
Chapter 3

Systematic Synthesis of
Functions
Pieter Koopman1, Rinus Plasmeijer1

Abstract: In this paper we introduce a new technique to synthesize functions
matching a given set of input-output pairs. Using techniques similar to defunc-
tionalisation the abstract syntax tree of the candidate functions is specified at a
high level of abstraction. We use a recursive data type to represent the syntax
tree of the candidate functions. The test system G∀ST is used for the systematic
synthesis of candidate functions and the selection of functions matching the given
condition. The representation of candidate functions as data structures gives us
full control over them and the transformation of the syntax tree to the actual func-
tion is straight forward. Instances of the syntax tree are generated by a generic
algorithm that can be tailored easily to specific needs. This yields a very flexible
system to synthesize clear (recursive) function definitions efficiently.

3.1 INTRODUCTION

At TFP’05 Susumu Katayama [7] presented an intriguing system that was able
to synthesize a general function that fits a number of argument result pairs. For
instance, if we state f 2 = 2, f 4 = 24, and f 6 = 720, we expect a factorial func-
tion like f x = i f (x≤0) 1 (x*f (x-1)) . There are of course thousands of func-
tions that match the given condition, but by generating candidate functions in an
appropriate order and form, the system should find the above recursive solution
first. Katayama’s work is one of the latest steps in a long research effort to syn-
thesize pure functional programs from examples. Some key steps are Summers
1977 [16], Banerjee 1987 [1], and Cypher 1993 [4].

Programming by example is not only a curious toy, but it is used within ar-
eas like adaptive user interfaces [4, 5] and branches of AI-like rule learning for

1Nijmegen Institute for Computer and Information Science, Radboud University
Nijmegen, The Netherlands; E-mail: pieter@cs.ru.nl, rinus@cs.ru.nl

35

planning [8, 18]. Using proof checkers one has sometimes to invent a function
matching given conditions. Jeuring et al [6] use our approach as an inspiration
to generate generic functions that perform a task defined by some typical exam-
ples. The goal of all these programming by example systems is not to replace
programming in general, but to have a tool that within some limited area is able
to synthesize a function that is a generalization of the input-output behavior spec-
ified by a (small) number of input-output pairs. In this paper we extend this to a
small number of expressions containing an application of the function. Since we
have the synthesized candidate function available as a data structure representing
its abstract syntax tree, it is easy to do symbolic manipulations of the synthe-
sized candidate functions (like selecting or eliminating functions of some kind, or
determination of the derivative of the candidate function).

There are various approaches in the generation of functions matching the given
input result pairs. The research based on computation traces [16, 4] orders the ex-
amples in a lattice and synthesizes the desired function by folding the steps in
these computation traces. The main problem with this approach is the construc-
tion of the lattice from individual examples. It is far from easy to generate a
usable lattice for the example above. The genetic programming approach [15, 17]
maintains a set of “promising functions”. By heuristic exchange and variation of
subexpressions one tries to synthesize a matching function. The main topics in
this approach are sensible variations of the candidate functions and the determi-
nation of their fitness. A third approach uses the exhaustive enumeration of can-
didate functions. The challenge here is to generate a candidate function match-
ing the given examples in reasonable time. Katayama [7] generates candidate
functions as λ-expressions of the desired type. Apart from the usual abstraction,
application and variables, his anonymous λ-expressions contain a small number
of predefined functions. These predefined functions from the component library
provide also the necessary recursion patterns. A dynamic type system is used to
generate λ-expressions with the desired type. A detailed comparison between his
work and this paper is given in Section 3.7.

In this paper we show how the exhaustive generation of candidate functions
can be improved. Instead of λ-expressions, we generate functions that can be
directly recursive. These functions are not composed of λ-expressions, but their
structure is determined by the type of their abstract syntax trees. This syntax tree
is represented as a data structure in a functional programming language. The test
system G∀ST [9] is used to generate instances of this data type in a systematic way
[10] and to judge the suitability of the generated candidates.

Existing test systems like QUICKCHECK [2] and G∀ST have limited capabil-
ities for the generation of functions. The generation of a function of type σ→ τ

is done in two steps. First the argument of type σ is transformed to an integer. In
the second step this integer is used to select an element of type τ. Either a value is
selected from a list of values, or the integer is used as seed for the pseudo random
generator. In QUICKCHECK the function σ→ int has to be provided by the user

36

as an instance of the class coarbitrary, in G∀ST it was2 derived automatically by
the generic generation algorithm. A multi-argument function of type σ→ τ→ υ

is transformed to a function τ→ υ by providing a pseudo randomly generated
element of type σ. In this way all information of all arguments is encoded in a
single integer. This approach is not powerful enough for more complex functions,
and has as drawback that it is impossible to print these functions. By its nature
the system will never generate a decent (recursive) algorithm. Due to these limi-
tations this generic generation is not suitable for the problem treated in this paper
and it has been removed from G∀ST.

In this paper we show how the generation and print problems are solved by
defining the grammar as a data type and a simple translation from instances of
this data type to the corresponding functions. For the generation of instances of
the data type the existing generic capabilities of our test system G∀ST are used.
In [11] we have used basically the same technique, but in a less sophisticated
way, to test properties over higher order functions. There was the goal to test a
(universally quantified) property of a higher order function by generating a huge
number of functions as test arguments. Here we are interested in the synthesized
function obeying the restrictions given by some applications of the function. This
can be viewed as the mirror image of testing universal quantified properties: there
to goal is to find arguments that falsify the property.

It turns out that a similar representation of functions by data types is used at
different places in the literature. The technique is called defunctionalisation, and
the function transforming the data type is usually called apply. This technique
was introduced by Reynolds [14], and repopularized by Danvy [3]. Defunctional-
isation is a program transformation to turn higher-order programs into first-order
ones. It has been proven to be meaning preserving. The basic idea is to replace
every lambda abstraction with a data constructor that will carry the environment
needed, and replace every application of the higher-order function with an apply
function that will interpret the data structure. Here we will generate a list of in-
stances of a recursive type representing the grammar of the candidate functions.
This implies that each and every function is generated as a data structure. When-
ever desired this data structure is transformed to the function it represents by the
corresponding instance of the class apply.

The key contributions of this paper are the use of data structures to guide the
synthesis of candidate functions in a flexible and controlled way, and the use of
a general test system to find the functions matching the given input-output pairs.
The use of a test system seems rather surprising since it is geared towards finding
counterexamples and here we need functions that match the given predicate. The
key step is a rephrasing of the property: if we state that such a function does not
exist, the counterexamples produced by the test system are exactly the functions
we are looking for.

2For technical reasons the mapping of values to integers had to be integrated in the
generic generation algorithm. Since this slows down the generic generation algorithm, the
increased memory consumption and the limited use of functions generated in this way,
this feature has been removed from G∀ST.

37

In the next section we will show how such a function is found by our test
system. First we will limit our system to functions of type Int → Int. We illus-
trate the power of our approach with a number of examples. The ways to control
the synthesis of candidate functions are discussed in Section 3.3. In Section 3.4
we illustrate how this approach can handle multi-argument functions. The gen-
eration of functions handling other types, like lists, is covered in Section 3.5.
Section 3.6 illustrates that this approach enables more powerful properties than
just matching input-output pairs. Section 3.7 provides a comparison of our work
with Katayama’s system. Finally we draw some conclusions.

3.2 FUNCTION GENERATION

In this section we will show how functions of type Int → Int can be generated
using a grammar. The grammar specifies the syntax tree of the candidate func-
tions. Our test system uses the type to generate candidate functions. The restric-
tion to functions of type Int → Int in this section is by no means a conceptual
restriction of the described approach. We use it here just to keep the explanations
simple; a similar approach can be used for any type.

In Section 3.2.1 we review the basic operations of the automatic test system
G∀ST. In 3.2.2 we state the function synthesis problem as a test problem. The rest
of this section covers the generation and manipulation of the data structures used
to represent the syntax tree of the candidate functions synthesized.

3.2.1 Basic verification by automatic testing

First we explain the basic architecture of the logical part of our test system G∀ST.
The logical expression ∀t : T.P(t) is tested by evaluating P(t) for a large number
of values of type T . In G∀ST the predicate P is represented by a function of type
T → Bool. The potentially infinite list of all possible values of type T is used
as test suite. In order to obtain a test result in finite time, a given fixed number
N (say 1000) of tests are done. There are three possible test results. The result
Proof indicates that the test succeeded for all values in the test suite. This can
only be achieved for a type with less than N values. The result Pass indicates that
no counterexamples are found in the first N tests. The result Fail indicates that a
counterexample was found during the first N tests.

The result of testing in G∀ST will be represented by the data type Verdict:

:: Verdict = Proof | Pass | Fail | Undefined

The function testAll implements the testing of universally quantified predicates:

testAll :: Int (t→Bool) [t] → Verdict
testAll n p [] = Proof
testAll 0 p list = Pass
testAll n p [x:r]

| p x = testAll (n-1) p r
| otherwise = Fail

38

The list of values of type T is the test suite. It can be specified manually, but
is usually derived fully automatically from the type T by the generic algorithm
described in [10]. G∀ST also reports any counterexample found (if any), handles
properties over multiple variables, and has a complete set of logical operators.

A similar test function exists for existentially quantified logical expression of
the form ∃t : T .P(t). The test system returns Proof if a test value is found that
makes P(t) true. The result is Fail if none of the values of type T makes the
predicates true. If none of the first N values makes the predicate true, the result is
Undefined. The result Undefined means that within the given bounds G∀ST was
neither able to find a counterexample, nor a value that makes this predicate hold.
Hence, its value is undefined.

A typical example is the rule that the absolute value of any number is greater
than or equal to zero, ∀i .abs(i) ≥ 0. In G∀ST we have to choose a type for the
number in order to allow the system to generate an appropriate test suite. Using
integers as test suite this property reads:

propAbs :: Int → Bool
propAbs i = abs i ≥ 0

This property can be tested by executing the start ruleStart = test propAbs. The
function test provides the number of tests and the test suite as additional argu-
ments to testAll. The test suite is obtained as instance of the generic class ggen
[10]. G∀ST almost immediately finds the counterexample -2147483648, which is
the minimal integer that can be represented in 32 bit numbers. This value is one
of the common border values that are in the front of any test sequence of integers,
other border values are -1, 0, 1 and maxint.

3.2.2 The function selection problem as a predicate

In this section we will show how G∀ST can be used to synthesize candidate func-
tions and to select functions obeying the desired properties. It is not difficult to
state a property about functions that expresses that it should obey the given input-
output pairs. For our running example, f 2 = 2, f 4 = 24 and f 6 = 720, we state
“P(f) = f (2) = 4∧ f (4) = 24∧ f (6) = 720”. Using a straightforward approach,
the property to test becomes ∃ f .P(f). Test systems like QUICKCHECK and G∀ST
are geared towards finding counterexamples. This implies that testing yields just
Proof if such an f is found, and yields Undefined if such a function is not found in
the given number of tests. Here we want a function that makes the predicate true.
Changing the test system such that it reports successes in an existentially quan-
tified predicate is not very difficult, but undesirable from a software engineering
point of view.

We search for a function by stating that a function matching the given ex-
amples does not exist ¬∃ f .P(f) or more conveniently for testing ∀ f .¬P(f).
Counterexamples found by G∀ST are exactly the desired functions. Now these
functions are counterexamples and will be shown by the test system. We state in
G∀ST:

39

prop0 :: (Int→Int) → Bool
prop0 f =∼ (f 2 == 2 && f 4 == 24 && f 6 == 720)

where∼ is the negation operator. Any counterexample found by G∀ST is a func-
tion that matches the given input-output pairs. As outlined in the introduction,
functional test systems like QUICKCHECK and G∀ST are not very good in gen-
erating functions and printing them. Instead of prop0 we use a property over the
data type Fun. The type Fun represents the grammar of candidate functions, see
3.2.3. The function apply, see 3.2.5, turns an instance of this data type in the
actual function.

prop1 :: Fun → Bool
prop1 d =∼(f 2 == 2 && f 4 == 24 && f 6 == 720) where f = apply d

This predicate can be tested by executing a program with Start = test prop1 as
starting point. Our system yields the following result:

Counterexample 1 found after 30808 tests: f x = i f (x≤0) 1 (x*f (x-1))
Execution: 1.02 Garbage collection: 0.15 Total: 1.17

This counterexample is exactly the general primitive recursive function we are
looking for, the well-known factorial function. More examples will be given be-
low. In the next subsection we treat the structure of the type Fun and the synthesis
of instances.

3.2.3 A grammar for candidate functions

In the generation of candidate functions we have to be very careful to generate
only terminating functions. If one of the generated functions happens to be non-
terminating for one of the examples, testing can become nonterminating as well.
Termination can either be guaranteed by an upper limit on the number of recursive
calls (if the candidate function does not terminate in N calls, it is rejected), or by
only generating functions that are terminating by construction.

We will construct only terminating (primitive recursive) functions. For the
integer domain, these functions either do not recurse, or use as stop criterion a
conditional of the form x≤c, where x is the function argument and c is some
small integer constant. The then-part is an expression containing no recursive
calls. The else-part contains only recursive calls of the form f (x-d) , where d

is a small positive number. Since we want to generate only primitive recursive
functions, recursive calls are not nested.

The body of a function is either a non-recursive expression, or a recursive
expression of the described form. An expression is either a variable, an integer
constant or a binary operator applied to two expressions. This is captured by the

40

following grammar.

Fun = f x = (Expr | RFun)
RFun = if (x − IConst) Expr Expr2

IConst = positive integer

Expr = Variable | integer | BinOp Expr

BinOp e = e + e | e − e | e ∗ e

The expression in an else-part is either a variable, a constant or a binary operator
over a variable, a constant, or a recursive function application:

Expr2 = Variable | integer | BinOp (Variable |integer | f(x − integer))

Note that the grammar rule for BinOp is parameterized by the arguments for the
binary operators. This is convenient since we can now use this rule for Expr as for
Expr2. This reuse of data types carries over directly to the implementation. Al-
though the principle of parameterizing grammar rules is not completely standard,
it is known as two level grammar, or Van Wijngaarden grammar, and is at least as
old as the Algol 68 report.

This grammar is directly mapped to a data type in CLEAN [13]. We use the
type OR to mimic the choice operator, |, used in the grammar.

:: OR s t = L s | R t

The composition of types allows us to use a choice between types. This saves
us from the burden of defining a tailor made type for each choice.

In the definition of the data types representing the grammar we represent only
the variable parts of the grammar. Literal parts of the grammar (like f x =) are
omitted (as in any abstract syntax tree). Constructors like IConst are introduced
in order to make the associated integer a separate type, this is necessary in order
to generate values of this type in a different way than standard integers.

Constructs that behave similarly are placed in the same type (like BinOp). A
separate type is used for recursive parts in the grammar, parts that are used at
several places, or for clarity.

:: IConst = IConst Int
:: BinOp x = OpPlus x x | OpMinus x x | OpTimes x x
:: Var = X
:: Expr = Expr (OR (OR Var IConst) (BinOp Expr))
:: FunAp = FunAp Int
:: TermVal = TermVal Int
:: RFun = RFun TermVal Expr

(OR (OR Var IConst) (BinOp (OR (OR Var IConst) FunAp)))
:: Fun = Fun (OR Expr RFun)

These data types are used to represent recursive functions as illustrated above.
The design of these types controls the shape of the candidate functions. It is very
easy to add additional operators like division or power.

41

3.2.4 Generating candidate functions

The generic algorithmggen [10] used by G∀ST generates a list of all instances of a
(recursive) type from small to large. The only thing to be done is to order CLEAN
to derive the generic generation for these types.

derive ggen OR, BinOp, Var, Expr, RFun, Fun

For the constants we do not use the ordinary generation of integers. A much
smaller set of values is used to speed up the synthesis of matching candidates
functions. After studying many examples of recursive functions in text books and
libraries the values 0..2 appear to be commonly used as termination value. The
occurring recursive calls for integer functions are usually of the form f (x− 1)
or f (x− 2). The occurring integer constants are in the range 0..5. These values
are used in the following tailor defined instances of the corresponding types in
CLEAN. The variables n and r can be used to make a pseudo random change in
the order of the values. This is not needed nor wanted here.

ggen{|TermVal|} n r = map TermVal [0..2]
ggen{|FunAp|} n r = map FunAp [1..2]
ggen{|IConst|} n r = map IConst [0..5]

None of these upper limits is critical. Making the maximum IConst 50 (or even
unbounded) instead of 5 slows the discovery of most functions down by a factor
of 2. Using 3 as maximum, instead of 5, usually gives a speedup of a factor of 2.
Using a maximum that is too small prevent the desired function from being found.
Katayama uses only f (x−1) in his recursion pattern.

3.2.5 Transforming data structures into functions

Until now we generate the syntax trees representing candidate functions, but for
the determination of the fitness of a candidate function we need the function cor-
responding to this syntax tree. The class applywill be used to transform a syntax
tree into the corresponding actual function. Although apply can also be defined
in a generic way, we prefer an ordinary class here. The generic definition is not
shorter, and the ordinary class is more efficient. The classapply contains only the
function apply. The class is parameterized by the data type d to be transformed,
the environment e, and the type of value v to be generated3.

class apply d e v :: d → e → v

We will use two different environments. The first type of environment contains
only the integer used as function argument. The second type of environment is a
tuple containing the recursive function and the function argument.

The interesting cases using the environment are:

instance apply Var Int Int where apply x = λi.i

3In Haskell one would have to write
class apply d e v where apply :: d → e → v instead of this shorthand notation.

42

instance apply Var (x,Int) Int where apply x = λ(_,i).i
instance apply FunAp (Int→Int,Int) Int
where apply (FunAp d) = λ(f,i).f (i-d)

In the definition of a recursive function, RFun, an environment containing the inte-
ger argument is transformed into an environment containing the recursive function
and the argument. The recursion is constructed by the cycle in the definition of f.

instance apply RFun Int Int
where apply rf=:(RFun (TermVal c) then else) = f

where f i = i f (i≤c) (apply then i) (apply else (f,i))

Note that the transformation of the syntax tree into the corresponding function
is done only once for all recursive applications of the function (the generated
function f is passed in the environment of the else-part). This more sophisticated
implementation results in a faster execution than repeated interpretation of the
data structure for recursive calls (by passing rf to the recursive calls).

The definition of the apply for expressions of type Expr is somewhat smart.
Expressions do not contain calls of the recursive function. Hence it is superfluous
to pass it to all nodes of the syntax tree.

instance apply Expr Int Int where apply (Expr f) = apply f
instance apply Expr (x,Int) Int where apply (Expr f) = λ(_,i).apply f i

The instance of apply for binary operators takes care of the computations. The
instance of apply for BinOp x requires that there is an instance of apply for x and
this environment e and result of type v. Moreover, it is required that the operators
+, -, and * are defined for type v.

instance apply (BinOp x) e v | apply x e v & +, -, * v
where apply (OpPlus x y) = λe.apply x e + apply y e

apply (OpMinus x y) = λe.apply x e - apply y e
apply (OpTimes x y) = λe.apply x e * apply y e

The other instances of apply just pass the environment to their children, e.g:

instance apply (OR x y) b c | apply x b c & apply y b c
where apply (L x) = apply x

apply (R y) = apply y

3.2.6 Pretty printing generated functions

If we would derive showing of candidate functions in the generic way, we would
obtain the following representation for the factorial function from Section 3.2.2.

Fun (R (RFun (TermVal 0) (Expr (L (R (IConst 1))))
(R (OpTimes (L (L X)) (R (FunAp 1))))))

Although this data structure represents exactly the recursive factorial function
listed above, it is harder to read. Instead of deriving generic instances of the print

43

given examples generated function tests time
f 1 = 1 f x = 1 1 0.01
f 1 = 1, f 2 = 4 f x = x*x 69 0.02
f 1 = 1, f 2 = 5 f x = if (x≤1) 1 5 160 0.02
f 2 = 2, f 6 = 720, f 4 = 24 f x = if (x≤0) 1 (x*f (x-1)) 30808 1.17
f 4 = 5, f 5 = 8 f x = if (x≤1) 1 (f (x-2)+f (x-1)) 2791 0.16
f (-2) = 2, f 5 = 5, f (-4) = 4 f x = if (x≤0) (0-x) x 678 0.05

TABLE 3.1. Input-output pairs and the synthesized functions.

routines for the data types representing the grammar, we use tailor made defi-
nitions in order to obtain nicely printed functions instead of the data structures
representing them.

The generic functiongenShow yields a list of strings to be printed. It has a sep-
arator sep as argument that is used between constructors. The second argument,
p, is a Boolean indicating whether parentheses around compound expressions are
needed. The third argument is the object to be printed. The last argument,rest, is
a continuation. This continuation is the list of strings representing the rest of the
result of genShow.

The dull code below just takes care of the pretty printing of candidate func-
tions. It just adds the constant parts of the grammar not represented in the syntax
tree and removes some constructors. We list some typical examples.

genShow{|OR|} f g sep p (L x) rest = f sep p x rest
genShow{|OR|} f g sep p (R y) rest = g sep p y rest
genShow{|IConst|} sep p (IConst c) rest = [toString c:rest]
genShow{|Var|} sep p X rest = ["x":rest]
genShow{|Expr|} sep p (Expr e) rest = genShow{|?|} sep p e rest
genShow{|RFun|} sep p (RFun c t e) rest
= ["if (x≤":genShow{|?|} sep False c

[") ":genShow{|?|} sep True t [" ": genShow{|?|} sep True e rest]]]
genShow{|BinOp|} f sep p (OpPlus x y) rest
= [i f p "(" "": f sep True x ["+": f sep True y [i f p ")" "":rest]]]

3.2.7 Examples

In order to demonstrate the power of our approach we list some examples in table
3.1. The first column of the table contains the input-output pairs the function has
to match. The next columns contain the first matching function found, the number
of tests and the time needed (in seconds) to generate this function. We used a 1
GHz AMD PC running Windows XP and the latest versions of CLEAN and G∀ST.

These examples show that a small number of examples are sufficient to gen-
erate many well-known functions. From top to bottom these functions are known
as: the constant one, square, a simple choice, factorial, fibonacci, and absolute
value.

Depending on the amount of memory (32 – 64 M) and the details of the gen-
erated functions, our implementation generates 10 to 25 thousand candidate func-

44

tions per second. Private communication with Katayama indicates that our imple-
mentation is more than one order of magnitude faster then Katayama’s. When lists
are excluded from his implementation it needs 25 seconds on Katayama’s faster
(3 GHz Pentium 4) machine for the factorial function. His solution for4 f 0 =
1, f 1 = 1, f 2 = 2, f 3 = 6, f 4 = 24 is

λa.nat_para a (λb.inc b) (λb c d.c (nat_para b d (λe f.c f))) zero

Using the paramorphism [12] nat_para, twice, as recursion pattern. The first
occurrence ofnat_parahandles the recursion in the factorial function. The second
instance of nat_para implements multiplication by repeated addition.

nat_para :: Int a (Int a → a) → a
nat_para 0 x f = x
nat_para i x f = f (i-1) (nat_para (i-1) x f)

Comparison with our running example, repeated as the fourth example in the ta-
ble above, indicates that our system generates functions that are better readable.
In addition our approach synthesizes a matching function faster, and the gener-
ated function is more efficient. Moreover, Katayama’s system needs more input-
output pairs to generate the desired factorial function. Katayama’s system can be
improved by adding primitive functions, like addition and multiplication, to the
library.

3.3 CONTROLLING THE CANDIDATE FUNCTIONS

The generation of candidate functions can be controlled in three ways. In this sec-
tion we will discuss these ways, and show their effect by searching for functions
matching f 1 = 3, f 2 = 6, and f 3 = 9. The three different ways to control the
synthesis of functions are:
Designing types By far the most important way to control the synthesis of candi-

date functions is the design of the data types used to represent the candidate
functions. Only candidate functions that can be represented can be generated
and will be considered.

In this paper we used this to guarantee that candidate functions are either non-
recursive, i.e. the function body is an arithmetic expression, or the candidate
function is primitive recursive containing an appropriate stop condition.

Generating instances of types The test system G∀ST generates instances of these
types in its struggle to prove or falsify the statement that there is no function
obeying the given input-output pairs. One of the advantages of G∀ST is that the
generation of instances for types can be done by the generic algorithm ggen.
The instance of ggen for a specific type just yields the list of candidate values.
This implies that one can decide to specify a list of values by hand instead of
deriving them by the generic algorithm.

4Katayama’s system needs more input-output pairs to find the factorial functions. With
the pairs used as running example his system finds another function. This is just an effect
of the order of generation of candidate functions.

45

property execution time (S) candidates tested candidates rejected
pExpr 0.02 180 0
pFun 0.03 429 0
pFit 0.21 1525 2860

pExpr2 0.12 2126 0

TABLE 3.2. Generating 10 matching functions in different ways.

We used this in the generation of constants. Although there is no conceptual
limitation to leaves of the syntax trees to be generated, it is convenient to use
it only there. One can use a general type for constants and easily control the
actual constants used. It is possible to use this also for types with arguments,
but that brings the burden of controlling the order of generating instance back
to the user.

Selection of generated instances Finaly, G∀ST has the possibility to apply a pred-
icate to candidate functions, or actually their syntax tree, before they are used.
If the predicate does not hold, the test value is not used. In fact it is not even
counted as a test.

This is often used for partial functions. A typical example is the square root
function that is only defined for nonnegative numbers. For these numbers
we can state that the square of the square root of any nonnegative rational
number should be equal to that number: ∀r .r≥ 0⇒ sqrt(r)2 = r. This can be
expressed directly in G∀ST as:

pSqrt :: Real → Property
pSqrt r = r ≥ 0.0 =⇒ (sqrt r)ˆ2.0 == r

Using this mechanism we can eliminate undesirable candidate functions from
the tests, and hence from the synthesis of matching functions.

These techniques are demonstrated by synthesis of functions matching f 1 = 3,
f 2 = 6, and f 3 = 9. G∀ST searches for non recursive solutions by testing:

pExpr :: Expr → Bool
pExpr d =∼(f 1 == 3 && f 2 == 6 && f 3 == 9)
where f = apply d

G∀ST quickly finds functions like f x = 0+((x+x)+x), f x = (x−x)+((x+x)+
x), and f x = x+(x+x). In the propertypFunwe replace the typeExpr ofpExprby
Fun. When G∀ST tests this property, it will also generate recursive candidate func-
tions. In table 3.2 we see that it takes longer to generate 10 matching functions
for pFun than for pExpr. Since the synthesized recursive functions do not match
the given condition, pFun has a lower success rate.

In order to get rid of redundant expressions like x-x or x+0 in the generated
functions, we filter them with the predicate fit:

pFit :: Fun → Property
pFit d = fit d =⇒ ∼(f 1 == 3 && f 2 == 6 && f 3 == 6) where f = apply d

46

The predicate fit is implemented as a class. The instance for binary operators is
given as an example. A subtraction is fit if the arguments are unequal and each
of the arguments is fit. An addition is fit if both arguments are unequal to the
constant zero, checked by is0, and fit. A multiplication is fit if both arguments
are unequal to 0 and 1 and fit.

class fit a :: a → Bool

instance fit (BinOp x) | gEq{|?|} x & isConst, fit x
where fit (OpMinus x y) = x =!= y && ∼(is0 y) && fit x && fit y

fit (OpPlus x y) =∼(is0 x) && ∼(is0 y) && fit x && fit y
fit (OpTimes x y) =∼(is01 x) && ∼(is01 y) && fit x && fit y

Defining a type without these redundant expressions is somewhat tricky, but
doable. The key-step is to define operators as a separate type with different type-
arguments as left and right arguments:

:: Sub x y = Sub x y
:: Es = Es (OR (Sub Var NConst) (Sub IConst Var))

In table 3.2 we see that it takes considerably more time to generate 10 match-
ing functions if we filter redundant expressions. This is not surprising since also
the rejected candidates are generated and all candidates are tested. Using more
sophisticated types is more efficient since no fitness tests and generation of re-
dundant expressions occurs, but requires more programmer insight.

3.4 GENERATION OF MULTI-ARGUMENT FUNCTIONS

All generated functions above are of type Int→Int. This was chosen deliberately
to keep things as simple as possible, but it is not an inherent limitation of the
approach. To demonstrate this we show how to handle functions with Arity, e.g.
2, integer arguments. The type for variables is changed such that it represents a
numbered argument.

:: VarN = VarN Int

The environment in applywill now contain a list of values.

instance apply VarN [Int] Int where apply (VarN n) = λ l.l !! n

The instance of ggen takes care that only valid argument numbers are generated.

ggen{|VarN|} n r = map VarN [0..Arity-1]

In the next section we will show functions having a list and an integer as example.

3.5 SYNTHESIS OF FUNCTIONS OVER OTHER DATA TYPES

The manipulation of other types than integers can be handled by defining a suit-
able abstract syntax tree for these functions, and the associated instances of ggen,

47

given example generated function tests time
g [1,2,3] = [1,2,3] g y = y 1 0.01
g [1,2,3] = [1,4,9] g y = map f y where f x = x*x 34 0.05
g [1,2,5] = [1,2,120] g y = map f y 67573 3.89

where f x = if (x≤1) x (f (x-1)*x)

TABLE 3.3. Input-output pairs of type [Int]→[Int] and synthesized functions.

apply and genShow. We derive the generation of all types introduced in this sec-
tion.

The synthesis of functions of type Real→Real with the same structure as the
functions of type Int→Int used above is very simple, we only have to supply
suitable instances of apply.

As a slightly more advanced example we show how function over lists of
integers, that is, of type [Int]→[Int] , can be handled that are either the identity
function, or the map of a function of type Int→Int over the argument list.

:: LFun = ID | MAP Fun

instance apply LFun [Int] [Int]
where apply ID = λl.l

apply (MAP f) = map (apply f)

Although this are very restricted functions and not all that interesting, it shows
how data types generating function can be reused. Some examples of its use are
listed in Table 3.3.

In exactly the same way we can synthesize functions destructing recursive data
types like lists and trees. As an example we let G∀ST synthesize product functions
over a list of integers with the property:

pProduct :: ListFun → Property
pProduct d = fit d =⇒ ∼(f [1,2,3] == 6 && f [] == 1 && f [5] == 5)
where f = apply d

Note that by changing f [] == 1 to f [] == 0 we will obtain the sum rather than
the product.

The key to success is of course an appropriate type forListFun and the associ-
ated instances ofapplyandgenShow. Direct recursive functions can be synthesized
by:

:: LFUN = LFUN IConst LEx / / expressions for nil and cons
:: LEx = LEx (OR (OR Var IConst) (OR Rec (BinOp LEx))) / / note the recursion
:: Rec = Rec / / recursive call

:: Env = Env ([Int]→Int) Int [Int] / / environment: function, head, and tail

instance apply LEx Env Int where apply (LEx lex) = apply lex
instance apply Var Env Int where apply X = λ(Env f x l) → x
instance apply Rec Env Int where apply Rec = λ(Env f x l) → f l

48

instance apply LFUN [Int] Int
where apply (LFUN nil cons) = f

where f [] = apply nil 0
f [x:l] = apply cons (Env f x l)

One often prefers functions over lists with an accumulator in order to reduce the
stack space needed by the synthesized function. This requires just another data
type for functions:

:: AFun = AFun IConst AEx / / initial accumulator and body for recursion
:: AEx = AEx (OR (OR Var IConst) (OR A (BinOp AEx))) / / note the recursion
:: A = A / / accumulator

:: AEnv = AEnv Int Int / / environment: accumulator and head

instance apply AEx AEnv Int where apply (AEx ex) = apply ex
instance apply A AEnv Int where apply A = λ(AEnv a x) → a
instance apply Var AEnv Int where apply X = λ(AEnv a x) → x
instance apply AFun [Int] Int
where apply (AFun c ex) = f (apply c 0)

where f a [] = a
f a [x:l] = f (apply ex (AEnv a x)) l

By choosing (OR AFun LFUN) forListFun in the property above, G∀ST synthesizes
both kinds of functions is one test. The first three matching functions are:

Counterexample 1 found after 8 tests:
f [] = 1
f [x:l] = (f l)*x
Counterexample 2 found after 677 tests:
f [] = 1
f [x:l] = x*(f l)
Counterexample 3 found after 1039 tests:
f l = g 1 l
where g a [] = a

g a [x:l] = g (a*x) l

3.6 OTHER PROPERTIES

Having the candidate function available as a real function enables us to write also
other conditions, like twice f 1 == 4 or f 1 6=5.

However, there is no reason to stick to these simple predicates on the synthe-
sized candidate functions. In this section we show some other kinds of properties
that can be stated about the desired functions. One possibility is to use the fully
fledged test system to specify for instance properties containing additional for-all
operators. Another possibility is to use the availability of the functions as data
structures for symbolic manipulation.

Using the capabilities of the test systems it is for instance possible to search
for nonrecursive functions that obey the rule f 0 = 0 and ∀x .2 f (x) = f (2x). This

49

can directly be stated in G∀ST as:

pfExpr :: Expr → Property
pfExpr d = fit d =⇒ ∼(f 0 == 0 ∧ ForAll (λx.2*f x == f (2*x)))
where f = apply d

Note that we limit the search to fit candidates. The system promptly synthesizes
functions like f x = 0, f x = x, f x = x+((x+x)+x) , f x = 0-(x+x) .

If we also include recursive functions in the search space, we have to take care
that the integers tried as arguments by G∀ST are not too large. Computing the
result of synthesized primitive recursive functions, like factorial and Fibonacci,
for a typical test value like maxint uses infeasible amounts of time and space.
The numbers used in the tests can be limited by computing them modulo some
reasonable upper bound, like 15, or by stating a range of values directly. A typical
example is:

pfFun :: Fun → Property
pfFun d = fit d =⇒ ∼(f 1 == 1 ∧ ((λx.(f x) /x == f (x-1)) For [1..10]))
where f = apply d

The factorial function f x = i f (x≤0) 1 (f (x-1)*x) is synthesized quickly.
Since the syntax trees of the candidate functions are available, it is easy to

manipulate the candidate functions. As an example we show how we can obtain
the derivative of functions of type Real→Real and how it is used in properties.
The derivative d

d x of expressions is computed by the classddx. The rules are taken
directly from high school mathematics:

class ddx t :: t → Expr

instance ddx Var where ddx X = toExpr (IConst 1)
instance ddx IConst where ddx c = toExpr (IConst 0)
instance ddx (BinOp t) | ddx t & toExpr t
where ddx (OpPlus s t) = toExpr (OpPlus (ddx s) (ddx t))

ddx (OpMinus s t) = toExpr (OpMinus (ddx s) (ddx t))
ddx (OpTimes s t)
= toExpr (OpPlus (toExpr (OpTimes (ddx s) (toExpr t)))

(toExpr (OpTimes (toExpr s) (ddx t))))

This can be used in properties over a function f and its derivative f’ . For example
f (0) = 1 and ∀x . f ′(x) = 2x. In G∀ST this is:

pddx :: Expr → Property
pddx d =∼(f 0.0 == 1.0 ∧ ForAll (λx. f’ x == 2.0*x))
where f = apply d; f’ = apply (ddx d)

After 145 test cases G∀ST synthesizes the first matching function: f x = (x*x)+1.
These examples show that it pays to use a general test system for the synthesis

of functions. The matching of given pairs nicely integrates with the general log-
ical expressions. Having the candidate function available as a data structure also
enables symbolic manipulations like computing the derivative.

50

3.7 RELATED WORK

This paper presents an application of the concept of systematic generation of func-
tions to the area of programming by example. The basic idea to synthesize func-
tions via the synthesis of a data structure representing their syntax tree is presented
in [11]. There the functions generated are used for the automatic testing of higher
order functions. The generated functions serve only as test arguments for the
properties to be tested. We were interested in the property over the higher order
function rather than the set of functions generated as test suite. The main quest
was there to find errors in a library of continuation based parser combinators.

Here we are interested in the generated properties themselves, since the goal is
to find a general function matching the given input-output pairs. The techniques
of synthesizing functions is improved by the introduction of the type OR. This
type allows us to model the choice of elements of two existing data types. The
advantage is that data types, and hence the components of functions modeled by
them, can be reused. Furthermore, this paper systematically shows what has to be
done if the system generates undesirable (for instance non terminating) functions.
The options are: 1) improve the data type such that the dangerous functions cannot
be represented, 2) replace the generic generation of instances of this type by a
tailor made generation such that only the desired instances are generated (this is
only attractive for non recursive definitions), or 3) define a predicate over the data
type that rejects unwanted candidates before they are tried.

In the area of programming by example through systematic synthesis of can-
didate functions and selecting a match candidate the most related work is [7] of
Katayama. The main differences between our work and Katayama’s approach are:
Type correctness of generated candidates The type system selects statically the

grammar used to generate values of the desired function result, instead of a
dynamic system that controls the generation of λ-expressions.

Recursion in the synthesized functions Our system is able to synthesize def-
initions of (primitive) recursive functions directly, instead of searching λ-
expressions containing an instance of a paramorphism as recursion builder.
Although our examples are primitive recursive functions, this is not an inher-
ent limitation of the approach. By including a clause for a recursion builder,
like fold for lists, in the grammar, the corresponding recursion pattern can
be generated. In Katayama’s system any recursion pattern wanted should be
supplied as a (higher order) function in the library.

Control of the synthesis In Katayama’s system the candidate functions are syn-
thesized from ordinary λ-expressions and a library of functions. The recursion
pattern has to be supplied in this library, since the generation of λ-expressions
is not capable to generate recursion (for instance by a Y-combinator). By de-
fault Katayama’s library of primitive functions provides two paramorphisms:
one recursion pattern for integers and one for lists (similar to a fold function).
This is sufficient since his system only handles recursive functions over in-
tegers and lists. Katayama’s system generates type correct expressions in a
breadth first way. The exact algorithm used is not revealed.

51

We use data types to control the generation of candidate functions. Using these
types, the system becomes more open and much easier to adapt to special
wishes. The generation of instances of these types is done by our general
generic algorithm [10] instead of an ad-hoc algorithm. Using the techniques
discussed in this paper the synthesis can be fine tuned if necessary. Due to the
tailor made data types the functions synthesized are not restricted to integers
and lists nor to specific recursion patterns. The price we have to pay for this
flexibility is that we have to define new a data type and associated instance of
apply for each new recursion pattern and data type. We have shown that it is
possible to reuse (parts of) existing solutions.
In the recursion pattern we use here as an example for functions of type
Int→Int we use various values as stop condition and step size in the recur-
sive call. In Katayama’s systems all of the desired combinations should be
stated as separate recursion patterns, or the needed constants should be in-
cluded as functions in the library. A consequence of that last action would be
that these constants would be used in each and every position where the type
fits. As shown above, this can be controlled very easily and accurately in our
approach.

Tool support Our general test system is used to generate candidate functions, and
to select and print matching functions. No changes of the tool are required
whatsoever. Katayama uses a tailor-made tool.

The advantage of Katayama’s system is that it is in principle able to generate any
function over integers and lists. The system should be extended in order to handle
other other types, like trees. The advantage of our approach is that it works for
any type and any kind of function wanted. Since it synthesizes only instances of
the defined abstract syntax trees, it is usually faster. Moreover, it tends to require
less input-output pairs to find nice (recursive) functions. The price to be paid is
that we have to define new data types and associated instances of apply for new
kinds of functions.

Jeuring et al [6] generate generic functions that performs a task defined by
some typical examples. They use Djinn to generate arms of a generic function for
instances of the user-specified generic signature of the desired function on the type
indices of generic functions. This is partly based on their misconception that our
approach is not suited to generate higher order functions5. The selection of can-
didate functions is very similar to our approach, although they use QUICKCHECK
rather than G∀ST. In [11] we show how higher order functions can be generated
using this approach. It is interesting future work to find out of the generation of
generic functions can be done based on our technique.

3.8 CONCLUSION

In this paper we have shown how functions matching given input-result pairs can
be synthesized in a clear and flexible way. By defining an appropriate type for

5Jeuring at al state in their introduction: “..the approach of Koopman and Plasmeijer
[15] does not seem to be able to generate higher-order functions..”

52

syntax trees as data structure, the user can control the structure of the synthesized
functions. We have shown non-recursive functions as well as various recursion
patterns. If other kind of functions are wanted (other data types and or recursion
patterns) we just have to define a data type representing their syntax tree, derive
their instantiation, and add an instance of apply that turns the syntax tree into the
corresponding function.

Generating the instances of the data types representing the syntax tree and
selecting the correct corresponding functions can be done very well with our gen-
eral test system G∀ST. There are three ways in which the synthesis of functions
is controlled. The first and most important control mechanism is the type of the
syntax tree representing the functions. The second control mechanism is the gen-
eration of instances of these types. It is very convenient to derive the generation
of instances from the generic algorithm of G∀ST, but that is not required. Any list
of values can be used. We use this in the generation of constants: the type is very
general, but the used instances ofggen generate only a small list of desired values.
The third and final way to control which functions are used in the test is by using a
predicate in the property. In this paper we used the predicatefit to eliminate can-
didates representing undesirable subexpressions (likex-x and0+x instead of 0 and
x). By defining more sophisticated types, the other ways to control the synthesis
become superfluous. The user decides what is most convenient and effective.

The test system does most of the work and provides an excellent platform.
For most functions a single page of additional CLEAN code is sufficient. This
approach is more transparent, flexible and efficient than existing systems like [7].
Although the described system works excellently for many examples, synthesiz-
ing functions involving very large expressions or very large constants will take
a very long time. This is due to the size of the search space and the systematic
search.

Acknowledgement

The authors thank the anonymous referees for their contributions to improve this
paper.

53

REFERENCES

[1] Debasish Banerjee. A methodology for synthesis of recursive functional programs.
ACM Transactions on Programming Languages and Systems, 9(3):441–462, 1987.

[2] K. Claessen and J. Hughes. Quickcheck: A lightweight tool for random testing of
haskell programs. In Proceedings of the 2000 ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP ’00), pages 268–279. ACM Press, 2000.

[3] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In ACM SIGPLAN
conference on Principles and Practice of Declarative Programming (PPDP), pages
162–174, 2001.

[4] Allen Cypher (editor). Watch What I Do: Programming by Demonstration. MIT
Press, 1993.

[5] Henry Lieberman (editor). Your Wish is My Command: Programming by Example.
Morgan Kaufmann, 2001.

[6] Johan Jeuring, Alexey Rodriguez, and Gideon Smeding. Generating generic func-
tions. In WGP ’06: Proceedings of the 2006 ACM SIGPLAN workshop on Generic
programming, pages 23–32, New York, NY, USA, 2006. ACM Press.

[7] Susumu Katayama. Systematic search for lambda expressions. In Proceedings Sixth
Symposium on Trends in Functional Programming (TFP2005), pages 195–205, 2005.

[8] E. Kitzelmann and U. Schmid. Inductive synthesis of functional programs. In AISC
2002 and Calculemus 2002, volume 2385 of LNCS, pages 26–37. Springer, 2002.

[9] P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic automated
software testing. In Ricardo Peña and Thomas Arts, editors, The 14th International
Workshop on the Implementation of Functional Languages, IFL’02, Selected Papers,
volume 2670 of LNCS, pages 84–100. Springer, 2003.

[10] Pieter Koopman and Rinus Plasmeijer. Generic Generation of Elements of Types.
In Proceedings Sixth Symposium on Trends in Functional Programming (TFP2005),
Tallin, Estonia, Sep 23-24 2005.

[11] Pieter W. M. Koopman and Rinus Plasmeijer. Automatic testing of higher order
functions. In Fourth Asian Symposium on Programming Languages and Systems
(APLAS), pages 148–164, 2006.

[12] Lambert Meertens. Paramorphisms. Formal Aspects of Computing, 4:413–424, 1992.

[13] Rinus Plasmeijer and Marko van Eekelen. Concurrent CLEAN Language Report
(version 2.0), December 2001. http://www.cs.ru.nl/∼clean/.

[14] John C. Reynolds. Defuncitional interpreters for higher-order programming lan-
guages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998. reprinted
from the proceedings of the 25th ACM National Conference (1972).

[15] Ute Schmid and Jens Waltermann. Automatic synthesis of XSL-transformations from
example documents. In M.H. Hamza, editor, Artificial Intelligence and Applications
Proceedings (AIA 2004), pages 252–257. Acta Press, 2004.

[16] Philip Summers. A methadology for LISP program construction from examples.
Journal of the ACM (JACM), 24(1):161–175, 1977.

[17] Malcolm Wallace and Colin Runciman. Recursion, lambda abstractions and genetic
programming. In Genetic Programming 1998: Proceedings of the Third Annual Con-
ference, pages 422–431, 1998.

54

[18] Fritz Wysotzki and Ute Schmid. Synthesis of recursive programs from finite examples
by detection of macro-functions. Forschungsberichte des Fachbereichs Informatik
der TU Berlin Nr. 2001-2, (2).

55

