Chapter 1

Digoint Formsin Graphical
User Interfaces

Sander Evers, Peter Achten, Rinus Plasmkijer

Abstract: Forms are parts of a graphical user interface (GUI) that sh¢struc-
tured) value and allow the user to update it. Some forms es@ehoice between
two or more (structured) values using radio buttons or clexies. We show that
explicitly modelling such a choice leads to a cleaner se¢jmraf logic and lay-

out. This is done by extending the combinator libraonyctionalForms with dis-

joint form combinators To implement these, we have generalized the technique
of compositional functional references which underliesltbrary.

1.1 INTRODUCTION

Formsare parts of a graphical user interface (GUI) that show adsired) value
and allow the user to update it. For example, the omniprediaiags labeled
Options Settingsand Preferencesare forms. An address book can also be con-
sidered a form. In our previous work, we have developed timebdoator library
FunctionalForms[2] for building forms in a concise, compositional way.

Many real-life forms allow a choice between two or more alédives, some
of which require extra information. For example, the fornfig. 1.1 indicates
whether the user wishes to receive a certain newslettéhafdoes, the text entry
field next to this option should contain his/her email adréiss’he does not, this
text field is irrelevant (some GUIs provide a visual clue foist the control is
dimmed).

Usually, the information in such a form is processed as aymblike data
structure containing the choice (e.g. as a boolean) andxthe ieformation (e.g.
as a string). However, most functional languages allow tygtas which are more
suited to this task, nameblisjoint union typesin Haskell[4], we would define

1Radboud University Nijmegen, Department of Software Tedbgy, Toernooiveld 1,
6525 ED Nijmegen, The Netherlandss.evers,p.achten,rinus }@cs.ru.nl

Do you want to receive our newsletter?

 yez email address:l

* ho

FIGURE 1.1. A ‘digoint’ form

dataNewsLetter= NewsYes StringNewsNo

for the type of information in the example form.

While the combinators ifFunctionalForms previously only supported forms
with product-like data structures, in this paper we extdraht to enable the ex-
plicit definition of such adisjoint form Rather than as a ‘yes/no’ forand an
‘email’ form, it can now be composed as a ‘yes, email’ faoma ‘no’ form. We
demonstrate that this technique leads to a better sepadtiogic and layout in
disjoint forms. For its implementation, we have generalifiee compositional
functional referencewhich underlie the library.

This paper is organized as follows: it first gives a summartheflibrary’s
basic use, which has not changed (Sect. 1.2). Then, the dsmewits of the ex-
tension are demonstrated (Sect. 1.3), after which its imptgation is discussed
in Sect. 1.4. Next, we show that the gained flexibility leamisdme safety issues
(Sect. 1.5). We finish with related work (Sect. 1.6) and cosions (Sect. 1.7).

1.2 FUNCTIONALFORMS SUMMARY

FunctionalForms[2] is a combinator library built on the GUI libranyxHaskell[7]
(itself built on the cross-platforra++ library wxWidgets[11]). It can be seen as
an embedded domain-specific language for forms: it consist®omic formsand
ways to combine them into larger forms in a declarative styfethis section,
we give a brief summary of its basic use, which is the same ssrited in [2],
although the types have changed a little.

A formis a GUI part, residing somewhere within a dialog witK andCancel
buttons, which is only able to display and alter a certaimgaMWhen the dialog
appears, the form has amitial value which is provided by its environment; sub-
sequently, the user can read and alter this value; at thetleadjser closes the
dialog with one of the buttons, and the form passesfithe valueback to the
environment. The type of this value is called subject typef the form.

Atomic forms correspond to a single control containing aitedxdie value. Ex-
amples are a text entry field, containin§&ing and a spin control, containing an
Int:

erntry’ :: Monad m=-
[Prop (TextCtrl())] — Ref m String— FForm win m Layout
spin@rl’ :: Monad m=-
Int — Int — [Prop(SpinCtrl())] — Ref mInt— FForm win m Layout

name; IJ ohn
nr. of tickets: Ig_:l

FIGURE 1.2. ticketsForm

We follow the convention that library functions are undeeli, and an atomic
form is named after the correspondingHaskell function which creates its con-
trol, but with an additional prime symbol. Every atomic forsnparameterized
with a list of optional properties used for customizing tlatrol, e.g. its size and
font (leaving this list empty produces reasonable defau®me atomic forms,
like spinGrl’, require additional parameters: its first two argumentscate a
minimum and maximum value.

All these parameters actually have little to do wiiimctionalForms: they are
directly passed to thexHaskell control creation function. In contrast, the last
parameter of both forms is specific FanctionalForms; it is a reference value
which relates the atomic form’s subject tyg&tiingandint, resp.) to the subject
type of the top-level form. A more detailed description o fRef and FForm
types is postponed to Sect. 1.4.

To combine atomic forms into larger forms, two aspects haveetcomposed:
layout and subject type. The former is performedidyout combinatoréike grid’,
marin’ andfloatLeff. These are based on theHaskell layout combinators after
which they are named, but operate directly on fofm&or example, the two
atomic forms can be putin a grid layout with some labels (3gelr2):

grid’ 5 5[[label "name ", ertry’ [name |
, [label "nr. of tickets :”, spinGrl’ 1 6[] nr]

]

Note that the two reference valuggame:: Ref m Stringand(nr :: Ref mInj
are free variables in this expression. Also, this form’sjsatbtype is not yet es-
tablished. To complete the form compositioameandnr are bound in a lambda
expression, onto whichsubject type combinatpnamelydeclare2, is applied:

ticketsForm:: Monad m=- Ref m(String Int) — FForm win m Layout
ticketsForm= declare2$A(namenr) —
grid’ 55 [label "name ", erry’ [[name |
, [label "nr. of tickets :”, spinGrl’ 1 6[] nr|

]

This ‘declares’ticketsForns subject type to bgString Int), as witnessed by
its actual type declaration (which can be omitted). Just tie atomic forms,
ticketsFormcan now be used as a component of a larger form. Note how this tw
stage process of form construction separates the defirfitayout and subject
type structures, providing a great deal of freedom to thatipuser (see also [2]).

linstead of or_ayoutvalues of widgets—for those familiar witixHaskell

Howe would you like to be contacted?

" hy phone: (5550724
by emaik If.;..:.@bar.com

© do nat contact me

FIGURE 1.3. contactForm;

Besidegdeclare2 which declares a pair, the library also provides subjgut ty
combinators for tuples of higher arity and for lists.

declare2:: Monad m=-

((Ref m§, Ref m3) — 2) — Ref m(ty,tp) — z
declare3:: Monad m=

((Ref mi, Ref m%, Ref m$) — 2) — Ref m(ty,ta,t3) — z

declarel :: Monad m=
([Ref mt — 2 — Refmt] — z

The declarel. combinator only composes forms for the ledementsand cannot
alter the spine; it produces a form for lists of a fixed length.

To run a form in awxHaskell program, the library functiomuninDialog is
used. For example, this runs the above defir@@tsFormwith Johnand2 in the
atomic forms:

do...
(newnamenewnn — runinDialog parentWindow ticketsForifiJohn”, 2)

The function takes as its arguments a pointer to a parentomintthe form itself,
and an initial value of the form’s subject type. It returnsl@naction, which
produces a modal dialog containing the form &¥/Cancelbuttons. When the
user presse®K, the return value is bound to altered value in the fornGaicel
is pressed, the initial value is returned instead. Aftes,tthie 10 thread continues.

1.3 COMBINATORSFOR DISJIOINT FORMS

This section describes, from a library user’s point of vithw, additions for defin-
ing disjoint forms. As an example, we will define a form for taet information,
depicted in Fig. 1.3. It has subject type

data Contact = ByPhone PhoneByEmail String NotAtAll

and expresses a choice between a phone number, an emaisaddi no in-
formation at all. Before we can start defining the form itselé need to define
three custom subject type combinators for this type’s datesttuctors. This is

done using &emplate Haskell [8] macro namedleclare, which is included in the
library.

declareByPhone- $(declare [|ByPhond 1)
declareByEmail= $(declare [|ByEmail] 1)
declareNotAtAll= $(declare [|[NotAtAll] 0)

For each of the constructors, we provide the macro with iteenand arity. The
delimiters %...) and][|...|] areTemplate Haskell syntax, which the library user
does not need to worry abofit.

The three fresh subject type combinators are used to tumsfarith subject
types (resp.Phone Stringand no subject type at all into forms with subject type
Contact Their type signatures are:

declareByPhone Monad m=

(Ref m Phone— z) — Ref m Contact> z
declareByEmait: Monad m=

(Ref m String— z) — Ref m Contact— z
declareNotAtAll:: Monad m=

FForm win m |— Ref m Contact— FFormwin m |

In the last type signature, the typ&orm win m Iplays the same role asin the
above signatures. The reason why it is more constrainecisi&tlareNotAtAll
appends its argument form with an invisible form for hangllineNotAtAllvalue.

Using these subject type combinatocentactForm can be defined as fol-
lows; we assuméphoneForm:: Ref m Phone— FForm win m Layoult is de-
fined somewhere else:

contactForm = radioGrid [byPhone byEmail byNothing

byPhone = declareByPhon&Aphone—
row 5 [label "by phone :, phoneForm phorje
byEmail = declareByEmai$ Aemail—

row 5 [label "by email :”, entry’ [] email
byNothing = declareNotAtAIB
label ”do not contact me”

The new disjoint form combinataradioGrid arranges its list of subforms into
a grid layout, with radio buttons to the left of them. Due teithsubject type
combinators, the three subforms have the same subject typreeacomposite
form (Contac), but each only ‘works’ for a particular data constructoar Ex-
ample, thebyEmailform only handleByEmailvalues. This means that when
contactForm is run with an initialByEmailvalue, the middle radio button is se-
lected, and only the text field next to it receives an initialie. The other text

2Template Haskell is a GHC compiler extension for meta-programming, i.e.
programmatically manipulating a program at the syntaetiel. The delimiters turn a
meta-language expression into an object-language expnemsd vice versa. Both object
language and meta-language Biaskell.

Wiould you like to be contacted?

 ho ¥ Please contact me
& pes by phone: |555-D‘| a8 by phane: |555-D1 a8

@ by email Ifoo@bal.cnm ' by emai Ifoo@bar.cnm

FIGURE 1.4. contactFormsy FIGURE 15. contactForms

field is left empty (or contains a default value, if the pragraer has specified
this in phoneForn). When the form is closed, every subform contains a final
value with its particulaContactdata constructor, but only one of them is pro-
moted tocontactForm’s final value; this choice is determined by the radio button
selected at that time.

What is the advantage of using the disjoint form combingddioGrid, apart

from stylistic arguments? Consider the alternative caseyhich the form in
Fig. 1.3 is defined as eonjunctionof aradioBox (with anint for three possible
choices), phoneFormand arertry’; its subject type would b@nt, Phone String).
At some later time, the interaction design department @scttie form should
rather look like Fig. 1.4 or like Fig. 1.5. Note that thesenfigrstill express exactly
the same choice. However, when the form code is changeddingty, its subject
type would be(Int, Int, Phone String) or (Bool, Int, Phone String), and the code
which handles the form data should also be altered.

If we use disjoint forms instead, the disjoint subject typa cemain the same.
In the code, we only need to add an extdioGrid for the first case:

contactForm = radioGrid

[noContact Ayes — row 5 [label "yes”, yesContact yés
noContact = declareNotAtAllslabel "no”
yesContact = radioGrid [byPhone byEmail

For the second case, we use another disjoint form combimeorelychecliRow

contactForm3 = checlRow
(A\yes — columd 5 [label " Please contact nie yesContact yés
(declareNotAtAlhoLayout)

The functionality of these forms is still the same: they thgpa value of their
subject typeContact and allow the user to change it into another value of that

type.

1.4 IMPLEMENTATION

Although the user ofunctionalForms does not notice a difference, apart from the
new combinators and slightly alter&&fandFFormtypes, the implementation of
the library has undergone substantial changes since itsdirsion in [2]. These

allow for generalized forms, which mdgil to consume an initial value (or pro-
duce a final value), and which can be joined with the disjaimtrf combinators
radioGrid andcheclRow To construct these forms, tiktempositional functional
referencediave also been generalized. Furthermore, the ‘heart’ ofra,farhich
determines the communication with its environment, has lmeade explicit in a
type RefLink In order to deal with the newForm type in Sect. 1.4.3, we will
first discuss thesRef andRefLinktypes.

141 TheReftype

A reference value consists of two functions which are uséxkfer to’ at part of
a—usually stateful—monana:

dataRef mt= Ref{val :: mt
,app: (t—mt) —m()

}

The val function retrieves the value of this particular part of thermadic state,
whereas theppfunction updates it. For example, for a state of typety), the
value referring to thé; element would be:

reffst:: MonadStatét;,tz) m = Ref mi
reffst= Ref{ val =do { (x,y) «— get return x}
, app=Af — do{~(x,y) < get X « fx put(X,y)}

Note the lazy pattern match in tla@p function; it is useful when constructing a
new state from scratch (i.e. the previous state contajns

Areference to the value inJustdata constructor (from the well-knovivhaybe
type) can be defined in a very similar way:

refromJust: MonadStat¢Maybe) m = Ref mt
reffromJust= Ref

{val =do{Justx«— get returnx}

, app=Af — do{"(Justy < get X « fx put(JustX) }

This reference value may seem ill-defined because it cangldanwhen the
monadic state contairidothing it does not refer to anything. However, this situ-
ation can be detected using monadic error-handling, anddhtrol flow can be
adapted. We will show how this is done in Sect. 1.4.2, wheroivetjvo RefLinls.

The operatos composes two reference values, taking the referred palneof t
second value’s state as the state of the first value. For deatine following
value refers to the first element of a pair withidustvalue:

reffst e reffromJust:: MonadStatéMaybe(t;,t2)) m = Ref mt

The composition is performed by applying a monad transfotmée monad of
the second reference value. This ‘adds state’ to this momadyhich the first

reference value can act. Meanwhile, properties of the maghonad such as IO
ability or error handling are preserved.

e :: Monad m=- Ref(StateT cxmt — Ref mcx— Ref mt
w e v = Ref

{val = valv >= evalStateTval w)

, app= Af — (app V) $execState® (appw) $lift .

}

This operator is used to define subject type combinators like

declare? :: Monad m=-
((Ref mi, Ref m3) — z) — Ref m(ty,t2) — z
declare? refsToForm refP= refsToForm(reffst e refP, refsnde refP)

declareJust :: Monad m=- (Ref ma— z) — Ref m(Maybeg — z
declareJust refToForm refMaybe= refToForm(reffromJuste refMaybe

These subject type combinators all follow the same patt€his pattern is cap-
tured in theTemplate Haskell macrodeclare, so definitions like the two above do
not have to be handwritten for every data constructor.

1.4.2 TheRefLinktype

The heart of an atomic form consists of a link between tworesfee values.
The first is of typeRef m{ and relates the subject typeof this form to that
of the topmost form (the state type m). This is the reference value that is
explicitly provided by the library user, e.g. in the expiessrry’] refn. The
second reference value is implicit in every atomic formsiof typeRef 10t and
relates this form’s subject type to a part of the 10 state.s itonstructed from
wxHaskell's getandsetfunctions for the control’'s main attribute (efgxton an
entrycontrol).

In the terminology of the well-known model—-view(—contesll paradigm[6],
the reference values refer to a part of the topmost formisleland a part of its
view, respectively. Joining them in RefLinkmeans linking those parts to each
other: theval output from the first reference is usedagsp input for the second,
and vice versa. Thus, two operations are obtained whichdydtirce consistency
between model and view:

e Theupdateoperation copies the value from the form’s model to its vi€his
is used to show the form’s initial value.

e The propagateoperation copies the value from the form’s view to its model.
This is used to read the form’s final value.

In monadic terms, thepdateoperation is a read action in themonad producing
a write action in thdO monad. Conversely, theropagateoperation is a read

action in thelO monad producing a write action in tmemonad. This results in
the following type forRefLink(where then monad abstracts froh®):

data RefLink m n= RefLink
{update : m(n())
, propagate: n(m())

}

The functiorrefLink connects the two references to create suRlefhink For the
updatefunction, first an input is retrieved from thenreference. Then, a constant
functionconst(return v) is applied to the corresponding part in thenonad using
the n reference; this action in the monad is returned in then monad. For the
propagatefunction, the roles ofn andn are reversed:

refLink :: (Monad m Monad§ = Ref ma— Ref na— RefLinkmn
refLink ref, ref, = RefLink

{update = (valrefy,) >= return. (app ref,) . const. return

, propagate= (val refy) >= return. (app refy) . const. return

}

When two forms are joined, theRefLinks are combined into a neRefLink
Usually, the intention is that the joinfpdateperformsboth componentipdates,
and likewise for theoropagats. We consider this to be the ‘default’ operator on
RefLink In order to meet th&onadWriterinterface (see Sect. 1.4.3), we encode
it using theMonoid class:

instance(Monad m Monad i = Monoid (RefLink m n
wheremempty= RefLink
{update = return$return()
, propagate= return$return ()

}
rl1 ‘mappendrl, = RefLink
{update = liftM2 (>>) (update rf) (update rp)
, propagate= liftM 2 (>>) (propagate r{) (propagate rp)
}

For disjoint forms, the twdRefLinls should be joined in an alternative way. In
this situation, they share one part of the model part, wtdehdisjoint union (e.g.
the subject type of both forms Either ah. Meanwhile, they refer to different
parts of the view (which contains controls for battandb). Hence, the two
RefLinls connect independent parts of the view state space to ‘dimgpearts of
the model state space. Instead of performing luptthate(propagaté operations,
only one can (should) be performed.

We obtain this behaviour by using tiheplusoperator of the model monax,
therefore, this should be an instanceMdnadPlus The jointupdatewill then
(dynamically) choose between the first compongmdateor the second—and
likewise for propagate Hence, we define an alternative monoid on RefLink

domain. By using a different representation for RefLinktype, theMonoidclass
can again be used for this:

newtype RefLinkPlusM m n= RefLinkPlusM{pm :: RefLink m i}
instanceMonadPlus mMonad n = Monoid (RefLinkPlusM m hwhere
mempty= RefLinkPlusM$ RefLink
{update = mzero
, propagate= return mzero

}
rl1 ‘mappendrl; = RefLinkPlusMb RefLink
{update = (update$pmrl) ‘mplus (update$ pm rl)
, propagate= liftM 2 mplus(propagate$ pm rl;) (propagates pm rl)

The exact semantics afiplusdepend on the monaa. In practice, we use an
error-handling state mondgtrorT e (State @. This means that the first argument
of mplusis always tried first; if it fails, the second argument isdri®Vhen disjoint
forms are used correctly, the alternatives are mutuallyusiie, so this order is
irrelevant.

143 TheFFormtype

A form is a value of the following type:

newtype FForm win m a= FForm
{ runFForm :: Window win— 10 (a, RefLink m 1Q }

It contains three pieces of information:

1. An 10 action which creates the form’s controls. This actdepends on a
pointer to a parent window of typ&findow win in which they are created.

2. ARefLinkused to update the values in the controls from—and prop&gete
to—the form’s model.

3. Additional information of typea; usually layout information of typ&ayout
(defined by thevxHaskell library).

The FForm type can be used as a monad, whiihdsthe additional (layout)
information, readsthe window pointergxecuteghe control creation functions,
andwritesa RefLink

instanceMonad m) = Monad(FForm win m

instanceMonad m) = MonadReade(Window wir) (FForm win)
instance(Monad m) = MonadlO(FForm win m)

instance(Monad m) = MonadWriter(RefLink m 1Q (FForm win m

So,formy >= f means:

10

o f is applied to the additional information frofarmy, producing (let’s call it)
formp.

e The window pointer passed formy >= f is passed téormy andformy.
e The |10 actions ifformy andform, are sequenced.

e The RefLinkin form, is joined to theRefLinkin formy using the ‘default’
mappendperator.

Furthermore, functions likask(extract the window pointer)iftlO (insert an IO
action at form creation time) andll (insert aRefLink are implemented for the
FFormmonad (being an instance MionadReadeMonadlOandMonadWrite).

We stated in Sect. 1.4.2 that in order to combine two formsdisgint way,
the RefLinkPlusMmonoid should be used, which dynamically perforome of
the updatépropagateoperations. Meanwhileyoth forms should be shown: at
form creation timepoth10 actions should be performed, abdthlayout values
are used. Therefore, we have implemented alternative iddiait operators for
forms: >+ andreturn®. They are similar to>>= andreturn in every respect,
except that they use tHeefLinkPlusMmonoid.

return? :: MonadPlus m= a — FFormwin m a
(>=£) :MonadPlus m=
FFormwinma— (a — FFormwinmb — FFormwinmb

These operators are at the core of the disjoint form combiagadioGrid and
checlRow whose implementation is discussed in the next section.

1.44 Digoint form combinators

A naive disjoint form combinator would be

refToForm ‘or‘ refToFormp = Aref —
refToForm ref >+ Alay; —
refToForm ref >+ Alay, —
return® $ column5 [lay;, lays)

The composite form shows both forms, while the compagi@atefunction per-
forms only one of the componeunpdatefunctions—the first one that succeeds.
The same goes for the compogit®pagateoperation. However, the form’s user
has no means whatsoever to discover whiglatehas been performed, or to
influence whictpropagateto perform®

TheradioGrid combinator does provide these functions: both are fulfiigd
the radio buttons. When a subformipdateis performed, the system selects the
radio button in front of it. Conversely, the formpsopagateis only performed if

3Both propagateoperations will succeed when performed. Due tortipus
semantics, the first one will always be selected.

11

the radio button in front of its indeed selected (the user influences this during the
form’s lifetime).

The nice thing is that we can express this behaviour quiggaelity in terms of
RefLinkoperations. We show this by defining the somewhat simpl¢vidiform
combinatoralt, which is a specialisation gadioGrid: it joins exactly two forms
(denotedefToForm andrefToForm). Assume that we can create a two-button
radio group, returning a reference valeéRadio :: Ref 10 Intto its current se-
lection, which can take valud®,1}. Now we can define RefLinkvalue:

rl; = refLink refO refRadio
whereref0 = Ref
{val = return0
, app= M — do {0 < fO;return() }

In other words: we linkefRadioto a reference ‘to the unchangeable number 0’,
whoseval is always 0, and whosepp function only succeeds when the result
of the function application is 0. This has the effect that tipelateoperation in
rl; always selects the topmost radio button (and succeedslg whpropagate
operation only succeeds when this radio button is selected.

We then liftrl; into a form, and join it with the first subforformy using >,
which utilizes the default (conjunctive)appendperator:

tellrly > refToForm ref

This form has the desired properties: with @pdate the radio button is only
selected if the value iformy can be updated, and withpopagate the value in
formy is only propagated if the radio button is selected. We defimteuserl; in
a similar way, producing a second form. We finish éiecombinator by joining
both forms with >+:

refToForm ‘alt' refToForm = Aref —

liftlO ... >= (laybutton,laybutton,refRadig —

let
rlp, = ... — seeabove

) I’|2 = ...
in
(tellrly > refToForm ref) >+ Alayformy —
(tellrl; > refToForm ref) >+ Alayformy —
return® $ grid 5 5 [[laybutton, layformy], [laybuttory, layformy]|

What we have omitted in the second line goes into too muche@mphtation
detail; it is an IO action which creates the radio buttong] esturns the layout
valueslaybutton andlaybuttor, as well agefRadio

4Note that thisRefLinkdoes not use any model state!

12

TheradioGrid combinator is a straightforward generalizatioradtffor lists.
ThecheclRowcombinator is also very much likadt, but does not show its second
argument form. However, doesuse itsRefLink®

15 SAFETY

The flexibility provided by compositional functional reérces has a downside:
by omitting reference values, duplicating them, or usiregrhin the wrong places,
forms with strange behaviour can be constructed. We givesoamples:

1. declare2A(a,b) — enry’ || a
This form never shows or changes the second element of ifscutpe.

2.\a — row 5[enry’ [| a, ertry’ [] a]

This form shows its value twice, and only propagates the nalwevin the
control on the right.

3. declareJust$ entry’ []

This form is only updated if its model containglast xvalue (actually, this is
the desired behaviour if the form is part of a disjoint forrf)it does not, all
forms in the same alternative of the surrounding ‘disjolatse’ are prevented
from being updated (normally, there should be none).

4. radioGrid [entry’ [], entry’ []]

This form will always put its value in the upper entry contridbwever, it will
propagate values from whichever entry control has its radtton selected.

To prevent the construction of these forms, the programarefalow some rules
such as:

e Every declared reference should be used exactly once.

e Every data constructor of a form’s subject type should bdaded exactly
once.

e References declared outside a disjoint form must not beinséte it.
Of course, it would be better if these rules would be enforgdmatically, e.g.
by the type system. Future research should formalize théss.r

1.6 RELATED WORK

As far as we know, the idea of explicitly using a radio buttoiddo combine
forms in a disjoint way is new. The fact that some radio bigtorake other el-
ements (ir)relevant is recognized, but existing declegafiveb) form languages

Slts RefLinkis joined with arefLink between the valuBalseand the checkbox value.

13

have to go out of their way to specify this. ¥Forms[12], it is accomplished
by providing an element'selevant property with a Boolean expression that
includes anxPath pointer to the radio button choice. \WWASH/CGI[9], the pro-
grammer builds alecision treg(see [10]) to express which data to use when a
certain radio button is selected.

A simple disjoint form combinator is already introduced!lie thesis[1] from
which FunctionalForms originated. However, this combinator always joins ex-
actly two alternative forms. If the subject types of the tapnfi and bottom
form aret; andty, resp., then the subject type of the composite form is always
Either t; to. In other words, logic and layout are not separated like they
presently.

Compositional referencesere introduced by Kagawa[5] as a means to com-
pose mutable data structures such as arrays. In our prewimks$l, 2] we used
them in a more simple form and with a different goal: to cornigefy separate a
form’s subject type and its layout.

Closely related to compositional referenceslarese§3], which are also pairs
of accessor and modificator functions. While our approads aslot of ‘little’
references throughout the program, lenses are combined ibig lens whichs
the program; this program specifies a bidirectional tramsétion between model
and view.

1.7 CONCLUSIONSAND FUTURE WORK

In this paper, we have identified two patterns for composingé that edit values
of a disjoint union type. The first pattern involves a list aflio buttons, and the
second involves a check box. To support these patterns iAuinionalForms
library, we have introduced several new combinators.

These patterns illustrate a novel view, in which a form ftsah be seen as
‘disjoint’. To demonstrate the fertility of this view, we ¥a shown that these
disjoint forms exhibit a cleaner separation between logit aser interface. This
makes them more flexible.

However, this flexibility comes at a price: the constructidriorms with un-
wanted behaviour is possible. Methods for preventing tlaigehyet to be re-
searched.

As a further enhancement EunctionalForms, defining forms for values of a
customHaskell type is made easier, usingramplate Haskell macro. This brings
the library closer to real-life use. The library versionatissed in this paper will
shortly be available for downlodt.

We hope to further develop the approach of programming veiterence val-
ues. We believe that it can be used to construct a far wideyerahinterfaces in
a declarative way.

Shttp://www.cs.ru.nl/"sandr/FunctionalForms

14

REFERENCES

[1] Sander Evers. Form follows function: Editor GUIs in a @tional style.
Master's thesis, University of Twente, 2004. Permanenthgilable at
http://doc.utwente.nl/fid/2101

[2] Sander Evers, Peter Achten, and Jan Kuper. A functior@nramming technique for
forms in graphical user interfaces. Pmoceedings of the 16th International Workshop
on Implementation and Application of Functional Languai&. 2004), Technical
Report 0408pages 81-96. University of Kiel, 2004. Selected to appeaNCS.

[3] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Mo8enjamin C. Pierce,
and Alan Schmitt. Combinators for bi-directional tree sfmmmations: A linguis-
tic approach to the view update problem. Technical Report@®lS-04-15, Univer-
sity of Pennsylvania, August 2004. An earlier version appeéan theWorkshop on
Programming Language Technologies for XML (PLAN-2004, under the title “A
Language for Bi-Directional Tree Transformations”.

[4] Simon Peyton Jones. Haskell 98 language and librarfesravised reportJournal
of Functional Programming13(1):0-255, January 2003.

[5] Koji Kagawa. Compositional references for stateful dtianal programming. In
Proceedings of the second ACM SIGPLAN International Cenfez on Functional
Programming (ICFP'97)volume 32(8) ofSIGPLAN Noticespages 217-226. ACM
Press, 1997.

[6] Glenn E. Krasner and Stephen T. Pope. A cookbook for uiagnodel-view con-
troller user interface paradigm in smalltalk-80Object Oriented Program1(3):26—
49, 1988.

[7] Daan Leijen. wxHaskell — a portable and concise GUI liprfor Haskell. INnACM
SIGPLAN Haskell Workshop (HW'Q4)CM Press, September 2004.

[8] Tim Sheard and Simon Peyton Jones. Template metapragiragrfor Haskell. In
Manuel M. T. Chakravarty, editoACM SIGPLAN Haskell Workshop O2ages 1-16.
ACM Press, October 2002.

[9] Peter Thiemann. WASH/CGI: Server-side web scriptinghwdessions and typed,
compositional forms. IProceedings of the 4th International Symposium on Prattica
Aspects of Declarative Language®lume 2257 of NCS pages 192—-208. Springer-
Verlag, 2002.

[10] Peter Thiemann. An embedded domain-specific languageype-safe server-side
web-scripting. Technical report, Universitat Freibulday 2003. Available at
http://www.informatik.uni-freiburg.de/thiemann/pap ers/ .

[11] The wxWidgets home page can be foundhtip://mwww.wxwidgets.org

[12] The XForms home page can be found at
http://www.w3.org/MarkUp/Forms/

15

