
Dynamic Construction of Generic Functions

Ronny Wichers Schreur and Rinus Plasmeijer

Institute for Computing and Information Sciences
Radboud University Nijmegen

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
{ronny,rinus}@cs.ru.nl

http://www.cs.ru.nl/{~ronny,~rinus}

Abstract.. This paper presents a library for the run-time construction
and specialisation of generic or polytypic functions. This library utilises
the type information that is available in dynamics to implement generic
functions on their values. The library closely follows the static generic
framework, both in its use and in its implementation. It can dynamically
construct generic operations ranging from equality, map and parsers to
pretty printers and generic graphical editors. A special feature of the
library is that it can also be used to derive meaningful specialisations of
generic functions that operate on the type representation of the dynamic.

1 Introduction

This paper is about constructing generic functions for dynamically typed values
(or shortly, dynamics). Let us first explain what we mean by generic functions
and dynamics.

In Generic Haskell [13] as well as in Clean [15] it is possible to define generic
functions [4, 8]. A generic function is an ultimate reusable function that allows
reflection on the structure of data in a type-safe way.

Once defined, a generic function can be applied on any value of any given
concrete static type. Generic functions can be used to define work that is of a
general nature. The technique has successfully been applied to define functions
like equality, map, fold , to construct parsers and pretty printers, to create GUI
applications [3] and to generate test data [10].

A generic function is actually not a single function, but rather a special kind
of overloaded function. To define a generic function, instances for the generic
function are defined for a finite number of type constructors. Given these base
instances, the compiler can fully automatically derive an instance for the generic
function for any given concrete static type.

Both in Haskell as well as in Clean one can use dynamics. Dynamics allow the
programmer to associate a run-time value with its type. The are some differences
between dynamics in Haskell and in Clean. In Clean dynamics are incorporated
in the language while in Haskell dynamics are made available via a library fa-
cility. Dynamics in Clean can be of polymorphic type, and one can do run-time
type unification using type pattern variables [14]. Furthermore, dynamics (even

C. Grelck et al. (Eds.): IFL 2004, LNCS 3474, pp. 160–176, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dynamic Construction of Generic Functions 161

functions) can be serialised , stored to disk and read it in by some other running
application. In this way one can easily create persistency, type-safe plug-ins, and
mobile code [17]. The facility has been used to create a type safe functional op-
erating system [16] that uses a typed file system in which all files are dynamics
stored on disk.

Dynamics enable the type safe communication of data and code between
independently programmed distributed applications. It would therefore be very
nice if we would also be able to apply generic functions to a dynamic, in particular
to a “foreign” dynamic. In theory it should be possible to construct such a generic
function, since a dynamic contains information about its type.

The ability to construct such a generic function that can be applied on any
value of any type stored in a dynamic would give us new possibilities. For in-
stance, in our functional operating system we will be able to test the equality
of two (unknown) dynamics. It also means that if we receive a dynamic from
somewhere, we can automatically create a parser or pretty printer for it. From
that moment on, the operating system shell is able to recognise expressions of
the types involved.

Figure 1 gives an impression of what we want to achieve . The program at
the top writes a tree value in a dynamic to disk. This dynamic value is read
by the bottom application. Note that the Tree type is not available at compile
time in the bottom application. By using the library it is still possible to create
a graphical editor for the tree in the dynamic value.

data Tree α = Leaf | Node α (Tree α) (Tree α)
dyn = dynamic Node 1 Leaf Leaf :: Tree Int
main = writeDynamic ”d ”dyn

main = do

dyn ← readDynamic ”d”
doIO (edit ”Editor for any Dynamic” dyn)

'd'

Fig. 1. A dynamically constructed generic editor

In practice this means that all the conversions and constructions that are
currently done by the compiler at compile-time now somehow have to be ac-
complished at run-time. This is not so easy. A compiler can do full reflection
on the representation of types and terms, but a running application (Clean uses
compiled code) can only do some limited reflection on the representation of the

162 R. Wichers Schreur and R. Plasmeijer

types. Furthermore one has to be able to construct new functions at run-time.
The research question is: is it nevertheless possible to create generic functions
for dynamics? In this paper we explain how one can do it, and explain what
language facilities are needed to realise it.

The main contributions of this paper are:

– We show that that our library enables the construction of generic functions
at run-time in the same spirit as the well-known static generic translation
scheme (section 6 and 4);

– We show that our generic functions cannot only be used on the value part
but also on the type part of a dynamic (section 4).

The code and examples in this paper are presented in Haskell, because it is
more widely known. In any case, the differences are insignificant. The library
is implemented in Clean and available from the web-page that accompanies this
paper (http://www.cs.ru.nl/~ronny/DynGen/).

The remainder of the paper is organised as follows. In section 2 we briefly
recap the dynamic machinery. In section 3 we describe how a generic function
is statically defined in the language. Then we explain in section 4 how, with
help of our library, a generic function for dynamics can be constructed in a
very similar way as in the static case. The translation scheme for generics as
implemented in the compiler is illustrated in section 5. In section 6 we explain
how we manage to realise this translation scheme at run-time. In section 7 we
show some extensions, present example applications, and discuss the efficiency
of the library. After discussing related work in section 8, we end in section 9 with
conclusions and future work.

2 Dynamics

Dynamically typed values, or dynamics for short, combine a value with a repre-
sentation of its type [1, 15]. Here are some examples of dynamics.

twoDynamics :: (Dynamic,Dynamic)
twoDynamics = (dynamic 3 :: Int , dynamic id :: ∀α.α → α)

dynApply :: Dynamic → Dynamic → Dynamic
dynApply (dynamic f :: a → b) (dynamic x :: a) = dynamic f x :: b
dynApply = error “dynApply : type error”

The first alternative of dynApply only matches if the first dynamic argument
contains a function value and the second dynamic argument a value of a type that
matches the argument type of the function. This example shows how matching
on dynamic values involves dynamic unification of types. This guarantees that
the application f x is safe.

The type pattern variable in a dynamic can also arise from a type variable in
the signature of the function. Such a type variable is postfixed with an upward
arrow, as in the following two functions.

Dynamic Construction of Generic Functions 163

toDyn :: ∀α.Typeable α ⇒ α → Dynamic
toDyn x = dynamic x :: α↑

fromDyn :: ∀α.Typeable α ⇒ Dynamic → α
fromDyn (dynamic x :: α↑) = x
fromDyn = error “type mismatch”

These so called type dependent functions [14] are overloaded in the type repre-
sentation of that type variable, indicated by the Typeable class. For example in
fromDyn the type of α is determined by the context in which the function is
used.

The dynamic system in Clean has more features that are not used in this
paper, but that do greatly enhance the applicability of dynamics. One can seri-
alise any dynamic (even functions) and store its value to disk or send it over to
another running application. Any other Clean application can read in or receive
such a dynamic. Clean uses compiled code which means that a dynamic linker is
required that is able to link in code to a running application [17].

2.1 Obtaining Additional Information About Dynamic Types

In Haskell access to the representations of types and data type definitions is avail-
able in the Data.Generics library that was developed to support the techniques
in the “Scrap your boilerplate articles” [11, 12].

In Clean, dynamics, patterns match on dynamics, as well as dynamic unifi-
cation are part of the language. Access to the representation of types and the
type definitions is therefore less important to the average Clean user. To realise
our library, we do need access to this type of information. The representation
contains all the information needed to construct the generic representation for
dynamic types at run-time. The actual representations of types and data types
in both Haskell and Clean differ from the one presented in this paper. We have
simplified it a bit to increase readability.

The following library functions are used to obtain additional information
about types. The typeOf function returns the representation of a type.

typeOf :: ∀α. Typeable α ⇒ α → TypeRep
data TypeRep

=TyCon TyCon | TyApp TypeRep TypeRep
| TyForAll VarId TypeRep | TyVar VarId

The function typeDefOf returns a representation of the data type.

typeDefOf :: TyCon → TyDef
data TyDef = AlgType {arity :: Int , conses :: [(Constr , [Type]]} | NoType

The Constr data type represents a data constructor from an algebraic type. It
supports the following operations.

164 R. Wichers Schreur and R. Plasmeijer

data Constr = — abstract type
instance show Constr
build :: Constr → Dynamic
match :: Constr → Dynamic

The function build returns a dynamic that contains the constructor. The
function match returns a dynamic with a function that matches on the con-
structor. For example for the Cons constructor in the List type these dynamics
have the following values.

buildCons = dynamic Cons
matchCons = dynamic λ l f x → case l of Cons h t → f h t ; → x

3 Generic Programming

This section describes the basics of generic or polytypic programming à la Hinze
[9]. Generic functions are defined on the sum-of-products structure of algebraic
data types. The following code shows the generic constructors from which the
generic structure is build and presents the generic structure for a user defined
list type.

data 1 = 1 — unit
data α × β = α × β — product
data α + β = InL α | InR β — sum

data List α = Nil | Cons α (List α) — user defined algebraic type
type List◦ α = 1 + (α × (List α)) — and its generic structure

In the full blown generic framework the generic structure is much richer with
information about data constructors and record fields (their name, arity, and so
on). This information is necessary for generic parsers and pretty-printers, but
we do not consider it further for clarity’s sake.

The remainder of this section illustrates how a programmer defines and uses
a generic function in the static generic framework. The running example is a
generic equality function that is used to compare two integer lists.

3.1 Define the Type Signature of the Generic Function

The generic equality function is defined as follows.

type Eq α = α → α → Bool
generic eq a :: Eq a

In this example there is only one generic variable before the double colon (a),
but in general there can be several. The type after the double colon can also be
polymorphic in other type variables. We do not consider higher-ranked types in
this paper, so all polymorphic variables must be quantified at the top level.

Dynamic Construction of Generic Functions 165

3.2 Provide the Base Instances

The programmer provides each base instance by defining a function with the
name of the generic function subscripted with the name of the type constructor.

eqInt a b = a == b
eq1 1 1 = True
eq× eq1 eq2 (a1×a2) (b1×b2) = eq1 a1 b1 && eq2 a2 b2

eq+ eql eqr (InL a) (InL b) = eql a b
eq+ eql eqr (InR a) (InR a) = eqr a b
eq+ eql eqr = False

The number of arguments of a base instance depends on the arity of the type
constructor. For example, eq× receives equality functions for the first and second
elements of the pairs.

3.3 Specialise the Generic Function for a Particular Type

A specialisation is denoted by putting the type between braces after the name
of the generic function.

main = print (eq{List Int} (Cons 1 Nil) (Cons 2 Nil))

Here eq{List Int} is the specialisation of the generic equality function for lists
of integers. It is also possible to specialise for types of higher kind such as List
(kind ∗ → ∗). In this paper the type for which a generic function is specialised
is assumed to be monomorphic.

4 Dynamic Generic Library

In the previous section 3 we showed how to statically define and use a generic
equality function. Here we show how to do the same dynamically. For this pur-
pose the library offers a number of functions to construct a generic function
at run-time. Basically, we do the same steps as before. For each step a library
function is offered (defineGeneric, baseInstance, specialise). All definitions of the
dynamic generic function given so far are collected in an abstract type (GenFun).

data GenFun — abstract data type
defineGeneric :: Int → Type → GenFun
baseInstance :: TyCon → Dynamic → GenFun → GenFun
specialise :: GenFun → Type → Dynamic

We will demonstrate the use of each library function for the equality exam-
ple from section 2. Because several base instances have to be provided for any
generic function, we make the notation a little lighter with an infix variant of
the baseInstance function. It is defined as follows:

166 R. Wichers Schreur and R. Plasmeijer

(:+:) infixl 4
(:+:) :: GenFun → (TyCon, Dynamic) → GenFun
genFun :+: (tyCon, dyn) = baseInstance tyCon dyn genFun

Below we use the notation �a� as a short-cut for the representation of the
type a. For example �List Int� denotes typeOf (⊥ :: List Int). The same notation
is also overloaded to denote the representation of a type constructor. For exam-
ple �List� denotes the representation of the List type constructor. The context
always indicates which of the two variants is meant.

4.1 Define the Type Signature of the Generic Function

The first step is to provide the signature of the generic function. For the generic
equality it is:

defEq :: GenFun
defEq = defineGeneric 1 �∀a. Eq a�

The generic type variables and any other type variables are all bound by one
quantifier in the second argument of defineGereric. By convention, the generic
type variables are given first, and the integer argument indicates how many
generic type variables the function takes. In the example the first variable (a) is
the generic type variable.

4.2 Provide the Base Instances

After defining the type of the dynamic generic equality function, we extend it
by providing the base instances.

baseEq :: GenFun
baseEq = defEq :+: (�Int�, dynamic eqInt)

:+: (� 1 �, dynamic eq1)
:+: (� × �, dynamic eq×)
:+: (� + �, dynamic eq+)

Assuming that we already have a static generic function for equality defined,
the definition is rather straightforward. The instances of the static generic func-
tion eq can directly serve as the base instances for the dynamic generic equality.

This code shows that it can be tiresome to populate the generic function with
the base instances for all base and primitive types (we should also have provided
base instances for Float , Char , Bool). It may be useful to have some language
support to make it easier to add all available static base instances.

4.3 Specialise the Generic Function for a Particular Type

Finally we can apply our dynamic generic function to check if two dynamics are
equal.

Dynamic Construction of Generic Functions 167

genEq :: TypeRep → Dynamic
genEq = specialise baseEq
main = print (genEq�List Int�

‘dynApply ‘ (dynamic Cons 1 Nil)
‘dynApply ‘ (dynamic Cons 2 Nil))

The example shows that using the dynamic generic library is very similar to
using the static generic framework. In the example above we made good use of
the static instances of the generic equality function to serve as the base instances
of the dynamic generic equality. However, it is also possible to use the dynamic
generic library without using the static generic framework.

5 Generic Translation

Before we explain how generic functions are constructed dynamically we first
review the static translation scheme as originated from Hinze [8].

We present the translation scheme by studying the code that the compiler
generates for our running example. The purpose of this exposition is to point
out the information that is needed to perform the translation and to get an idea
of the language features that are used in the generated code. In the next section
we will then see how this corresponds to the dynamic setting.

5.1 Overview

The compiler uses the following information for the translation scheme (readily
available from the compiler’s syntax tree):

– the signature of the generic function;
– the base instances for this generic function;
– the type for which the generic function has to be specialised;
– the type definitions of all types that appear in this type.

The remainder of this section describes the different parts of the translation:
the specialisation of the generic function for a type expression, the conversion
between values and their generic representation, and the derivation of the generic
function for an algebraic type.

5.2 Specialisation

The specialisation of a generic function for a specific type is an easy transfor-
mation. It is nothing more than replacing type constructors with the instance of
the generic function for that type, and replacing type application by term appli-
cation. For the specialisation of the generic equality function for list of integers
the compiler performs the following transformation.

eq{List Int} =⇒ eqList eqInt

The eqInt function was provided by the programmer (Int is a primitive type),
but the compiler must derive the eqList function. The remainder of the section
describes how this is accomplished.

168 R. Wichers Schreur and R. Plasmeijer

5.3 Equality on the Generic Representation

The first step is to specialise the generic equality function for the generic repre-
sentation type List◦, again by replacing each type constructor with the generic
instance for that type.

eqList◦ :: ∀α. Eq α → Eq (List◦ α)
eqList◦ a = eq1 ‘eq+‘ (a ‘eq×‘ eqList a)

5.4 Embedding Projection

We now have an equality function on the generic representation of lists, but we
need an equality function on lists. We can adapt one to the other by using a
so called embedding projection. Conveniently enough this embedding projection
itself can be implemented as a generic function. It has the following definition.

data α � β = EP {from :: α → β, to :: β → α}
generic ep a b = a � b

For the generic equality function only the conversion in one direction is needed
because the generic type variable occurs on negative positions (to the left of an
arrow), but to cover the general case we combine the conversions both ways.

The embedding projection for the equality function is the specialisation of
the generic function ep on the structure of signature of the generic function, in
our example the equality type α → α → Bool .

epeq :: ∀αβ. (α � β) → (Eq α � Eq β)
epeq a = a ‘ep→‘ (a ‘ep→‘ epid)

This specialisation deviates from the standard scheme in one place. The type
constructor Bool is replaced by epid (defined as {from = id , to = id}) instead
of epBool . In fact, the embedding projection for any type that does not involve a
generic type variable is the identity projection. With this observation the number
of embedding projections can be reduced.

The function ep→ composes the embedding projections for the argument type
and the result type.

ep→ arg res = EP (from arg o from result) (to result o to arg))

5.5 Conversion Functions

The implementation of the conversion functions from a list to its generic rep-
resentation and the other way around is a simple exercise in case distinction,
based on the algebraic structure of the type definition.

fromList :: ∀α.List α → List◦ α
fromList Nil = InL 1
fromList (Cons a b) = InR (a×b)

toList :: ∀α.List◦ α → List α
toList (InL 1) = Nil
toList (InR (a×b)) = Cons a b

Dynamic Construction of Generic Functions 169

The two conversion functions are grouped by convertList .

convertList :: ∀α. List α � List◦o α
convertList = EP fromList toList

5.6 Derived Function

The last step in the derivation is to combine the specialisation on the generic
representation, the conversion function and the embedded projection for the
generic function.

adaptList :: ∀α. Eq (List α) → Eq (List◦ α)
adaptList = epfrom (epeq convertList)

eqList :: ∀α. Eq α → Eq (List α)
eqList a = adaptList (eqList◦ a)

Note that eqList is a recursive function (indirectly through eqList◦).

6 Dynamic Generic Translation

In this section we implement the dynamic generic library functions from section
4 by adapting the static generic transformations from section 5.

6.1 Basic Implementation

As can be seen from the type signatures in section 4, a GenFun value is passed
between the library functions. It contains information about the generic function
that was stored in the compiler’s syntax tree in the static translation scheme.
The abstract type is defined as a record with the following fields.

data GenFun = GenFun { arity :: Int
, signature :: TypeRep
, instances :: FiniteMap TyCon Dynamic
, ep :: Dynamic }

This record is created by the defineGeneric function that stores the arity and
the type signature, creates an empty map of instances and constructs the em-
bedding projection for the type signature. The specialiseEP function performs
the specialisation for the embedding projection of the generic type signature as
described in section 5.4.

defineGeneric :: Int → Type → GenFun
defineGeneric a s = GenFun { arity = a

, signature = s
, instances = emptyFM
, ep = specialiseEP a s}

170 R. Wichers Schreur and R. Plasmeijer

The baseInstance function adds an instance to the map of instances.

baseInstance :: TyCon → Dynamic → GenFun → GenFun
baseInstance tc dyn gf = gf {instances = addToFM (instances gf) tc dyn}

Finally, specialise replaces all type constructors in the (monomorphic) type by
the corresponding instance and all type applications by dynApply (see section
2). This corresponds to section 5.2.

specialise :: GenFun → Type → Dynamic
specialise gf (TyApp t a) = dynApply (specialise gf t) (specialise gf a)
specialise gf (TyCon tc) = case lookupFM (instances gf) tc of

Nothing → derive gf tc
Just inst → inst

This is a slight simplification of the actual library function that operates on a
State monad, adding newly derived instances to the finite map of instances in
the GenFun record.

Now all that is left to do is implement the derive function. We will do so in
the next section.

6.2 Functions

The dynamic function that derive has to construct corresponds to eqList in sec-
tion 5.6. Here we see the first problem: The static translation introduces new
function definitions. In the dynamic setting the dynamics can contain function
values and we can apply dynamics to other dynamics, but we cannot create new
function definitions.

To solve this problem we enrich the term language with lambda expressions
and variables.

data Dynamicλ = Term Dynamic | App Dynamicλ Dynamicλ

| Lambda Int Dynamicλ | Var Int

In this language we can construct the derived function (the λ subscripts indicate
that we are working in Dynamicλ).

deriveλ :: GenFun → TyCon → Dynamicλ

deriveλ gf tc = foldr Lambda (adapt ‘App‘ derived) varIds
where

typeDef =typeDefOf tc
varIds =[1..arity typeDef]
adapt =Term (adaptorλ gf typeDef)
derived =foldl App deriveλ gf typeDef) (map Var varIds)

The function derive◦
λ constructs the derived function for the generic representa-

tion of the type definition. As we have seen in section 5.2 this is simply a matter
of specialising the generic structure of the type definition. The function adaptorλ

is more difficult and we postpone its implementation to the next subsection.

Dynamic Construction of Generic Functions 171

The enriched dynamics can be translated to regular dynamics by the well-
known bracket abstraction algorithm that removes all lambdas and variables
with the use of the S , K , and I combinators. These combinators can be defined
in our term language, because dynamics can contain polymorphic functions.

derive :: GenFun → TyCon → Dynamic
derive gf tc = bracketAbstract (deriveλ gf tc)

6.3 Pattern Matching

The function adaptorλ constructs the conversion function between values and
their structural representation. It corresponds to convertList in section 5.5. Here
the next problem appears.

The conversion function performs pattern matches. In the dynamic library
the constructors on which we have to match are not know until run-time. In the
previous function we showed how to dynamically introduce lambda expressions,
but our term language does not contain pattern matching or case distinction.

Instead we use the match functions (see 2.1) that can be applied to the
constructor info. This match function takes a value (a list in this example) and
a function that should replace the constructor. If the value matches, this function
is applied to the arguments of the constructor, otherwise it returns nothing. By
chaining the match functions for all the constructors in a data type we can build
the required conversion function.

6.4 Recursive Functions

There is one more hurdle to take. Recursive types lead to recursive functions in
the translation. This means that to derive an instance for a recursive type we
need the instance for this type. To escape from this loop we construct recursive
functions with the use of a fix-point combinator. We could also have introduced
the fix-points at the type level, this amounts to the same thing. The dynamic
fix-point operator has the following definition.

fix f = let x = f x in x
dynFix :: Dynamic
dynFix = dynamic fix :: ∀α.(α → α) → α

Unfortunately, this fix-point combinator can only express limited forms of recur-
sion. The type of fix shows that the recursive calls should all have the same type
as the function itself. On the type level this means that this method does not
work for non-uniform types, such as

data Nested α = One | Two (Nested (α, α))

In the static scenario instances for non-uniform types can only be expressed
because Haskell supports polymorphic recursion.

Perhaps these non-uniform types can be handled with more advanced fix-
point combinators, but the details have not been worked out.

172 R. Wichers Schreur and R. Plasmeijer

7 Applications and Extensions

We present some examples of the use of the library, describe some extensions
and discuss the efficiency of our solution.

7.1 Defining the Instance for Dynamic

In section 4 we saw how to derive an equality function to compare two dynamics.
In the example below this example is extended to define a base instance of the
static generic equality function for the type Dynamic.

eqDynamic x@(dynamic :: a) y@(dynamic :: a) = eqDyn �a� x y
where

convertDyn :: ∀α. Typeable α ⇒ α � Dynamic
convertDyn =EP toDyn fromDyn

eqDyn type =liftDynEq (genEq type)

liftDynEq :: Dynamic → Eq Dynamic
liftDynEq =λ(dynamic eq :: Eq a) → epfrom (ep{Eq} convertDyn) eq

eqDynamic = False

The first alternative of eqDynamic only applies if the two dynamics have a
matching type. In that case the representation of this type is used to specialise
the dynamic generic equality (with the function genEq from section 4.3). The
liftDynEq function transforms the equality function in the dynamic (type Eq a)
to an equality function on two values of type Dynamic. Such a lift function can
be defined for any generic function in a similar way.

7.2 Deriving a Generic Function for the Types

So far we have only looked at how the generic function can operate on the values
in the dynamics. But we also have to consider the type in the dynamic. A generic
pretty printer for dynamics should not only print the value in the dynamic, but
also its type.

generic pprint t :: t − > String
pprint (dynamic Cons 1 Nil :: List Int)

⇒ “dynamic Cons 1 Nil :: List Int”

A naive specialisation of the pretty printer for the representation of the type
gives the rather unsatisfactory result "TyApp (TyCon List) (TyCon Int)".

The library provides a function that helps in this situation.

specialiseForType :: [TypCon] → GenFun → Dynamic

In the case of the pretty printer the dynamic constructed specialiseForType
contains a pretty printer of type TypeRep → String , but it behaves as if it were
defined on the type universe that is formed by the list of type constructors.

Dynamic Construction of Generic Functions 173

For example for the types Int , Bool and List this universe can be presented
by the following algebraic type.

data Type = Int | Bool | List Type

Note that Int , Bool and List are data constructors in this type.
The library function specialiseForType can be used for many other generic

functions. A parser for dynamics can first apply the parser generated with
specialiseForType to parse the type string. This parser delivers a representation
of the type which is then used to construct the parser for the value string. In test
data generation first a type can be generated and then a value of this type. The
graphical editor for dynamic values from the introduction can also be extended
so that the user can also edit the type as well as the values for that type.

7.3 Error Handling

So far we have ignored the errors that can occur during the dynamic construction
of generic functions. Compile-time errors from the static framework have become
run-time errors in our library and this means that all the library functions we
have used so far are inherently partial.

The defineGeneric function can fail if there is no embedding projection de-
fined for one of the type constructors in the signature of the dynamic function.
The baseInstance function can fail if the type of the function in the dynamic
does not correspond to the type signature of the dynamic function. The specialise
function can fail if the instance for a type cannot be derived, for example because
it is an abstract type.

The library provide versions of all the functions that return proper error
codes in case something goes wrong. Because of the explicit manner in which
the generic functions are constructed in the library, the application programmer
can use the error codes to recover from the situation.

7.4 Efficiency

The efficiency of the dynamically constructed generic functions is in the same
order as the efficiency of unoptimised static generic functions. The construc-
tion of functions with combinators may seem costly, but under graph rewriting
semantics each introduced combinator is only evaluated once.

A compiler does have more optimisation opportunities. Fusion for example
has proved to be powerful enough to completely remove the overhead of the
construction of the generic representation of values for most generic functions
[5, 6]. This optimisation is not possible in our dynamic setting. The library cannot
analyse the base instances that are provided by the programmer, because these
dynamics contain compiled code.

174 R. Wichers Schreur and R. Plasmeijer

8 Related Work

Earlier work by one of the authors [2] can be seen as a prequel to the present
paper. In that paper the representation of types is also used implement generic
function on dynamics, but it assumed compiler support to generate many of the
functions that are constructed at run-time in the current approach. The system
was limited to generics function with one generic variable.

Cheney and Hinze [7] combined dynamics and generics from the outset. Their
implementation is lightweight in the number of language features that are used.
The dynamics already contain values with the generic structure and the pro-
grammer has to write the conversions functions between values and their generic
representation. The dynamics in the current paper contain the actual values with
sharing fully preserved, which makes them more efficient.

The “Boilerplate” articles [11, 12] use the same run-time information about
types and type definitions to build generic traversal schemes. Because this infor-
mation is present in dynamics the traversal schemes can also be applied to the
values in dynamics. The library presented in the current paper makes the ap-
proach from Generic Haskell or Clean available for dynamic values, but the library
does require a more powerful dynamic typing system (dynamics with polymor-
phic types and run-time unification). Many functions can be implemented with
either system and experience will have to show which approach is more conve-
nient in what situation.

9 Conclusions and Future Work

We have developed a library in Clean that enables a programmer to create an in-
stance for a generic function for values of typeDynamic.Adynamic can contain any
value of any type which can both be inspected at run-time using a pattern match.
Dynamics can be stored on disk or send to another application over the internet.

Using our new library, one is now able at run-time to apply generic functions
on dynamics of any value and (almost) any type. Such a dynamic might even have
been created by other applications. One cannot only apply “consuming” generic
functions like equality and pretty printing, but also typical “producing” generic
functions like parsers. Furthermore, one cannot only define generic functions on
values but one can define generic functions on their types as well. It is possible,
for example, to create a generic editor to edit a type stored in a dynamic. It can
be used to compose a new type using the available ones. Now one can create
another generic editor to construct a value of this newly constructed type.

The library is very easy to use for someone familiar with the static generic
approach. The definition of a dynamic generic function can be given in a very
mechanical way. It is even imaginable that the dynamic definition can be created
automatically by a compiler from the static description.

The library is implemented in Clean. The implementation actually provides a
run-time variant of the static generic transformation scheme as implemented in
the Clean compiler. To realise this, one among others has to be able to construct

Dynamic Construction of Generic Functions 175

new functions at run-time. We have accomplished this by using bracket abstrac-
tion. For dealing with recursive types one has to be able to construct recursive
functions for which we have used a fix-point combinator. Currently we can only
deal with uniform recursive types.

In principle it should be possible to adopt our library for Haskell if the dy-
namic typing system would be more powerfull. Our solution needs dynamics that
contain polymorphic types and run-time unification.

In the future we would like to investigate if it is possible to remove the current
restriction that dynamic generic functions cannot be applied to non-uniform
recursive types. Furthermore we want to create some larger applications to test
the library. Feedback from our users is highly appreciated.

Acknowledgement

Many thanks to Artem Alimarine for valuable discussions and the anonymous
referees for numerous suggestions for improvement.

References

1. M. Abadi, L. Cardelli, B. Pierce, G. Plotkin, and D. Rèmy. Dynamic typing in
polymorphic languages. In Proceedings of the ACM SIGPLAN Workshop on ML
and its Applications, San Francisco, June 1992.

2. P. Achten, A. Alimarine, and R. Plasmeijer. When generic functions use dynamic
values. In R. Peña, editor, The 14th International workshop on the Implementation
of Functional Languages, IFL’02, Selected Papers, volume 2670 of LNCS, pages
17–33. Madrid, Spain, Springer, Sept. 2002.

3. Achten, Peter, van Eekelen, Marko and Plasmeijer, Rinus. Generic Graphical User
Interfaces. In Greg Michaelson and Phil Trinder, editors, Selected Papers of the 15th
Int. Workshop on the Implementation of Functional Languages, IFL03, volume
3145 of LNCS. Edinburgh, UK, Springer, 2003.

4. A. Alimarine and R. Plasmeijer. A Generic Programming Extension for Clean.
In T. Arts and M. Mohnen, editors, The 13th International workshop on the Im-
plementation of Functional Languages, IFL’01, Selected Papers, volume 2312 of
LNCS, pages 168–186. Älvsjö, Sweden, Springer, Sept. 2002.

5. A. Alimarine and S. Smetsers. Optimizing generic functions. In D. Kozen, editor,
The 7th International Conference, Mathematics of Program Construction, number
3125 in LNCS, pages 16 – 31. Stirling, Scotland, UK, Springer, July 2004.

6. A. Alimarine and S. Smetsers. Improved fusion for optimizing generics. In
M. Hermenegildo and D. Cabeza, editors, Proceedings of Seventh International
Symposium on Practical Aspects of Declarative Languages, number 3350 in LNCS,
pages 203 – 218. Long Beach, CA, USA, Springer, Jan. 2005.

7. J. Cheney and R. Hinze. A lightweight implementation of generics and dynamics,
2002.

8. R. Hinze. A new approach to generic functional programming. In The 27th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 119–132. Boston, Massachusetts, January 2000.

176 R. Wichers Schreur and R. Plasmeijer

9. R. Hinze and S. Peyton Jones. Derivable Type Classes. In G. Hutton, editor, 2000
ACM SIGPLAN Haskell Workshop, volume 41(1) of ENTCS. Montreal, Canada,
Elsevier Science, 2001.

10. P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic auto-
mated software testing. In R. Peña and T. Arts, editors, The 14th International
Workshop on the Implementation of Functional Languages, IFL’02, Selected Pa-
pers, volume 2670 of LNCS, pages 84–100. Springer, 2003.

11. R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design pattern
for generic programming. ACM SIGPLAN Notices, 38(3):26–37, Mar. 2003. Proc.
of the ACM SIGPLAN Workshop on Types in Language Design and Implementa-
tion (TLDI 2003).

12. R. Lämmel and S. Peyton Jones. Scrap more boilerplate: reflection, zips, and gener-
alised casts. In Proceedings; International Conference on Functional Programming
(ICFP 2004). ACM Press, Sept. 2004. 12 pages; To appear.

13. S. Peyton Jones and Hughes J. et al. Report on the programming language Haskell
98. University of Yale, 1999. http://www.haskell.org/definition/.

14. M. Pil. Dynamic types and type dependent functions. In K. Hammond, T. Davie,
and C. Clack, editors, Implementation of Functional Languages (IFL ’98), LNCS,
pages 169–185. Springer Verlag, 1999.

15. R. Plasmeijer and M. van Eekelen. Concurrent CLEAN Language Report (version
2.0), December 2001. http://www.cs.kun.nl/∼clean/contents/contents.html.

16. A. van Weelden and R. Plasmeijer. Towards a strongly typed functional operating
system. In R. Peña and T. Arts, editors, The 14th International Workshop on the
Implementation of Functional Languages, IFL’02, Selected Papers, volume 2670 of
LNCS, pages 215–231. Springer, Sept. 2003.

17. M. Vervoort and R. Plasmeijer. Lazy dynamic input/output in the lazy functional
language Clean. In R. Peña and T. Arts, editors, The 14th International Workshop
on the Implementation of Functional Languages, IFL’02, Selected Papers, volume
2670 of LNCS, pages 101–117. Springer, Sept. 2003.

	Introduction
	Dynamics
	Obtaining Additional Information About Dynamic Types

	Generic Programming
	Define the Type Signature of the Generic Function
	Provide the Base Instances
	Specialise the Generic Function for a Particular Type

	Dynamic Generic Library
	Define the Type Signature of the Generic Function
	Provide the Base Instances
	Specialise the Generic Function for a Particular Type

	Generic Translation
	Overview
	Specialisation
	Equality on the Generic Representation
	Embedding Projection
	Conversion Functions
	Derived Function

	Dynamic Generic Translation
	Basic Implementation
	Functions
	Pattern Matching
	Recursive Functions

	Applications and Extensions
	Defining the Instance for Dynamic
	Deriving a Generic Function for the Types
	Error Handling
	Efficiency

	Related Work
	Conclusions and Future Work

