
Testing with Functions as Specifications

Pieter Koopman and Rinus Plasmeijer

Institute for Computing and Information Science,
Radboud University Nijmegen, The Netherlands

{pieter,rinus}@cs.ru.nl

Abstract. Although computer systems penetrate all facets of society,
the software running those systems may contain many errors. Producing
high quality software appears to be difficult and very expensive. Even
determining the quality of software is not easy. Testing is by far the most
used way to estimate the quality of software. Testing itself is not easy
and time consuming.

In order to reduce the costs and increase the quality and speed of testing,
testing should be automated itself. An automatical specification based
test tool generates test data, executes the associated tests, and makes a
fully automatically verdict based on a formal specification. Advantages
of this approach are that one specifies properties instead of instances of
these properties, test data are derived automatically instead of manually,
the tests performed are always up to date with the current specification,
and automatic testing is fast and accurate.

We will show that functions in a functional programming language can
be used very well to model properties. One branch of the automatic
test system Gast handles logical properties relating function arguments
and results of a single function call. The other branch of Gast handles
specifications of systems with an internal state.

1 Introduction

Testing is still by far the most used method to judge the quality of software.
Human testing of software is error-prone, dull, and expensive. Systems are be-
coming larger and more complex, and hence harder to test. Moreover, the time
to market should be reduced, which limits the time for testing. Hence, many
approaches to automatic software testing are proposed and used.

Most test systems execute a fixed number of human specified tests. These
specified tests are specified either in code, as in JUint [1], or by a capture and
playback tool. We focus on automatic test systems that generate test cases based
on a formal specification, e.g. [2]. Instead of specifying a fixed number of fixed
values and the expected response, one specifies a relation between input and
output that holds for all arguments. Apart from generating the test cases, the
test system also executes the tests, and makes a verdict based on the test results.

Advantages of generating test cases from the specification are that a change of
specification does not invalidate the test script: it is generated from the updated

specification. Increasing the number of tests in order to improve the confidence
just requires the change of a parameter.

In [3–6] it is shown that a functional programming language, as used by the
test tool Gast, is an excellent carrier for the formal specifications needed. Gast

is able to handle two kind of specifications: logical properties about a (combi-
nation of) functions, and specifications of reactive systems by Extended State
Machines, ESMs. The reactive systems are specified by a, potential infinite and
nondeterministic, state transition function. Those specifications can be partial.

The quality of the test is dependent on the quality of the specification. Obvi-
ously, aspects that are not specified cannot be tested by a system that generates
tests based on the specification. Experience shows that writing formal specifica-
tions is a very useful activity on its own. Most inaccuracies and misconceptions
in the requirements are discovered during the construction of the specification.

Nevertheless, experience shows that a significant number of issues raised dur-
ing testing is caused by inaccuracies in the specification. A better specification
increases the speed of testing the product and improves the value of the test
results. One can validate the specification to see if it captures the informal re-
quirements correctly. This is a human activity that can be supported by tools.
On the other hand one can also verify the consistency of the formal specification.
This is usually done by inspections, or by verifying properties of the formal spec-
ification using a model checker or theorem prover. Especially for specifications
that are heavily data dependent, model checkers have troubles with automatic
verification.

In this paper we show that consistency properties of ESM-specifications can
also be tested fully automatically using the other branch of our test tool Gast.
Advantages of this lightweight and effective method to improve the quality of
specifications are that it does not require the transformation of specifications,
errors are reported in terms of the original model, and last-but-not-least it works
also very well for models that strongly dependent on sophisticated data types.
The limitation is that the test results are usually weaker than the results of a
complete formal verification (if it is possible).

The testing of individual functions is discussed in section 2. The specification
and testing of reactive systems in the next section. The testing of specifications
in order to verify their quality, in discussed in section 4. Finally, we will discuss
related work and draw conclusions.

2 Testing Functions

The relation between input and output of a single function can be conveniently
specified in predicate logic. As an example we consider a function that takes a
string and a character as argument and yields a sorted list of the indices for
all occurrences of the given character in the string, e.g. indices(”A test”,′ t′)
should yield the list [2, 5]. We can specify the result of this function in at least
two ways: we can give a reference implementation (perhaps very inefficient, but
obvious correct), or we can state a property about the resulting list on indices.

2

Specification The declarative specification gives a property of all indices in the
sequence yield by indices :

s ∈ String , c ∈ Char , i ∈ 0..#s − 1 • isMember(i, indices(s, c)) ⇔ s[i] = c

The function isMember checks if the element occurs in a list, and #s is the
length of the string s. The characters are numbered from 0 to #s − 1 in s[i]
which indicates string subscription.

This property states that an index i is part of the result of indices(c, s) if
and only if s[i] = c. The universal quantifiers over c and s are often omitted, as
is usual in logic.

Every logical property is transformed to a function. The name of the function
is used as reference to the property. The function arguments are interpreted as
universal quantifiers. Gast provides a complete set of logical operators including
∀, ∃, ∨, ∧, ¬, ⇒ and ⇔ . The property state above is expressed in Clean as:

propIndices :: String Char→ Property

propIndices s c = p For [0..size s-1]
where p i = isMember i (indices s c) ⇐⇒ (s. [i] == c)

The operators For and⇐⇒ in this function definition is provided by the Gast-
library. In this situation it is safe to replace⇐⇒ by the equality ==. For imple-
mentation reasons the result of a specifying function is Property instead of Bool,
if the specification contains a test operator like⇐⇒.

Note that this specification does not specify that the resulting list ought to be
sorted, e.a. a function that yields [5, 2] as result to indices(”A test”,′ t′) also obeys
this property (and hence passes the test). This is not a fundamental problem, in
fact it is a feature: in practise we usually work with partial specifications, rather
than complete specifications. Specifying that the indices should be increasing
can look like:

propIncreasing :: String Char→ Bool

propIncreasing s c = increasing (indices s c)

increasing [x ,y:r] = x < y && increasing [y:r]
increasing other = True

Reference implementation Using a reference implementation the function
indices can be specified in Clean as:

propIndices2 :: String Char→ Bool

propIndices2 s c = indices s c == [i \\ i← [0..size s-1] | s. [i] == c]

In this function the reference implementation is stated as the list comprehen-
sion [i\\i← [0..size s-1] | s. [i] == c] , this are all numbers i between 0 and
size s-1 where element i of string s is equal to the given character c.

Invoking tests The first property can be tested by evaluating the expression
test propIndices, e.g.:

Start = test 1000 propIndices

3

This will cause the evaluation of the function propIndices for at most 1000
(the standard number of tests) values. In this test the function indices is the
Implementation Under Test, IUT, all other parts of the language are expected
to work correctly.

Partial functions Many function used in programming are partial functions,
they work correctly for a part of the input domain. For example the square root
function works only for non-negative real numbers and the factorial function
works only for non-negative integer values. From the outside it is not visible
that these functions are partial functions, hence the test system is not able to
limit the test data automatically to the part of the input type where the function
is defined.

Gast provides two ways to cope partial functions. In logic properties of
partial functions include usually an implication operator restricting the actual
property to input values that should behave as requested, e.g. ∀x ∈ R.x ≥ 0 ⇒
(
√

x)2 = x. In Gast we can directly express this:

propSqrt :: Real→ Bool

propSqrt x = x ≥0 ==⇒ let y = sqrt x in y*y == x

As an experienced programmer may expect, Gast finds counterexamples very
quickly due to rounding errors. A better specification states that the difference
(
√

x)2 and x should be less than some small number δ:

propSqrt2 :: Real→ Property

propSqrt2 x = x ≥0.0 =⇒ let y = sqrt x in y*y - x < delta

where delta = 1E-10

The other way to cope with partial functions is to limit the test data explicit to
allowed inputs. For our square root example this can be:

propSqrt3 :: Real→ Bool

propSqrt3 x = let y = sqrt x in y*y - x < delta

where delta = 1E-10

Start = test (propSqrt3 For [0.0 , 0.123456789 ..])

Of course limiting the test data to allowed inputs is more efficient in terms
of actual tests done. For the actual testing rejecting test data (and generating
them) is a waste of time.

2.1 The test algorithm

The IUT passes the test if the property holds for all generated arguments, i.e. it
evaluates to True. The property does not hold if a counterexample is found.

For a property prop with one universal quantified variable, that is a function
with one argument, the test algorithm is given by testLogical . The function
takes the list of all possible test data and the number of test to be done as
argument. If the number of tests to be done is 0, the property passes the test.
Otherwise, the property is evaluated for the first test value t. If this test succeeds,

4

evaluates to True, testing continues with the rest of the test values. Otherwise
a counterexample is found, and the test yields fail. The actual implementation
shows also the test value that is the counterexample.

testLogical ([t : ts], n) = if n = 0

then pass

else if prop(t)

then testLogical (ts, n − 1)

else fail

testLogical ([], n) = proof

The list of test values is provided by the operator For, or generated by the func-
tion ggen discussed below. For properties with more than one universal quantified
variable the test algorithm tries every combination in a fair order: Instead of com-
bining the first value of the first argument with all possible values for the second
argument before looking at the second value for the first argument, the values
are combined in an interleaved way. For a 2-argument function f , the system
generates two sequences of arguments, call them [a, b, c, ..] and [u, v, w, ..] respec-
tively. The desired order of tests is f a u, f a v, f b u, f aw, f b v, f c u, .. rather
than f a u, f a v, f aw, .., f b u, f b v, f bw, ...

2.2 Implementation of the test system

The properties to be tested are functions with a variable number of arguments,
the universal quantified variables. The result is either a Boolean or an element
of the type Prop introduced above. We introduce the class Testable in order to
create a function that eats all kinds of everything as an argument.

class Testable a where evaluate :: a RandomStream Admin→ [Admin]

The random stream is a list of pseudo random numbers used in the selection of
test data. The type Admin is used to record information of the current test. In
theory it would be sufficient to yield a Boolean result indicating if the test was
successful or not. In practice we also want to record some information about
the tests done. For instance, we do not only want to know that there exists
a counterexample, but also the value of the universal quantified variables for
this counterexample. This information is stored in the record Admin. The list of
admin’s that is the result of the function evaluate contains one record for each
test performed. An additional function is used to combine the results of the first
N tests.

The instance of evaluate for Booleans is very easy. There is only one element
in the list of results. If the Boolean is True the property holds (OK), otherwise a
counterexample (CE) is found.

instance Testable Bool

where

evaluate b rs admin

= [{admin & res = i f b OK CE , args = reverse result.args}]

5

A function a→b as argument of evaluate implies that we to test a logical expression
containing a universal quantified variable of type a. We can test this expression
if a is a valid test argument, and we can test things of type b. A type a is a
valid test argument if elements of this type can be transformed to strings by
genShow{|?|}, and generated by ggen{|?|}.

class TestArg a | genShow{|?|} , ggen{|?|} a

instance Testable (a→b) | Testable b & TestArg a

where

evaluate f rs result

] (rs ,rs2) = split rs

= forAll f (generateAll rs) rs2 result

For the implementation of logical operators it is a little inconvenient that the
class Testable eats almost each function. The type Property is merely used to
stop the class Testable from evaluating a function as a logical expression. In
order to be able to continue the evaluation of such an expression we just have
to remove the constructor Prop.

:: Property = Prop (RandomStream Admin→ [Admin])

instance Testable Property

where evaluate (Prop p) rs result = p rs result

The operator For that can be used to supply a list of test data that is to be used
instead of the test data generated by Gast is defined as:

(For) infixl 0 :: !(x→p) ! [x] → Property | Testable p & TestArg x

(For) p list = Prop (forAll p list)

The logical implication operator, ⇐, is used for argument selection. If its left-
hand argument evaluates to False, this test case is rejected: it is neither a success
nor a counterexample.

class (=⇒) infixr 1 b :: b p→ Property | Testable p

instance =⇒ Bool

where

(=⇒) c p

| c = Prop (evaluate p)
= Prop (λrs r = [{r & res = Rej}])

A similar instance of =⇒ exists for Property.

2.3 Generating test data

Test data are generated by the generic1 [12] function ggen. Gast contains in-
stances of the function ggen for all basic types. By deriving an instance for a user

1 To avoid confusion with generic programming in object oriented languages this is
also called polytypical programming. Generic programming in the OO-spirit is called
polymorphic programming in functional programming.

6

defined type, all instances of this type are enumerated in a pseudo random order
with a very strong small to large bias. The basic idea is that generic program-
ming provides an universal tree representation of arbitrary data types. The test
data are obtained by a breadth-first traversal of the tree of all possible instances
of the type.

For an individual test it is possible to deviate from the arguments by ggen. For
instance, if we want to test the function indices only for the strings "Hello world!"

and "A test", we evaluate the expression:

test (propIndices For ["Hello World!" ,"A test"])

Using the given strings in all situations where Gast needs to quantify over
strings is obtained by defining an instance of ggen for the type String like:

ggen{|String|} x y = ["Hello World!" ,"A test"]

The arguments x and y can be used to vary the order of the generated elements.
The generic function ggen and the operator For yield powerful and flexible

generation of test data. The ability to combine logical operators with the concise
high level computations of a functional language and the flexible automatic test
data generation, makes Gast a very powerful tool for testing functions over
complex data types.

Generic test data generation One of the distinguishing features of Gast is
that it is able to generate test data in a systematic way. This guarantees that
test are never repeated, which is useless in a referential transparent language
like Clean. For finite data types it is even possible to prove properties using a
test system: a properties is proven if it holds for all elements of the finite data
type.

The generic function gen generates the lazy list of all values of a type by
generating all relevant generic representations [12] of the members of that type.

generic gen a :: [a]

For the type UINT there is only one posibility: the constructor UNIT.

gen{|UNIT|} = [UNIT]

For a PAIR we combine the lists of values generated by f and g in all possible
ways. We use the library function diag2 rather than a list-comprehension like
[Pair a b λ a←f , b←g] in order to obtain the required fair order.

gen{|PAIR|} f g = map (λ(a ,b)=PAIR a b) (diag2 f g)

For the choice in the type EITHER we use an additional Boolean argument to
merge the elements in a nice interleaved way. The definition of the function
Merge is somewhat tricky in order to avoid that it becomes strict in in its list
elements.

gen{|EITHER|} f g = Merge True f g

where

Merge :: !Bool [a] [b] → [EITHER a b]
Merge left as bs

7

| left

= case as of

[] = map RIGHT bs

[a:as] = [LEFT a: Merge (not left) as bs]
= case bs of

[] = map LEFT as

[b:bs] = [RIGHT b: Merge (not left) as bs]

In order to let this merge algorithm terminate for recursive data types we assume
that the non recursive case (like Nil for lists, Leaf for trees) is listed first in the
type definition. Using some insight knowledge of the generic representation of
allow us to make the right initial choice in gen{|EITHER|}. In principle the generic
representation contains sufficient information to find the terminating constructor
dynamically, but this is more expensive and does not add any additional power.

Finally we have to provide instances of gen for the basic types of Clean.
Some examples are:

gen{|Int|} = [0: [i \\ n←[1..maxint] , i←[n ,∼n]]]
gen{|Bool|} = [False ,True]
gen{|Char|} = map toChar [32..126] ++ [’λtλnλr’]
gen{|String|} = map toString lists

where

lists :: [[Char]]
lists = gen{|?|}

The actual algorithm used in Gast is slightly more complicated. It uses a stream
of pseudo random numbers to make small perturbations to the order of elements
generated. Basically the choice between Left and Right in ggen{|Either|} becomes
a pseudo random one instead of

3 Testing Reactive Systems

A reactive system has an internal state that can be changed by inputs and is
preserved between the inputs. This implies that the reaction on the current input
can depend on previous inputs. E.g. the system gets a number as input and the
response is the number of inputs seen. The reactive systems that are discussed
here can be nondeterministic. During the tests we look only at the inputs and
responses of the reactive system, the internal state is not known. This is called
Black Box Testing, BBT.

The reactive system tested is the Implementation Under Test, IUT. Since the
state of the IUT is hidden, stating properties relating input, output and state
is not feasible. To circumvent this problem we specify reactive systems by an
extended state machine and require that the observed behavior of the IUT is
conform to this specification.

From Finite State Machines, FSMs, we inherit the synchronous behavior of
systems. Each input yields a, possible empty, sequence of outputs. After produc-
ing this sequence of outputs the system becomes quiescent; it waits for a new

8

input. Among other advantages this yields a convenient notion of no output: the
empty sequence. We extend the FSM model in several directions:

– The state, input and output can be of any (recursive) data type. This includes
also infinite data types and parameterized data types. Hence, we have a state
machine rather than a finite state machine. A machine specification having
parameterized data types is also known as an extended state machine.

– It is not required that the specification or implementation of the state ma-
chine is deterministic.

3.1 Extended State Machines

An Extended State Machine, ESM, as used by Gast consists of states with

labelled transitions between them. A transition is of the form s
i/o−−→ t, where s, t

are states, i is an input which triggers the transition, and o is a, possibly empty,

list of outputs. A transition s
i/o−−→ t is formalized as a tuple (s, i, t, o). A relation

based specification δr is a set of these tuples: δr ⊆ S × I × S × [O]. Where S
is the type of states, I is the type of inputs, and O is the type of outputs. We
use [O] in the transitions to indicate a sequence of elements of type O. It is not
required that all these types are different. Specifications can be partial : not for
every s ∈ S and i ∈ I there must be a tuple in δr specifying the new state
and the output. A specification is total if it is not partial. If a specification is
nondeterministic there are s ∈ S and i ∈ I with more than one tuple in δr.

In practise it is usually more convenient to have a specifying function instead
of a transition relation. The transition function takes the current state and input
as argument and produces the set of all specified tuples of target state and output
sequence. The transition function is defined by δf (s, i) = {(t, o)|(s, i, t, o) ∈ δr}.
The type of this function is: State × Input → IP(State × [Output]). Here we

used IP(X) as notation for a set of elements of type X. Transition s
i/o−−→ t is

equivalent to (t, o) ∈ δf (s, i). A specification is partial if for some state s and
input i, δf (s, i) = ∅. A specification is deterministic if for all states and inputs
the size of the set of targets contains at most one element: # δf (s, i) ≤ 1.

A trace σ is a sequence of inputs and associated outputs from the given state.
A trace is defined inductively: the empty trace connects a state to itself: s

ε
=⇒ s.

We can combine a trace s
σ

=⇒ t and a transition t
i/o−−→u, to the trace s

σ;i/o
====⇒u.

An input trace contains only the input elements of a trace.

We define s
i/o−−→ ≡ ∃t.s

i/o−−→ t and s
σ

=⇒ ≡ ∃t.s
σ

=⇒ t. All traces from a
given state are defined as: traces(s) ≡ {σ|s σ

=⇒}.
The inputs allowed in some state are given by init(s) ≡ {i|∃o.s

i/o−−→}. The
states after applying trace σ in state s are given by s after σ ≡ {t|s σ

=⇒ t}. We
overload traces, init , and after for sets of states instead of a single state by taking
the union of the notion for the members of the set. When the transition function,
δf , to be used is not clear from the context, we will add it as subscript.

We will often identify a machine with its transition function. However, a
complete description also determines the initial state s0.

9

Examples As illustration we show some state machines modelling coffee vend-
ing machines in figure 1. In section 4 we will test some properties of these speci-
fications. The global specification of these coffee vending machines is that it can
deliver coffee after insertion of coins with a value of 10 cent, and pressing the

c0

0

10

5
Nickel/[]

N
ic

ke
l/[

]

Bu
tto

n/
[C

of
fe

e]

D
im

e/[]

c0 :: State × IO → IP(State, [IO])

c0(S0,Nickel) = {(S5, [])}

c0(S0,Dime) = {(S10, [])}

c0(S5,Nickel) = {(S10, [])}

c0(S10,Button) = {(S0, [Coffee])}

c0(s, i) = ∅

c1

0

10

5
Nickel/[]

N
ic

ke
l/[

]

Bu
tto

n/
[C

of
fe

e]

D
im

e/[]

Button/[]

c1 :: State × IO → IP(State, [IO])

c1(S0,Nickel) = {(S5, [])}

c1(S0,Dime) = {(S10, [])}

c1(S5,Nickel) = {(S10, [])}

c1(S10,Button) = {(S0, [Coffee]), (S10, [])}

c1(s, i) = ∅

c2

0

10

5
Nickel/[]

N
ic

ke
l/[

]

Bu
tto

n/
[C

of
fe

e]

D
im

e/[]
c2 :: State × IO → IP(State, [IO])

c2(S0,Nickel) = {(S5, [])}

c2(S0,Dime) = {(S10, [])}

c2(S5,Nickel) = {(S10, [])}

c2(S10,Button) = {(S0, [Coffee])}

c2(s, i) = {(s, [])}

c3

0

10

5
Nickel/[]

N
ic

ke
l/[

]

Bu
tto

n/
[C

of
fe

e]

D
im

e/[]

D
im

e/
[N

ic
ke

l]

Nickel/[Nickel]

Dime/[Dime]

c3 :: State × IO → IP(State, [IO])

c3(S0,Nickel) = {(S5, [])}

c3(S0,Dime) = {(S10, [])}

c3(S5,Nickel) = {(S10, [])}

c3(S5,Dime) = {(S10, [Nickel])}

c3(S10,Button) = {(S0, [Coffee])}

c3(S10, coin) = {(S10, [coin])}

c3(s, i) = {(s, [])}

c4

n
Nickel / n+=5; []

Dime / n+=10; []

Button | n>= 10 /
n-=10; [Coffee]

Button | n<10 / []

n=0

c4 :: ZZ × IO → IP(ZZ, [IO])

c4(n,Nickel) = {(n + 5, [])}

c4(n,Dime) = {(n + 10, [])}

c4(n,Button) = if n ≥ 10

then {(n− 10, [Coffee])}

else {(n, [])}

Fig. 1. Some coffee vending machines.

10

coffee button. An input is either a nickel, a 5-cent coin, a dime, a 10-cent coin,
or pressing the coffee button. The output is either the return of a coin, or coffee.
For simplicity we will use the same type IO for input and output, we take care
that the Coffee is never an input and Button is never an output. The state of the
first three machines is the algebraic data type State, it just records the amount
of money inserted. The last machine uses a number as state. The types State

and IO are enumeration types defined as:

State = S0 | S5 | S10

IO = Nickel | Dime | Coffee | Button

We will discus each of the machines briefly:

c0 This is the simplest partial specification meeting the informal requirements.
After inserting two nickels, or one dime, and pressing the coffee button, the
machine produces coffee. Note that this is a partial specification, for instance
the effect of the input Button in state S0 is undefined.

c1 This is a partial specification meeting the informal requirements. After in-
serting two nickels, or one dime, and pressing the coffee button, the machine
can produce coffee. This machine is very similar to c0, but nondeterministic.
On input Button in state S10, it can either produce coffee and go to S0, or
do nothing. This is a partial specification, for instance the effect of Button

in S0 is undefined.

c2 The unlabelled transitions are applicable on any other input and produce the
empty output. They make the specification total. All these transitions are
represented by the last function alternative.

c3 This is also a total specification. It states that coins should be returned if the
value of the inserted money becomes higher than 10 cents.

c4 This machine uses a single integer as state. It stores the total amount of
money inserted and produces coffee while there is enough money. There are
infinitely many states. Only non-negative multiples of 5 can be reached.

Some traces of c2 are: [], [(Nickel , [])], [(Nickel , []), (Nickel , [])], [(Nickel , []),
(Nickel , []), (Button, [Coffee])], and [(Dime, []), (Button, [Coffee])]. Sequences of
input-output pairs that are not traces of c2 are: [(Nickel , []), (Dime, [])], and
[(Dime, [Coffee])].

3.2 Representation of specification functions in Gast

In order to test machines in Gast, the specifying function is expressed in the
functional programming language Clean[7]. The resulting set of pairs is rep-
resented by a list of pairs. The Clean compiler will check the specification on
matters like type correctness and proper use of identifiers.

As example we show the representation of c1 in Clean. The enumeration
types used as well as the transition function can be mapped directly to Clean.

11

:: State = S0 | S5 | S10

:: IO = Nickel | Dime | Coffee | Button

c1 :: State IO→ [(State , [IO])]
c1 S0 Nickel = [(S5 , [])]
c1 S0 Dime = [(S10 , [])]
c1 S5 Nickel = [(S10 , [])]
c1 S10 Button = [(S0 , [Coffee]) , (S10 , [])]
c1 s i = []

Function arguments starting with a capital are constants that must be matched
to the actual arguments in order to make this alternative applicable. Lowercase
arguments match any actual argument. Alternatives are tried textual order, the
first one that matches is applied.

Using higher order functions, specifications can be manipulated. As a very
simple example we list the function enableInput, that enables input in any state.
This function takes a machine specification m as argument, and yields an input
enabled version of m. If no transition is specified for some state and input, it adds
the transition to the same state with an empty output sequence. Since this is a
polymorphic function, it will work for any specification using arbitrary types for
state s, input i and output o.

enableInput :: (s i→ [(s , [o])]) → s i→ [(s , [o])]
enableInput m = m ‘
where m ‘ s i = case m s i of

[] = [(s , [])]
r = r

Applying this function to c0 yields a specification that is equivalent to c2.
Applying it to c2, c3, or c4 does not change these specifications. Note that
enableInput c1 is not equivalent to c2, the first specification still contains the

transition S10
Button/[]−−−−−−−→S10, which is not present in c2.

3.3 Implementations under test

The assumption is that also the implementation under test is an extended state
machine. Since the IUT is a black box, its state is invisible. Even if the IUT is
nondeterministic, it will choose exactly one transition on each input.

In contrast to the specification, the implementation should be input enabled :
the result of any input in any reachable state should be specified. In terms of
the transition function this is ∀s ∈ State.∀i ∈ Input .δf (s, i) 6= ∅. The motivation
for this requirement is that an IUT cannot prevent that inputs are applied. It is
perfectly accaptable if some inputs in specific states brings the implementation
in an error state. For our tests it is sufficient if the IUT accepts each input
that is allowed by the specification. The broader input enabledness requirements
prevents complicated analysis or runtime problems.

In the examples above, a coffee vending machine cannot prevent that a user
presses the button or inserts a coin in any state. This implies that c1 cannot be

12

a correct implementation. or instance the effect of applying the input Button,
pressing the coffee button, in state S0 is undefined. The machines c2, c3 and c4

are input enabled, and hence can be used as IUT.

The implementation can be in any programming language or even in hard-
ware, for testing it is only required that Gast can provide an input to the IUT
and observe the associated output.

3.4 Conformance

Intuitively an IUT is conform to a specification if the observed transitions are
part of the specification, or the specification does not specify anything for this
state and input: δf (s, i) = ∅. Formaly, conformance of the iut to the specification
spec is defined as:

iut conf spec ≡ ∀σ ∈ traces spec(s0).∀i ∈ init(s0 afterspec σ)∀o ∈ [O].

(t0 afteriut σ)
i/o−−→ ⇒ (s0 afterspec σ)

i/o−−→

If the specification allows input i after trace σ, the observed output of the IUT
should be allowed by the specification.

This notion of conformance is very similar to the ioco relation of [8] for
Labelled Transition Systems, LTSs. In an LTS each input and output is modelled
by a separate transition. In our approach an input and all induced outputs up
to quiescence are modelled by a single transition with a sequence of outputs.
The conformance relation for (timed) EFSMs in [9] is similar, our systems have
a sequences of output. If there is no other information we use quiescence to
determine the end of the sequence of outputs of the IUT. In [9] there is no
notion of quiescence, and the EFSMs have only a single output.

Examples Since both the specification and the IUT are given as an ESM, an
ESM can be used as specification and as IUT. We have seen that c1 in figure 1
cannot be a correct implementation since it is not input enabled. The machines
c2, c3 and c4 are correct implementations of c1. Although the response [] to the
input Button in S10 will never occur. According to the conformance relation this
is not necessary. It is sufficient that the behavior for some specified input after
a trace is allowed by the specification. Note that c3 and c4 have behavior that is
not covered by the specification. This is allowed according to the conformance
relation because nothing is specified for that combination of state and input.

Machine c3 is not a correct implementation of c2. After the inputs [Dime,
Dime] the machine c2 only allows the output [], while c3 produces [Dime]. The
same input trace shows that c2 is not a correct implementation of c3.

Although c4 behaves correct to c2 as specification for the input sequence
[Dime, Dime], it is not a correct implementation. This is shown for instance by
the input sequence [Dime, Dime, Button, Button]. For this input c4 produces a
second cup of coffee, while c2 only allows an empty output.

Finally, c4 is not a correct implementation of c3, nor is c3 an implementation
of c4. This is shown for instance by the input sequence [Dime, Dime].

13

Testing Conformance The testing algorithm takes a sequence of inputs as
argument. The specification and implementation start in their initial state. As
long as the specification specifies transitions for the current state and input,
spec(s, i) 6= ∅, the next input is applied to the IUT. If the response is conform
to the specified behavior, testing continues with the next input element and the
new state of the specification, otherwise an error is found. If nothing is specified
for the current state and input, testing of this input sequence is terminated. The
associated test result is pass. If the end of the input sequence is reached the
implementation has been successfully tested with this input sequence.

The function testConformance takes the sequence of inputs, the observed
trace and the number of steps to go as argument and produces a test verdict.

testConformance ([i : is], σ, n) = if n 6= 0 ∧ i ∈ init(s0 afterspec σ)

then let o = iut.apply(i) in

if (s0 afterspec σ)
i/o−−→

then testConformance (is, σ; i/o, n − 1)

else fail

else pass

testConformance ([], σ, n) = proof

The first condition checks if there are still inputs to be tested, n 6= 0, and if
the specification states something for the next input after the observed trace,
i ∈ init(s0 afterspec σ). The innermost condition verifies whether the observed
transition is allowed by the specification in the current state. For a more efficient
implementation we keep track of the states allowed after the current trace. For
deterministic specifications there is at most one state allowed at any moment. If
the transition is allowed, testing continues with the rest of the inputs. An IUT
passes the test of an input sequence, if the sequence becomes empty. During one
test run, Gast can test several input sequences. The IUT and the specification
are reset before each new input sequence.

Test Data Generation In order to test conformance, Gast needs a collection
of input sequences. Gast has several algorithms for input generation, e.g.:

– Systematic generation of sequences based on the input type by the same
algorithm that is used for logical properties.

– Sequences that cover all transitions in a finite state machine. Under the
assumption that the IUT has more states than the specification, this can
prove the conformance of the IUT [10].

– Pseudo random walk through the transitions of a specification. This gen-
erates long test sequences that can penetrate deep in the state space. It
appears to be very effective for machines with a large or infinite number of
transitions

– User defined sequences for specific purposes.

14

Due to the lazy evaluation of Clean, only those inputs are generated than are
actually needed by the test algorithm. This allows us to work with potentially
infinite lists of inputs. This is known as on-the-fly generation of test data.

The machines given in figure 1 are so small that each of these algorithms
indicated the errors very soon if the implementation is incorrect. The FSM-
based algorithm can be used to prove that c3 is correct implementations of c2,
it cannot be used for c4 as specification since it has infinitely many states.

In section 4 we will use the part of Gast introduced in the next section to
test properties of these ESM-specifications.

4 Quality of Specifications

Apart from the number of tests, the quality of testing is determined by the
quality of the properties stated. Obviously, aspects of a system that are not
specified cannot be tested. The Clean-compiler used by Gast checks many
aspects, like proper use of identifiers and type-correctness, of the specification
before it can be used. Semantical errors cannot be catched by the compiler.
Incorrect specifications can cause strange test results. If the specification and
the IUT contain the same error, it will pass unnoticed. In practice many issues
spotted during testing are due to incorrect specifications.

In an incremental software process this is not a serious problem. The specifi-
cation and the implementation are improved at the same time. Testing shows the
differences in behavior of the implementation and the specification. In this way
the quality of the specification and the implementation increases. This approach
is only feasible when testing is fast and automatic, Gast was found to be very
useful [5].

For software processes that creates the software in one go, like the waterfall-
model or the V-model, incorrect specifications can seriously delay the delivery
of the system. It is desirable to verify and improve the quality of specifications
before they are used to test the actual implementation.

4.1 Testing Specifications

In every situation it is desirable to check properties of the specifications used.
This can be done by a model checker, like FDR or SPIN, but also by testing.
Formal verification by a model checker requires a transformation of the model to
a suited input language, like CSP or Promela. Testing can be done with the given
specifications and appears to be fast and effective. For specifications of small
finite systems2, a number of properties cannot only be tested, but the property
can even be proven correct or falsified by a counterexample. The specifications of
reactive systems introduced in section 3 are ordinary functions in Clean, hence
they can be tested like any function as shown in section 2. In this section we will
show how, general or domain specific, properties properties of ESM specifications
can be tested.2 A system is finite if the number of states, inputs and outputs in finite.

15

General properties like determinism and completeness can be checked for any
ESM specification. A specification is deterministic is for every state and input
there is at most one transition defined:

∀ s ∈ S, i ∈ I • # δf (s, i) ≤ 1

To make this property applicable to any specification in Gast we parameterize
it with the machine specification m:

propDeterministic :: (Spec s i o) s i→ Bool

propDeterministic m s i = length (m s i) ≤ 1

Where Spec s i o is an abbreviation for s i→ [(s , [o])] . Specification c1 in-
troduced above can be tested by evaluating test (propDeterministic c1). Gast

spots the counterexample for state S10 and input Button in a split second. Due
to the limited number of states and inputs Gast will prove that specifications
c2 and c3 are deterministic. For c4 there are infinitely many states, so a proof
by exhaustive testing is not possible. Testing yields pass.

In the same spirit we can test whether a specification is total:

∀ s ∈ S, i ∈ I • δf (s, i) 6= ∅

This can also be specified directly in Gast:

propTotal :: (Spec s i o) s i→ Bool

propTotal m s i = not (isEmpty (m s i))

As we might expect, Gast find counterexamples for c1, proves the property for
c2 and c3 and machine c4 passes any number of tests. These general properties
can be applied to any ESM-specification and are part of the library Gast.

Note that all properties in this section are tested at a specification, and
not at an implementation of that model. These tests can be done before an
implementation exists.

Domain specific properties As example of a domain specific property we
require that coffee machines ”does not loose money”: the value of a state and
the input should be equal to the value of the target state and the associated
output for any transition specified. In logic this property reads:

∀ s ∈ S, i ∈ I, (t, o) ∈ δf (s, i) • value(s) + value(i) = value(t) + value(o)

This can be directly transformed to Gast. First, we construct a class value that
yields the value of states, inputs and outputs. The value of a state is the amount
of money inserted, the value of a coin is its value, the value of Coffee is 10, and
the value of Button is 0. In order to test various machines easy, we make the
specification to check an argument, m, of the property.

propFair m s i = p For m s i

where p (t ,o) = value s + value i == value t + value o

16

New Q q

Init / q = []; []

Reset / []

In a / q = ins a q; []
Out | q <> [] / q = tl q; [hd q]
Out | q == [] / []
Size / [length q]
Sum / [sum q]

Size / [0]
Sum / [zero]

Fig. 2. The priority queue as state chart.

Gast proves this property for c1, and c3. The property does not hold for c2,
one of the counterexamples found by the test system is inserting a Dime in
state S5. The property holds also for c4. Since this machine has infinitely many
states, the property passes the test, but a proof for all states is impossible.
The states can be limited to multiples of 5 between 0 and 100 by evaluating
test (propFair m5 For [0 ,5..100]) . Now the property is proven by Gast.

This property shows also that making a specification input enabled by adding
transitions to the same state without output, as done by enableInput, is not
an harmless operation. Property propFair does not hold for the input enabled
version of machine c1, enableInput c1.

Finally, we can require that the value of a target state is nonnegative if the

value of the source state is nonnegative: s
i/o−−→ t • value(s) ≥ 0 ⇒ value(t) ≥ 0.

propNonNeg m s i = p For m s i

where p (t ,o) = value s ≥ 0 =⇒ value t ≥ 0

This property is proven for the states [0 ,5..100] of m5, but testing it for all states
yields counterexamples due to integer overflow. Gast proves this property for
the other specifications.

4.2 A priority queue

As a more sophisticated example we show a priority queue that always dequeues
the smallest elements first. It is only able to enqueue and dequeue elements after
the input Init. The input Reset brings it back to the state New. This system
is specified by the state chart in figure 2, or the function QSpec in figure 3.

Using overloading, the function QSpec is defined very general, it works for
any type for which the operators <, +, and a zero are defined. This implies that
we can put for instance integers, doubles, or characters in such a priority queue.

Testing general properties of the specification The quality of this speci-
fication can be investigated by testing some of its desired properties. The speci-
fication passes any number of tests for being deterministic. When testing it for
being total, Gast almost immediately spots a counterexample for state Q []
and input Init. The fact that the specification is not total implies that not all
behavior can be tested by Gast: according to the conformance relation, any
behavior is allowed is the specification does not specify a transition for a given
state and input.

Testing specific properties of specification For this specification we can
also state and test some specific properties like for all states s1 that are reached
after applying the input sequence [In c] for any c starting in any state s, the

17

QSpec :: (Qstate a)× (Qin a) → [(Qstate a, [Qout a])] | <, +, zero a

QSpec (New, Init) = [(Q [], [])]

QSpec (New, Size) = [(New, [Int 0])]

QSpec (New, Sum) = [(New, [El zero])]

QSpec (New, any) = [(New, [])]

QSpec (Q q, In a) = [(Q(ins a q), [])]

QSpec (Q [a : q], Out) = [(Qq, [El a])]

QSpec (Q q, Size) = [(Qq, [Int (length q)])]

QSpec (Q q, Sum) = [(Qq, [El (sum q)])]

QSpec (state, Reset) = [(New, [])]

QSpec (state, Out) = [(state, [])]

QSpec (state, i) = []

The additional function ins inserts an element at the appropriate place in an ordered
list. It can be defined as:

ins (a, []) = [a]

ins (a, [b : x]) | a < b = [a, b : x]

= [b : ins a x]

Fig. 3. The priority queue as function.

size of the queue should be one bigger than it was. The size of the queue is
determined by applying the input Size.

∀s ∈ (Qstate Char),∀c ∈ Char,∀(s0, [Int n]) ∈ QSpec(s, Size),

∀s1 ∈ (s afterQSpec [In c]),∀(s2, [Int m]) ∈ QSpec(s1, Size) · m = n + 1

We used list comprehensions in Clean to mimic set notation. The operator
after implements the after operation introduced in section 3.1.

propQsize :: (Qstate Char) Char→ Bool

propQsize s c = and [m == n+1 \\ (s0 , [Int n]) ← QSpec s Size

, s1← ([s] after QSpec) [In c]
, (s2 , [Int m]) ← QSpec s1 Size]

After 6 tests, Gast tells us that this property does not hold for the state New
and input ′d′, in fact it does not hold for any input in state New.

Since the priority queue works for any type with operator < and +, and a zero.
We can choose the type used in testing. If it works for one type, it will work
for every type, provided that the operators are implemented correctly. Usually,
a small type gives the best test results. For that reason we will use characters
here, although a small special type like :: T = A | B | C is even more effective.

18

In the same way we can test whether the sum of the elements increases if
we insert a positive element. Even if we rule out the problems with the state
New, Gast finds counterexamples caused by overflow. This indicates that the
specification does not handle the limitations of finite representations of elements.

∀s ∈ (Qstate Char),∀c ∈ Char,∀(s0, [El v]) ∈ QSpec(s, Sum),

∀s1 ∈ (s afterQSpec [In c]),∀(s2, [El w]) ∈ QSpec(s1, Size) · w > v

propQ4a s c = c > zero =⇒ and [w>v \\ (s0 , [El v]) ← QSpec s Sum

, s1← ([s] after QSpec) [In c]
, (s2 , [El w]) ← QSpec s1 Sum]

Since we have access to the states of the specification, we can use its internals
in our tests. For instance, we can test whether the elements in the queue are
ordered such that head of the list is smaller that or equal to any element in that
list. With this test we verify the distinguishing qualification of a priority queue.
This property is not enforced by the type system, but by the manipulations
allowed in QSpec. We test this for every state reached by applying any input
sequence in the initial state New.

∀i ∈ (Qin Char),∀(Q q) ∈ (New afterQSpec i),∀e ∈ q · hd(q) ≤ e

For Gast this can be expressed as:

propPriority :: [Qin Char] → Bool

propPriority i = and [hd q ≤ e \\ Q q← ([New] after QSpec) i , e← q]

This property passes any number of tests, Gast test 100,000 different input
sequences in 40 seconds.

Usually, properties of specifications are verified with a model checker. Due
to the data dependencies used in the properties it is in this case not simple to
verify the shown properties with a model checker. Moreover, in order to use a
model checker the given model specification has to be translated to the world
of the model checker, and produces results in terms of its own model. Here the
model specification in Clean is used by Gast to test its properties. Only the
desired logical property has to be stated in Clean.

The successful tests shown here does not indicate that testing of specifica-
tions has the same power as a fully fledged model checker. Due to the sophis-
ticated logic used in state-of-the-art model checkers, they have their own sig-
nificant contribution. Nevertheless, testing specifications is an elegant, powerful
and lightweight alternative approach to verify properties of specifications.

Testing implementations In order to verify the testing quality of Gast we
made a correct implementation of this queue and ten mutants containing com-
mon (programming) errors like: an ordinary queue instead of a priority queue, a
stack instead of a priority queue, a queue of at most 25 elements, various errors
in the function ins for duplicated elements, return to the state New when the

19

queue becomes empty by an Out, and an implicit Init on an input In a when
the system is in the state New.

We tested with the standard generic generation of test data for a queue of
characters. Gast generates, tests and evaluates about 50, 000 individual inputs
per second on an average PC. It found errors in all mutants. Errors were always
spotted within 0.5 seconds, usually much faster. This depends on the order of
inputs and hence an the seed used for the generation of pseudo random numbers.

5 Related work

Many automatic test tools are developed in order to speedup testing and make
(regression) more accurate. Most of these test tools are script based and execute
a predefined sequence of actions. One of the best known examples is JUNIT
[1] for JAVA-programs, it has been ported to a very large number of other
programming languages.

Model based tools like Gast are more powerful since they generate the test
data themselves. In this way it is possible to increase the quality of the test by
generating more test data, instead by manually specifying more tests. Moreover,
generation test data based on the current version of the specification guarantees
that the tests done are always conform the current version of the specification.

For the testing of logical properties the test tool Quickcheck [6], is clearly the
closest related tool. Distinguishing futures of Gast are the systematic generation
of test data (instead of programmer controlled pseudo random generation), and
hence the ability to proof properties. Also the set of logical operators in Gast

is richer.
For the testing of reactive systems a number of model based test systems

is available. The dominant approach is based on labelled transition systems
and Torx [8] can be regarded as the godfather of tools using this approach.
None of these tools uses a functional programming language to express the state
transition function. We have show that a fpl yields a very concise way to specify
reactive systems.

Much work has been done to verify and improve the quality of specifications.
Most notably is the work to prove properties of the specifications with proof tools
or model checkers. In fact a number of the properties shown can be verified with
Clean’s own proof system called Sparkle[13]. This would require a significant
user guidance that looses its value after any tiny change of the specification.

Model checkers, like [14, 15], are usually geared to verify properties about
the communication between processes, they have troubles with data intensive
systems like the priority queue used in this paper. Model checkers require a
translation of our specifications. Moreover, these systems require user guidance,
and hence specific skills of the user. Testing properties provides a valuable and
effective alternative within the framework used to write the specification.

The tools BLAST [16] and MOPS [17] verify properties of C-programs. Both
model checkers are FSM based. They differ in model, programming language,
purpose and techniques used from our approach.

20

There are a few reports on specification testing in the literature, e.g. [18–21],
usually based on Z, [11], VDM, or B specifications. It focusses on animation
of specifications to validate the specification by humans, on the evaluation of
given input-output combinations, or on the question if there are instances of the
specified transitions. A number of significant consistency aspects is checked by
the strong type system of the Clean-compiler. To the best of our knowledge,
this is the first report on testing specifications fully automatically in a systematic
way, by generating test values, executing the tests, and generating a test verdict.

6 Discussion

In specification based testing one states general properties instead of instances
of these properties for specific arguments. Advantages of this approach are the
higher level of abstraction, and the automatic generation of test data from the
specification. Manual generation of test data is dull and error-prone. Moreover,
the validity of generated test data has to be checked after every change of the
underlaying specification.

Using functional programming languages as notation for specifications ap-
pears to be very effective. The obtained specifications are very concise, and well
suited to be handled by a test system like Gast.

Having the ability to test logical properties and reactive systems united in
a single tool, allows us to verify the quality of specifications by automatic test-
ing. This is a unique property of Gast. The properties tested are consistency
rules for the specification of reactive systems. The same specification is used to
test implementation and properties of the specification itself. Testing consistency
properties of ESMs is possible since Gast combines the ability to automatically
test logic properties and reactive systems. The tested properties can be general
properties of specifications as well as domain specific. Testing specifications in-
creases the quality and confidence in those specifications, and hence the quality
of tests of implementations done with these specifications. Testing these prop-
erties is a lightweight and effective alternative for model checking. It works also
in data intensive situations that are often hard for model checkers. An other
advantage is that no other formalisms, translations and tools are needed. The
examples in this paper show that many ”obvious” properties of specifications
are falsified by testing.

By verifying logical properties through testing, an ESM-specification can be
made consistent. Another important quality attribute of an ESM-specification is
to validate that it correctly states what the user requires. This validation cannot
be done by fully automatic testing, but requires human guidance. Due to the
executable nature of our specifications, they are also very suited for validation
by simulation. We will address this in another paper.

References

1. See www.junit.org

21

2. Bernot, G., Gaudel, M. C., and Marre, B. Software testing based on formal specifi-
cations: a theory and a tool, Software Engineering Journal, Nov. 1991, pp387–405.

3. P. Koopman, A. Alimarine, J. Tretmans and R. Plasmeijer. Gast: Generic Auto-
mated Software Testing. In R. Peña, IFL 2002, LNCS 2670, pp 84–100, 2002.

4. P. Koopman and R. Plasmeijer. Testing reactive systems with Gast. In S. Gilmore,
Trends in Functional Programming 4, pp 111–129, 2004.

5. A. van Weelden et al: On-the-Fly Formal Testing of a Smart Card Applet. SEC
2005. Or technical report NIII-R0403, at www.cs.ru.nl/research/reports.

6. K. Claessen, J. Hughes. QuickCheck: A lightweight Tool for Random
Testing of Haskell Programs. ICFP, ACM, pp 268–279, 2000. See also
www.cs.chalmers.se/~rjmh/QuickCheck.

7. R. Plasmeijer, M van Eekelen. Clean language report version 2.1.
www.cs.ru.nl/~clean.

8. J. Tretmans. Testing Concurrent Systems: A Formal Approach. In J. Baeten and
S. Mauw, editors, CONCUR’99 – 10th, LNCS 1664, pp 46–65, 1999.

9. M. Núñez, I. Rodeŕıguez. Encoding PARM into (Timed) EFSMs. FORTE 2002,
LNCS 2529, pp 1–16, 2002.

10. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines
– a survey. Proc. IEEE, 84(8):1090–1126, 1996.

11. ISO/IEC 13568:2002 standard. See also vl.zuser.org.
12. A. Alimarine and R. Plasmeijer. A Generic Programming Extension for Clean. In:

Arts, Th., Mohnen M.: IFL 2001, LNCS 2312, pp 168–185, 2002.
13. M. de Mol, M. van Eekelen, R. Plasmeijer. Theorem Proving for Functional Pro-

grammers. - SPARKLE: A Functional Theorem Prover. In: Arts, Th., Mohnen M.:
IFL 2001, LNCS 2312, pp 55–71, 2002.

14. G. Holzmann. The SPIN Model Checker. ISBN 0-321-22862-6, 2004.
15. G. Behrmann, A. David, K. Larsen. A Tutorial on Uppaal LNCS 3185, 2004.
16. D. Beyer, A. Chlipala, T. Henzinger, R. Jhala, R. Majumdar. The Blast query

language for software verification. LNCS 3148, pp 2–18, 2004
17. H. Chen, D. Dean, and D. Wagner. Model checking one million lines of C code.

Proceedings 11th Annual NDSS, San Diego, CA, February 2004
18. Kazmierczak P. Dart, L. Stirling, M. Winikoff: Kazmierczak Dart, Stirling,

Winikoff: Verifying requirements through mathematical modelling and animation.
Int. J. Softw. Eng. Know. Eng., 10(2), pp 251–273, 2000.

19. R. Kemmerer Testing formal specifications to detect design errors. IEEE Tr. on

Soft. Eng., 11(1), pp 32–43, 1985.
20. S. Liu Verifying consistency and validity of formal specifications by testing in J.

Wing et al: FM’99, LNCS 1708, pp 896–914, 1999.
21. T. Miller and P. Strooper A framework and tool support for the systematic testing

of model-based specifications ACM Tr. Soft. Eng. and Meth., pp 409–439, 2003.

22

