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Abstract. We propose a generic strategy for generating Information
Systems (IS) applications on the basis of an Object Role Model (ORM).
This strategy regards an ORM as specifying both static and dynamic
aspects of the IS application.

We implemented the strategy in a prototype tool, thereby using state
of the art software technology. The tool generates IS applications with a
basic functionality.

We regard our strategy as a first investigation of a new way to gen-
erate IS applications. Many open and sometimes far reaching research
questions arise from this first exploration.

1 Introduction and Motivation

Data models like Object Role Models (ORM’s, [I]) are used for a structured
development of Information Systems (IS’s). After a data model has been set up,
it is translated to an implementation scheme, most often a relational schema.
This scheme is subsequently the basis of the actual IS implementation.

Many tools exist supporting the development of data models. A substan-
tial part of them automate the translation of the model to the implementation
scheme. Visio for Enterprise Architects [2] is an example based on Object Role
Modeling. To realize subsequently the implementation of the IS application, still
a lot of development activities (coding) have to be carried out. This is costly
and error prone.

We propose a generic strategy for generating IS applications on the basis
of an Object Role Model. Automated generation of IS applications is valuable
because it reduces development activities substantially, and hence errors and
costs. Even more important, when IS development consists of development of
models, the IS development process reduces to managing models, offering more
control over it.

In our strategy we shift the view on the notion of an ORM. In the classical
view, Object Role Modeling is a well-defined method for creating an ORM. The
resulting ORM defines the data in the UoD and their constraints in a very formal
way, thereby specifying a static description of its possible populations [3].
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We consider an ORM also to specify dynamic aspects of its population. Using
both the static and dynamic view on ORM populations, we develop a generic
strategy to generate IS applications.

Generating complete IS applications is a pretty over ambitious plan that
we certainly can’t achieve. To start with, we aim only at giving a Proof of
Concept, thereby using a very limited class of ORM’s. The functionality of the
corresponding generated IS applications is accordingly limited.

The core ideas of our strategy are presented in section

As part of the Proof of Concept, we constructed a prototype tool. For the
actual implementation of our tool, we use the lazy functional programming lan-
guage Clean [4], developed and implemented by our group. We describe the tool
shortly in section [Bl

In section [ we conclude on this first exploration of our new way of IS appli-
cation generation. Furthermore, we elaborate on the many open and sometimes
far reaching research questions that arise from it.

2 Obtaining a Running Application from an ORM

In this section we present the core of our strategy: how to obtain a running IS
application from an ORM.

Limitations. In this first approach, we only aim at demonstrating that appli-
cations can be generated with our strategy. We use a limited class of ORM’s: we
do not yet take into account nominalization, subtypes and derived fact types.
Furthermore, we limit the possible constraints to only uniqueness constraints
(UC’s) and mandatory role constraints (MRC’s).

We do not cover retrieval functionality yet. In first instance we focus on gen-
erating the parts of an IS application that change data, in contrast to retrieving
them. Earlier research has already pointed out that it is very well possible to
define query languages directly based on ORM’s [5].

Basic Plan. A running application is some definition (a ”program”) being
executed. Hence, to transform some ORM into a running IS application, we have
to derive a program definition from that ORM and subsequently execute it.

We consider a running IS application to have basically three ingredients: (1) a
fact store (2) functionality (3) a (graphical) user interface (a GUI). We elucidate
in subsections 1] through 2.3 how we obtain a definition of each of these three
ingredients from an ORM. In subsection [Z4] we show how these three definitions
are put together and transformed into a running application.

This approach is similar to that of the Conceptual Information Processor
(CIP) [1]. Our strategy results in a concrete CIP that is inferred from the ORM.

2.1 Deriving the Structure of the Fact Store

In our strategy, we use an IS store that closely matches the structure of an ORM.
This differs with the standard approach, in which an ORM is translated to a
relational schema.
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We associate with the objects and fact types of an ORM data structures
capable of holding their population. Because labels do not have a population,
we do not associate data structures with them.

With an object, we associate a data structure containing the population of
the object. With an n-ary fact type, we associate a data structure containing
a population of n-tuples. The elements of such an n-tuple depend on the roles
being part of the fact type. If the role is played by an object, the corresponding
tuple element is a reference (or pointer) to a member of the population of that
object. By using references, members of populations can be shared. If the role is
played by a label, the tuple element has just the same type as the label. In this
way, the fact store resembles some kind of directed graph.

The aim of our different approach is twofold.

First, when generating IS applications from ORM’s directly, we dot not want
to bother about additional transformations to some operational mechanism, that
only serves implementation purposes. So we prefer to have, at least conceptually,
a structure of the store not all too different from the ORM itself. If really needed,
necessary transformations can be added in a later stage.

The second reason is much more important. By translating to a relational
schema, we would limit ourselves unnecessary. Relational schemas allow only
some simple types like Int and String, and sometimes types like Date. By
using our kind of store, we open the way for richer data types being stored, for
instance collection types like Set and Bag, or special purpose types like Message,
or recursive types.

2.2 Inferring Functionality

Normally, the functionality of an application is defined separately from the data
model. It can for instance be defined by Use Cases. In a running IS application,
functionality manifests itself in the user interface.

Conceptually, implementing functionality involves coding all kinds of trans-
formations from the data entered through the user interface to the the actual
relational schema, the latter being determined by the data model. These trans-
formations should guarantee the integrity of the data stored.

In our strategy, functionality is not defined separately, but it is inferred (at
least partially) from the ORM. This does not only save time and costs, but is
also ensures guarantees automatically the integrity of the data stored.

Method. We take a bottom-up approach: we start with deriving properties
of populations of ORM’s (both static and dynamic) and arrive step-by-step at
groups of data that are logically manipulated together by the end user.

Changing the Population of an ORM. The population of an ORM as a
whole consists of the single populations of its objects and fact types. At all
times, a population must obey the constraints of the ORM. A population may
change: one or more changes may (simultaneously) be applied to one or more
populations of object/fact types. But a change only may be applied if, after
the change, the new population doesn’t violate the constraints. So constraints
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determine the changes allowed to be made to a population. In other words, the
constraints of an ORM determine the operational or dynamic behavior of its
population.

Constraints. Normally, in an ORM constraints are used to express proper-
ties of the UoD. For this, a collection of standard constraints is available. Also
general constraints may be used, often denoted as text. When implementing the
corresponding IS application, a few of the standard constraints can be translated
to constraints the RDBMS supports, for instance MRC’s. The rest somehow has
to be implemented by coding. General constraints have to be first interpreted
by the developer and then this interpretation has to coded too.

We cousider counstraints to be predicates. Predicates are (mathematical) func-
tions taking arguments and having as result a Boolean value. Here, the argu-
ments are taken from the population of the ORM, and the result of the function
must be True, otherwise the constraint is violated.

We regard constraints to be orthogonal to the objects and fact types of the
ORM. Where objects and fact types define the structure of the population of
the ORM, constraints limit the actual members of the population.

In our strategy, every constraint in an ORM is to be expressed as a predicate.
The developer defines them using the language Clean. This code is used as part
of the generated IS application (see below).

Standard constraints are defined once and can be reused subsequently. Every
general constraint has to be expressed as a predicate by the developer. This
might seem tedious, but there are advantages compared to the traditional way
of working. Clean is a language with a very high expressive power, so a constraint
can be expressed easier than for instance by coding it in SQL. Furthermore, the
developer is forced to state very clearly the exact meaning of the constraint,
leaving nothing to the interpretation.

Business Rules. In our vision, business rules are conceptually the same as
constraints: they can also be regarded as predicates limiting the actual popu-
lation of the ORM. Hence they could be added as general constraints to the
ORM. There is however a big difference here. General constraints can with some
effort be expressed as predicates. Business rules, and certainly the more complex
ones, aren’t expressed as predicates that easy. In fact, there are two problems
here. The first one is how to formalize business rules at all. The second one is
to express them as predicates. How to do this in general is subject of future
research.

Logical Units of Work. Next, we concretize what a change to an ORM popula-
tion comprises. A change (or operation) to the population of a single object /fact
type is implicit. We recognize three basic operations: element(s) can be added
(add), or element(s) can be updated (upd), or element(s) can be deleted from a
population (del). Our plan is to infer from an ORM groups of basic operations
associated with objects/fact types that, when applied simultaneously to popula-
tions of those objects/fact types, keep the population of the ORM as a whole
valid. Such a group we define to be a logical unit of work (an luw).
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Fig. 1. Example Object Role Model

Examples of Logical Units of Work. In the ORM in figure[l] {add on FT1,
add on FT3, add on O1, add on O3} but also {add on FT2} are luw’s.

The term luw is chosen because from the ORM point of view, the group of
operations is logical in the sense that, when applied simultaneously, it doesn’t
violate constraints. We will see below that also from the end user point of view
an [uw is logical too. Note that an luw applied as a whole keeps the population
of the ORM valid; applying only a part of it might turn it invalid. Note further
that luw’s are defined as operations on the ORM, but have an equivalent for the
fact store.

Inferring Logical Units of Work. We use a generic algorithm to obtain
luw’s from arbitrary ORM’s. This algorithm is based on abstract interpretation
[6]. When using abstract interpretation, in stead of reasoning in the concrete
domain, it is reasoned in an abstract domain. The aim of abstract interpretation
is to derive properties of the concrete domain, by simulating the behavior of the
concrete domain in the simpler abstract domain. A detailed description of the
abstract interpretation to obtain the luw’s is far beyond the scope of this paper
and is subject of a separate paper.

The abstract interpretation algorithm takes as input the definition of the
ORM and gives as result all possible luw’s of the ORM. The algorithm uses rules
about constraints and populations, like ”if a member is add’ed to a population
of an object, and there is a MRC on a role played by that object and having a
simple UC, then also a member must be add’ed to the fact type containing that
role”. The abstract interpretation algorithm starts with one object/fact type. It
successively gathers all objects/fact types that are involved when changing the
population, on basis of the rules. Together they form an luw.

Example. Starting with {add on FT5}, we find two luw’s: {add on 02, add on
FT4, add on FT5}, and {add on FT5} solely.

Concurrently, the algorithm gathers every constraint that limits the popula-
tions of the objects and fact types of this luw into a condition that must hold if
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this luw is to be applied. This condition is expressed in the form of a function
in Clean, taking as arguments the actual population of the ORM and the actual
data to be entered in the ORM. This function is a composite of predicates that
were earlier expressed by the developer as a Clean function.

From the abstract interpretation many luw’s result, some overlapping. It is
up to the developer to point out which luw’s will be used for the IS application.
luw’s can also be joined. Every luw used will appear in the running application
as a means of manipulating data. Of course, the data the developer wants to be
accessible, must be covered somehow in an luw.

Real life ORM’s with a substantial number of fact types result in an enormous
amount of luw’s. In this case it is not feasible to let the developer define by hand
the set of luw’s to be used in the application. Some kind of automated support
is needed. This is however unexplored terrain and subject of future research.

Access Model and Functionality. An luw involves a group of objects/fact
types that is safely manipulated together. An end user has a different view on
an luw. (S)he is interested in manipulating data, not in manipulating fact types.
This means that the end user only manipulates the ”leafs” of the luw: only the
objects and labels of its constituting fact types.

This group of objects/labels associated with an luw we define to be the access
model of that luw. Seen from the end user, an access model is a group of data
that are manipulated together and are correlated in some logical way. They may
for instance be presented together in a data entry window. This is the way the
notion of functionality is correlated with an luw.

Example. For the luw {add on FT1, add on FT2, add on FT3, add on Ol,
add on 02} the access model is formed by O1, O2 and the labels identified by
Address and DepartmentId.

The end user changes data in the form of the access model. These changes
cannot be applied directly to the fact store. Therefore we additionally derive
transformations (back and forth) between the definitions of the access model
and the luw’s. These transformations again call the basic operations on the
objects/fact types of the luw’s.

2.3 Generating the User Interface

To generate the the graphical user interface (GUI), we use the GUI Toolkit [7]
that comes as a library with our development environment. The Toolkit works
with models. To create an interactive application, it only needs a data model
describing what what data are to be displayed and a model of how it should be
displayed, also known as the wview. The Toolkit is able to translate any change
in the view into a change in the data model.

What should be displayed, we derived from an ORM in section the
access model. This can directly be used. How it should be displayed, is up to the
developer. (S)he may define the appearance of the access model, for instance:
the style, how data is presented (an edit box, drop down boxes) and the layout
of the various elements.
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2.4 Putting Together and Executing the Definitions

The three definitions we have obtained from an ORM (the structure of the fact
store, functionality, the GUI) have to be put together and executed to get a
running application. Each of the three definitions is brought to life in its own
specific way.

Fact Store. The definition of the structure of the fact store is brought to life in
the form of a dynamic Object Space. Initially, the Object Space is empty. Subse-
quently, for each object/fact type in the ORM, a corresponding data structure
is created in the Object Space. The populations of these data structures can
dynamically be manipulated by primitive access functions (add, del, upd).

We have chosen this approach because of the flexibility it offers: data struc-
tures can be added without having to stop and restart the application. In this
way, we need only one fact store for storing both the facts defining the applica-
tion and the facts of the application itself. Furthermore, this makes it possible
to change (upgrade) the application while it is running.

Functionality. The definition of functionality is generated in in three parts:
the access model, the conditions, and the transformations between the access
model and primitive access functions. These parts are generated as functions
and stored that way in the fact store.

To properly use these, we built a generic editor that works based on an access
model. We create one window for each access model. To get an impression of
this editor, see the screen shot of the running application in figure 2l The editor
allows entering data in the form of the access model. The definition of the view
is used for the actual displaying.

The editor contributes in maintaining the integrity of the data stored. Clas-
sically, when changing data in a system, the transaction is rolled back if it turns
out that the integrity rules are violated. In our approach, the editor allows data
changed in the window only to be actually stored if the conditions are satisfied.
To check this, the editor calls the function defining the condition.

To put subsequently the data actually in the store, the editor calls the trans-
formations between the access model and primitive access functions, which then
are applied to the Object Space.

Graphical User Interface. Our GUI Toolkit creates the interactive part of the
IS application, on basis of the access model and the view the developer defined.

3 Prototype Implementation

To test and demonstrate our ideas, we implemented a prototype tool. This pro-
totype is in the first place meant as a research vehicle and not as a real IS
application development environment.

For the actual implementation of our tool, we use the functional programming
language Clean. The high abstraction level of functional programming languages
enables developers to focus on architectural and algorithmical problems in stead
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Fig. 2. Screen shot of the running application

of coding. We use its facilities for orthogonal persistence to write the fact store
to disk [8].

Architectural Aspects. Every aspect of the IS application generation process
is integrated in the tool. In the same environment, both the ORM is defined
and the application is executed. The ORM is defined as facts and stored that
way in the fact store. Both the intermediate and end results of the translation
process and the data of the running application itself are facts as well and stored
that way.

Working with the Tool. Using the tool, generating an IS application takes a
number of steps. In the first step the developer records the ORM and constraints.
In the second step the tool generates from the ORM a standard access model
and view. In this preliminary version, the developer cannot yet determine for
him /herself the composition of luw’s and not yet choose a view for them. In the
last step, the whole is transformed into a running IS application.

To give an impression, in figure 2 a screen shot of the running application is
given. There are two windows each containing the generic editor, one for entering
data about employees, and one for data about departments.

4 Conclusion and Future Research

We outlined a generic strategy for IS application generation on the basis of a
limited the class of ORM’s. This strategy regards an ORM as specifying both
static and dynamic aspects of the IS application. We use a fact store for the
IS application that is directly correlated to the structure of the ORM. We infer
the functionality of the application by generalizing the operational behavior of
ORM’s using abstract interpretation. This operational behavior is determined
by the constraints and business rules of the ORM. The graphical user interface
is generated by the GUI Toolkit of our development environment.

In our approach, the developer specifies constraints and business rules stati-
cally in the form of predicates. By our way of transforming the ORM into a running
application, the dynamic behavior they imply is automatically accomplished.
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We built a tool to test and demonstrate our ideas. For the implementation,
we used the functional programming language Clean. Even starting from a very
limited class of ORM’s we are able to generate IS applications with a basic
functionality.

Current Limitations and Future Research. The strategy presented here is
a very first investigation of this way of IS application generation.

We started from a limited class of ORM’s. First of all, we have to work
out the strategy for complete ORM’s. The abstract interpretation, which we
couldn’t present here, has to be worked out and described in detail, first for
limited ORM’s and successively for complete ORM’s.

Our presentation of the strategy is an informal one. A more formal and gener-
alized approach is needed, which should be based on, amongst others, operational
semantics of ORM’s.

The tool should be extended with the possibility of the developer defining
the view on the access model.

Many open and sometimes far reaching research questions arise from this
first exploration. A first and certainly not exhaustive list includes:

— Counstraints and business rules play a central role in our strategy. They are
to be expressed as predicates. Research is needed how (complex) business
rules can be formalized at all, and how they can be expressed as predicates.

— Our strategy opens the way to have ORM’s with labels and objects having
richer types than types currently allowed, like collection types and recursive
types. It is very promising to research how this is to be defined in an ORM,
what the consequences are for IS development using ORM’s,; how it is to be
incorporated in our strategy and what the consequences are for generating
IS applications.

— The results of the abstract interpretation involve for practical ORM’s large
amounts [uw’s. Research is needed for automated support to handle these.

— Real IS applications have various kinds of dynamic behavior. Behavior in
ORM’s arises from several sources, like the constraints and business rules
and derivable fact types. Most probably, these do not suffice to obtain every
desired dynamic behavior of IS applications. This implies that the ORM
formalism has to be extended, for instance with explicitly defined flow.

— An IS application evolves. Conceptually, this means that its model changes
and that the population has to be adapted to the new model. When IS
applications can be completely generated on the basis of a ORM, automated
evolution of IS’s might become feasible. This is a very promising research
theme.
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