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Abstract. In this paper we present the iData Toolkit. It allows pro-
grammers to create interactive, dynamic web applications with state on
a high level of abstraction. The key element of this toolkit is the iData
element. An iData element can be regarded as a self-contained object
that stores values of a specified type. Generic programming techniques
enable the automatic generation of HTML-forms from these types. These
forms can be plugged into the web application. The iData elements can
be interconnected. Complicated form dependencies can be defined in a
pure functional, type safe, declarative programming style. This liberates
the programmer from lots of low-level HTML programming and form
handling. We illustrate the descriptive power of the toolkit by means of
a small, yet complicated example: a project administration. The iData
Toolkit is an excellent demonstration of the expressive power of modern
generic (poly-typical) programming techniques.
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1 Introduction

The World Wide Web is experiencing a rapid growth of web based applications.
For many companies their web based services are their only contact with clients.
These clients gain access to these applications via a wide variety of browsers. In
addition, they tend to use these applications in a browsing style: clients clone
windows, move back and forward through visited links, visit different sites, and so
on. These aspects impose strong demands on web applications in order to assure
correct behavior. It is important that these web applications are constructed in
a well-understood way, and are based on solid foundations. In the iData Toolkit
project we are working on a framework for these purposes. The main features of
the toolkit are:

– The toolkit is based on a single concept, that of interactive Data, or iData.
– The web application is a single program (perhaps consisting of several mod-

ules) instead of a collection of loosely coupled script pages.



– The toolkit is defined in a pure functional programming language, and uses
features such as strong typing and expressive type systems.

– The toolkit offers a good separation of concerns. The computational content
of the web application is separated from the presentation in a clear way.

– The programmer has fine grained control over the life span of the applica-
tion’s state. State can be stored persistently, session based, or page based.

We focus on two challenges when programming the web: the first is how to
program forms in a concise, abstract, and well-defined way, and the second is how
to interconnect these forms. Forms are the interactive parts of web applications.
In them, users can enter data, using a variety of interactive elements such as
text input fields, (radio) buttons, and pull down menus. An application page
generally consists of several forms which content may depend on each others
state. We guarantee that user input is always type correct, and that the server
side application always receives the correct data.

We meet the above challenges by imposing a typed discipline on the untyped
world of web programming in a novel way. In our framework, forms are really
editors of values. Because we use a strongly typed programming language, these
values have a well-defined type. We derive the form automatically from the type
of the value of an editor using generic programming techniques [13, 14, 2]. Such
an editor is an iData. This results in a powerful abstraction: iData Toolkit pro-
grammers do not program forms, but instead design types and values of iData.
We have implemented this approach earlier for Graphical User Interfaces [1]. The
implementation of the iData Toolkit [20] is both entirely different and a major
improvement of the previous work.

Generic programming has been built in in Clean [21, 3] and GenericH∀skell
[17]. We use Clean. Clean details are explained in the text. We assume that the
reader is familiar with functional and generic programming.

Contributions presented in this paper are:

– We present a single programming concept, the iData, with which dynami-
cally, interconnected, type-safe web applications can be developed.

– We show that iData offer a high level of abstraction because they are pro-
grammed in terms of data models. Forms are rendered automatically from
the type of these data models.

– iData can be interconnected type-safely, as if they were stateful objects.

This paper is structured as follows. In Sect. 2 we introduce the iData Toolkit by
means of a few key examples. We show what steps an iData Toolkit application
programmer goes through by discussing a case study of a small, yet complex and
realistic example of a web form in Sect. 3. We discuss related work in Sect. 4.
Finally, we conclude in Sect. 5.

2 The concept of iData

An iData element is an object with two major components: (i) a state, or value,
which type is determined by the programmer, and (ii) a form, or rendering,
which is derived automatically by the toolkit from the state and its type.



The programmer manipulates the iData in terms of the state and its type,
whereas the application user manipulates the iData in terms of a low-level form.
Clearly, the iData Toolkit needs to mediate between these two worlds: every
possible type domain has to be automatically mapped to editable forms, and
every user action on these forms has to be automatically mapped back to the
original type domain, with a possibly different value.

In this section we explain the main concepts of the iData Toolkit by means of
a few key examples. Please notice that although the code of these examples has a
static flavour, each of these examples are complete interactive web applications.
First we discuss the architecture of server side web applications.

2.1 Architecture

The applications that we study reside on web servers. They are launched by the
web server whenever a (remote) web browser program sends a request for an
HTML page. It is the task of the application to compute an HTML page, and
then terminate. The web server takes care that the generated HTML page is sent
back to the web browser program.

In our approach, a web application consists of two parts: the declaration of
the interconnected iData elements, and the generation of the HTML page that
contains (a subset of) the automatically derived forms of these iData elements.

Interconnection of iData is programmed in a pure functional data dependency
style. This gives the program a highly declarative flavor. Yet, the application is
started from scratch every time a web form is altered by the user. The current
state of the program is completely determined by the iData elements. They are
re-created each time the program is started, and are able to recover their current
state (possibly changed by the user). To make this possible, the serialized state
of an iData is stored either at the server on disk or in the HTML page. All iData
elements therefore automatically always contain a type correct value reflecting
the latest changes made by a user. For recalculation of a page, and even of a
complete web site, the same algorithm can be re-used taking the current iData
states as starting point, enabling the highly declarative style of programming.

iData Toolkit applications compute HTML pages. There are many possible
approaches to handle this (Sect. 4). This aspect of the iData Toolkit was not
our priority We have chosen an approach that fits in our framework, i.e. an
approach that uses data types to model output. The HTML that is computed by
the application is encoded with algebraic data types, using a types-as-grammar
approach [25]. This has the following advantages. (1) We get a complete context
free grammar for HTML which is convenient for the programmer. (2) The type
system eliminates type and typing errors that can occur in plain HTML. (3)
Compiling an instance of this data type to HTML code is done by a compact
type driven generic function. (4) Such a generic implementation is very robust,
future changes of HTML are likely to change the type definitions only. A snapshot
of the algebraic data types is:

:: Html = Html Head Rest



:: Head = Head [HeadAttr ] [HeadTag ]
:: Rest = Body [BodyAttr ] [BodyTag ] | Frameset [FramesetAttr ] [Frame ]
:: Frame = Frame [FrameAttr ] | NoFrames [Std_Attr ] [BodyTag ]
:: BodyTag = A [A_Attr ] [BodyTag ] | . . .

| H1 [Hnum_Attr ] String | . . .
| Var [Std_Attr ] String

| STable [Table_Attr ] [ [BodyTag ] ] | BodyTag [BodyTag ] | EmptyBody

The last three data constructors of BodyTag are not part of HTML, but are pro-
vided for programming convenience. The data constructor STable generates a
2-dimensional table, the data constructor BodyTag turns a list of body tag ele-
ments into a single body tag, and EmptyBody can be used as an empty element.

The code below shows the standard overhead of every iData Toolkit program:

module FLOPS2006Examples

import StdEnv , StdHtml 1.

Start :: *World→ *World 2.

Start world = doHtml example world 3.

The proper library modules need to be imported (line 1). Lines 2–3 declare
the main function of every Clean program. The uniqueness attribute * just in
front of World guarantees that values of this type are always used in a sin-
gle threaded manner. Clean uses uniqueness typing [6, 7] to allow destructive
updates and side-effects. The opaque type World represents the entire exter-
nal environment of the program. The iData program is given by the function
example :: *HSt→ (Html ,*HSt). The wrapper function doHtml turns this func-
tion into a common Clean program. It initializes the HSt value with all serialized
values that can be found in the HTML page, and includes the World as well. This
implies that every iData Toolkit application has full access to the external world,
and can, for instance, connect to databases and so on. Below, we only show the
examplei functions, and skip the standard overhead.

2.2 iData Have Form

The first example demonstrates the fact that iData elements are type driven. A
simple Int iData is created (Fig. 1(a)).

example1 :: *HSt→ (Html ,*HSt)
example1 hst

] (nrF ,hst) = mkEdit (nIDataId "nr") 1 hst

= mkHtml "Int editor" [ H1 [ ] "Int editor" , BodyTag nrF.form ] hst

Passing multiple environments around explicitly is supported syntactically in
Clean by means of ]-definitions. These are non-recursive let-definitions, which
scope extends to the bottom, but not the right-hand side. This is the standard
approach in Clean. Even though the examples in this paper do not exploit the
flexibility of multiple environment passing (by for instance connnecting to a
database system), we present them in this style. The function mkEdit (Sect. 2.5)



declares an iData element nrF::IData Int with initial value 1::Int. The element is
identified with the value (nIDataId "nr")::IDataId (Sect. 2.5). The IData record
holds the form rendering of the iData, its value, and a boolean that states iff this
particular iData element has been changed by the user:

:: IData m = { form:: [BodyTag ] , value::m , changed::Bool }
Key features that are illustrated in this small example are the declaration of

an iData element (nrF) from an identification value and an initial value, and that
this iData element has an automatically derived rendering in terms of a form
that can be addressed by nrF.form. It is a general property of an iData that a
user can only enter input that is type-safe. When a user creates wrong input, the
previous value (of correct type) is restored. If an initial value of some other type
would have been specified as argument of mkEdit, a corresponding, yet completely
different iData element is generated, with a rendering that allows only input of
the appropriate type. Finally, the declaration of iData is robust against ill-typed
use: only if the current HSt value contains a serialized representation of a value
of the correct type, then the iData uses the deserialized value of the correct
type; otherwise it relies on its initial value. Hence, all iData declarations with
the same label but different type use their own initial value. If the declaration of
an iData updates the HSt, then it may be the case that the type of the reference
is modified accordingly. It is the responsibility of the application programmer
to use unambiguous names throughout his program. Although this approach is
not fail-safe, it is easy to explain to programmers, and problems can be avoided
by using separate declaration functions (Sect. 3.2). We are still investigating if
better solutions exist or need to be created.

Note that the definition of the web page, given by the function mkHtml ::

String [BodyTag ] *HSt→ (Html ,*HSt), is cleanly separated from the declaration
of the iData. At this spot we can freely mix HTML code that is automatically
generated from iData elements with “ordinary” hand-written HTML code.

2.3 iData Have Value

In this example we show that, besides a form, iData also have a value (Fig. 1(b)).

example2 hst

] (nrFs ,hst) = seqList [mkEdit (sumId nr) nr \\ nr← [1..5 ] ] hst

= mkHtml "Numbers" [ H1 [ ] "Numbers" , sumtable nrFs ] hst

sumtable nrFs = STable [ ] ( [nrF.form \\ nrF← nrFs ] ++

[ [toHtml (sum [nrF.value \\ nrF← nrFs ] ) ] ] )
sumId i = nIDataId ("sum" <$ i)

Five iData elements are activated: nrFs :: [IData Int ] (seqList fs st threads a
state value st through a list of state transformer functions fs and collects their
results and the final state). The function sumtable places their forms in a column,
underneath of which the sum of their values is displayed. The value of an iData
is given by the value field of that iData. The library function toHtml uses the



generic form rendering function we also use for the iData to render values of
arbitrary type into HTML. The overloaded operator <$ appends a String version
of its second argument to its first argument.

2.4 iData Have Sharing

Repeated use of the same iData declaration refers to a shared iData object. A
first advantage of this scheme is that an iData can be seen as a store of a value of
a certain, arbitrary type. Where values are actually being stored depends on the
kind of iData created (see 2.5). Hence, we do not need to introduce a separate
concept to store data. A second advantage is that both the value and rendering
of iData can be used arbitrarily many times in a HTML page without causing
ambiguity problems. We illustrate the latter by replicating the column of integer
iData and their sum in the example below (Fig. 1(c)):

example3 hst

] (nrFs ,hst) = seqList [mkEdit (sumId nr) nr \\ nr← [1..5 ] ] hst

= mkHtml "Numbers"

[ H1 [ ] "Numbers" , STable [ ] [ [sumtable nrFs ] , [sumtable nrFs ] ] ] hst

Editing any of the iData elements also automatically affect the other iData in
the same row. The sum is displayed twice, at the bottom of both columns.

2.5 iData Have Model-View Separation

So far we have seen that the rendering one obtains for free from an iData element
is completely determined by its type. What if we don’t like this particular ren-
dering? Suppose that for this particular example we want to replace the default
integer editor boxes by iData elements that are counters. These counters have
different self contained behavior: pressing the buttons should increment/decre-
ment the integer value. This warrants good separation between model (integer
value) and view (counter). Indeed, in the example code we only have to replace
mkEdit by counterIData that we will define later on to obtain the desired program
that displays five counters instead of five integer editors (Fig. 1(d)).

example4 hst

] (nrFs ,hst) = seqList [counterIData (sumId nr) nr \\ nr← [1..5 ] ] hst

= mkHtml "Numbers" [ H1 [ ] "Numbers" , sumtable nrFs ] hst

The counter iData ensures that its integer value is incremented/decremented at
every corresponding button press. Although we have created an iData element
with a completely different behaviour (view), it still returns an integer value
to the programmer. The model has not changed, and therefore nothing else in
program has to be altered, since iData elements are self contained and fully
compositional. But how can a programmer define these counters?



Creating iData forms. The one pivotal library function mkIData allows the
definition of all sorts of iData elements one can imagine. It has type signature:

mkIData :: IDataId m (IBimap m v) → IDataFun m

| gForm{|?|} , gUpd{|?|} , gPrint{|?|} , gParse{|?|} v

:: IDataFun m :== *HSt→ (IData m ,*HSt)

With mkIData any model-view mapping can be made. The polymorphic type
variable m stands for model, and the generically overloaded type variable v stands
for view. Class restrictions on this generic variable v appear after |. It shows that
mkIData obtains its power by making use of four generic functions (of kind ?):

– gForm creates a form from a view type,
– gUpd converts any change made by the user with a browser in a form to a

corresponding change in the view value,
– gPrint serializes values of any type for iData storage, and
– gParse de-serializes values of any type for iData recovery.

For the programmer all these generic functions addressed in the context restric-
tion have as small consequence that he has to tell Clean to automatically derive
these generic functions (see [2, 3]) for the user defined types that he wants to
view. In order to visualize a user defined view type Type, somewhere in the
program the programmer has to define

derive gForm Type ; derive gUpd Type ; derive gPrint Type ; derive gParse Type

Clean function types show their arity by separating arguments with white-
space, Therefore, mkIData requires three arguments. Let’s take a closer look at
these arguments. The first argument of mkIData is of type IDataId.

:: IDataId = { id::String , lifespan::LifeSpan , mode::Mode }
:: LifeSpan = Page | Session | Persistent

:: Mode = Edit | Display

The id field of this record type is used to unambiguously identify iData elements.
The programmer creates them by making up String identifiers, which is a typical
way of identifying forms in web applications. It is the task of the programmer to
use names in such a way that every use of (mkIData id) refers to the same iData
element of some type m. We already saw in the sharing example that one can
refer multiple times to the same iData element. The lifespan field controls the
life span of the corresponding iData value: its value is either remembered as long
as the same page is being viewed (lifespan = Page), or during a browser session
(lifespan = Session), or independently of sessions (lifespan = Persistent). Per-
sistent storage simply means that instead of storing a serialized representation
of the value of an iData in the HTML page, the serialized value is written to
and read from disk on the server side. Finally, the edit mode of iData can be
set. This mode is typically editable (mode = Edit), but sometimes they should
only display constant values (mode = Display). For convenience, for any kind of
thinkable IDataId combination, a library function is offered {n,s,p}[d]IDataId ::

String→IDataId. Here, n, s, p represent the lifespan values Page, Session, and
Persistent respectively. If d is included, the mode is Display, otherwise it is Edit.



The second argument of mkIData is its initial value. This initial value is used
when an iData element is created for the first time or if no matching iData was
found in the HSt environment. This happens for instance when a web page is
viewed for the first time.

The third and final argument of mkIData is the most complicated one because
it is used to define the model-view abstraction. This allows the application to
work with iData that have state values of type m, but that are visualized by means
of values of type v. This is a variant of the well-known model(-controller)-view
paradigm [16]. What is special about our approach, is that a view is also deter-
mined by its data type. The type can be regarded as a model of a view, and hence
can be handled generically in exactly the same way! This is clearly expressed in
the type signature of mkIData, which states that the generic machinery must be
available for the view model v.

The mapping between a model m and its view v has to be given by defining
an instance of the following record type IBimap m v:

:: IBimap m v = { toView :: m (Maybe v) → v , updView :: Bool v→ v

, fromView :: Bool v→ m , resetView :: Maybe (v→ v) }
The record contains model-view conversion functions and functions to enable
the desired self contained behavior. Model values are transformed to views with
toView. It can use the previous view value if available. The self contained behavior
of an iData element is handled by updView. Its first argument records if the view
has been changed by the user. The same argument is passed to fromView which
transforms updated view values back to model values. Finally, resetView is an
optional separate normalization of the updated view value.

The result of mkIData is an *HSt environment function of type IDataFun m

that yields a (IData m) value. The abstract type *HSt is constructed by the iData
Toolkit immediately after the application has been restarted and contains the
serialized states of all views. The non-persistent view states are stored in the
HTML form and transmitted whenever the page is changed. Persistent view
states reside on disk on the server side and are read when needed.

Integer as model, Counter as view. Now that we have explained the most
important function of the iData Toolkit, we can show how a self contained counter
can be defined as a view for an integer model.

First of all, we need some button machinery. In the iData Toolkit, all imag-
inable input forms, such as labelled buttons, image buttons, radio buttons, and
pull down menus, are predefined by specializing types to these input forms. In
Sect. 2.6 we show how programmers can use the very same specialization mech-
anism for their own purposes. As an example we show the predefined type for a
pull down menu and a button. Both are used in Sect. 3.

:: PullDownMenu = PullDown (Int ,Int) (Int , [String ] )
:: Button = Pressed | LButton Int String | PButton (Int ,Int) String

A value (PullDown (v ,w ) (i ,elts )) is shown as a pull down menu of width w
that displays v elements of elts. The index of the selected element is i. A value



(LButton w l) creates a w pixels wide button with label l. A value (PButton (w,h)
p) creates a button that is w pixels wide and h pixels high, and that has a picture
at file path p. Whenever a button is pressed, its iData value is set to Pressed.

Second of all, we need to specify layout. By default, arguments of data con-
structors are placed in a column, top- and right-aligned with the data construc-
tor. As we have seen in the examples above, tables are useful to specify different
layouts. For convenience, we have introduced a number of types to lay out ele-
ments in rows and columns. Furthermore, 2,3,4-tuples layout their elements in
a row.

Elements such as the above can be used by defining iData of values of these
types. A Counter for an integer value can be constructed by adding an up and
down button to it. This results in the following (synonym) type:

:: Counter :== (Int ,Button ,Button)

We can now straightforwardly define counterIData in terms of mkIData. To express
the mapping between an integer model and a counter view, we need to define
toView, updView, fromView, and resetView:

counterIData :: IDataId Int→ IDataFun Int

counterIData iDataId i = mkIData iDataId i ibm

where ibm = { toView = λn v→ useOldView (n ,down ,up) v

, updView = λ_ v→ updCounter v

, fromView = λ_ (n ,_ ,_) → n

, resetView = Nothing }
(up ,down) = (LButton (defpixel / 6) "+" ,LButton (defpixel / 6) "-")

updCounter :: Counter→ Counter

updCounter (n ,Pressed ,_) = (n - 1,down ,up)
updCounter (n ,_ ,Pressed) = (n + 1,down ,up)
updCounter noPresses = noPresses

useOldView :: a (Maybe a) → a

useOldView new (Just old)= old

useOldView new Nothing = new

Frequently Used Views The function mkIData is a very powerful function with
which any model-view abstraction can be defined. Frequently used patterns are
predefined in the library. Two examples used in this paper are:

mkEdit :: IDataId m→ IDataFun m | gForm{|?|} ,gUpd{|?|} ,gPrint{|?|} ,gParse{|?|} m

mkEdit iDataId m = mkIData iDataId m { toForm = useOldView

, updForm = modeUpd iDataId.mode m

, fromForm = λ_ v→ v

, resetForm = Nothing }
where modeUpd Edit _ _ newv = newv

modeUpd Display initm _ _ = initm

mkSelf2::IDataId m (m→ m) → IDataFun m | gForm{|?|} ,gUpd{|?|} ,gPrint{|?|} ,gParse{|?|} m



mkSelf2 iDataId m f = mkIData iDataId m { toForm = useOldView

, updForm = λ_ v→ f v

, fromForm = λ_ v→ v

, resetForm = Nothing }
The mkEdit function was used in examples 2.2 and 2.3. It can be used as a
‘store’ in Display mode, or as a straight editor in Edit mode. iData can also
be used to create an intelligent store with custom behavior. iData that are de-
clared with mkSelf2 memorize a value, initialized with the second argument of
the function. When declared, the iData applies the argument function f to its
value (by updForm). In this way stores can preserve properties: e.g. one can ensure
that a stored list is always sorted by defining a sort function as parameter. Be-
cause iData can be shared, the programmer is able to parameterize mkSelf2 with
different function arguments. In this way, the stored state can be manipulated
from the outside. In combination with the pdIDataId function, this results in a
persistent memory store which obeys these properties.

2.6 iData Have Specialization

iData can be specialized, just as generic functions can. The generic mechanism
can render a value of any type. With specialization one can overwrite the default
way this is done. This cannot only be used to create buttons and the like when
certain types are being used, but it can also be used to customize the look
and feel of any user defined type. By using specialization one can separate the
handling of the functionality of the web page (by the programmer) from the way
things look (by the designer of a site).

Suppose the designer likes the counters in Sect. 2.5 much better than the
default integer editors that were used in Sect. 2.2 and 2.3. Assume that he wants
to ensure that, throughout the program, these counters are being used instead
of the plain integer boxes. For this purpose he needs to specialize the generic
form rendering function gForm for the Int type. This is done by:

gForm{|Int|} iDataId i hst = specialize asCounter iDataId i hst

where asCounter :: IDataId Int→ IDataFun Int

asCounter iDataId i = λhst
] (counterF ,hst) = counterIData iDataId i hst

= ( { changed = counterF.changed

, value = fst3 counterF.value

, form = counterF.form } , hst )

The asCounter function that defines the specialization uses counterIData as de-
fined in 2.5. The library function

specialize :: (IDataId a→ IDataFun a) IDataId a→ IDataFun a | gUpd{|?|} a

is able to ‘plug in’ the specialization function into any arbitrary other iData
structure. Given this specialization for Integers, in any place where an iData
of an Integer value is needed, a counter iData will be made. In such a setting,
the programs 2.2, 2.3, and 2.4 all have self contained counters instead of integer
boxes without any change to be made in the presented code.



3 Case Study: Project Administration Web Application

As a case study we construct a small, yet complicated form that could be part
of a site with which (simple) projects are administrated. It consists of a dynamic
number of interconnected sub-forms. Its size is 250 loc (including empty lines):
50% handles the problem domain, 12% specialization, and 38% form program-
ming. The screenshot in Fig. 2 shows the application with all sub-forms active.

3.1 Basic Logic of the Project Adminstration

We assume that the types and algorithms needed to do the actual project ad-
ministration have been defined and designed separately, without any knowledge
of the web interface that has to be created on top of it. Let’s assume that to
administrate projects, the following, self-explanatory, types have been defined.

:: Project = { plan ::ProjectPlan , status::Status , members:: [Worker ] }
:: ProjectPlan = { name ::String , hours ::Int }
:: Status = { total::Int , left ::Int }
:: Worker = { name ::String , status::Status , work:: [Work ] }
:: Work :== (Date ,Int)
:: Date = Date Int Int Int

We assume that for the maintenance of the project adminstration, suitable ini-
tialization, update, and retrieval functions are defined on these data structures,
such as initProject :: String Int→ Project. Their definitions are straightfor-
ward. We use them where needed, but skip their definition for lack of space.

3.2 Designing Forms by Defining Types

The screenshot in Fig. 2 reveals that we have defined at least three iData input
forms: one to define a new project, one to add a worker to an existing project,
and one to assign worked hours for an existing worker of an existing project.
These are located below each other. The details view on the right hand side is
not an iData, but just displays all information of one existing project. Clearly,
the iData have a strong interconnected behavior: only if a project exists, then
workers can be added to it; working hours can be assigned only for workers on
projects they participate in. We show how to specify these dependencies.

For each iData we need a corresponding type, since iData’s forms are gen-
erated type driven. Sometimes, we can use (a combination of) existing types,
and sometimes we need to define new types. Because iData can be shared, it is
good practice to define a separate declaration function for each of them. In case
of straight editors, we use the mkEdit function. If we need to be able to impose
properties on the state of an iData, we use the mkSelf2 function. So, for every
iData we give the type and define a creation function.

The project form can be of type ProjectPlan, which is given above. The cre-
ation function is projectIData. Initially we assume that no projects are planned.



projectIData :: IDataFun ProjectPlan

projectIData = mkEdit (nIDataId "project") (initProjectPlan "" 0)

For the worker form we define a new type WorkerPlan. It holds all project
names a worker is involved in, the worker’s name, and the hours that should be
added to a particular project. The worker form must know all projects that have
been entered. The function adjWorkers :: [Project ] WorkerPlan→ WorkerPlan

updates the worker plan with all new project plan names. For this reason, it
is a customizable editor created with mkSelf2.

:: WorkerPlan = { project::ProjectList , name::String , hours::Int }
:: ProjectList :== PullDownMenu

workerIData :: (WorkerPlan→ WorkerPlan) → IDataFun WorkerPlan

workerIData f

= mkSelf2 (nIDataId "worker") (initWorkerPlan "" 0 0 initProjects) f

For the hours form we define the type DailyWork. For a given project (in
projectId), and a given worker (in myName), it stores how many hours have been
worked on a particular date. Because this form depends on the current list of
projects and associated workers, this declaration function is also created with
mkSelf2. The function adjDailyWork :: [Project ] DailyWork→ DailyWork updates
the daily work value with all currently registrated project-worker combinations.

:: DailyWork = { projectId ::ProjectList , myName::WorkersList

, hoursWorked::Int , date ::Date }
:: WorkersList :== PullDownMenu

hoursIData :: (DailyWork→ DailyWork) → IDataFun DailyWork

hoursIData f

= mkSelf2 (nIDataId "hours") (initDailyWork 0 0 initProjects) f

Of course we need to store the whole project administration of type [Project ] .
This can be achieved by using a persistent iData. Again, we make its declaration
function adminIData parametrized. By now, the pattern should be clear.

adminIData :: ( [Project ] → [Project ] ) → IDataFun [Project ]
adminIData f = mkSelf2 (pdIDataId "admin") initProjects f

Finally, the user manipulates the forms of the application. Changes to the
database are committed by pressing one of the buttons to add a project, worker,
or hours. The corresponding actions are given by the functions

addNewProject :: ProjectPlan [Project ] → [Project ]
addNewWorkplan :: WorkerPlan [Project ] → [Project ]
addDailyWork :: DailyWork [Project ] → [Project ]

The library function ListFuncBut associates m→ m functions with buttons, and
yields an (IData (m→ m)) which value is either one of the selected functions or
the identity function.

ListFuncBut :: Bool IDataId [ (Button , m→ m) ] → IDataFun (m→ m)



With this function, we can concisely specify the buttons of the application:

btnsIData::DailyWork WorkerPlan ProjectPlan→ IDataFun ( [Project ] → [Project ] )
btnsIData daylog workplan project

= ListFuncBut False (nIDataId "mybuttons")
[ (LButton defpixel "addProject" , addNewProject project )
, (LButton defpixel "addWorker" , addNewWorkplan workplan)
, (LButton defpixel "addHours" , addDailyWork daylog ) ]

3.3 Interconnecting iData

To create the desired web application we need to do two things: we have to
declare and interconnect all iData and we have to deliver an HTML page that
contains the renderings of these iData. We do not discuss the latter aspect: it is
not essentially different from the tiny examples given in Sect. 2. Interconnecting
the iData is what matters:

example hst

] (projectF ,hst) = projectIData hst 1.

] (workerF , hst) = workerIData id hst 2.

] (hoursF , hst) = hoursIData id hst 3.

] (btnsF , hst) = btnsIData hoursF.value workerF.value

projectF.value hst 4.

] (adminF , hst) = adminIData btnsF.value hst 5.

] (workerF , hst) = workerIData (adjWorkers adminF.value) hst 6.

] (hoursF , hst) = hoursIData (adjDailyWork adminF.value) hst 7.

= mkHtml "projectadmin" [ H1 [ ] "Project Administration" 8.

... /∗ not shown due to lack of space ∗/ ] hst

First, the three user forms, project, worker, and hours, are declared (lines 1-
3). As a result, they recover their possibly altered state. Then the buttons are
declared (line 4). If the user has pressed one of them, then the value of btnsF

is the associated administration update function. This function, btnsF.value, is
then applied in the declaration function of the complete administration (line 5).
Given the new administration, the worker and hours form need to be updated
with the new project and workers lists (line 6-7). For this reason the latter
two forms occur twice in the code. This is a typical iData Toolkit programming
pattern. The program guarantees that users can only add workers to existing
projects and hours to existing workers.

4 Related Work

iData components are form abstractions. A pioneer project to experiment with
form-based services is Mawl [5]. The <bigwig> project [9] uses Powerforms [8].
Both projects provide templates which, roughly speaking, are HTML pages with
holes in which scalar data as well as lists can be plugged in (Mawl), but also other
templates (<bigwig>). Powerforms reside on the client-side of a web application.



The type system is used to filter out illegal user input. They advocate compile-
time systems, just as we do, because this allows one to use type systems and
other static analysis. The main differences are that in our approach all first
order user types are admissible in iData, that iData are automatically derived
from these types, and that we can use the expressiveness of the host language
to obtain higher-order forms/pages.

Continuations are a natural means to structure interactive web applications.
This has been done by Hughes [15], using his Arrow framework; Queinnec [22],
who takes the position that continuations are at the essence of web browsers;
Graunke et al [11], who have explored continuations as (one of three) functional
compilation technique(s) to transform sequential interactive programs to CGI
programs. Our approach is simpler because for every page we have a complete
(set of) model value(s) that can be stored and retrieved generically in a page.
An application is resurrected by recovering its previous state, merging the user
modification, if any, and computing the proper next state that is re-rendered.

Many authors have worked on creating and manipulating HTML (XML) pages
in a strongly typed setting. Early work is by Wallace and Runciman [26] on XML
transformers in Haskell. The Haskell CGI library by Meijer [18] frees the program-
mer from dealing with CGI printing and parsing. Hanus uses similar types [12]
in Curry. Thiemann constructs typed encodings of HTML in extended Haskell
in an increasing level of precision for valid documents [23, 24]. XML transform-
ing programs with GenericH∀skell has been investigated in UUXML [4]. Elsman
and Larsen [10] have worked on typed representations of XML in ML [19]. Our
types-as-grammar approach eliminates all syntactically incorrect programs, but
we have not put effort in eradicating all semantically incorrect programs. Our
research interest is in the automatic creation of forms from type specifications,
and less in the definition of the HTML pages in which they reside.

5 Conclusions and Future Work

In this paper we have presented the iData Toolkit, an innovative toolkit for the
construction of server side web applications. The toolkit is founded on a strongly
typed, pure, functional programming language with support for generic program-
ming. The key concept of the toolkit is the iData element. A web application is a
function that computes an HTML page. Forms in this page are derived automat-
ically by the iData Toolkit from the typed states of the declared iData elements.
Each and every iData handles its initialization, state recovery, and rendering.
The result is that applications can be defined in a concise and declarative style.

In this paper, we have illustrated the expressiveness of the iData Toolkit by
means of several small examples, and one larger case study. To test the suitability
of the iData Toolkit for constructing real world applications, we have created all
kinds of applications, such as a fully functional CD-shop site. Also for these
larger web applications we have observed that they can be defined in the same
concise and declarative way as the examples in this paper.



We believe that the conciseness of programs, the use of a single iData concept,
and the embedding in a functional programming language, are important fac-
tors to enable reasoning about these programs. We think that the iData Toolkit
provides a step in the direction of formal reasoning about dynamic, type-safe,
server side web applications.
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Appendix

Fig. 1. Screen shots of the initial state of the toy examples in Sect. 2. (a) A simple
integer iData. (b) Summing the value of iData. (c) Sharing iData. (d) Model-View
separation of iData.

Fig. 2. Screen shot of the project administration case study in Sect. 3.


