is ∀n ∈ Int . abs n ≥ 0. This property can be tested
by executing Start = test pAbs. By the type of the function pAbs to be tested Int → Bool,
the test system determines that the property should be evaluated for a large number of
integers. These test values are synthesized systematically (from small to large for recursive
types) by the generic function ggen. If G∀st finds a counterexample within the first maxTest

tests, the test result is CE. Apart from this test result, the test system gives also information
about the counterexample found (like the number of tests done and the values used to find
this counterexample). maxTest is the default number of tests, by default 1000. It is easy
to change this number in general or in a specific test. Otherwise, the result is OK if G∀st
detects that the number of test values is less than maxTest and the property holds for all
these test values. If no counterexample is found in the first maxTest tests and there are more
than maxTest values in the list generated by ggen, the test result is Pass. The test result Pass

is weaker then OK: doing additional test might show a counter example if the result is Pass,
while OK indicates proof by exhaustive testing.

In the example pAbs n = abs n≥0 the test system finds a counterexample corresponding
to the minimum integer value in the domain for test pAbs. The instance of the generic test
suite generator, ggen, for integers generates test values like 0, 1,−1, maxint, and minint that
are known to cause often issues somewhere in the beginning of each test suite for integers.

With the operator ∃ we can test existentially qualified expressions like ∃x.f x = x. The
operator ∃ takes a function as argument. The type of the argument determines the type of
test arguments generated by ggen in G∀st. In the example pFix above, we used a nameless
function (λ-expression) as argument for the operator ∃. Compared with the ordinary logical
notation, we have to write only an additional λ between ∃ and the variable. Of course one
can use any function as argument for the operator ∃. Clean’s type inference system detects
in this example that x must be an integer. Hence, G∀st will generate integer values.

The test system G∀st is used to handle undefined values. For any function f : : Int → Int

we can test if the function has a fixed point (∃x.f x = x) by defining the property:
pFix : : (Int → Int) → Property

pFix f = ∃ λx .f x==x // the type of x is determined by the context, here Int
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We can test if the function g x = x+1 has a fixed point by executing Start = test (pFix g).
The test system generates a fixed number of integer values (by default 500) and checks if
one of these values makes g x==x true. If such a value does not occur the test system can
neither decide that the property holds, nor that there is a counterexample. The test system
uses the value Undef to indicate that a positive test result has not been encountered within
the tests to be done, but such a value might exist. Hence, the possible test results are:
: : Result = Pass | OK | CE | Undef

The difference between this test system and a model checker is that the test system
evaluates properties using the ordinary evaluation mechanism. A model checker uses an
abstraction of the system (the model) as basis for reasoning rather than actual code. A
model checker uses also abstract evaluating steps to check the validity of the model (e.g.
∀x .¬¬ x = x). This implies that a model checker is able to prove properties that can
only be tested partially by a test system. Advantages of a test system are that no separate
model is needed and that the actual code is used rather than a model of this code.

3. A data type to represent λ-terms

The first step is to construct a data type to represent λ-terms. Apart from variables,
abstraction, and application we introduce numerical constants and constructors Plus and
If for a primitive addition and conditional in the terms treated. We use the functional
programming language Clean for the algorithms in this paper.
: : Expr = Var V | Abs V Expr | Ap Expr Expr | Const C | Plus | If // λ-expression

: : V = V Int // variable

: : C = C Int // constant

The additional types V and C are superfluous for the syntax trees describing λ-terms, but
are convenient to control the generation of variables and constants.

Although that it is known that the numerical constants and the constants Plus and
If are theoretical superfluous [1], it is convenient to introduce them. The use of these
constants makes computations much more efficient. Moreover, this representation is much
more compact than the representation of constants by Church numbers.

By using tailor made instances of the generic show function, instances of these types
can be printed as usual in λ-calculus. The term Abs (V 1) (Ap (Var (V 0)) (Ap (Var (V 1))

(Var (V 1)))) will be printed as λb .a (b b). This is more compact and better readable.

4. Equivalence of λ-terms and reduction

A key step in the search for λ-terms is determination of the equivalence of terms.
Looking for some term I such that I x = x the system needs to be able to determine that
(λa.a) x and x are equivalent. If we write N = M we mean equality modulo reduction:
N =β M . The terms M and N are β-convertible if they are equal, if one reduces to the
other (i.e. M →β N or N →β M), or there is a common reduct L of M and N (i.e.
∃L ∈ Λ.M →β L ∧N →β L). In general checking whether N =β M is undecidable [1].

The undecidability of convertibility does not imply that it is impossible to look for
equivalent terms. It just says that there are terms where the convertibility is unknown. For
many terms we can determine whether they are convertible by reducing them a finite number
of steps. We will use the normal order (left most) reduction strategy for these reductions

4



since it is known to find a normal form if it exists [1]. If we find a common reduct (modulo
α-conversion) within this finite number of reduction steps the terms are clearly convertible.
If we obtain unequal normal forms the terms are obviously not convertible. If one of the
terms shows a cyclic reduction (like w w where w = λx.x x that has the property that
w w →β w w) and the other is not a redex the terms are also unconvertible. In all other
situation the convertibility is considered to be undefined.

To reduce the space consumption in this paper we will only list the rules for the tradi-
tional λ-calculus here and ignore the constants. Adding constants is straightforward: two
constants are convertible if they are syntactically equal, otherwise they are unconvertible. A
constant is unconvertible to any other term in normal form. The convertibility of a constant
to a redex is undefined. The system will do a finite number of reduction steps to determine
if it is possible to determine convertibility. We use the constructor OK from the type Result

to represent convertibility and CE to indicate inconvertibility.
A single reduction step on an expression is done by the function hnf1 : :Expr→ (Bool , Expr).

The Boolean in the resulting tuple indicates whether a reduction step is done.
hnf1 : : Expr → (Bool , Expr)

hnf1 (Ap (Abs v e) a) = (True , sub e v a)

hnf1 (Ap n a)

] (r , m) = hnf1 n // the symbol # introduces a let definition in Clean

= (r , Ap m a)

hnf1 e = (False , e) // reduction to weak head normal form: no reduction under an abstraction.

The notion of substitution, e[v := a], in λ-calculus is implemented as sub e v a. The function
sub : : Expr V Expr → Expr replaces each free occurrence of the second argument in the first
argument by the third argument.
sub m=: (Var v) x n = i f (v==x) n m

sub m=: (Abs y e) x n

| x==y

= m // stop substitution, every occurrence of x in m bound by this λ x.

| isMember y (freeVars n) // x 6= y: makes this λ y an undesirable binding in m?

= Abs v (sub (sub e y (Var v)) x n) // yes, rename y to v in m before actual substitution

= Abs y (sub e x n) // no, continue with substitution in e

where v = newVar startVal [x :freeVars m++freeVars n ] // a fresh variable

sub (Ap f a) x n = Ap (sub f x n) (sub a x n)

sub m x n = m

The function freeVars yields a list containing the free variables in the given expression. The
expression newVar n l yields the first variable starting at V n that does not occur in the list
of variables l. This is used to prevent undesirable binding of variables in examples such as
λa.a b[b := a c]. By the renaming of variables this is transformed to λd.d b[b := a c].

The complete function hnf1 also contains alternatives for the constants Plus and If.
When both arguments of the Plus are constants the expression is replaced by a new constant,
otherwise hnf1 tries to evaluate arguments of the addition. For the conditional expression
numbers are interpreted as Booleans. Positive numbers are interpreted as the Boolean
value True, all other values as False. If the subterm c in a term Ap (Ap (AP If c) t) e is not
a constant, the functions hnf1 tries to reduce it.

As a first step to determine convertibility we define α-equality. Two expressions are
α-equal (result OK) if they can be made identical by α-conversion of variables introduced by
abstractions within the expressions. If the expressions are not α-equal and are not in normal
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form the result is undefined (Undef). Otherwise the expressions are clearly not α-equal, and
the result is CE.
alphaEQ : : Expr Expr → Result

alphaEQ (Var x) (Var y) = i f (x==y) OK CE

alphaEQ (Var x) (Abs v e) = CE

alphaEQ (Abs v e) (Var y) = CE

alphaEQ (Abs x e1) (Abs y e2)

| x == y

= alphaEQ e1 e2

| not (isMember x (freeVars e2))

= alphaEQ e1 (sub e2 y (Var x)) // α-conversion: e2[y:=x]

| not (isMember y (freeVars e1))

= alphaEQ (sub e1 x (Var y)) e2 // α-conversion: e1[x:=y]

= alphaEQ (sub e1 x (Var v)) (sub e2 y (Var v)) // α-conversion: e1[x:=v] and e2[y:=v]

where v = newVar startVal (freeVars e1++freeVars e2) // a fresh variable

alphaEQ e1=: (Ap f x) e2=: (Ap g y)

= case alphaEQ f g of

OK = case alphaEQ x y of

CE = i f (isRedex e1 | | isRedex e2) Undef CE

r = r

CE = i f (isRedex e1 | | isRedex e2) Undef CE

Undef = Undef

alphaEQ e1 e2 = Undef

The equivalence (convertabity) of expressions is determined by the infix operator ≡ .
(≡ ) infix 4 : : Expr Expr → Result

(≡ ) x y = redEQ maxReductions [x ] [y ]

The constant maxReductions determines the maximum number of reductions done on the
expressions. This is a trade-off between speed and the ability to determine the convertibility
of expressions. In the tests reported in this paper the value 500 was used to full satisfaction.
If we use examples where more reductions are needed to determine equality, the constant
maxReductions should be increased. For most examples a value of 50 is more than enough.
The real work to determine convertibility is done by redEQ.

The function redEQ gets the number of reduction steps to be done and two stacks of
expressions as arguments. If the number of steps to be done is zero, the result of determining
equality is Undef unless one of the terms shows cyclic reduction and the other is in head
normal form (in that case the result is CE). If the number of steps to be done is not zero, the
function redEQ determines α-equality of the top of one stack (the most recent expression)
and one of the elements in the other stack is unequal to Undef. Any results unequal to Undef

determines the result of redEQ. If all comparisons for α-equality yield Undef, we try to reduce
the most recent expressions one single step. If such a reduction is possible for at least one
of the terms, the function redEQ continues recursively with the new expressions. Otherwise
we decompose an application or abstraction if it occurs in both expressions to be compared,
and continue with the fragments of the expressions to be compared. In all other situations
the given expressions are unequal under reduction: the result is CE.
redEQ : : Int [Expr ] [Expr ] → Result

redEQ n lx=: [x :xs ] ly=: [y :ys ]

| n==0

| (isMem x xs == OK && ¬(isRedex y)) | | (isMem y ys == OK && ¬(isRedex x))
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= CE

= Undef

] rx = isMem x ly // n 6= 0; check if x =α y or one of its ancestors

| rx 6= Undef

= rx

] ry = isMem y lx // check if y =α x or one of its ancestors

| ry 6= Undef

= ry

] (bx ,x1) = hnf1 x // single step reduction of x

(by ,y1) = hnf1 y // single step reduction of y

| bx && by = redEQ (n−1) [x1 :lx ] [y1 :ly ] // x and y are reduced

| bx = redEQ (n−1) [x1 :lx ] ly // only x could be reduced

| by = redEQ (n−1) lx [y1 :ly ] // only y could be reduced

redEQ n lx=: [Ap f a :xs ] ly=: [Ap g b :ys ] // x and y are applications in hnf

| redEQ (n/2) [f ] [g ] == OK // compare left arguments of applications

| isMem a lx == OK | | isMem b ly == OK// on a cycle?

= Undef

= redEQ (n/2) [a ] [b ] // compare right arguments of applications

redEQ n lx=: [Abs a c :xs ] ly=: [Abs b d :ys ] // x and y are abstractions

| isMem c xs == OK | | isMem d ys == OK // on a cycle?

= Undef

| a==b

= redEQ (n−1) [c ] [d ] // compare bodies of the abstractions

] v = newVar startVal (freeVars c ++ freeVars d)

= redEQ (n−1) [sub c a (Var v) ] [sub d b (Var v) ]

redEQ n lx ly

= CE

The function isMem looks for a result unequal to Undef in the list of results. If such a value
exists, the result of the application is the value of the first list element unequal to Undef,
otherwise the result is Undef.
isMem x [ ] = Undef

isMem x [a :r ]

= case alphaEQ x a of

Undef = isMem x r

result = result

This is sufficient to compare λ-terms. In a number of examples the result of comparison
might be undefined, but for each property the test system will generate a lot of test ar-
guments. Usually some of these arguments will show whether the property holds or not.
Some improvements of the algorithm to compare expressions are possible. For instance,
expressions with a different type, such as λa .a and 0, will always be unequal.

5. Generic generation of λ-terms

In order to find λ-terms matching some property, the test system needs to generate
candidate expressions. Since G∀st contains a generic algorithm to generate the members
of a type, we can completely derive the generation of candidates. In order to limit the
search space (and hence speed up the finding of matching λ-terms) we limit the number of
variables to 3, and use only the often occurring constants −1, 1 and 2:

7



ggen {|V |} n r = map V [0 . .2 ]

ggen {|C |} n r = map C [−1 ,1 ,2 ]

The generation of expressions is done by the generic algorithm. We derive an instance of
this algorithm for this type by:
derive ggen Expr

If we would have used the generic algorithm to derive the generation of values for the types
V and C, values like V minint and C maxint would have been generated. We considered this
undesirable in this situation and hence we used a tailor made instance of ggen for these
types. This is all we need to get started.

5.1. Some examples. Let’s start with a very simple example: a λ-term i with the property
∀x.i x =β x. We state that such a term does not exist: ∀ i ∈ Λ .¬∀x ∈ Λ (i x =β x). The
test system will try to find counterexamples of this properties. The counterexample found
are exactly the λ-terms obeying i x =β x. The property expressed in G∀st reads.
pI : : Expr → Property

pI i = ¬(∀ λx .Ap i x ≡ x)

G∀st uses the generic algorithm to generate candidate expressions for i and d. The first
ten identity functions found by testing this property are: λa .a, λb .b, λc .c, (λa .a) (λa .a),
λa . ( (λb .a) Plus), λb . ( (λa .a) b), λb . ( (λa .b) Plus), λa . ( (λb .a) (λa .a)), and λa . ((λc .a) Plus).
For these ten matching λ-terms the system had to generate only 464 candidate expressions.
Note that we use here a property with a universal quantifier rather than some input-output
pairs (like i 1 ≡ 1, i (λa .a) ≡ λa .a and i ((λa .a a) (λa .a a)) ≡ (λa .a a) (λa .a a)). After
the preparations described above, G∀st is very well capable of testing this kind of proper-
ties. In our opinion the property shown above is clearer and more elegant than the explicit
input-output pairs of the function i. Of course it is still possible to search for functions
using input-output pairs.

In the same spirit we can look for terms representing the K-combinator by:
pK : : Expr → Property

pK k = ¬(∀ λx y .Ap (Ap k x) y ≡ x)

As expected the system produces terms like λa .λb .a and λb .λa .b within the same number of
candidates. The system finds also some less obvious terms like λa .λb . (λa .a) a and If −1.

For functions that only have to work on arguments of a specific type, e.g. numeric
constants of the form Const (C i), the ∀ operator will generate undesired arguments if the
type of arguments is Expr. It is not relevant to know what a plus operator does on free
variables or arguments like λa .a, hence we should exclude them from the property and the
tests. This problem can easily be tackled by using a quantification over type Int and the
needed type conversion in the property.
pPlus : : Expr → Property

pPlus p = ¬(∀ λa b .Ap (Ap p (Const (C a))) (Const (C b)) ≡ Const (C (a+b)))

This will produce correct λ-terms for p like Plus, (λa .a) Plus, λa .Plus a, λa .Plus b, (λa .Plus) a,
and (λa .Plus) (−1 −1). If we do not want to use all integers in the property or have only
specific input-output combination available, the property will not contain a ∀-operator. We
use the given input-output pairs in the property. For example:
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pF1 : : Expr → Result

pF1 p = ¬(f 1 1 1 &&& f 2 2 4 &&& f 3 3 6)

where f a b c = Ap (Ap p (Const (C a))) (Const (C b)) ≡ Const (C c)

The operator &&& is the logical and for values of type Result. Matching λ-terms found are
λa .λb . (Plus b) b, λa .λb . (Plus a) b, λa .λb . (Plus b) a, and λa .λb . (Plus ((Plus b) b)) 0.

Although these examples work fine, they show also that expressions are generated
that are usually considered undesirable like λa .Plus b (where b is a free variable) and
(λa .Plus) (−1 −1) (with the constant −1 at a function position). In these examples these
terms are only curious, but they do occupy space in the search space and hence time during
the search for the desired λ-terms. If we search λ-terms implementing the Y-combinators
by testing:
pY : : Expr → Property

pY y = ¬(∀ λf .Ap y f ≡ Ap f (Ap y f))

no success is found in the first 1, 000, 000 tests. The search space is simply too large to find
a suitable term in a reasonable time.

6. Smarter generation of λ-terms

There are umpteen way to reduce the search space. An unattractive alternative is to
reject candidates that represent wrongly typed λ-terms in a property, as these terms will
still be generated and hence consume resources. It will be better to prevent the generation
of terms that are clearly unsuitable. Take care not to eliminate the wanted terms. In this
section we describe an approach to generate better candidate terms.

With a few simple restrictions we can generate much better candidate λ-terms. First, we
will always generate a number of abstractions that corresponds to the number of arguments
needed by the function at hand. Second, there is no need to generate open λ-terms. In
the generation we keep track of the bound variables and only generate them at applied
occurrences. In principle that can be further improved by keeping track of the type of these
variables, as done by Katayama [6]. Third, we will generate the right number of arguments
for constants like Plus and If. Forth, it is useless to generate numerical constants as first
argument of an Ap. Fifth, if the right constants are generated then there is no need to
generate complex subexpressions containing only constants.

For pY defined above we clearly need a higher order function. Hence we add the intro-
duction of new abstractions in the generated expressions. The function ho generates higher
order candidate functions. The first argument of ho is the number of arguments needed, the
second argument a list of the bound variables, and the last argument the name (number)
of the next argument.
ho : : Int [V ] Int → [Expr ]

ho 0 vs x = r

where

r = l | . [Const (C i) \\ i←[−1 ,1 ] ]

l = [Var v \\ v ← vs ]

| . [Ap e1 e2 \\ (e1 ,e2) ← diag2 l r ]

| . [Abs (V x) e \\e ← ho 0 [V x :vs ] (x+1) ]

| . [Ap (Ap Plus e1) e2 \\ (e1 ,e2) ← diag2 l r ]

ho i vs x = [Abs (V x) e \\ e ← ho (i−1) [V x :vs ] (x+1) ]
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As a grammar this is:

ho n m = λvn . . . λv1 . r

where r = l | − 1 | 1
l = vm | . . . | v1 | l r | λvn+1 . ho 0 (m + 1) | (Plus l) r

The infix operator | . merges two lists into a single list by taking elements from the argument
lists in turn.
( | . ) infixl 4 : : [x ] [x ] → [x ]

( | . ) [a :x ] y = [a : y | . x ] // note the swap of argument

( | . ) [ ] y = y

Now the first 1, 000, 000 candidates generated contain 7 Y-combinators. Some examples are
λa . (λb .b b) (λb .a (b b)), λa . (λb .a (b b)) (λb .a (b b)), and λa . ( (λb .b) (λb .b b)) (λb .a (b b)).

Most interesting functions are recursive. However, this does not imply that we need to
generate higher order λ-terms. It is sufficient to generate terms containing an application of
a predefined Y-combinator. Moreover, for recursive functions that yield a nonrecursive type,
like Int, it is essential to contain a stop condition. That is, after the Y-combinator there
should be a conditional (an If) before the recursive occurrence of the recursive function.
This is exactly what the generator of λ-terms fun does.
fun : : Int → [Expr ]

fun n = [abs 1 n e \\ e ← r [ ] ] | . [Ap exprY (abs 0 (n+1) e) \\ e ← rFun ]

where

vars = [Var (V v) \\ v ← [1 . .n ] ] // V 0 is the recursive fun if it exists

r c = [Const (C i) \\ i ← [−1 ,1,−2 ] ] | . e c

e c = vars | . [Ap (Ap Plus e1) e2 \\ (e1 ,e2) ← diag2 (e c) (r c) ] | . c

rFun = [Ap (Ap (Ap If c) t) e

\\ (c ,t ,e) ← diag3 simple (e (rApp n)) ( [Const (C i) \\ i ← [0 ,1 ] ] | . vars) ]

rApp 0 = [Var (V 0) ]

rApp n = [Ap f a\\(f ,a)← diag2 (rApp (n−1)) simple ]

simple = vars | . [Ap (Ap Plus v) c\\(v ,c)←diag2 vars [Const (C i) \\ i ← [−1,−2 ] ] ]

abs n 0 e = e

abs n m e = Abs (V n) (abs (n+1) (m−1) e)

Using this generation function we will look for a term that implements multiplication by
repeated addition. Since we want to prevent (very) large values as arguments for this
multiplication function (it is O(n)), we select some test values manually rather than using
a quantification over all integers.
pTimes p = ¬(f 0 3 &&& f 2 4 &&& f 7 5 &&& f 3 0)

where f a b = Ap (Ap p (Const (C a))) (Const (C b)) ≡ Const (C (a∗b))

We look for 2-argument terms generated by the function fun by testing pTimes For (fun 2).
The system produces multiplication functions for non-negative numbers of the form:

Y (λa .λb .λc . ( (If c) ((Plus ((a ((Plus c) −1)) b)) b)) 0) ,

Y (λa .λb .λc . ( (If c) ((Plus ((a ((Plus c) −1)) b)) b)) c)

and terms that a human is more likely to write
Y (λa .λb .λc . ( (If c) ((Plus ((a b) ((Plus c) −1))) b)) 0) ,

Y ((λa .λb .λc . ( (If b) ((Plus ((a ((Plus b) −1)) c)) c)) 0)
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In these expressions we use Y as abbreviation of the term (λa . (λb .a (b b)) (λb .a (b b))). The
first two terms are somewhat peculiar due to the swap of arguments. As a direct recursive
function the second term is:
f b c = i f (c>0) (b+f (c−1) b) c

Although this function looks extraordinary through the swap of arguments, it computes the
desired product of non-negative arguments.

Terms for s n =
∑n

i=0 i are found by testing pSum For (fun 1) with
pSum p = ¬(f 3 &&& f 5) where f a = Ap p (Const (C a)) ≡ Const (C (sum [1 . .a ] ) )

The first term found is Y (λa .λb . ( (If b) ((Plus (a ((Plus b) −1))) b)) 0).
In the same way we can look for λ-terms matching f 4 = 5 ∧ f 5 = 8 from the

introductions by looking for counterexamples for:
pFib p = ¬(f 4 5 &&& f 5 8) where f a b = Ap p (Const (C a)) ≡ Const (C b)

The first solutions found by testing pFib For (fun 1) are not the Fibonacci function found
in our earlier work, but nonrecursive terms such as

λb . (Plus ((Plus ((Plus ((Plus ((Plus b) −1)) −1)) −1)) b))

((Plus ((Plus ((Plus ((Plus b) −1)) −1)) −1)) −1)

and some single-recursive term like
Y (λa .λb . ( (If ((Plus b) −2)) ((Plus (a ((Plus b) −1))) ((Plus ((Plus b) −1))−1))) b)

Counterexample 13 found after 1583 test is the first (double-recursive) Fibonacci function:
Y (λa .λb . ( (If ((Plus b) −1)) ((Plus (a ((Plus b) −2))) (a ((Plus b)−1)))) 1)

By adding f 6 = 13 to the patterns to be matched, this is the first term found.
The speed of generating and testing candidate functions depends strongly on the con-

dition that has to be evaluated and the size of the expression. On a rather slow (1GHz)
Windows XP laptop we measured a speed of 500 to 200,000 candidate terms per second.

7. Discussion and related work

In this paper we demonstrate that it is possible to find λ-terms matching some condition
by systematic synthesis of candidate expressions. Since we want to be able to find terms like
the Y -combinator, restricting ourselves to terminating expressions is no option. This implies
that testing the suitability of a candidate expression is rather delicate. The equivalence of
terms is known to be undecidable. In this paper we used a simple approximation: a finite
(and rather small) normal order reduction steps are done on the terms to be compared.
If the reduction sequences contains elements that are α-equal the terms are obviously α-
equivalent. If the terms are unequal normal forms the terms are non-equivalent. Otherwise
the equivalence has the value undefined.

It appears that the number of λ-terms is too large to find most interesting terms by
brute force search in reasonable time. We have introduced two rather simple but effective
generators for expressions. The first one generates higher order terms like the famous Y -
combinator. The second one generates (recursive) functions like multiplication by repeated
addition and the Fibonacci function. By using type information it is possible to generate
candidate functions even more effectively. Katayama [6] uses this in his generation of
functions matching examples. He generates only first order terms, all other things (like
recursion) have to be defined as a recursion pattern in a library of primitive functions.
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Broda [5] and Wang [11] discuss algorithms to generate λ-terms randomly. Broda uses a
grammar to specify the type of the terms, somewhat similar to our generation functions.
Henk Barendregt has touched the generation of λ-terms via enumeration in [1, 2, 4].

By adding constructs like the Y -combinator and multiplication to the terms, the gen-
erated terms become more powerful. Hence complex functions will be found quicker.

Without the struggle for nontermination, it is more elegant to introduce a type class
eval to evaluate instances of various grammars represented as type [9]. The grammar of the
candidate terms can then elegantly and effectively be determined by more specific types.
The types control the generation of candidate functions at a higher level of abstraction than
the generation functions used in section 6. When intermediate terms in the reduction need
to be compared, as needed to compare λ-terms for equivalence, this is not possible.

We find λ-terms generalizing the behavior of the given input-output pairs or properties.
Both the obvious functions and more surprising λ-terms are synthesized. If the goal is to
find only primitive recursive functions the direct approach in [9] is more effective. This
paper shows that it is possible to find the primitive recursive functions as well as other
λ-termslike the Y-combinator. The advantage of the approach introduced in this paper is
that it is able to synthesize λ-terms for general properties without the need to define a very
precise grammar for the candidate functions. Some guidance is needed to find larger terms,
but the generators might produce totally wrong candidates (like ill-typed terms or terms
with nonterminating reduction sequences) without causing any trouble.
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