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Abstract. This paper tackles a problem often overlooked in functional
programming community: that of testing. Fully automatic test tools like
Quickcheck and G∀ST can test first order functions successfully. Higher
order functions, HOFs, are an essential and distinguishing part of func-
tional languages. Testing HOFs automatically is still troublesome since
it requires the generation of functions as test argument for the HOF to
be tested. Also the functions that are the result of the higher order func-
tion needs to be identified. If a counter example is found, the generated
and resulting functions should be printed, but that is impossible in most
functional programming languages. Yet, bugs in HOFs do occur and are
usually more subtle due to the high abstraction level.
In this paper we present an effective and efficient technique to test higher
order functions by using intermediate data types. Such a data type mim-
ics and controls the structure of the function to be generated. A simple
additional function transforms this data structure to the function needed.
We use a continuation based parser library as main example of the tests.
Our automatic testing method for HOFs reveals errors in the library that
was used for a couple of years without problems.

1 Introduction

Automatic test tools for functional languages are able to generate test cases,
execute the associated tests en derive a verdict from the test results. Basically
a predicate of the form ∀x ∈ X : P (x) is replaced by a function P :: X → Bool.
The predicate is tested by evaluating the function P for a large number of ele-
ments of type X. In Quickcheck these elements are generated in pseudo random
order by a user defined instance of a class. G∀ST has a generic algorithm that
is able to generate elements of any type in a systematic way [7]. The user can
specify any other algorithm if desired.

The advantages of this automatic testing is that it is cheap and fast. More-
over, the real code is tested. A inherent limitation of teting is that a proof by
exhaustive testing is only possible for finite types (due to generation algorithm
used, Quickcheck is not able to determine when all elements are tested and never
detects that a property is proven by exhaustive testing). A formal proof of a
property gives more confidence, but usually works on a model of the program
instead of the program itself and requires (much) user guidance. Hence, both
formal proofs and testing have their own value. It is at least useful to do a quick
automatic test of some property before investing much effort in a formal proof.



The generation of elements of a type works very well for (first order) data
structures. Testing properties of HOFs requires functions as test argument and
hence the generation of functions by the test system. The possibilities to generate
functions are rather limited. In Quickcheck functions of type A → B are gener-
ated by transforming elements of type A to an integer by a user defined instance
of the class coarbitrary. This integer is used to select an element of type B. A
multi-argument function of type A → B → c is transformed to a function B → C

by providing a pseudo randomly generated element of type A. In this way all
information of all arguments is encoded in a single integer. This approach is not
powerful enough for more complex functions, and has as drawback that it is im-
possible to print these functions in a descent way. G∀ST used the same approach
with the difference that functions can be derived using a generic algorithm.

In this paper we show how functions of the desired form can be generated
systematically. The key step is to represent such a function by its abstract syntax
tree, AST. This AST is represented as algebraic data type, which therefor can be
generated automatically by G∀ST in the usual way. The AST is transformed to
the desired function by a very simple transformation. An additional advantage
of using a data type as AST is that this can be printed in a generic way as well,
while printing functions is impossible in functional languages like Haskell and
Clean.

We illustrate this technique with a full fleshed parser combinator library. In
[5] we introduced a library of efficient parser combinators. Using this library it is
possible to write concise, efficient, recursive descent parsers. The parsers can be
ambiguous if that is desired. Basically there are two ingredients that makes the
constructed parsers efficient. First, the user can limit the amount of backtracking
by a special version of the choice combinator that only yields a single result.
Second, the implementation of the combinators uses continuations instead of
intermediate data structures. Especially when parsed objects are processed in
a number of steps before a final parse result is produced, continuation based
parser are faster than a straight forward implementation of parsers.

The price to be paid for using continuations instead of intermediate data
structures, is that the implementation of the combinator becomes more com-
plicated. Each parser has three continuations, and some of these continuations
have their own continuation arguments. The parser combinators manipulates
these continuations in a rather tricky way. However, the use of the combinators
is independent of their implementation, and is not different for a library with
a simple implementation using intermediate data types. The published combi-
nators are tested manually by the authors and checked by many users of the
library. Much to our surprise last year some errors in the library were found.

After improving the combinators we wanted to obtain more confidence in the
correctness of the library. Manual testing by a number of typical examples was
clearly insufficient. Using the techniques described here it was possible to test
this library automatically. During these test an additional error was found.

It turns out that a similar representation of functions by data types is used
at different places in the literature. The technique is called defunctionalisation,



and the function transforming the data type is usually called apply. This tech-
nique was introduced by Reynolds [11], and repopularized by Danvy [4]. Using
defunctionalisation for generating functions and testing is new.

In section 2 we will shortly review the continuation based parser combinators.
In the next section we show how functions as result can be tested for equivalence
by applying them to appropriate arguments. The generation of functions as
argument is treated in section 4. In section 5 we show that the effectiveness
of tests can be improved by generating tailor made inputs for the parsers. In
section 6 we will show how to test the entire library by defining one property
for parsers, instead of by properties for individual combinators. By testing a
property of the famous fold -function we demonstrate that our approach works
also in other situations. Finally there is a conclusion.

2 Background: Continuation Based Parser Combinators

In order to make this paper self contained we repeat the most important parser
combinators from [5]. In the continuation parser library [5] each continuation
parser has four arguments:

1. The success continuation which determines what will be done if the current
parser succeeds. This function gets the result of the current parser, the other
continuations and the remaining input as its arguments.

2. The XOR-continuation is a function that tells what has to be done if only a
single result of the parser is needed.

3. The OR-continuation determines the behavior when all possible results of
the parser are needed.

4. The list of symbols to be parsed. In this paper these symbols will be char-
acters, but also lists of more complex tokens can be parsed.

The result of a parser is a list of tuples containing the remaining input and the
results of parsing the input until this point. This is reflected in the types:

:: Parser s r :== [s ] → ParsResult s r

:: ParsResult s r :== [ ( [s ] ,r) ]

:: CParser s r t:==(SucCont s r t) (XorCont s t) (AltCont s t)→Parser s t

:: SucCont s r t:==r (XorCont s t) (AltCont s t) → Parser s t

:: XorCont s t :==(AltCont s t) → ParsResult s t

:: AltCont s t :==ParsResult s t

As an example the type of the continuation parser p = symbol ’*’, that succeeds
if the first character in the input is *, is CParser Char Char a. Expanding this
type to basic types yields:

p::((Char→( [ ( [Char ] ,a) ]→[ ( [Char ] ,a) ] )→[ ( [Char ] ,a) ]→[Char ]→[ ( [Char ] ,a) ] )
→ ( [ ( [Char ] ,a) ]→[ ( [Char ] ,a) ] )→ [ ( [Char ] ,a) ]→ [Char ]→ [ ( [Char ] ,a) ] )

This complicated type indicates that testing for first order properties is inade-
quate. The definition of the parser combinator symbol is:



symbol :: s → CParser s s t | == s

symbol s = psymbol

where psymbol sc xc ac [x:ss ] | x == s = sc s xc ac ss

psymbol sc xc ac _ = xc ac

The function begin turns a continuation parser into a standard parser by pro-
viding appropriate initial continuations. The parser takes a list of tokens as
arguments and produces a list of successes. Each success is a tuple containing
the remaining input tokens and the parse result.

begin :: (CParser s t t) → Parser s t

begin p = p (λx xc ac ss . [ (ss ,x):xc ac ] ) id [ ]

The result of applying begin p to the input [’*abc’ ] will be [ ( [’abc’ ] ,’*’) ] ,
while applying it to the input [’abc’ ] yields the empty list of results.

The concatenation of two parsers, p <&> q, requires that the parser q is ap-
plied to the rest of the input left by the parser p. This is done by inserting q in
the success continuation of p. The result of p is given as the first argument to q.

(<&>) infixr 6 :: (CParser s u t) (u → CParser s v t) → CParser s v t

(<&>) p q = λsc . p (λt . q t sc)

There are several variants of the operator <&>: the operator <& yields only the
result of p, &> yields only the result of q, <:&> construct a list with the result of
p as head and the result of q as tail, <++> appends the results of p and q, <!&>
removes the XOR-alternatives if p succeeds.

The construct p <|> q indicates that we want all results of p and all results
of q. This is achieved by putting q in the alternative continuation ac of p.

(<|>) infixr 4 :: (CParser s r t) (CParser s r t) → CParser s r t

(<|>) p q

= λ sc xc ac ss .p (λx xc1.sc x id) id (q (λx xc1.sc x id) xc ac ss) ss

The operator <!> yields only the result of q if p has no results. This is done by
putting q in the XOR-continuation xc of p. The success continuation of p takes
care of removing q if p succeeds.

(<!>) infixr 4 :: (CParser s r t) (CParser s r t) → CParser s r t

(<!>) p q = λ sc xc ac ss

.p (λx xc2.sc x id) (λ_.q (λx xc3.sc x id) xc ac ss) ac ss

The combinator <@ applies the function f to the items recognized by parser p.

(<@) infixl 5 :: (CParser s r t) (r→u) → CParser s u t

(<@) p f = λ sc . p (sc o f)

The operator <*> mimics the Kleene star: it repeats parser p as often as possible.
The results of all applications of p are collected in a list. It behaves like:

<*> :: (CParser s r t) → CParser s [r ] t

<*> p = (p <&> λr . <*> p <@ λrs . [r:rs ] ) <!> yield [ ]



3 Functions as result of higher order functions

Testing higher order functions that yield functions as result is relatively easy.
The test system has to verify whether the correct function is produced. In most
functional programming languages it is impossible to look inside functions (LISP
is an exception). Hence it is impossible to decide if this function is the desired
one by inspecting the function directly.

More importantly, for functions we are usually not interested in the exact
definition of the function, but in its behavior. Any definition will do, if it produces
the right function result to the given parameters. This implies that even if it
would be possible to look inside a function directly, this would not help us.
We are interested in the input/output behavior of the function instead of the
algorithm it uses.

Chancing the function to be tested in such a way that it delivers a data
structure instead of a function is an unattractive option: we want to test the
software as it is and this does not solve the problem of testing the behavior
instead of the actual definition.

Testing functions for equal input output relations is relative easy. As example
we consider the function isAlpha and the function isUpperOrLower defined as

isUpperOrLower :: Char → Bool

isUpperOrLower c = isUpper c || isLower c

Using G∀ST the equivalence of the functions isAlpha and isUpperOrLower can be
tested by stating a property stating that ∀c . isAlpha c = isUpperOrLower c. In
Clean this property reads:

propEq :: Char → Bool

propEq c = isAlpha c == isUpperOrLower c

Testing this in G∀ST is done by executing Start = test propEq. G∀ST proves this
property by exhaustive testing: the function propEq is evaluated for all possible
characters. Since the number of characters is finite (and small), G∀ST is able to
test it for all possible arguments and to yield Proof rather than Pass (the latter
indicates a successful test for all arguments used).

In the next section we show how this approach is used to compare parsers
by applying them to various inputs and comparing the results.

3.1 Testing basic combinators

The parser combinator library contains a number of basic combinators for tasks
like recognizing symbols in the input and yielding specific values. As an example
we consider the parser combinator symbol :: s → CParser s s t | == s that
should recognize the given symbol s in the input. A desirable property of symbol
is that it yields a single success when the input list starts with the given symbol.
For characters as input tokens, this can be specified in G∀ST as:

propSymbol :: Char [Char ] → Bool

propSymbol c l = begin (symbol c) [c:l ] == [(l ,c) ]



Using begin (symbol c) instead of symbol c in the test makes it possible to com-
pare parse results (lists of tuples), instead of comparing higher order functions.

The property propSymbol can be tested directly by G∀ST by applying the
function test to the property in the Start-function. The result of the test is that
it passes any number of tests. When we restrict the input to, for instance, lists
of two characters such a property can even be proven. The property for inputs
of exactly two character reads:

propSymbol2 :: Char Char → Bool

propSymbol2 c d = begin (symbol c) [c ,d ] == [ ( [d ] ,c) ]

Within a split second G∀ST proves this property by executing all possible tests.
All measurements in this paper are done on a fairly moderate PC running the
latest windows XP, Clean 2.1.1 and G∀ST 0.5.1.

Although this kind of properties states clearly the intended semantics of
the basic parser combinators and the associated tests are useful, this does not
capture the signaled problems with the combinator library.

4 Functions as argument of higher order functions

Testing properties over higher order functions that have functions as argument
is a harder problem. In these properties there is a universal quantification over
functions. This implies that the test system must supply appropriate functions
as argument.

A typical example of a property over higher order functions is:

∀f, g : (x → y) .∀l : [x] .map f (map g l) = map (f ◦ g) l.

For any test we need to chose concrete types for x and y. Choosing small finite
types like Bool or Char usually give good test results. The Clean version of this
property where all types are Char is:

propMap :: (Char→Char) (Char→Char) [Char ] → Bool

propMap f g l = map f (map g l) == map (f o g) l

Former versions of G∀ST where able to generate functions. The generated func-
tion of type X→Y converts the argument x to an index in a list of values ys of
type Y: λx . ys !! (toIndex x rem length ys). For simple functions (like f and
g in propMap) this is adequate, but not for more complex functions (like continu-
ation parsers). Moreover, in the generic framework the generation of values and
the index function needs to be coupled. This slows down the generation of or-
dinary values considerable. For these reasons the existing generation of function
algorithm was removed from G∀ST.

Another serious problem is that the code of a given function cannot be shown.
This implies that if an counterexample would be found by G∀ST, it can only print
the argument f and g as <function>.

As a solution for the problem of generating functions and printing them we
propose to use a tailor made data structure that exactly determines the functions



that are needed in a particular test context. Instances of this data structure can
be generated by the default generic algorithm used in G∀ST. Since the data
type determines the needed functions exactly, the conversion from a generated
instance of the data type to the corresponding function is very easy.

As example we will show how the property for the map function can be tested.
Apart from the library functions toUpper and toLower we will use the functions
rot and shift in the tests. The function rot rotates characters in the alphabet
n places in the alphabet and does not change other characters, shift shift any
character n places in the ascii table. These functions are defined as:

rot :: Int Char → Char

rot n c

| isUpper c = ’A’ + toChar ((fromChar (c-’A’) + (abs n)) rem 26)
| isLower c = ’a’ + toChar ((fromChar (c-’a’) + (abs n)) rem 26)

= c

shift :: Int Char → Char

shift n c = toChar (abs (fromChar c + n) rem 256)

A data type representing all functions that we want to be generated as test
argument and the corresponding conversion function are defined as:

:: Fun = Rot Int | Shift Int | ToUpper | ToLower

class apply s t :: apply s → t

instance apply Fun (Char → Char)
where

apply (Rot n) = rot n

apply (Shift n) = shift n

apply ToUpper = toUpper

apply ToLower = toLower

We will use the class apply for any transformation of a data type to the corre-
sponding function in this paper.

Now we are able to test the property for the map function. Instances of the
type Fun are generated by deriving the generic generation by derive ggen Fun.
Instances of this data type are converted to functions by applying apply to them.
In propMap2 we reuse propMap, the needed functions are obtained from the type
Fun. Finally, there is a Start-function initiating the testing.

propMap2 :: Fun Fun [Char ] → Bool

propMap2 f g l = propMap (apply f) (apply g) l

Start = test propMap2

This property passes any number of tests. In the next section we will show how
this principle can be applied to continuation parsers. In order to obtain more
complex parsers, the data type to represent functions will be recursive.



4.1 Testing parser combinators

Also for the parser combinators that compose continuation parsers, one can
specify properties in the way just explained. For example the result of applying
p <|> q to some input is equal to the concatenation of results from p to the same
input and applying q to that input. Stated as property for G∀ST this is:

propOR p q input = begin (p <|> q) input == begin p input ++ begin q input

The generation of continuation parsers needed as arguments p and q is again
done with a data type and a corresponding instance of apply. The type P is a
recursive data type that represents parsers that consumes lists of characters and
yield a character as result.

:: P = Fail // basic operator: fails for any input
| Yield Sym // basic operator: yields the specified symbol for any input
| Symbol Sym // basic operator: recognize the specified symbol, see above
| Or P P // concatenation of the successes of both parsers
| XOr P P // successes of second parser if first parser fails

| ANDR P P // results of 2nd parser if parsers can be applied in given order
| ANDL P P // results of 1st parser if parsers can be applied in given order

:: Sym = Char Char // Symbols are just constructor Char and a character

The generation of instances of these data types is straightforward. The default
generic generation algorithm ggen of G∀ST is used for the data type P representing
the structure of the parser. For the type Sym we use only the characters ’a’ and
’b’ in order to limit the number of characters used in the tests. This increases
the number of more complicated parses used in a finite number of tests.

derive ggen P

ggen {|Sym |} n r = [Char ’a’ , Char ’b’ ]

Via a direct mapping instances of the data type P can be transformed to the
corresponding continuation parsers.

instance apply P (CParser Char Char Char)
where

apply Fail = fail

apply (Yield (Char c)) = yield c

apply (Symbol (Char c)) = symbol c

apply (Or p q) = apply p <|> apply q

apply (XOr p q) = apply p <!> apply q

apply (ANDR p q) = apply p &> apply q

apply (ANDL p q) = apply p <& apply q

The property to test the parser combinator <|> using the type P becomes:

propOR :: P P [Char ] → Bool

propOR x y chars = begin (p <|> q) chars == begin p chars ++ begin q chars

where p = apply x ; q = apply y



Since the continuation parsers x and y are now represented by instances of the
data type P, printing them by the generic mechanism of G∀ST reveals the struc-
ture of the combinator parsers used in the actual test clearly. If desired we can
make a tailored instance of genShow {|P |} that prints the data type exactly as the
functions generated by apply, instead of deriving the default behavior.

Testing such a property in G∀ST is quick. Testing this property for the first
1000 combinations of arguments takes only 0.6.

In the same spirit we can test the other combinators in the original combina-
tor library. For instance the xor-combinator, <!>, only applies the second parser
if the first one fails. This is expressed by the property propXOR:

propXOR :: P P [Char ] → Bool

propXOR x y chars

| isEmpty (begin p chars)
= begin (p <!> q) chars == begin q chars

= begin (p <!> q) chars == begin p chars

where p = apply x ; q = apply y

Testing this property reveals the problems with the original parser combinator
library. One of the counterexamples found is for (Or (Yield (Char ’b’)) Fail) as
the value of x, (Yield (Char ’a’)) for y, and the empty input [ ] . The problem is
that begin ((yield ’b’ <|> fail) <!> yield ’a’) [ ] produces the result [’ba’ ]

instead of the desired result [’b’ ] . This is equivalent to the reported error that
initiates this research. Since this is a unusual combination of parser combinators
its in not strange that this issue was not discovered during manual tests and
ordinary use of the library.

Repetition of parsers The parsers generated and tested above do not contain
the repetition operators <*>. Although it is very easy to add the desired con-
structors to the type P and the function apply, certain instances of the generated
parsers can cause serious problems. For example, the parser <*> (yield ’a’) will
produce an infinite list of ’a’s without consuming input.

We do want to incorporate parsers containing proper applications of the op-
erator <*> in our tests. This implies that we either have to prevent that parsers
causing problems as illustrated above are generated (by designing a more sophis-
ticated data type), or we have to prevent that they are actually used in the tests
(by a precondition in the property). Both solutions are feasible. The selection of
parsers that behave well is somewhat simpler and will be used here. Selection of
well behaving parsers is done by inspection of the corresponding data structure
and the operator =⇒ from G∀ST.

First we add appropriate clauses to the type P and the function apply. Since
we have now a repetition it is more convenient to generate a parser that yields
the list of all generated and recognized characters, than a parser yielding a single
characters as we used above.

:: P = Fail | Yield Sym | Symbol Sym | Or P P | XOr P P | AND P P | Star P

instance apply P (CParser Char [Char ] [Char ] )



where
apply Fail = fail

apply (Yield (Char c)) = yield [c ]
apply (Symbol (Char c)) = symbol c <@ (λc=[c ] )
apply (Or p q) = apply p <|> apply q

apply (XOr p q) = apply p <!> apply q

apply (AND p q) = apply p <++> apply q

apply (Star p) = (<*> (apply p)) <@ flatten

Generated parsers will not cause problems if they are finite. A parser is finite if
it does not contain the parser combinators <*>:

finite :: P → Bool

finite (Or p q) = finite p && finite q

finite (XOr p q) = finite p && finite q

finite (AND p q) = finite p && finite q

finite (Star p) = False

finite other = True

Parsers that need to consume input in order to produce a result are also safe.

consuming :: P → Bool

consuming Fail = False

consuming (Yield p) = False

consuming (Symbol c) = True

consuming (Or p q) = consuming p && consuming q

consuming (XOr p q) = consuming p && consuming q

consuming (AND p q) = consuming p && consuming q

consuming (Star p) = consuming p

These predicates allow us to define a class of parsers that will not produce an
infinite results without consuming input as:

notInfiniteNonConsuming :: P → Bool

notInfiniteNonConsuming (Star p) = consuming p

notInfiniteNonConsuming p = consuming p || finite p

Experiments show that a little less than 8% of the generated parsers will be
rejected by this predicate. Using this predicate the property for the parser com-
binator <!> can be reformulated for parsers with repetition as:

propXOR2 :: P P [Char ] → Property

propXOR2 x y chars

= notInfiniteNonConsuming x && notInfiniteNonConsuming y

=⇒ case begin p chars of
[ ] = begin (p <!> q) chars == begin q chars

_ = begin (p <!> q) chars == begin p chars

where p = apply x ; q = apply y

Despite the fact that there are more different parsers generated, this property
produces a counterexample indicating an error as test case 202 (the actual num-
ber depends on the pseudo random streams used in the test data generation).



5 Input Generation

Apart from controlling the functions used in the properties over HOFs, it is
possible to control the generation of ordinary types used in properties over HOFs.
In our running example of parser combinators we used the type [Char ] as input
for the parsers. G∀ST will generate list of characters containing all 98 printable
characters from the empty list to longer and longer lists. Although the test
introduced above appear to be effective they can be improved. The parsers are
generated in such a way that only the characters ’a’ and ’b’ will be accepted
(by the definition of ggen {|Sym |} ). This implies that about 98% of the input
symbols will be rejected by each instance of the parser combinator symbol. This
can be improved by generating lists of characters with a limited number of
characters. Without changing the instance for ggen {|Char |} in the library this
can be achieved by the introduction of an additional data type and a user defined
instance of ggen.

:: InputList = Input [Char ]

ggen {|InputList |} n r = map Input l

where l = [ [ ] : [ [c:t ] \\ (c ,t) ← diag2 [’a’..’c’ ] l ] ]

The character ’c’ is included to ensure that there are input symbols that need to
be reject by any consuming parser. In each use we have to remove the constructor
Input from the generated input. For example:

propXORInput :: P P InputList → Property

propXORInput x y (Input chars)
= notInfiniteNonConsuming x && notInfiniteNonConsuming y

=⇒ case begin p chars of
[ ] = begin (p <!> q) chars == begin q chars

_ = begin (p <!> q) chars == begin p chars

where p = apply x ; q = apply y

This test appears indeed to be more effective. For this property G∀ST founds 319
counterexamples in the first 104 tests. Using propXOR ’only’ 136 counterexamples
are found in this number of tests. For this property this does not matter much,
one counterexample is enough to invalidate a property. In general this indicates
that this algorithm yields more effective tests.

5.1 Generating inputs that should be accepted

In order to test whether a parser accepts the inputs it should accept, it is suffi-
cient to use only inputs that should be accepted by the tested parser. Since we
have the parsers available as data structure, it is not difficult to generate such
inputs. The function PtoInput produces a list of inputs to be accepted by the
parser corresponding to the given data structure of type P.

PtoInput :: P → [ [Char ] ]
PtoInput Fail = [ ]



PtoInput (Yield (Char c)) = [ [ ] ]
PtoInput (Symbol (Char c)) = [ [c ] ]
PtoInput (Or p q) = removeDup (PtoInput p ++ PtoInput q)
PtoInput (XOr p q) = removeDup (PtoInput p ++ PtoInput q)
PtoInput (AND p q) = [i++j \\ i←PtoInput p , j←PtoInput q ]
PtoInput (Star p) = take maxIter l

where l = [ [ ] : [ i++t \\ (i ,t) ← diag2 (PtoInput p) l ] ]

maxIter = 10

The only point of interest are the repetition constructors Star. Here the inputs
are limited to maxIter repetitions of the input corresponding to the argument of
the repetition operator. There are two reasons for this.

First, if the parser handles inputs up to maxIter repetitions correctly for some
descent value of maxIter, it is highly likely that all higher number of repetitions
will be handled correctly. Test corresponding to more repetitions of the same
input will not be very effective. In fact, also a much smaller value of maxIter,
like 2 or 3, can be used.

Second, strange parsers and long inputs can produce enormous amounts of
results. This is time and space consuming, but not a very effective test. As
example we consider the parser <+> (symbol ’a’ <|> symbol ’a’). Each symbol
’a’ will be recognized in two different ways. If this parser is applied to a list of
n characters ’a’, the result will be a list of 2n identical parse results. In order to
keep testing effective we either have to remove these kind of parsers, or prevent
very large inputs for such a parser. Since we do want to exclude this kind of
parsers, we have chosen to limit the size of the associated inputs.

As example of the use of the generation of inputs that have to be accepted
we use again the property for <!> combinator:

propXOR3 :: P P → Property

propXOR3 x y = propXOR2 x y For PtoInput (XOr x y)

For the first 104 test cases we find now 916 counterexamples. This indicates that
testing with inputs that should be accepted is even more effective as testing with
pseudo random input constructed by the type InputList.

6 Direct testing of complete parsers

Above we have shown how individual parser combinators are tested effectively.
This requires that at least one property is stated for each parser combinator. In
this section we will show that we can also test a large set of parser combinators
in one go. The idea is to construct a very simple direct parser. Given an instance
of the type P and an input, this parser should produce all desired results.

Given a grammar and an input, it is easy to determine what the result of the
parser described in section 4.1 should be:

results :: P [Char ] → [ ( [Char ] , [Char ] ) ]
results Fail chars = [ ]



results (Yield (Char c)) chars = [(chars , [c ] ) ]
results (Symbol (Char c)) [d:r ] | c == d = [(r , [c ] ) ]
results (Symbol (Char c)) chars = [ ]
results (Or p q) chars = results p chars ++ results q chars

results (XOr p q) chars = case results p chars of
[ ] = results q chars

r = r

results (AND p q) chars

= [(c3 ,r1++r2) \\ (c2 ,r1)←results p chars , (c3 ,r2)←results q c2 ]
results (Star p) chars = repeatP p [ (chars , [ ] ) ]

repeatP p res

= case [ (c2 ,r1++r2) \\ (c1 ,r1) ← res , (c2 ,r2) ← results p c1 ] of
[ ] = res

r = repeatP p r

This simple parser is less efficient that the parser combinator library and less
flexible, but for the set of constructors defined by the type P it yields the list of
all recognized tokens.

Using this function it is possible to state a property that has to hold for any
parser that corresponds to an instance of P: the result of transform p to a parser
and applying it to an input i should be identical to results p i. That is:

propPI :: P [Char ] → Property

propPI p i = notInfiniteNonConsuming p =⇒ results p i == begin (apply p) i

Also here we can limit the inputs to the character lists that should be accepted
by the parser:

propP :: P → Property

propP p = notInfiniteNonConsuming p =⇒ (propPI p For PtoInput p)

Also this very general property finds counterexamples corresponding to the re-
ported problem in the original version of the library quickly. Since this property
is more general it is not surprising that this property needs somewhat more tests
to find a counterexample. After 279 test G∀ST reports the counterexample (XOr
(Or (Yield (Char ’a’)) (Symbol (Char ’a’))) (Yield (Char ’a’))) [].
This is basically the same error as reported above. G∀ST needs less than one
second to find this error.

After repairing this error we tested to library again with PropP. To our
surprise an additional counterexample was found within 2 seconds. G∀ST re-
ports: Counterexample found after 791 tests: (Star (Or (Symbol (Char
’a’)) (Symbol (Char ’a’)))) [’a’]. The error is caused by an erroneous opti-
mization in the parser combinator <*>. It appears that the parser <*> (symbol ’a’

<|> symbol ’a’) yields only one result for the input repeat n ’a’, instead of the
desired 2n identical results.

After correction of this error no new issues were found in an additional 30, 000
tests. This takes 2.4 seconds. In order to verify the error detecting capacity of
this approach we made, by hand, 25 mutants of the library that are approved



by the type system. Testing these incorrect libraries revealed counterexamples
for each of these libraries within 2 seconds.

The final set of parser combinators can be found in the appendix.

7 Testing other Higher Order Functions

So far we have shown how our technique for testing higher order functions can be
used for continuation based parser combinators. But our approach can be used
to test any higher order function. To illustrate this, a property of the famous
fold function will be tested.

The property is based on the universal property of the fold as stated by Mal-
com [8] and is based on the Bird-Meertens theory of lists [1, 9]. For any function
f , elements v and e, and list l we require that fold f v [e : l] = f e (fold f v l).
In order to test several implementations of the fold -function we make it an ar-
gument of the property propFold. We want to specify this argument in an actual
test. The other arguments are intended as universal quantified variables and
need to be generated by G∀ST.

propFold :: ((a a→a) a [a ]→ a) (a a→a) a [a ] a → Bool | == a

propFold fold f v l e = fold f v [e:l ] == f e (fold f v l)

In order to test this with G∀ST we need to choose a concrete data type for a.
We will use integers here, and choose v to be zero.

propFoldInt :: ((Int Int→Int) Int [Int ]→ Int) Expr [Int ] Int → Bool

propFoldInt fold ex l e = propFold fold (apply ex) 0 l e

In addition we need to generate suitable functions of type Int Int → Int. The
data type Expr is used to represent the functions to be generated:

:: Expr = X | Y | ConstOne | SUM Expr Expr | DIFF Expr Expr

The functions apply converts instances of this data type to the desired functions:

instance apply Expr (Int Int → Int)
where

apply X = λx y.x

apply Y = λx y.y

apply ConstOne = λx y.1

apply (SUM a b) = λx y.apply a x y + apply b x y

apply (DIFF a b) = λx y.apply a x y - apply b x y

As we might expect the functions foldr from the standard library appears to be
a valid fold -function if we test it with:

Start = test (propFoldInt foldr)

The function foldl however, does not obey this property for functions like,
f x y = x, f x y = y, and f x y = x+x. G∀ST spots this within 0.1 seconds. Al-
though this result in itself is not new, it demonstrates the power of this approach
to test higher order functions.



8 Conclusion

Test systems like Quickcheck and G∀ST are very suited to test properties over
first order functions [3, 6]. Testing higher order functions was troublesome, since
they have functions instead of data types as argument and result. The functions
yielded by a higher order function are tested by supplying arguments until a
data type is obtained. Until now test systems were able to generate functions
as test argument in a primitive and unguided way. In this paper we have shown
that the functions needed as argument can be generated by defining a data
type representing the grammar for the desired functions, and a very simple
function that transforms this data type to the corresponding function. This is a
reinvention of ideas similar to Reynolds defunctionalisation from 1972.

By using this technique for a library of parsers combinators the test system
has found a reported error as well as an until now unknown error. Since the
errors occur for very unusual combinations of parser combinators it is not strange
that the errors were not discovered during manual testing and ordinary use of
the library. Also 25 errors injected deliberately in order investigate the power
of automatic testing are found within seconds. This indicates that this way of
automatic testing is very effective and efficient.

Our approach is a very general one that can also be used in any situation
where higher order functions needs to be tested, or even where systematically
generated functions are needed. In this paper we have show the application to
simple properties over map (see section 4) and fold (see section 7), and the more
advanced parser library, but it works for properties over any HOF.
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A Improved parser combinator definitions

This appendix contains the changed and tested version of the parser combinators.
The types used are unchanged. The most important change is that the role of
the OR-continuation and the XOR-continuation is swapped in order to get the
behavior both or-combinators correctly. The basic operators fail, yield and
symbol are basically unchanged. The definitions are slightly changed in order to
reflect the change in role of the continuations xc and ac.

symbol :: s → CParser s s t | == s

symbol s = psymbol

where psymbol sc xc ac [x:ss ] | x == s = sc s xc [ ] ss

psymbol sc xc ac _ = xc ac

Both choice combinators also reflect the change of role of the continuations. The
combinator <|> inserts the second parser in the continuation of p with alterna-
tives that are always taken. The <!> operator inserts q in the other continuation
and changes the the other or-combinator such that it checks for results.

(<|>) infixr 4 :: (CParser s r t) (CParser s r t) → CParser s r t

(<|>) p q = λsc xc ac ss = p sc (λac3 = q sc xc ac3 ss) ac ss

(<!>) infixr 4 :: (CParser s r t) (CParser s r t) → CParser s r t

(<!>) p q = λsc xc ac ss

= p sc (λac2 = i f (isEmpty ac2) (xc [ ] ) ac2) (q sc xc ac ss) ss

The and-combinator for the composition of parsers is now:

(<&>) infixr 6 :: (CParser s u t) (u → CParser s v t) → CParser s v t

(<&>) p q = λsc xc ac ss → p (λt xc1 ac1 → q t sc xc1 ac) xc ac ss

The definition of all variants of this operator (like <&, &>, and <++>) is not changed.
From the repeat operators <*> and <+> we removed the error by deleting the

erroneous optimization in ClistP.

<*> :: (CParser s r t) → CParser s [r ] t

<*> p = ClistP p [ ]

ClistP :: (CParser s r t) [r ] → CParser s [r ] t

ClistP p l = (p <!&> λr → ClistP p [r:l ] ) <!> yield (reverse l)


