
Generic Editors for the World Wide Web

Rinus Plasmeijer and Peter Achten

Software Technology, Nijmegen Institute for Computing and Information Sciences,
Radboud University Nijmegen {rinus, P.Achten}@cs.ru.nl

Abstract. In these lecture notes we present a novel toolkit to program
web applications with that have dynamic, complex behavior based on in-
terconnect forms. This toolkit is the iData Toolkit. We demonstrate that
it allows programmers to create web applications on a level of abstraction
that is comparable with ‘ordinary’ functional style programs. Program-
mers have the freedom to develop their own data structures and program
with them. The iData Toolkit is able to generate a web application from
these data types, making use of advanced programming concepts such
as generic programming. The programmer need not be aware of this. We
have tried to keep the iData Toolkit api as simple as possible.

1 Introduction

The World Wide Web has become an important infrastructure for institutions
such as universities, government, and industry and individuals to provide and
obtain information from a wide variety of sources. The complexity of web sites
range from simple static collections of HTML pages to advanced interactive sites
with many interconnections and user feedback. In these notes we intend to target
web applications that have complicated relations between an arbitrary number
of forms. As a typical example, we have constructed a web shop application
for selling CD’s. Fig. 1 contains a screen shot of this application. It displays a
number of interconnected form elements, some of which are: application browsing
buttons labelled Home, Shop, Basket, OrderInfo and the page to be displayed;
search fields and the number of found and displayed items, as well as the range
of selection browser buttons; adding elements to the shopping cart and the most
recently added item. In addition, it shows that there also elements that are
not related with forms, but rather with layout and make up. We consider these
elements to be purely functionally dependent from the actual state of the forms.

In these lecture notes, we study web applications from the perspective of the
functional programming paradigm. Key aspects that we pay attention to are the
functional nature of a web application, exploitation of the expressiveness and
richness of the type system, and the power of abstraction and composition. The
main goal is to obtain a programming toolkit, the iData Toolkit, that provides
web application programmers with a means to express themselves on a high level
of abstraction, without compromising the complexity of the applications. The
api of the iData Toolkit contains no advanced concepts: we deliberately have
kept it as simple as possible. The internal realization on the other hand makes

Fig. 1. A Web shop application, programmed with the iData Toolkit.

good use of advanced functional programming concepts, the most important one
being generic programming [11, 12]. We do not discuss the implementation, but
focus on the application programmer instead. We have collected a number of
examples and exercises so that the reader can obtain practical knowledge and
insight in the toolkit.

We use the functional programming language Clean [18, 19], version 2.1.1.
Clean is a pure, lazy, functional programming language based on term graph
rewriting. It has an expressive type system with support for generic program-
ming [2], dynamic types, uniqueness types, strictness types, and more. It ef-
ficiently generates efficient code. For over a decade it supports desktop GUI
programming with the Object I/O library. With this library its own IDE has
been implemented, as well as the proof assistant Sparkle. The Clean compiler has
been written in Clean itself. We assume that the reader is already familiar with
Clean and functional programming. The Clean programming environment can be
downloaded for free from http://www.cs.ru.nl/ clean/.

These notes are structured as follows. In Sect. 2 we analyze the challenges that
a web application programmer is confronted with. This analysis is independent
of any programming paradigm. In Sect. 3 we provide one of the many possible

answers in the context of the programming paradigm of lazy, strongly typed,
functional programming languages. Having motivated our design decisions, we
work out our solution with a number of case studies of increasing complexity and
completeness of functionality in Sect. 4. Every case ends with a set of exercises
that allow the student to practice his skills and understanding. Of course, this
work is not the first in this domain, and neither will it be the last. Related work
is discussed in Sect. 5. Finally, we come to conclusions in Sect. 6.

2 The Challenge. . .

When the World Wide Web was conceived by Tim Berners-Lee around 1990,
it was intended to be a uniform portal for people to find information around
the world [5]. Fig. 2 illustrates the ‘classic’ architecture with a simple Message
Sequence Chart (MSQ). A browser application (B) allows users to communicate
with a web server (S). The web server retrieves the requested information that
is stored somewhere on the server side. This information is encoded in HTML,
and is interpreted and displayed by the browser.

B S

-req0

¾html0

-req1

¾html1

Fig. 2. ‘Classic’ W 3.

B S A1 An

-req0 -
¾¾html0

-req1 -
¾¾html1

Fig. 3. ‘Contemporary’ W 3.

The need for web sites with dynamic content soon arose after this simple
scheme. One of the standards that emerged was the Common Gateway Interface
(CGI). The key idea is that instead of the web server retrieving static web pages
itself, it communicates with a bunch of applications that it executes that will
provide the requested information. In this way, the web server acts as an inter-
mediary between the browser program and the CGI programs. This is depicted
in Fig. 3. The collection of applications are labelled A1 upto An. The dashed
lines indicate that these applications are executed on request, and terminate after
having produced the desired result. These applications can be generated by a
programming language, or dedicated scripting languages such as php, Perl, or in
a functional style, such as WASH/CGI. Complex web applications often consist
of several dynamic applications, or separate scripts. This makes reasoning about
their behavior and correctness difficult.

The architecture of the web leads to a number of challenges for web appli-
cation developers:

1. Cause and Effect
The specification of every interactive application must clearly and unam-
biguously prescribe the behavior of the application in case of particular user
actions. It should be obvious that this depends on the state of the appli-
cation, as pressing the mouse button in an enabled button has an entirely
different meaning than pressing it in a scroll bar.
In traditional desktop GUI programming, both concepts of application state
and user actions (events) have been well-defined. The state is partially de-
termined by the underlying system (e.g. widgets, rendering environments,
resources, customizable widgets), and partially by the application (think of
data structures, variables with scope rules). The set of events is fixed by the
underlying system (keyboard and mouse events, rendering requests, message
passing events for customization purposes, and so on). This implies that it
is clear (but not necessarily easy) how to map the specification of an appli-
cation to a working implementation.
The web has no concept of state. This means that a programmer has to pre-
pare his own infrastructure to realize a suitable state. Many techniques have
been explored for this purpose: cookies, server side database, data storage
in web pages, extensive use of the expressive power of XML. The web has a
weak notion of event: forms can trigger parameterized requests to the web
server to fetch new pages, depending on the parameters of the request. As a
consequence, it is a challenge for a web application programmer to create a
correct implementation of a specified interactive application.

2. Accumulating Behavior
This challenge is related to 1. During execution, applications gather data.
This data determines the future behavior of the application. Clearly, this
requires state that is preserved during the run-time of the application. The
web application programmer needs to make sure his data persists between
invocations of his application.

3. User Behavior
The web deliberately allows users great freedom in browsing through infor-
mation that is available all over the world. Users bookmark links and visit
them arbitrarily many times later. This implies that web applications can
not assume that pages are always reached via a well-defined route. Users
simply stop browsing by closing their browser program. This means that
web applications are not closed-down gracefully as is the case with desktop
GUI applications. These can decide what data should be stored persistently,
and what should be garbage collected.

4. (Dependent) Forms
The interactive parts of a web application are defined by forms. A form is a
collection of primitive interactive elements such as edit boxes, check boxes,
radio buttons, and so on. This is fairly similar to desktop GUIs. However,
in a desktop GUI these elements can be considered to be objects that can

be manipulated by the application during run-time. Because the web lacks
state, this can not be done with web applications. The programmer can
not manipulate these elements as if they existed. Instead, they need to be
recreated every time a new page needs to be displayed. This becomes even
more complicated when forms depend on each other, i.e. data entered in one
form influences its own state, or also the existence or state of other forms.

5. Separation of Model and View
Designing an attractive web application that is functionally complete is a
difficult task. The maintenance of a web application may require either a
change of its presentation, a change of functional requirements, or both. A
good separation of presentation and application logic is important to reduce
the maintenance effort. Changing the presentation of an application should
cause at worst only minor changes in the application logic, and vice versa. Of
course, this is not specific for web applications, but also applies to desktop
GUI applications.

3 . . . A Functional Style Answer

In this section we rise to the challenges that have been presented in Sect. 2. Of
course many people have already provided answers to these challenges in many
different and excellent ways. We review related work in Sect. 5. In these notes we
give an answer from the perspective of the functional programming paradigm.
We first introduce the leading functions and types in Sect. 3.1. Having been
exposed to the main elements of the iData Toolkit, we show how these elements
provide answers to the challenges in Sect. 3.2.

3.1 Introducing the Leading Figures

In this section we introduce the leading figures of the iData Toolkit in a top-down
style. Recall the way the contemporary web works (Fig. 3). A web application
A may consist of several smaller scripts, i.e. A = {A1 . . . An}. Our view of the
structure of a web application is depicted in Fig. 4. A web application A should
be a single application. Of course, its code may consist of several modules, but
the program as a whole is considered to be a single unit that is addressed by
the web server as a single executable. In the functional paradigm, a program
is a function, depicted as f in the diagram. Clearly, this f is in dire need of
parameters if it is not to produce the same page at every invocation.

What is the type of f? Every interactive Clean program is a function of type
*World→ *World. However, this is not a very precise type. We need a type that
expresses more clearly what the purpose is of a web application. In our view,
the purpose of a web application is to provide the user with the illusion of an
application that does not terminate between user actions, but instead can be
regarded as a collection of objects that respond to his actions as if it were a
regular desktop GUI application. Put differently, if it had a previous state of
type HSt, then it must produce a new state of that type as well as a rendering
in HTML of that state. This leads to the following type of f :

B S A

-req0 -
f¾¾html0

-req1 -
f¾¾html1

Fig. 4. The iData Toolkit W 3.

*HSt→ (Html ,*HSt)

This type is connected with the type of an interactive Clean program with
the following wrapper function:

doHtml :: (*HSt→ (Html ,*HSt)) → *World→ *World

The arguments of f come from the command-line. At every execution, the
command-line contains a serialized representation of the current state of the
application, as well as the event that has occurred. We show that in our view an
event is a change of the value of the state. Put in other words, the user has edited
the state. We have set up the system in such a way that edit operations always
result in a new value of the same type. This is a powerful means of abstraction
that helps programmers to reduce the implementation effort. The underlying
technology that has enabled such a type driven and type safe system is the
generic programming facility of Clean.

We will show that the function body of f typically consists of two steps:
updating the forms of the web application, and updating the HTML page, using
the updated forms. To the programmer a form is an object that has a certain
model value that is rendered according to a view value. Both the model data
type and the view data type are specified using custom data types. Their relative
mapping is of course specified using functions between these data domains. The
iData Toolkit has one pivot function that implements a complete form for any
given model value and model-view relationship:

mkViewForm :: FormId m (HBimap m v) *HSt→ (Form m ,*HSt) | gHtml{|?|} v

The generic class gHtml is the silent witness of the fact that the iData Toolkit
makes extensive use of generic programming. Its definition encompasses as much
as four generic functions:

class gHtml t | gForm , gUpd , gPrint , gParse t

As a technical aside: at this stage Clean does not allow the definition of
generic classes. In this writing we will use it as a shorthand notation. In the true
libraries you will see the expanded list of generic functions.

In the remainder of this sequel the exact meaning of mkViewForm will be ex-
plained. Here we suffice with a rather informal specification based on its type
signature: FormId identifies the form elements and their main attributes in a web
application’s page, m is the initial model value, and (HBimap m v) is the collec-
tion of relational functions between model and view. The result is a new form
(Form m) that contains a model value, an HTML implementation, and a flag that
tells whether the user has changed the form.

One important form attribute is the life span of the form’s state. The pro-
grammer has fine grained control over this state. He can decide to make it fully
persistent, or persistent only during the session of the application, or make it
live only during the page itself.

Because of its generality, mkViewForm is not always easy to use. Therefore it
has a couple of friends that capture a number of frequently occurring model-view
patterns. The simplest one of these friends is mkEditForm:

mkEditForm :: FormId m *HSt→ (Form m ,*HSt) | gHtml{|?|} m

Given the identification of a form id, an initial model value m, (mkEditForm id m)
creates a form that renders m and allows the user to manipulate this value.

3.2 The Challenges

We now have introduced the key elements of the iData Toolkit. It is about time to
demonstrate how they will aid us in tackling the challenges that have presented
in Sect. 2.

Cause and Effect: From the above account we can conclude that we have built
a standard framework for building web applications that deploy objects with
typed state. Also, a very clear notion of events has been introduced: the edit
action of a user that changes the current state of an object into another.

Accumulating Behavior: The state of objects can be arbitrarily complex.
The programmer also has fine grained control over the life span of these
objects. States may be fully persistent, only during a session, or only during
on page. This is expressed as an attribute of the form object.

User Behavior: In the iData Toolkit, the programmer can clearly identify the
‘dangerous’ parts of his web application. If all form states have a page based
life span, then this means that the full state of the web application is in
its pages. In that case, the application is certain to be correct with respect
to arbitrary user behavior. Things get more complicated in case of (session)
persistent state. These states are made explicit, and require special attention.

(Dependent) Forms: A web application is a single function that updates its
form always in the same specified order. This means that the programmer
imposes a functional relationship between updated forms and their values.
In this way, complicated connections can be realized in a functional style. In
addition, forms can be constructed that behave like memory storages, and
that can be manipulated as such. This increases their flexibility.

Separation of Model and View: From the start, the iData Toolkit merges
the model-view paradigm with the concept of forms. A form is always defined
in terms of a visualization of some model data. This is embodied with the
powerful function mkViewForm. For simpler situations, wrapper functions are
provided that give easier access to this scheme.

4 Case Studies

In this section we construct a number of case studies, each of which focusses
on one particular aspect of web programming with the iData Toolkit. As a brief
overview, we will go through the following steps: we start with programming
HTML directly in the sections 4.1 through 4.3. Once we know how to play with
HTML, we can concentrate on programming forms, in the sections 4.4 through
4.6. Finally, we give one larger example in Sect. 4.7.

4.1 Programming HTML

In Sect. 3.1 we have shown that an iData Toolkit web application programmer
really creates a function of type (*HSt→ (Html ,*HSt)). Such a function f is turned
into an interactive application by (doHtml f) :: *World→ *World. The abstract
type HSt collects all the form information during the construction of a HTML
page. We defer its discussion until Sect. 4.4. Html is the root type of a collection
of algebraic data types (ADT) that capture the official HTML.

:: Html = Html Head Rest

:: Head = Head [HeadAttr] [HeadTag]
:: Rest = Body [BodyAttr] [BodyTag]

| Frameset [FramesetAttr] [Frame]
:: Frame = Frame [FrameAttr]

| NoFrames [Std_Attr] [BodyTag]
:: BodyTag = A [A_Attr] [BodyTag]

...
| Var [Std_Attr] String

| STable [Table_Attr] [[BodyTag]]
| BodyTag [BodyTag]
| EmptyBody

BodyTag contains the familiar HTML tags, starting with anchors and ending
with variables (in total there are 76 HTML tags). The latter three alternatives
are for easy HTML generation: STable generates a 2-dimensional table of data,
BodyTag collects data, and EmptyBody can be used as a neutral element. Attributes
are encoded as FooAttr data types.

As an example, the following Html value:

hello = Html (Head [‘Hd_Std [Std_Title "Hello World Example"]] [])
(Body [] [Txt "Hello World!"])

is translated to the following HTML:

<html>

<head title = Hello World Example></head>

<body>Hello World!</body>

</html>

In order to get rid of some standard overhead HTML code, the following two
functions prove to be useful:

mkHtml :: String [BodyTag] *HSt→ (Html ,*HSt)
mkHtml s tags hSt = (simpleHtml s tags ,hSt)

simpleHtml:: String [BodyTag] → Html

simpleHtml s tags = Html (header s) (body tags)
where header s = Head [‘Hd_Std [Std_Title s]] []

body tags = Body [] tags

With these functions, the above example can be shortened to:

hello = mkHtml "Hello World Example" [Txt "Hello World!"]

What needs to be done is to really create a HTML file. This is one of the
things done by doHtml. The complete code for this example then is:

module fragments

import StdEnv // import the standard Clean modules
import StdHtml // import the iData Toolkit modules

Start world = doHtml hello world

where hello = mkHtml "Hello World Example" [Txt "Hello World!"]

As this example shows, HTML can be encoded straightforwardly into an
ADT. There are some minor complications. In Clean, as well as in Haskell [17],
all data constructors have to be different. In HTML, the same attribute names
can appear in different tags. Furthermore, certain attributes, such as the stan-
dard attributes, can be used by many tags. We do not want to repeat all these
attributes for every tag, but group them in a convenient way. To overcome these
issues, we use the following naming conventions:

– The data constructor name represents the corresponding HTML language
element.

– Data constructors need to start with an uppercase character and may contain
other uppercase characters, but the corresponding HTML name is printed in
lower-case format.

– To obtain unique names, every data constructor name is prefixed in a con-
sistent way with Foo_. When the name is printed we skip this prefix.

– A constructor name is prefixed with ‘ in case its name has to be completely
ignored when printed.

We have defined one generic printing routine gHpr that implements the nam-
ing conventions that have been discussed above, and prints the correct HTML
code. Its definition is not relevant here.

generic gHpr a :: *File a→ *File

Our approach has the following advantages:

– One obtains a grammar for HTML which is convenient for the programmer.
– The type system eliminates type and typing errors that can occur when

working in plain HTML.
– We can define a type driven generic function for generating HTML code.
– Future changes of HTML are likely to change the ADT only.
– We can use the expressive power of our programming language to create

complex HTML.

4.2 Deriving HTML From Types

In the previous section we have demonstrated how one can construct HTML
pages in a typed style. Although the use of a typed language eliminates many
errors, it is not convenient to program web pages in this way. Instead, we like
to generate HTML for data of arbitrary type automatically. This reduces the
effort of creating web pages, reduces the risk of making errors, and increases
consistency. Because this transformation is intended to work for every type, it
has to be a generic function:

toHtml :: a→ BodyTag | gForm{|?|} a

Actually, it uses the generic function gForm. This function is introduced in
Sect. 4.4. One of its purposes is to generate HTML for any data value. It is this
aspect that is used by toHtml.

Let’s start with simple stuff, and move towards more complicated types.
Table 5 shows the generated HTML for the basic types Bool, Int, Real, and
String. These are obtained by replacing expr in:

Start world = doHtml (mkHtml "Example" [toHtml expr]) world

expr = True

expr = 42

expr = 42.0

expr = "Hello World!"

Fig. 5. HTML generated by toHtml for several basic types.

Next we proceed with types that have been composed by the standard type
constructors of Clean. Filling in expr= ("Nfib "<$40<$" = " ,Nfib 40), which has
type (String ,Int) yields the following HTML output:

The operator <$ is a useful abbreviation for the frequently occurring case of
concatening a String value with something that can be turned into a String:

(<$) infixl :: !String !a→ String | toString a

(<$) str x = str +++ toString x

Lists are internally represented as :: [a] = _Cons a [a] | _Nil. This alge-
braic structure is clearly visible in case of expr= [1..6] , which has type [Int] :

Note that the iData Toolkit derives and defines instances of the generic func-
tion gForm for the basic types and {2,3,4}-tuples, but not for lists. For this reason,
you need to include the following in your code:

derive gForm []

In order to demonstrate the compositional character of the mechanism, let’s
create a list of pairs of strings and integers, i.e.: it has type [(String ,Int)] . An
example value is expr= [("Nfib "<$n<$" = " ,Nfib n) \\ n← [0 ,5..30]] :

Records are algebraic data types that have exactly one (invisible) data con-
structor, and labelled fields. The iData Toolkit displays the field names, together
with the field values, in the same recursive way. Consider for instance the fol-
lowing record type for a simplistic personnel administration, and two values of
that type:

:: Person = { name::String , address::String , city::String }
derive gForm Person

peter = {name="Achten" , address="Abersland" , city="Wijchen"}
rinus = {name="Plasmeijer" ,address="Knollenberg" ,city="Mook"}

Then the value expr= peter is displayed as:

Exercises
1. Lists, differently

The example of a list of NFib numbers was created with:

expr= [("Nfib "<$n<$" = " ,Nfib n) \\ n← [0 ,5..30]] .

What happens with the generated HTML if you replace [toHtml expr] with

[toHtml ("Nfib "<$n<$" = " ,Nfib n) \\ n← [0 ,5..30]]?

4.3 More Fun With HTML

The previous section has demonstrated that the iData Toolkit is able to derive
a HTML representation for any conceivable custom data type T as long as you
don’t forget to include a derive gForm T . It also demonstrates that the resulting
HTML representations are not always attractive. In this section we introduce
a few body tag combinators that give you more control over the layout of the
elements of a HTML page.

The main program that we use in this section is slightly different from the
previous one:

Start world = doHtml (mkHtml "Example" [expr]) world

We start with the combinator <.=.> that places two body tag elements next
to each other, so (b1 <.=.> b2) places b2 next to b1. Its implementation uses the
BodyTag alternative STable with which tables (list of rows of body tag elements)
can be created. The variant <=> that works for bodytag lists is easily defined:

(<.=.>) infixl 5 :: BodyTag BodyTag→ BodyTag

(<.=.>) b1 b2 = STable [Tbl_CellPadding (Pixels 0)
, Tbl_CellSpacing (Pixels 0)
] [[b1 ,b2]]

(<=>) infixl 5 :: [BodyTag] [BodyTag] → BodyTag

(<=>) b1 b2 = (BodyTag b1) <.=.> (BodyTag b2)

With these combinators, we can easily place two values next to each other.
Consider for instance expr= toHtml peter <.=.> toHtml rinus. This yields the
following HTML:

This suggests that if you have a list of items that you want to display in a sin-
gle row, it is sufficient to turn them into HTML elements first (using map toHtml),
and then replacing every cons by <.=.> (by folding <.=.> over the resulting list).
This is done with the iData Toolkit function mkRowForm, defined concisely as:

mkRowForm :: [BodyTag] → BodyTag

mkRowForm xs = foldr (<.=.>) EmptyBody xs

As an example, to produce a horizontal list of integer elements, one can define
expr= mkRowForm (map toHtml [1..7]) , and get:

In exactly analogous ways, we can do this for vertical layout, and introduce:

(<.||.>) infixl 4 :: BodyTag BodyTag→ BodyTag

(<.||.>) b1 b2 = STable [Tbl_CellPadding (Pixels 0)
, Tbl_CellSpacing (Pixels 0)
] [[b1] , [b2]]

(<||>) infixl 4 :: [BodyTag] [BodyTag] → BodyTag

(<||>) b1 b2 = (BodyTag b1) <.||.> (BodyTag b2)

mkColForm :: [BodyTag] → BodyTag

mkColForm xs = foldr (<.||.>) EmptyBody xs

With this combinator, we can create a more appealing representation of the
list of nfib numbers that was given earlier. We define:

expr= mkColForm (map toHtml [("Nfib "<$n ," = " ,Nfib n) \\ n← [0..10]]) .

This yields:

Finally, elements can be arranged in a table, using the function mkSTable:

mkSTable :: [[BodyTag]] → BodyTag

mkSTable table = Table [] (mktable table)
where mktable table = [Tr [] (mkrow rows) \\ rows← table]

mkrow rows = [Td [Td_VAlign Alo_Top

, Td_Width (Pixels defpixel)
] [row] \\ row← rows]

The exercises below use this function.

Exercises
2. Table headers

The function mkSTable displays a table of elements, arranged as a list of rows.
Write a function (augmentTable h v t) that augments a table t (a value of type
[[BodyTag]]) with a horizontal header h (of the proper length) and a vertical
header v (of the proper length).

augmentTable :: [BodyTag] [BodyTag] [[BodyTag]] → [[BodyTag]]

3. The Ackermann function
Write an application that uses the function augmentTable to show the Ackermann
i j values with i ∈ {0 . . . 3} and j ∈ {0..7}. The Ackermann function is defined
as follows:

Acker :: Int Int→ Int

Acker 0 j = j + 1
Acker i 0 = Acker (i - 1) 1
Acker i j = Acker (i - 1) (Acker i (j - 1))

The Ackermann function is well-known in theoretical computer science, be-
cause it was presented as a counter example of the thesis that every computable
function could be expressed as a primitive recursive function. The Ackermann
function is well-defined, computable, but not primitive recursive.

The application should look something like:

4.4 Programming Direct Forms

In the previous sections we have had experience with programming HTML pages
that consist of explicit HTML as encoded by the Html type and friends, and
generated HTML using the generic function toHtml. It is time now to do form
programming. In web terminology, a form is a collection of interactive elements
such as buttons, check boxes, radio buttons, edit text fields, and so on. The user
can manipulate these elements. Depending on the application (for instance by
pressing the submit button), at some point in time the results of these manipu-
lations are sent to the web server which starts the web application and provides
it with this information. The application processes the information and responds
with a new page that is presented to the application user. In this way, interaction
has been achieved between a user and a web application.

The key idea of the iData Toolkit is that a page is represented by a value of
some type. Therefor, a form is also represented by a value of some type. User
manipulations are really edit operations that modify the value into another value
of the same type. Hence, a form is an editor of values of some type. This definition
is reflected in the type signature of the function mkEditForm:

mkEditForm :: FormId d *HSt→ (Form d ,*HSt) | gHTML{|?|} d

Recall from Sect. 3.1 that the class gHtml is really a (syntactically illegal)
shorthand for a collection of four generic functions, one of which is gForm. Above
we have used one of the functionalities of gForm. This is a generic function of
signature:

generic gForm d :: FormId d *HSt→ (Form d ,*HSt)

(gForm id dv hSt) creates a form (an editor) that is identified with id, and
that has initial value dv. With an identification value of type FormId, the ap-
plication programmer sets a number of mandatory attributes of each form. The
following types are involved:

:: FormId = { id :: String

, lifespan :: Lifespan

, mode :: Mode

}
:: Lifespan = Persistent | Session | Page

:: Mode = Display | Edit

The first mandatory attribute is an identification tag (id::String). This tag
must unambiguously identify the form in the collection of forms used by the web
application. This is the responsibility of the programmer. The second mandatory
attribute is the life span (lifespan::Lifespan) of the form. The life span states
how long the current value of the form (its state) lives: Persistent values live
‘forever’ and reside on disk, Session values live during a session, and Page values
live only during the life span of the page that they are part of. Finally, the third
mandatory attribute is the mode (mode::Mode) of the form. All of the examples
above displayed values: the user is not able to manipulate them. This is in fact

set by the toHtml function that calls gForm. For a form it makes more sense to
allow user manipulations, and set the mode to Edit instead.

The iData Toolkit provides a few constructor functions to easily create FormId

values:

nFormId :: String→ FormId // Page + Edit

sFormId :: String→ FormId // Session + Edit

pFormId :: String→ FormId // Persistent + Edit

ndFormId :: String→ FormId // Page + Display

sdFormId :: String→ FormId // Session + Display

pdFormId :: String→ FormId // Persistent + Display

The form that is returned by gForm is a small record type:

:: Form d = { changed :: Bool

, value :: d

, form :: [BodyTag]
}

A form may have been edited by the user. This is set in the changed field of
the form. Forms always have a value of the type that is associated with them.
This is set in the value field. Finally, a form needs an HTML rendering. This is
set in the form field. In fact, the [BodyTag]s that we have used in the examples
above come from this field. Except for the HSt parameter, we can now explain
the function toHtml:

toHtml :: a→ BodyTag | gForm{|?|} a

toHtml a

] ({form} ,_) = gForm{|?|} {id="__toHtml" ,lifespan=Page ,mode=Display} a . . .
= BodyTag form

From this we can conclude that in all examples that have been presented so
far, it is OK to replace toHtml with form versions, using mkEditForm, and plug in
their HTML renderings using the form fields of these forms.

As a first example of a web application with a direct form, we create a
(Form Person) (Person and rinus were defined at the end of Sect. 4.2). For com-
pleteness, we give the full code:

module fragments

import StdEnv

import StdHtml

Start world = doHtml personPage world

where personPage hSt

] (person ,hSt) = mkEditForm (nFormId "person") rinus hSt

= mkHtml "Person" [H1 [] "Person"

, BodyTag person.form

] hSt

:: Person = Person definition here

derive gForm Person ; derive gUpd Person ; derive gPrint Person ; derive gParse Person

The example shows that the HTML rendering of a form f can be used at
any arbitrary location, just by taking the f.form field of that form. Because
mkEditForm relies on a collection of generic functions, we also need to derive
instances for these functions for Person. This should become standard idiom
when defining new types for forms.

Because we have created an editable form, the behavior of this program is
quite different from the one that only displays a person. This is what it looks
like initially:

This application allows the user to edit any of the fields of a person record.
An edit operation is finished as soon as the user ‘confirms’ editing by leaving
the input focus of the edit box, and not during every keystroke or copy-paste
action).

Despite its size, this example shows the general structure of web applications
with forms. The function of type *HSt→ (Html ,*HSt), personPage in the example,
that defines the page first needs to update its forms, and then updates the HTML
that corresponds with the new forms.

myPage :: *HSt→ (Html ,*HSt)
myPage hSt

] (forms ,hSt) = updateForms hSt

= updatePage forms hSt

In the remainder of this sequel, we adopt this scheme and modify the updateForms
and updatePage functions. In the example, updateForms is simply

(mkEditForm (nFormId "person") rinus)

and updatePage is

(λperson hSt→ mkHtml ... hSt).

Here is an example of a slightly more interactive web application. We extend
the nfib table example from Sect. 4.3 with an integer form in which the appli-
cation user can enter a number n. As a result, the application shows all nfib

numbers from 0 to n. For this also a form is used. Let’s first construct the two
forms:

updateForms :: *HSt→ ((Form Int ,Form [(String ,String ,Int)]) ,*HSt)
updateForms hSt

] (rangeF ,hSt) = mkEditForm (nFormId "range") 10 hSt

] (nfibF , hSt) = mkEditForm (ndFormId "nfib") [("Nfib "<$ n ," = " ,Nfib n)
\\ n←[0..rangeF.value]
] hSt

= ((rangeF ,nfibF) ,hSt)

derive gForm [] ; derive gUpd []

The integer form rangeF is straightforward. Its initial value is 10, and it is
identified with tag "range". The nfib table form nfibF is more interesting, as its
construction clearly depends on the value of rangeF. It is identified by tag "nfib",
and is not editable.

Given these two forms, updatePage needs to create the proper web page:

updatePage :: (Form Int ,Form [(String ,String ,Int)]) *HSt→ (Html ,*HSt)
updatePage (rangeF ,nfibF) hSt

= mkHtml "NFib" [H1 [Hnum_Align Aln_Center] "NFib numbers"

, Txt "Enter a positive number (not too large please)."

, BodyTag rangeF.form

, Br

, Txt ("The Nfib numbers from 0 to "<$rangeF.value<$" are:")
, Br

, mkColForm (map toHtml nfibF.value)
] hSt

The interesting bits are the fact that from rangeF we use both its form and
value, and from the nfibF only its value. Note the arbitrary order in which these
elements are mixed with static HTML code.

The initial look of this application is given below, together with its look after
the user has edited the integer form into the value 15.

In the beginning of this section we have defined forms to be collections of
interactive elements such as buttons, check boxes, radio buttons, and so on. We
introduce these elements right now. As you may gather by now, we have no inten-
tion in programming these kinds of elements directly in HTML (which is perfectly
possible because we have full HTML at our disposal), but rather program them
by means of values of types that provide a higher level of abstraction.

Let’s start with push buttons. A push button either has a text label label and
a certain width width, and is defined as (LButton width label), or it uses an image
file located at path and with dimensions dim and is defined by (PButton dim path).
When the user presses the button, it enters the Pressed state. After processing
by the iData Toolkit, it returns to its previous state. This gives the following,
compact definition of a button:

:: Button = Pressed | LButton Int String | PButton (Int ,Int) String

Fig. 6 gives the result of the following definitions (assuming that the local
files "rinus.jpg" and "peter.jpg" exist and contain sensible material):

updateForms :: *HSt→ ([Form Button] ,*HSt)
updateForms hSt

] (rP ,hSt) = mkEditForm (nFormId "rinusB") (PButton dim "rinus.jpg") hSt

] (pP ,hSt) = mkEditForm (nFormId "peterB") (PButton dim "peter.jpg") hSt

] (rL ,hSt) = mkEditForm (nFormId "rinusL") (LButton (snd dim) "Rinus") hSt

] (pL ,hSt) = mkEditForm (nFormId "peterL") (LButton (snd dim) "Peter") hSt

= ([rP ,pP ,rL ,pL] ,hSt)

where dim = (60,80)

updatePage :: [Form Button] *HSt→ (Html ,*HSt)
updatePage [rP ,pP ,rL ,pL] hSt

] [rP ,pP ,rL ,pL:_] = map (λf→ BodyTag f.form) [rP ,pP ,rL ,pL]
= mkHtml "Buttons" [H1 [] "Buttons!!" , mkSTable [[rP ,pP] , [rL ,pL]]] hSt

Fig. 6. Several examples of Buttons.

The next form elements are the ‘twin” definitions for check boxes and radio
buttons. Both only offer a choice between being checked or not. Radio buttons
usually are grouped together to provide the application user with a single choice
out of a limited collection of alternatives. Check boxes usually do the same, but
allow several or no choices.

:: CheckBox = CBChecked String | CBNotChecked String

:: RadioButton = RBChecked String | RBNotChecked String

Another way of providing the application user with a single choice from
a limited collection is to use a pull down menu. A pull down menu defined
by (PullDown (nrVisible ,width) (index ,items)) displays nrVisible elements, has
width width, and a collection of items out of which element index is selected.

:: PullDownMenu = PullDown (Int ,Int) (Int , [String])

Finally, for completeness, there exist text input boxes, defined by:

:: TextInput = TI Int Int | TR Int Real | TS Int String

The first argument of these data constructor set the width of the elements,
the second the initial value.

We have now discussed all elements of direct form programming. The appli-
cations that we can construct now may consist of several forms that are really
editors of arbitrary values. These forms, and their values, can already depend on
each other in arbitrarily complex ways. The layout of the page is done by direct
HTML programming.

As a final example, we extend the nfib table example given earlier in this
section with a check for illegal input. We do not change the updateForms function,
but only the updatePage function:

updatePage :: (Form Int ,Form [(String ,String ,Int)]) *HSt→ (Html ,*HSt)
updatePage (rangeF ,nfibF) hSt

| rangeF.value < 0 || rangeF.value > 40
] (backF ,hSt) = mkEditForm (nFormId "button") (LButton 80 "Back") hSt

= mkHtml "Wrong Input"

[H1 [Hnum_Align Aln_Center] "NFib numbers"

, Txt "I am truly sorry. This input is beyond my capacity."

, Br

, BodyTag backF.form

] hSt

| otherwise

= /∗ as previously ∗/
We first test for the correctness of the input value with the guard

| rangeF.value < 0 || rangeF.value > 40

If this is not the case, we proceed as previously. If the input value is illegal,
then we create a different page in which the application user is politely informed
about the incorrect input:

] (backF ,hSt) = mkEditForm (nFormId "button") (LButton 80 "Back") hSt

= mkHtml "Wrong Input"

[H1 [Hnum_Align Aln_Center] "NFib numbers"

, Txt "I am truly sorry. This input is beyond my capacity."

, Br

, BodyTag backF.form

] hSt

In order to allow the user to go back and give it another try, a local button is
created, especially for this page. This is possible because the updatePage function
has access to the HSt environment. Fig. 7 shows the result after the user has
entered incorrect data.

It is sometimes convenient to be able to introduce a form locally within a
BodyTag context. In such a context, one does not have access to a HSt environment.
For this purpose, the function toHtmlForm can be used:

toHtmlForm :: (*HSt→ (Form d ,*HSt)) → [BodyTag] | gHTML{|?|} d

Using this function, we could have defined the above exceptional case to the
same effect in the following way:

updatePage (rangeF ,nfibF) hSt

Fig. 7. Handling different pages within one application.

| rangeF.value < 0 || rangeF.value > 40
= mkHtml "Wrong Input"

[H1 [Hnum_Align Aln_Center] "NFib numbers"

, Txt "I am truly sorry. This input is beyond my capacity."

, Br

, BodyTag backF.form

] hSt

with backF = toHtmlForm (mkEditForm (nFormId "button") (LButton 80 "Back"))
| otherwise

= /∗ as previously ∗/

Exercises
4. Correct input for the Nfib table

Above we have discussed how the application can check for illegal input in the
case of the nfib table. Implement a version using a pull down menu in which the
user can only choose between legal values. Legal values are element of {0..40}.

4.5 Programming Model-View Forms

In the previous section we have introduced the mkEditForm function that creates
a form with which users can edit values for some data domain. Although this is
a powerful abstraction mechanism, it has two shortcomings:

1. The form allows users to change values into arbitrary other values of the
data domain. This means that the full range of inhabitants of the domain
can be entered by the user. In many cases, forms impose restrictions on the
set of admissible values. These restrictions are expressed in a natural way by

means of functions, and their expressiveness goes well beyond the capacity
of the type system.

2. The form is derived generically from a data domain, and one of its values.
This implies that the presentation and the functionality of the form are
strongly coupled. Such a strict coupling of concerns leads to software in
which one can not change either the presentation or functionality of a form
without having to change the other as well with the same effort.

Based on earlier work, we know that both aspects can be dealt with by means
of abstraction [1]. With abstraction, the application works with forms that are
modelled by means of values of type m, but that are visualized by means of values
of type v. This is a variant of the well-known model-(controller-)view paradigm
[14]. What is special about it in this context, is that views are also defined by
means of a data model, and hence can be handled generically in exactly the
same way as other data models. This is a powerful concept, and we have used it
successfully in the past. It turns out that it can be integrated smoothly in the
iData Toolkit.

The relation between a model domain m and its view domain v is given by
the following collection of functions (FormBimap m v):

:: FormBimap m v

= { toForm :: m→ Maybe v→ v

, updForm :: Changed→ v→ v

, fromForm :: Changed→ v→ m

, resetForm :: Maybe (v→ v)
}

:: Changed

= { isChanged :: Bool

, changedId :: String

}
Model domain values are transformed to view domain values with toForm. It

can use the previous view domain value if necessary. The local behavior of the
form that corresponds with the view data model is given by updForm. The Changed

parameter indicates whether the value of this form was edited by the user. This
record has the same role and value in the function fromForm which transforms
the view domain value back to the model domain value. Finally, resetForm is
an optional separate normalization after the local behavior function updForm has
been applied.

Abstraction is incorporated in the iData Toolkit by a more general function
than mkEditForm, viz. mkViewForm. Its type is:

mkViewForm :: FormId m (FormBimap m v) *HSt→ (Form m ,*HSt) | gHTML{|?|} v

Note that its signature is almost identical to that of mkEditForm. It has an
additional argument of type (FormBimap m v), and it assumes that all the generic
machinery is available for the view type v instead of the model type m.

The function mkEditForm is a special case of mkViewForm. It is defined as follows:

mkEditForm formId data hSt

= mkViewForm formId data

{ toForm = toFormid

, updForm = case formId.mode of
Edit = λ_ v→ v

Display = λ_ _→ data

, fromForm = λ_ v→ v

, resetForm= Nothing

} hSt

toFormid :: d (Maybe d) → d

toFormid m Nothing = m

toFormid m (Just v) = v

(toFormid is a useful function that always takes the previous view value, unless
there was none.)

Let’s construct a slightly more elaborate model-view form. This form should
have a simple integer model but a view in which the user can edit integer val-
ues by means of a text box or a spin button. We have :: Model :== Int. We
first design the View type. The view consists of an integer edit box and a spin
button. The integer edit box is modelled by the Int type. For the spin button
we use two labelled buttons, hence two Button types suffice. Therefore the view
type is :: View :== (Int ,Button ,Button). Next, we define the relationship be-
tween the model type and the view type, which is expressed as a value of type
(FormBimap Model View). We define the four functions:

toForm :: Model (Maybe View) → View
This function transforms the model into the view. The integer component is
simply copied. The two buttons, down and up, are labelled with "-" and "+"

respectively. This amounts to:

toForm = λn→ toFormid (n ,down ,up)
down = LButton (defpixel/6) "-"

up = LButton (defpixel/6) "+"

(defpixel is globally used in the iData Toolkit to serve as the default width
of elements.)

updForm :: Changed View → View
This function defines the local behavior of the form. Edit operations on the
integer edit box are always legal, due the type safeness of the iData Toolkit.
Edit operations on the down (up) button can only be the value Pressed. In
case of that operation, the integer value is decreased (increased). We have:

updForm = λ_ view→ case view of
(n ,Pressed ,_) → (n-1 ,down ,up)
(n ,_ ,Pressed) → (n+1 ,down ,up)
int_edited → int_edited

fromForm :: Changed View → Model
This function transforms the view back to the model. In this case, the integer
component is returned:

fromForm = λ_ (n ,_ ,_) = n

resetForm :: Maybe (View → View)
Finally, this function allows the programmer to reset the view after the new
model value has been returned. In this case, this is not necessary, hence
Nothing can be returned.

resetForm = Nothing

For completeness, we show the full implementation here:

counterForm :: FormId Int *HSt→ (Form Int ,*HSt)
counterForm name i hSt = mkViewForm name i counterView hSt

where counterView = { toForm = λn→ toFormid (n ,down ,up)
, updForm = λ_ view→ case view of

(n ,Pressed ,_) = (n-1 ,down ,up)
(n ,_ ,Pressed) = (n+1 ,down ,up)
int_edited = int_edited

, fromForm = λ_ (n ,_ ,_) → n

, resetForm = Nothing

}
where down = LButton (defpixel / 6) "-"

up = LButton (defpixel / 6) "+"

We can now use this model-view form of type (Form Int) and mix it with
other forms of that type. Consider an application that takes a number of forms
of this type, and presents them below each other, along with a display of the
sum of their values. Fig. 8 shows what this application looks like. The updatePage

function for such an application is rather straightforward:

updatePage :: [Form Int] *HSt→ (Html ,*HSt)
updatePage intFs hSt

= mkHtml "Integer Forms"

([H1 [] "Integer Forms"] ++ bodies ++ [toHtml (sum values)]) hSt

where
(bodies ,values) = unzip [(BodyTag form ,value) \\ {form ,value}←intFs]

This function generates the proper page, regardless of the actual content of
the list of integer forms. For the screen shot in Fig. 8 we have used the following
updateForms function:

updateForms :: *HSt→ ([Form Int] ,*HSt)
updateForms hSt

] (intF1 ,hSt) = mkEditForm (nFormId "simple_int") 1 hSt

] (intF2 ,hSt) = counterForm ‘ (nFormId "counter_int") 2 hSt

= ([intF1 ,intF2] ,hSt)

It should be clear that the order of integer forms as well as their number is
quite irrelevant. This example illustrates that model-view forms allow for local
behavior, and separation of model and view.

Fig. 8. Mixing various (Form Int)s.

Exercises
5. A boolean model-view form

Create, in an analogous way as done above for the counterForm, the following
function:

boolForm :: FormId Bool *HSt→ (Form Bool ,*HSt)

This should generate a model-view form with a boolean model type, and as view
an unlabelled check box that is checked in case of true values (), and unchecked
in case of false values ().

6. Self correcting forms
In module htmlFormlib of the iData Toolkit you can find a number of prede-
fined specializations of mkViewForm. Two of these functions are mkSelfForm and
mkSelf2Form. Explain the difference between these model-view forms and give an
example that illustrates their difference.

7. Storage forms
In module htmlFormlib of the iData Toolkit you can find a number of predefined
specializations of mkViewForm. One of these functions is mkStoreForm. Explain what
it does and give an example that illustrates its use.

4.6 More Fun With Model-View Forms

In the previous section we have created a number of model-view forms by defining
a Model and View type, and suitable relation functions as (FormBimap Model View).
In this section we show that you can also create new model-view forms on the
level of forms themselves.

As a first example, consider a function that creates a list of direct forms from
a list of values. It has type:

listForm :: FormId [a] *HSt→ (Form [a] ,*HSt) | gHTML{|?|} a

If the value list is empty, no visualization (form field) is required. The value

is clearly the empty list, and the user can’t have changed it:

listForm _ [] hSt

= ({ changed=False , value=[] , form=[] } ,hSt)

For a non-empty list [x:xs] , listForm proceeds recursively over xs, producing
xsF and creates the direct form xF for x. The new form is a rather straightfor-
ward composition of these elements. The form is changed if either forms are
changed (changed = xF.changed || xsF.changed); the value assembles the values
in a list (value = [xF.value:xsF.value]); the form is the sequential composition
of both forms (form = [BodyTag xF.form:xsF.form]). The identification values of
the intermediate forms are derived from the argument identification value by
appending it with their reversed position in the list (nformid). This gives:

listForm formid [x:xs] hSt

] (xsF ,hSt) = listForm formid xs hSt

] (xF , hSt) = mkEditForm nformid x hSt

= ({ changed = xF.changed || xsF.changed

, value = [xF.value:xsF.value]
, form = [BodyTag xF.form:xsF.form]
} ,hSt)

where nformid = {formid & id = formid.id<$length xs}
A closer inspection at this function shows that it has room for generalization:

– the sequential combination of the forms can be generalized to any specific
layout;

– there is no real need to create direct forms, any form creation function should
do.

Based on these observations, we create a more general function, layoutListForm
that is parameterized with a form layout combinator function (of type [BodyTag]

[BodyTag] → [BodyTag]), and a form creation function (of type FormId a *HSt→
(Form a ,*HSt)). Its definition follows in a trivial way from listForm above:

layoutListForm :: ([BodyTag] [BodyTag] → [BodyTag])
(FormId a *HSt→ (Form a ,*HSt))
FormId [a] *HSt→ (Form [a] ,*HSt) | gHTML{|?|} a

layoutListForm _ _ _ [] hSt

= ({changed=False , value=[] , form=[]} , hSt)
layoutListForm layoutF formF formid [x:xs] hSt

] (xsF ,hSt) = layoutListForm layoutF formF formid xs hSt

] (xF , hSt) = formF nformid x hSt

= ({changed = xF.changed || xsF.changed

,value = [xF.value:xsF.value]
,form = layoutF xF.form xsF.form

} ,hSt)
where nformid = {formid & id = formid.id <$ length xs}
listForm can now be expressed concisely as a special case of this function, as
well as a range of other useful functions:

listForm = layoutListForm (λf1 f2→ [BodyTag f1:f2]) mkEditForm

horlistForm = layoutListForm (λf1 f2→ [f1 <=> f2]) mkEditForm

vertlistForm = layoutListForm (λf1 f2→ [f1 <||> f2]) mkEditForm

table_hv_Form = layoutListForm (λf1 f2→ [f1 <||> f2]) horlistForm

The layoutListForm function is useful for combining form creation functions
which view types are assembled lists. We now discuss a more general combinator
function that abstracts also from this aspect. It’s signature is:

layoutIndexForm :: ([BodyTag] [BodyTag] → [BodyTag])
(Int Bool FormId x *HSt→ (Form y ,*HSt))
y (y y→ y)
Int Bool FormId [x] *HSt→ (Form y ,*HSt)

The first two arguments serve the same purposes as with layoutListForm:
the first arguments combines the layout of forms, the second argument creates
forms. These forms have a view type y, and therefore we need to have a value
of type y in case of the empty list of data, as well as a combinator function of
type y y→ y. These are the third and fourth argument of layoutIndexForm. The
integer argument is required for generating fresh identification values from the
given identification value. The boolean argument indicates whether the elements
are going to be initialized.

The implementation of layoutIndexFor is analogous to layoutListForm. In
case of an empty list of data from which forms need to be generated, a form is
returned with the given ‘neutral’ value:

layoutIndexForm _ _ r _ _ _ _ [] hSt

= ({changed=False , value=r , form=[]} ,hSt)

In case of a non-empty list [x:xs] , layoutIndexForm proceeds recursively over
xs producing xsF, and applies the form creation function to x, yielding xF. The
new form is assembled from these two forms. Its changed and form values are
computed in an identical way as by layoutListForm. Its value is computed by
the value combinator function combineF.

layoutIndexForm layoutF formF r combineF n b formid [x:xs] hSt

] (xsF ,hSt) = layoutIndexForm layoutF formF r combineF (n+1) b formid xs hSt

] (xF , hSt) = formF n b formid x hSt

= ({changed = xF.changed || xsF.changed

,value = combineF xsF.value xF.value

,form = layoutF xF.form xsF.form

} ,hSt)

With this general function we can assemble a form which view is defined by a
list of buttons, and which model is an associated callback function. This function
has signature:

ListFuncBut :: (Bool FormId [(Button , a→ a)] *HSt→ (Form (a→ a) ,*HSt))

The most important argument is the third one: this argument associates
callback functions with buttons. The intention is that for a list of button-callback
function pairs [(b0, f0) . . . (bn, fn)] a form is created that has value fi whenever
the application user has pressed button bi and the identity function otherwise.
This function can be implemented using the general layoutIndexForm given above:

ListFuncBut = layoutIndexForm (λf1 f2→ [BodyTag f1:f2]) FuncBut id (o) 0

The lower level function FuncBut creates a (Form (a→ a)) with a Button view.
It uses the boolean and the integer to generate a fresh identification value for
that element. Function composition is used to combine the callback functions
from all button elements.

In a similar way, we can define a form that displays table of buttons, and that
returns the callback function of the associated button that has been pressed:

TableFuncBut :: (FormId [[(Button ,a→ a)]] *HSt→ (Form (a→ a) ,*HSt))
TableFuncBut

= layoutIndexForm

(λf1 f2→ [f1 <||> f2])
(layoutIndexForm (λf1 f2→ [BodyTag f1:f2]) FuncBut id (o))
id (o) 0 False

We conclude this section with an example that creates a simple integer based
calculator (see Fig. 9). The calculator uses a number of buttons to enter integer
values and do basic arithmetic. Clearly, we intend to use the TableFuncBut that
we have constructed above to display buttons, and obtain callback functions. The
callback functions have type CalcSt→ CalcSt with :: CalcSt :== (Int ,Int).

We arrange the buttons as:

buttons = [[btn "7" (set 7) , btn "8" (set 8) , btn "9" (set 9)]
, [btn "4" (set 4) , btn "5" (set 5) , btn "6" (set 6)]
, [btn "1" (set 1) , btn "2" (set 2) , btn "3" (set 3)]
, [btn "0" (set 0) , btn "C" clear]
, [btn "+" (app (+)) , btn "-" (app (-)) , btn "*" (app (*))]
]

where set i (t ,b) = (t , b*10 + i)
clear (t ,b) = (t , 0)
app fun (t ,b) = (fun t b , 0)

btn lbl cbf = (LButton (defpixel / 3) lbl ,cbf)

The calculator consists of two forms: one that displays the current value
and entered value (displayF) and one that shows the buttons of the calculator
(buttonsF). These forms are, as usual, created by the updateForms function:

updateForms :: *HSt→ ((Form (CalcSt→ CalcSt) ,Form CalcSt) ,*HSt)
updateForms hSt

] (buttonsF ,hSt) = TableFuncBut (nFormId "calcbut") buttons hSt

] (displayF ,hSt) = mkStoreForm (ndFormId "display") (0 ,0) buttonsF.value hSt

= ((buttonsF ,displayF) ,hSt)

Fig. 9. A simple integer based calculator.

With these forms the definition of the page is easily constructed:

updatePage :: (Form (CalcSt→ CalcSt) ,Form CalcSt) *HSt→ (Html ,*HSt)
updatePage (buttonsF ,displayF) hSt

= mkHtml "Calculator" [H1 [] "Calculator"

, toHtml t <.||.> toHtml b

: buttonsF.form

] hSt

where (t ,b) = displayF.value

4.7 Login Form

We conclude this survey of the iData Toolkit with a larger example (50 loc)
that implements a frequently occurring component of web applications, viz. a
login form. With such a form applications protect themselves from access by
unregistered users. A screen shot of the login page that we develop is given in
Fig. 10.
Logins are kept in a record, Login, in which the login name and password are
stored. Both a generic and overloaded equality operator on Login values are
defined.

:: Login = { loginName::String , password::String }
derive gForm Login ; derive gUpd Login ; derive gPrint Login ; derive gParse Login

derive gEq Login

instance == Login where (==) login1 login2 = login1 === login2

mkLogin :: String String→ Login

mkLogin name pwd = { loginName=name , password=pwd }

Fig. 10. The initial login page.

By now, the standard overhead of an iData Toolkit program should be familiar:

module loginAdmin

import StdEnv , StdHtml , GenEq

Start world = doHtml MyPage world

The function MyPage is the function that does the ‘real’ work. The application
basically switches between two pages: a login page in which a name and password
need to be entered, and a member page that should be reached only if a valid
member has logged in. Because this exercise is not about the actual member
page, we keep it rather minimal, and only display a welcome message:

memberPage :: (Form Login) → (*HSt→ ([BodyTag] ,*HSt))
memberPage loginF = return [Txt ("Welcome "<$ loginF.value.loginName)]

The login page uses a login store to keep track of all valid username/password
combinations. For this purpose, a persistent form of type (Form [Login]) is useful.
This form is identified by the tag "loginDB". In order to ensure that exactly this
form is used throughout the application, it is a good discipline to use a single
function that associates a form with its tag:

loginStore :: ([Login] → [Login]) *HSt→ (Form [Login] ,*HSt)
loginStore = mkStoreForm (pFormId "loginDB") []

The application first needs to determine in what stage of its session it actually
is. This depends on the current content of the login form and the database. If the
user has entered valid data, the member page should be presented, and otherwise
the login page should be presented:

MyPage :: *HSt→ (Html ,*HSt)
MyPage hSt

] (loginF , hSt) = mkEditForm (sFormId "login") (mkLogin "" "") hSt

] (loginDBF ,hSt) = loginStore id hSt

] (page , hSt) = i f (isMember loginF.value loginDBF.value)
(memberPage loginF hSt)
(loginPage loginF hSt)

= mkHtml "Login" [BodyTag page] hSt

The login page allows the user to add his username and password to the
database. For this purpose an additional button form is created, making use of
the callback scheme that is offered by the ListFuncBut function that was discussed
in Sect. 4.6. Of course, if no information was entered (both Login fields are "")
then this should not be possible. In that case, the button is in display mode:

addLoginButton :: Login *HSt→ (Form (Bool→ Bool) ,*HSt)
addLoginButton value = ListFuncBut False (formid "addlogin") pagebuttons

where pagebuttons = [(LButton defpixel "addLogin" , const True)]
formid = i f (value 6= mkLogin "" "")

nFormId

ndFormId

If the user has pushed this button (the .changed field is true), then his user-
name/password combination should be added to the persistent database, and
the member page should be displayed. If the user did not push the button, then
the login page should be displayed again.

loginPage :: (Form Login) *HSt→ ([BodyTag] ,*HSt)
loginPage loginF hSt

] (addloginF ,hSt) = addLoginButton loginF.value hSt

] (loginDBF , hSt) = loginStore (addLogin loginF.value addloginF.changed) hSt

| isMember loginF.value loginDBF.value

= memberPage loginF hSt

| otherwise = ([Txt "Please log in ..."

, Br , Br

, BodyTag loginF.form

, Br

, BodyTag addloginF.form

] , hSt)
where

addLogin :: Login Bool [Login] → [Login]
addLogin newname added loginDB

| added && newname 6= mkLogin "" "" && not (isMember newname loginDB)
= [newname:loginDB]

| otherwise = loginDB

The application that we have created enforces a user to either enter a valid
username/password combination or add a new, non-existing, combination. Only
in these cases, the user reaches the member page.

5 Related Work

Lifting low-level Web programming has triggered a lot of research. Many authors
have worked on turning the generation and manipulation of HTML (XML) pages

into a typed discipline. Early work is by Wallace and Runciman [23] on XML
transformers in Haskell. The Haskell CGI library by Meijer [15] frees the program-
mer from dealing with CGI printing and parsing. Hanus uses similar types [10]
in Curry. Thiemann constructs typed encodings of HTML in extended Haskell in
an increasing level of precision for valid documents [21, 22]. XML transforming
programs with GenericH∀skell has been investigated in UUXML [3]. Elsman and
Larsen [8] have worked on typed representations of XML in ML [16]. Our use of
ADTs can be placed between the single, generic type used by Meijer and Hanus,
and the collection of types used by Thiemann. It allows the HTML definition to
be done completely with separate data types for separate HTML elements.

iData components are form abstractions. A pioneer project to experiment
with form-based services is Mawl [4]. It has been improved upon by means of
Powerforms [6], used in the <bigwig> project [7]. These projects provide tem-
plates which, roughly speaking, are HTML pages with holes in which scalar data
as well as lists can be plugged in (Mawl), but also other templates (<bigwig>).
They advocate compile-time systems, because this allows one to use type sys-
tems and other static analysis. Powerforms reside on the client-side of a web
application. The type system is used to filter out illegal user input. The use of
the type system is what they have in common with our approach. Because iData
are encoded by ADTs, we get higher-order forms/pages for free.

Web applications can be structured with continuations. This has been done
by Hughes, with his arrow framework [13]. Queinnec states that “A browser is
a device that can invoke continuations multiply/simultaneously” [20]. Graunke
et al [9] have explored continuations as (one of three) functional compilation
technique(s) to transform sequential interactive programs to CGI programs. Our
approach is simpler because for every page we have a complete (set of) model
value(s) that can be stored and retrieved generically in a page. An application
is resurrected simply by recovering its previous state.

6 Conclusions

In these lecture notes we have described the iData Toolkit. With this toolkit,
the programmer can create dynamic web applications that use interconnected
forms. Programming these applications can be very hard due to the complex
interactions between these forms, and the form programming itself. We have
shown how a functional style approach can help reduce the complexity of this
problem. The following key ideas have been crucial:

– A web application should be a single function.
– A form should be a type-directed editor.
– Forms should be regarded as objects.
– Web interfaces should be generated from typed specifications.
– There should be a strict separation between model and view.

The result is a toolkit that gives the programmer the freedom to shape the data
structures that he really needs for his problem domain, instead of being forced to

squeeze his problem domain in terms of api predetermined data structures. This
essentially relies on the generative power of generic programming. Although the
implementation of the iData Toolkit relies on generic programming, this is not
necessary for the application programmer. We have spent a lot of effort to keep
the api of the iData Toolkit as simple as possible.

We hope you have enjoyed this tutorial and the exercises.

Acknowledgements

Javier Pomer Tendillo visited our department during his Erasmus project. He
has helped in setting up the iData Toolkit, and find out the nitty-gritty details
of HTML programming.

References

1. P. Achten, M. van Eekelen, and R. Plasmeijer. Compositional Model-Views with
Generic Graphical User Interfaces. In Practical Aspects of Declarative Program-
ming, PADL04, volume 3057 of LNCS, pages 39–55. Springer, 2004.

2. A. Alimarine and R. Plasmeijer. A Generic Programming Extension for Clean.
In T. Arts and M. Mohnen, editors, The 13th International workshop on the Im-
plementation of Functional Languages, IFL’01, Selected Papers, volume 2312 of
LNCS, pages 168–186. Älvsjö, Sweden, Springer, Sept. 2002.

3. F. Atanassow, D. Clarke, and J. Jeuring. UUXML: A Type-Preserving XML
Schema-Haskell Data Binding. In International Symposium on Practical Aspects of
Declarative Languages (PADL’04), volume 3057 of LNCS, pages 71–85. Springer-
Verlag, June 2004.

4. D. Atkins, T. Ball, M. Benedikt, G. Bruns, K. Cox, P. Mataga, and K. Rehor.
Experience with a Domain Specific Language for Form-based Services. In Usenix
Conference on Domain Specific Languages, Oct. 1997.

5. T. Berners-Lee. World wide web seminar. http://www.w3.org/Talks/General.html,
1991.

6. C. Brabrand, A. Møller, M. Ricky, and M. Schwartzbach. Powerforms: Declarative
client-side form field validation. World Wide Web Journal, 3(4):205–314, 2000.

7. C. Brabrand, A. Møller, and M. Schwartzbach. The <bigwig> Project. In ACM
Transactions on Internet Technology (TOIT), 2002.

8. M. Elsman and K. F. Larsen. Typing XHTML Web applications in ML. In In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’04),
volume 3057 of LNCS, pages 224–238. Springer-Verlag, June 2004.

9. P. Graunke, S. Krishnamurthi, R. Bruce Findler, and M. Felleisen. Automatically
Restructuring Programs for the Web. In M. Feather and M. Goedicke, editors, Pro-
ceedings 16th IEEE International Conference on Automated Software Engineering
(ASE’01). IEEE CS Press, Sept. 2001.

10. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01),
pages 76–92. Springer LNCS 1990, 2001.

11. R. Hinze. A new approach to generic functional programming. In The 27th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 119–132. Boston, Massachusetts, January 2000.

12. R. Hinze and S. Peyton Jones. Derivable Type Classes. In G. Hutton, editor, 2000
ACM SIGPLAN Haskell Workshop, volume 41(1) of ENTCS. Montreal, Canada,
Elsevier Science, 2001.

13. J. Hughes. Generalising Monads to Arrows. Science of Computer Programming,
37:67–111, May 2000.

14. G. Krasner and S. Pope. A cookbook for using the Model-View-Controller user
interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming,
1(3):26–49, August 1988.

15. E. Meijer. Server Side Web Scripting in Haskell. Journal of Functional Program-
ming, 10(1):1–18, 2000.

16. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.

17. S. Peyton Jones and Hughes J. et al. Report on the programming language Haskell
98. University of Yale, 1999. http://www.haskell.org/definition/.

18. R. Plasmeijer and M. van Eekelen. Functional Programming and Parallel Graph
Rewriting. Addison-Wesley Publishing Company, 1993. ISBN 0-201-41663-8.

19. R. Plasmeijer and M. van Eekelen. Concurrent CLEAN Language Report (version
2.0), December 2001. http://www.cs.ru.nl/∼clean/.

20. C. Queinnec. The influence of browsers on evaluators or, continuations to pro-
gram web servers. In Proceedings Fifth International Conference on Functional
Programming (ICFP’00), Sept. 2000.

21. P. Thiemann. WASH/CGI: Server-side Web Scripting with Sessions and Typed,
Compositional Forms. In S. Krishnamurthi and C. Ramakrishnan, editors, Prac-
tical Aspects of Declarative Languages: 4th International Symposium, PADL 2002,
volume 2257 of LNCS, pages 192–208, Portland, OR, USA, January 19-20 2002.
Springer-Verlag.

22. P. Thiemann. A Typed Representation for HTML and XML Documents in Haskell.
Journal of Functional Programming, 2005. Under consideration for publication.

23. M. Wallace and C. Runciman. Haskell and XML: Generic combinators or type-
based translation? In Proc. of the Fourth ACM SIGPLAN Intnl. Conference
on Functional Programming (ICFP‘99), volume 34–9, pages 148–159, N.Y., 1999.
ACM.

