
Programming Generic Graphical User Interfaces

Peter Achten, Marko v. Eekelen, Rinus Plasmeijer, and Arjen v. Weelden

Institute for Computing and Information Sciences, Radboud University Nijmegen

Keywords: Graphical User Interfaces, Functional Programming, Generic Program-
ming

Submission Category: Full paper
Pages: 12
Corresponding Author: Peter Achten. Toernooiveld 1, 6525ED Nijmegen.

Phone: (+31)(0)24-3652483; Fax: (+31)(0)3652525; E-mail: P.Achten@cs.ru.nl.

Abstract. The GEC Toolkit offers to programmers a high-level, generic
style of programming Graphical User Interfaces (GUIs). Programmers
are not concerned with low-level widget plumbing. Instead, they use
mathematical data models that reflect both the application logic and the
visualisation. The data models and the logic are expressed as standard
functional style data types and functions over these data types. This
significantly brings down the learning effort. In this paper we present
an improved programming method of this toolkit and illustrate it by
means of a complicated case study: that of a family tree editor. The new
programming method brings GUI programming into the reach of every
novice functional programmer.

1 Introduction

In this paper we present an improved programming method for the GEC Toolkit
[4–7]. The GEC Toolkit is a high level toolkit for the construction of Graphical
User Interfaces (GUIs) in terms of mathematical data models and pure functions.
Its main features are:

– Automation: for every conceivable data model, a graphical editor component
is automatically derived that allows users to edit values of that type.

– Compositional: for free because automation works for all (composite) types.
– Abstract: Programmers do not need to know anything about conventional

widget based GUI APIs and their management. Instead, only data models
are manipulated with pure functions.

The GEC Toolkit is based on the pure and lazy functional programming
language Clean [21, 22]. Functional programming languages such as Clean and
Haskell [20], have a sound theoretical foundation: the λ-calculus. One of the
main goals of the Clean project has been to demonstrate that the elegance and
succinctness of functional programs does not hamper their efficient execution.
Contributions of the Clean project in this respect are its strictness analysis,

uniqueness type system, and high quality code generator. In the Clean project,
there is about 13 years of research and experience with GUI programming, re-
sulting in the Object I/O library [2, 3] which is also available for Haskell [1].

We have constructed large GUI applications with Clean and Object I/O. Two
examples are the Integrated Development Environment of Clean itself and the
proof tool assistant Sparkle [12]. Although Object I/O offers a high level of ab-
straction, there is still a steep learning curve for programmers to become profi-
cient. The GEC Toolkit attempts to tackle this problem by taking a radical point
of view: the programmer should exclusively model his GUI instead of realizing it
in a widget based style. The model is expressed using standard functional data
types, and the behaviour is expressed using functions over these domains. This is
standard material in any functional programming course. Hence, the GEC Toolkit
brings GUI programming within easy reach of every functional programmer.

In this paper we describe the programming method of GUI programming
using the GEC Toolkit. Part of this material has been presented earlier [5–7].
This is covered in Section 2. The contribution of this paper consists of two parts.
(i) We present a programming method for the GEC Toolkit. This method has
been realized by means of an improved abstraction mechanism. This is presented
in Section 3. (ii) We illustrate the improved programming method by means of
a complicated case study: a family tree editor in Section 4. We discuss related
work in Section 5 and conclude in Section 6.

2 The GEC Toolkit

The key technology on which the GEC Toolkit has been built is generic program-
ming [16, 15]. With this technique, the programmer defines a kind-indexed family
of functions that have a uniform type scheme. Generic programming has been
built in in Generic H∀skell [11] and Clean [8]. The main features of this style of
generic programming are:

– Only a few function definitions suffice to specify an algorithm for any con-
ceivable custom data type. These function definitions typically correspond
with the inductive structural elements of types.

– Besides this minimal number of function definitions, the programmer is al-
lowed to specialize the algorithm for specific types. This feature gives generic
programming its flexibility, which we use extensively in this paper.

The GEC Toolkit uses generic programming to automatically create a Graph-
ical Editor Component (GECt) for any conceivable data type t. A GECt is a GUI
component that always has a value v :: t, and that can be edited by the user.
By editing, we mean any user manipulation of the presented value. This can be
keyboard input for strings or numbers, but we also consider button presses to
be value-editing actions. Editing is type-safe: the value of a GECt can only be
changed in such a way that any new value is of type t.

The generic (kind-indexed family of) function(s) gGEC that creates GECts has
type (GECFunction t (PSt ps)). In Clean, this is declared as follows:

2

generic1 gGEC t :: (GECFunction t (PSt ps))

The type synonym (GECFunction t env) is a function that takes two argu-
ments, t and env. It creates a GECt in the environment of type env. It returns
the updated environment, but also the methods (of type (GECMethods t env))
that a programmer can invoke to obtain access to the GECt in the environment.
We will not use the GEC methods in this paper.

:: GECFunction t env :==2 t env→ (GECMethods t env ,env)

The environment parameter is instantiated with (PSt ps). This is an Object
I/O type that represents the explicit GUI environment that is passed along all
GUI callback functions. In pure functional languages, side-effects are modelled
by passing environments around, either explicitly as in Clean, or implicitly as for
instance state monads [19] do in Haskell.

gGEC is a generic function, and hence it can create a GEC for any conceivable
type. Figure 1 shows the GECs of two values of basic type (Int and String), and
two composite types ((Int ,String) and [Int]3):

42 :: Int

"Hello!" :: String

(42,"Hello!") :: (Int,String)

[1,2,3] :: [Int]

Fig. 1. Values v of type t and their corresponding GECt.

GUIs typically consist of traditional elements such as buttons, edit fields,
radio, and check buttons. These have been provided in the GEC Toolkit using the
specialization mechanism of generic programming. This means that for these GUI
elements new data types have been introduced that model these GUI elements.
Figure 2 gives the types of some of them and also shows what they look like
when applied to gGEC.

Another issue that needs to be addressed with GUIs is the layout of elements.
The default layout strategy of the GEC Toolkit is to arrange data constructor
arguments below each other, with the top element right to the data constructor
itself. A number of specialized data types have been defined to influence the

1 generic f t :: (T t) introduces the generic function f that is generic in type argu-
ment t. (T t) is the type of f.

2 :: T1 :== T2 introduces the type synonym T1 for type T2.
3 [T] is the type list of T.
4 :: T = C1 | . . . | Cn introduces the type constructor T with data constructors Ci.

3

:: Button =4Pressed | Button Int String (Button 50 "Press Me!")

:: UpDown = UpPressed | DownPressed | Neutral Neutral

:: Display a = Display a (Display "Hello!")

Fig. 2. Specialized types t for GUI programming, a value v, and GECt.

layout of elements. Let v1 :: t1 and v2 :: t2 be given. Then (v1 <*|> v2) :: (t1 <*|>5

t2) puts v2 below v1, with their left edges aligned. Analogously, the combinators
<|*|> and <|*> align the centers and right edges. (v1 <^*> v2) :: (t1 <^*> t2) puts
v2 right to v1, with their top edges aligned. Analogously, the combinators <-*>
and <.*> align the centers and bottom edges.

The GEC Toolkit is provided with an abstraction mechanism that allows the
creation of GECs with the same data model type d, but with different view model
types v [6]. Such an abstraction is created by converting values of type d to v

and vice versa. In many cases this conversion is a bijection of type (Bimap d v)6:

:: Bimap d v = { map_to :: d→ v , map_from :: v→ d }
The generic gGEC function is specialized for the abstract data type (AGEC d).

It is created with the constructor function mkAGEC given a bijection of type
(Bimap d v) and an initial value of type d. The generic function is specialized
in such a way that it creates a GECv that is encapsulated within the (AGEC d)

value, and that works as a GECd in the data domain of which it is part.

mkAGEC :: (Bimap d v) d→ (AGEC d) |7 gGEC{|?|} v

Given g :: (AGEC d), then (^^g) is the current value of type d, and (g =̂ new)

is a new value of type (AGEC d) with current value new :: d. These operations
obey the simple law ^^(g ^= new) = new.

(^^) :: (AGEC d) → d

(=̂) infixl :: (AGEC d) d→ (AGEC d)

Abstraction is crucial to obtain easily customizable domain data models. As
an example, consider the following GEC(AGEC Int)s that can be used, and freely
exchanged, within the very same domain data model: intAGEC () is an
integer value editor; dynamicAGEC () is an integer expression editor [7]
in which only those Clean expressions can be edited that yield an Int type;
counterAGEC () is a spin-button.

We have developed the following programming method to effectively con-
struct GUI applications with the GEC Toolkit:

1. Develop the pure domain data model D without any abstraction.
5 We use infix type constructors here for clarity, although Clean does not allow this.
6 In fact, we allow a more general conversion relation between domain and view, but

that is outside the scope of this paper. Please consult [6] for the more general version.
7 In a type definition of a function, the used overloaded and generic functions are

listed behind |.

4

2. Develop another view data model V that uses abstraction in the right places.
3. Create (Bimap D V) which contains the transformations between D and V.
4. Create the abstract editor (AGEC D) using the (Bimap D V).

We illustrate the programming method by means of the following code fragment:

:: D = ... [Int]...
:: V = ...(AGEC [Int])...
:: ListV = ListV (Maybe8 (Int <^*> ListV))

convertList :: ([Int] → (AGEC [Int]))
convertList = mkAGEC { map_to = toView , map_from = toDomain }
where toView :: [Int] → ListV

toView [] = ListV Nothing

toView [x : xs] = ListV (Just (x <^*> toView xs))

toDomain :: ListV→ [Int]
toDomain (ListV Nothing) = []
toDomain (ListV (Just (x <^*> xs))) = [x : toDomain xs]

The domain data model D has an integer list component which elements need to
be rendered horizontally. Therefore, the view data model V uses abstraction over
the integer list. The conversions between D and V need to transform [Int] values
to (AGEC [Int]) values, and vice versa. This is defined by convertList, which
implements the view of the abstract element as ListV. ListV must be a new
type because list is a recursive data type. This is also reflected in the recursive
structure of the conversion functions toView and toDomain.

3 The Improved GEC Toolkit Programming Method

In the previous section we have introduced the GEC Toolkit and its programming
method. The programming method relies on the abstraction mechanism of the
GEC Toolkit. We identify the following issues with this mechanism:

1. The upside of abstraction is that the programmer does not need to change
her code for those (sub)types v that have been abstracted to (AGEC v) when
switching between abstract components. The downside is that she does have
to change her code for those (sub)types that she decides about afterwards
to become either abstract or concrete. This is a normal consequence of using
abstraction.

2. Recursive data domain (sub)types can only be made abstract by introducing
new types and recursive conversion functions.

It should be noted that these issues do not decrease the expressive power essen-
tially, but only stylistically.

The improvement that we propose is the following. Instead of handling the
complete transformation from D values to V values and vice versa in one go, we
8 :: Maybe a = Just a | Nothing. This type is useful for handling optional values.

5

should identify those (sub)types Di of D for which we want to apply abstraction,
so replace with (AGEC Di). This leads to a family of functions fi :: Di → (AGEC Di).
Now we can specialize each member of this family as follows:

gGEC{|Di|} ... dv env = specialize fi dv env

and we are done! The technical breakthrough to this apparently simple pro-
cedure has been accomplished with the new and complex GEC Toolkit function
specialize :: (d→ (AGEC d)) → (GECFunction d (PSt ps)). Its task is to create
the GECv that is encapsulated inside the (d→ (AGEC d)) function in such a way
that it can be addressed with the GEC methods for a GECd. Its implementation
is beyond the scope of this paper. Instead, we focus on the consequences for the
programming method. The new programming method is as follows:

1. Develop the pure data domain model D without any abstraction.
2. Develop fi :: Di → (AGEC Di) for those (sub)types of D that need to be

specialized.
3. Specialize each Di as described above with the function specialize.

This improves the old method in the following ways: (i) It is modular : instead
of one (Bimap D V) the programmer writes several conversions Di → (AGEC Di).
These functions are easier to understand and can be reused in arbitrary many
data domain models D. (ii) The view data model V has been eliminated. This
implies that the programmer does not have the change her code when switching
(sub)types of the pure domain data model to become abstract or not. (iii) The
new way of handling abstraction merges the abstraction mechanism with the
generic programming scheme. Because the generic programming scheme is in-
herently recursive, this eliminates the issue of programming recursive conversion
functions. (iv) An early experiment with a large application suggests that the
new method reduces the number of lines of code with 30%.

Before we move to the case study, we illustrate the new programming method
with the list example at the end of Section 2. The essential code fragment is:

:: ListV :== Maybe (Int <^*> [Int])

gGEC{|[Int]|} t pSt = specialize horlistAGEC t pSt

where horlistAGEC = mkAGEC {map_to = toView , map_from = toDomain}
toView :: [Int] → ListV

toView [] = Nothing

toView [x : xs] = Just (x <^*> xs)

toDomain :: ListV→ [Int]
toDomain Nothing = []
toDomain (Just (x <^*> xs)) = [x : xs]

The important differences to observe are: (i) ListV is not a new type anymore,
but a type synonym. We have eliminated the need for a new type. (ii) The
conversion functions toView and toDomain are not recursive. (iii) Already this
very small example shows that the specification becomes shorter and clearer.

6

4 Case Study: a Family Tree Editor

In this section we demonstrate how to program a GUI using the GEC Toolkit.
The case study that we consider is that of a family tree editor. This case study
is interesting because of the following reasons:

– It has dynamic behaviour: when edited, (sub) family trees may expand or
decrease in size. This causes recalculation of the layout of the remaining
(sub) family trees.

– This program can not be created with a visual editor because it has dynamic
behavior. Instead, it must be programmed.

– It has logical behaviour: in this case study we want to impose the restrictions
that marriage occurs only between two persons of opposite gender and only
married couples have children.

– Family trees are usually rendered from top to bottom, which contrasts the
default layout strategy of the GEC Toolkit. This is a good test case how well
customization of layout works.

We follow the steps of the programming method of Section 3.

Step 1. Develop the Pure Data Domain Model. In the first step we de-
velop the pure data domain model D of the family tree editor. In this case, D

is the recursive tree-like data type Family. Its nodes contain information about
a person (gender and name), civil status (married or single). Its subtrees are
the person’s offspring. Because a person might not be married, the spouse and
children are encoded with a Maybe type. The corresponding data types should
not be surprising for people familiar with functional programming:

:: Family = Family Person CivilStatus (Maybe (Person ,Kids))
:: Person = Person Gender String

:: Gender = Male | Female

:: CivilStatus = Married | Single

:: Kids = Kids [Family]

Although this type definition is rather compact, its automatically derived
GECFamily is not. The background window in Fig. 3 gives the screenshot of
a small family constructed with the editor, that consists of parents Peter and
Mirjam and their boys Tijmen and Arjen. It should be clear that this editor is
uninformative even to an informed programmer. It also does not implement the
logic behaviour requirements. In contrast, the editor in the foreground window
is much more compact, uses a more appealing layout scheme, displays redun-
dant information such as number of children, and implements the behaviour
requirements.

Step 2. Design the Abstract Types. The next step is to decide what (sub)types
to specialize. If we compare the two GUIs in Fig. 3 we conclude that Person, Kids,
and Family have to be specialized.

7

Fig. 3. GECFamily: default (background) and specialized (foreground) rendering.

A Person has to be displayed as instead of . Ex-
pressed as a function: toView (Person gender name) = name <*|> gender. This puts
the gender information below the name and right-aligned. The inverse function
is trivial: toDomain (name <*|> gender) = Person gender name. The full special-
ization is defined by:

personAGEC :: (Person→ AGEC Person)
personAGEC = mkAGEC {map_to = toView , map_from = toDomain}

The next type to specialize is Kids. Because Kids are defined with a list,
the default rendering uses the default list rendering (see also Fig. 1) which
is inadequate for our purposes. Instead, we want to display the children next
to each other. We use the library function hor2listAGEC :: a [a] → AGEC [a] :
hor2listAGEC a [a1..an] creates an interactive horizontal list with initial ele-
ments [a1..an] (n ≥ 0). New list elements have default value a. Above this list,
we want to display the number of children. This is expressed as:

:: KidsView :== Display String <|*|> AGEC [Family]

toView :: Kids→ KidsView

toView (Kids ks) = nrOfKids (length ks) <|*|> hor2listAGEC default ks

where nrOfKids n = Display (toString n +++ " Child" +++ i f (n==1) " " "ren ")
default = Family (Person Male "") Single Nothing

8

Converting edited values back to the domain model type is straightforward:

toDomain :: KidsView→ Kids

toDomain (_ <|*|> list) = case ^^list of ks→ Kids ks

Putting everything together proceeds as Person:

kidsAGEC :: (Kids→ AGEC Kids)
kidsAGEC = mkAGEC {map_to = toView , map_from = toDomain}

The Family specialization requires more attention because it needs to imple-
ment both a pleasant visualization and the logic behaviour requirements. The
visualization is as follows: the partners in a couple are placed next to each other
(<^*>); below them and to the left (<*|>) the civil status is shown; and below
that and centered (<|*|>) the children are shown. We use the Maybe type in the
view model to display nothing at all in case of Nothing values, and (gGEC x) in
case of (Just x) values. Therefore, the view data domain has type:

:: FamilyView :== Person <^*> Maybe Person <*|> CivilStatus <|*|> Maybe Kids

Mapping data domain model values to view domain model values and vice
versa is done with toView and toDomain. These functions implement the visual-
ization and logic behaviour. Their definitions are:

toView :: Family→ FamilyView

toView (Family p1 Single _) = p1 <^*> Nothing <*|> Single <|*|> Nothing

toView (Family p1 cs (Just (p2 ,kids)))
= p1 <^*> Just p2 <*|> cs <|*|> Just kids

toView (Family p1 cs Nothing) = p1 <^*> Just (other p1)
<*|> cs <|*|> Just []

where other :: Person→ Person

other (Person Female _) = Person Male ""

other (Person Male _) = Person Female ""

toDomain :: FamilyView→ Family

toDomain (p1 <^*> Nothing <*|> cs <|*|> _) = Family p1 cs Nothing

toDomain (p1 <^*> Just p2 <*|> cs <|*|> (Just kids))
= Family p1 cs (Just (p2 ,kids))

The logic behaviour requirement that singles have no children is imposed by
the first alternative of toView and toDomain. The requirement that marriage is
between persons of opposite gender is imposed by the last alternative of toView,
using the local function other :: Person→ Person.

Again, the specialization is assembled analogously to Person and Kids.

familyAGEC :: (Family→ AGEC Family)
familyAGEC = mkAGEC {map_to = toView , map_from = toDomain}

Step 3. Specialize Abstract Types. As said earlier in Section 3, this is a
trivial step, and we show only its code without further comment:

9

gGEC{|Family|} t pSt = specialize familyAGEC t pSt

gGEC{|Kids|} t pSt = specialize kidsAGEC t pSt

gGEC{|Person|} t pSt = specialize personAGEC t pSt

This concludes the case study. It demonstrates the following points. (i) It
shows that the types of the data model are not complex. They belong to any
introductory course in functional programming. (ii) A default visualization is
always present, but it might not be adequate. However, it can be used for initial
testing and verification of the data model. (iii) Improving the visualization of the
data model amounts to identification of (sub)types Di for which specialization
functions (Di → AGEC Di) need to be developed. These are bijections between
Di and Vi, and they can be defined with pure functions on pure data domains.

5 Related Work

The GEC Toolkit is a refined version of the well-known model-view paradigm
[18], introduced by Trygve Reenskaug (then named as the model-view-controller
paradigm) in the language Smalltalk. In the GEC Toolkit both models and views
are defined by means of data models. The generic programming technology pro-
vides automatic and specialized visualization of all data models.

Other model-view approaches based on functional programming use a similar
value-based approach [10], or an event-based version [17]. In both cases, the
programmer needs to explicitly handle view registration and manipulation.

The Vital system [14] is an interactive graphical environment for direct ma-
nipulation of Haskell-like scripts. Shared goals are: direct manipulation of func-
tional expressions, manipulation of custom types, views that depend on the data
type (data type styles), guarded data types, and the ability to work with infinite
data structures. Differences are that our system is completely implemented in
Clean, while the Vital system has been implemented in Java. This implies that
our system can handle, by construction, all Clean values. Obviously, they are
well-typed. In addition, the purpose of a GECt is to edit values of type t, while
the purpose of a Vital session is to edit Haskell scripts.

Taking a different perspective on the type-directed nature of our approach,
one can argue that it is also possible to obtain editors by starting from a grammar
specification. Projects in this flavor are for instance Proxima [23], which relies
on XML and its DTD (Document Type Definition language), and the Asf+Sdf
Meta-Environment [9] which uses an Asf syntax specification and a Sdf semantics
specification. The major difference with such an approach is that these systems
need both a grammar and some kind of interpreter. In our system higher-order
elements are immediately available as a functional value that can be applied and
passed to other components.

Because a GECt is a t-stateful object, it makes sense to have a look at object
oriented approaches. The power of abstraction and composition in our functional
framework is similar to mixins [13] in object oriented languages. One can imagine
an OO GUI library based on compositional and abstract mixins in order to obtain
a similar toolkit. Still, such a system lacks higher-order data structures.

10

6 Conclusions and Future Work

We have presented a programming method for the GEC Toolkit, and illustrated
it by means of the family tree editor case study. Programming GUIs with the
GEC Toolkit requires knowledge of functional data structures, such as algebraic
data types, and functions that manipulate them. This is material that is cov-
ered in any introductory course in functional programming. This enables novice
programmers to program highly dynamic GUI applications.

We are currently working on a Web-enabled back-end for the GEC Toolkit.
This expands the application domain of GEC programming from the desktop to
the world wide web. We are investigating whether the high level of abstraction
facilitates reasoning about interactive applications, perhaps using proof tools
such as Sparkle.

Acknowledgements

The interactive family tree case study was suggested by Marie-José van Diem.

References

1. P. Achten and S. Peyton Jones. Porting the Clean Object I/O library to Haskell.
In M. Mohnen and P. Koopman, editors, Proceedings of the 12th International
Workshop on the Implementation of Functional Languages, IFL’00, Selected Pa-
pers, volume 2011 of LNCS, pages 194–213. Aachen, Germany, Springer, Sept.
2001.

2. P. Achten and R. Plasmeijer. The Ins and Outs of Concurrent CLEAN I/O. Journal
of Functional Programming, 5(1):81–110, 1995.

3. P. Achten and R. Plasmeijer. Interactive Functional Objects in Clean. In C. Clack,
K. Hammond, and T. Davie, editors, Proc. of the 9th International Workshop on
the Implementation of Functional Languages, IFL 1997, Selected Papers, volume
1467 of LNCS, pages 304–321. St.Andrews, UK, Springer, Sept. 1998.

4. Achten, Peter and van Eekelen, Marko and Plasmeijer, Rinus and van
Weelden, Arjen. Arrows for Generic Graphical Editor Components. Tech-
nical report NIII-R0416, Nijmegen Institute for Computing and Informa-
tion Sciences, University of Nijmegen, The Netherlands, 2004. available at
http://www.niii.kun.nl/research/reports/full/NIII-R0416.pdf.

5. Achten, Peter, van Eekelen, Marko and Plasmeijer, Rinus. Generic Graphical User
Interfaces. In Greg Michaelson and Phil Trinder, editors, Selected Papers of the 15th
Int. Workshop on the Implementation of Functional Languages, IFL03, volume
3145 of LNCS. Edinburgh, UK, Springer, 2003.

6. Achten, Peter, van Eekelen, Marko and Plasmeijer, Rinus. Compositional Model-
Views with Generic Graphical User Interfaces. In Practical Aspects of Declarative
Programming, PADL04, volume 3057 of LNCS, pages 39–55. Springer, 2004.

7. Achten, Peter, van Eekelen, Marko, Plasmeijer, Rinus and van Weelden, Arjen.
Automatic Generation of Editors for Higher-Order Data Structures. In Wei-Ngan
Chin, editor, Second ASIAN Symposium on Programming Languages and Systems
(APLAS 2004), volume 3302 of LNCS, pages 262–279. Springer, 2004.

11

8. A. Alimarine and R. Plasmeijer. A Generic Programming Extension for Clean.
In T. Arts and M. Mohnen, editors, The 13th International workshop on the Im-
plementation of Functional Languages, IFL’01, Selected Papers, volume 2312 of
LNCS, pages 168–186. Älvsjö, Sweden, Springer, Sept. 2002.

9. M. v. d. Brand, A. van Deursen, J. Heering, H. de Jong, M. de Jonge, T. Kuipers,
P. Klint, L. Moonen, P. Olivier, J. Scheerder, J. Vinju, E. Visser, and J. Visser. The
Asf+Sdf Meta-Environment: a Component-Based Language Development Environ-
ment. In R. Wilhelm, editor, Compiler Construction 2001 (CC’01), pages 365–370.
Springer-Verlag, 2001.

10. K. Claessen, T. Vullinghs, and E. Meijer. Structuring Graphical Paradigms in
TkGofer. In Proceedings of the 1997 ACM SIGPLAN International Conference on
Functional Programming (ICFP ’97), volume 32(8), pages 251–262, Amsterdam,
The Netherlands, 9-11 June 1997. ACM Press.

11. D. Clarke and A. Löh. Generic Haskell, Specifically. In J. Gibbons and J. Jeuring,
editors, Generic Programming. Proceedings of the IFIP TC2 Working Conference
on Generic Programming, pages 21–48, Schloss Dagstuhl, July 2003. Kluwer Aca-
demic Publishers. ISBN 1-4020-7374-7.

12. M. de Mol, M. van Eekelen, and R. Plasmeijer. Theorem proving for functional
programmers - Sparkle: A functional theorem prover. In T. Arts and M. Mohnen,
editors, The 13th International Workshop on Implementation of Functional Lan-
guages, IFL 2001, Selected Papers, volume 2312 of LNCS, pages 55–72, Stockholm,
Sweden, 2002. Springer.

13. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In The 25TH
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL98), pages 171–183, San Diego, California, 1998. ACM, New York, NY.

14. K. Hanna. Interactive Visual Functional Programming. In S. P. Jones, editor, Proc.
Intnl Conf. on Functional Programming, pages 100–112. ACM, October 2002.

15. R. Hinze. A new approach to generic functional programming. In The 27th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 119–132. Boston, Massachusetts, January 2000.

16. R. Hinze and S. Peyton Jones. Derivable Type Classes. In G. Hutton, editor, 2000
ACM SIGPLAN Haskell Workshop, volume 41(1) of ENTCS. Montreal, Canada,
Elsevier Science, 2001.

17. W. Karlsen, Einar and S. Westmeier. Using Concurrent Haskell to Develop
Views over an Active Repository. In Implementation of Functional Languages, Se-
lected Papers, volume 1467 of LNCS, pages 285–303, St.Andrews, Scotland, 1997.
Springer.

18. G. Krasner and S. Pope. A cookbook for using the Model-View-Controller user
interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming,
1(3):26–49, August 1988.

19. S. L Peyton Jones and P. Wadler. Imperative functional programming. In
ACM Symposium on Principles of Programming Languages (POPL), pages 71–
84, Charleston, Jan. 1993. ACM.

20. S. Peyton Jones and Hughes J. et al. Report on the programming language Haskell
98. University of Yale, 1999. http://www.haskell.org/definition/.

21. R. Plasmeijer and M. van Eekelen. Functional Programming and Parallel Graph
Rewriting. Addison-Wesley Publishing Company, 1993. ISBN 0-201-41663-8.

22. R. Plasmeijer and M. van Eekelen. Concurrent CLEAN Language Report (version
2.0), December 2001. http://www.cs.kun.nl/∼clean/contents/contents.html.

23. M. Schrage. Proxima, a presentation-oriented editor for structured documents.
PhD thesis, University of Utrecht, 2004.

12

