
The Feasibility of Interactively Probing
Quiescent Properties of GUI Applications

Peter Achten

Department of Software Technology, Radboud University Nijmegen, Toernooiveld 1,
6525ED Nijmegen, The Netherlands

P.Achten@science.ru.nl

Abstract. In this paper we explore how application-users can, in an
interactive way, test properties about the state of GUI applications that
can be classified as local state transition systems with quiescence. These
properties can be added and removed at run-time. It is guaranteed that
they are type-correct. We investigate the consequences of such an ap-
proach for one particular functional GUI library, Object I/O. The goal is
to gain confidence in the quality of interactive applications, and to seek
properties that can be proven correct, perhaps using formal proof tools.

1 Introduction

Programming an effective Graphical User Interface (GUI) is a challenging task
because of the myriad of details that need to be controlled and managed: the set
of possible events, knowledge of the api, general design rules for GUIs, life-cycle
maintenance of GUI objects, and so on.

However, if we ignore this plethora of details, it turns out that the structure of
a typical GUI program is basically a nested while-case loop. The while structure
reflects the obligation of a GUI application to poll for events until termination;
the case structure reflects the need to perform case distinction on the events and
act according to the needs of the application; this structure is nested due to the
use of constructs such as modal dialogues and synchronous message passing.

A second characteristic feature of GUI applications is that they use a struc-
tured state, usually relying on scope rules. This structured state evolves dynam-
ically, as parts of the state are associated with GUI objects. The data itself is
in general not very complicated. We call the state stable when the application
is polling for the next available event, because it can not modify the state in
any way until an event is actually been given to it. In testing theory, this state
of the application is also known as quiescence [17], i.e.: the application can not
proceed without further input.

Although the structure of GUI programs is clear, it is hard to reason about
GUI applications thoroughly and rigidly. This is caused by the following reasons:

1. The actions that are triggered by the case distinctions operate on the same
(parts of the) state structure, thereby interfering with each other. When there
are many such actions it is hard to keep track of each of their effects. Even
a small application such as Notepad on Windows has at least 100 actions.

2. Reasoning about a particular program run boils down to reasoning about a
particular event trace, an ordered sequence of events. Applications modify
the set of admissible events dynamically by techniques such as enabling/dis-
abling, hiding/showing, opening/closing of GUI objects, in order to provide
the user with proper feedback on allowed actions on his part. This means
that one cannot assume that an event trace is a sequence of random events.

3. The case distinction done by applications is partial: a program does not
respond to all possible events because that would make even the simplest
application unreasonably large. Instead, the underlying system takes stan-
dard actions if the application is not interested or chooses to ignore events.
As a consequence, one can not rely solely on the code as the specification,
but one must also take the behavior of the operating system into account.

When designing the state structure, the programmer usually has some prop-
erties in mind that the values of the state structure should satisfy whenever the
application is in a stable state. A property is invariant for a specific event trace
if it holds during all stable states along this trace. Ideally, we would like to prove
that a property is invariant for every possible event trace because this promotes
such a property to an invariant of the application. Unfortunately, for the reasons
mentioned above, this is infeasible.

In this paper we take a pragmatic approach to the problem of establishing
(hopefully invariant) properties of GUI applications. We want to encourage GUI
programmers to develop as many properties as possible (including false ones!) to
any GUI object of an application under construction or one that has been finished
long ago by perhaps somebody else. This is known as run-time assertion checking
[12, 10]. However, for reasons of flexibility, we want to be able to interactively add
and remove properties. The application, whenever in a stable state, checks all
currently added properties and notifies the user whenever a property is violated.
In this way, the developer can probe the application for properties.

The concrete research questions this feasibility study should give an answer
to are:

– Can we assign properties to any GUI object in the application, and even to
the whole application? Can this be done at compile-time and at run-time?

– Are properties that are added always of the correct type?
– Can we store properties on disk?
– Is there no loss in efficiency when no properties are probed?

Based on the results of this feasibility study, we intend to implement this
system for the Object I/O library [2, 4, 1, 5], a comprehensive GUI library that is
available for the functional programming languages Clean [16] and Haskell [14].

This paper is structured as follows. We first present our technique for local
state transition systems in general in Section 2. In Section 3 we show that Object
I/O is a local state transition system. We then explain the expected issues when
adding property probing to Object I/O in Section 4. We discuss related work in
Section 5 and conclude in Section 6.

2

2 Probing Local State Transition Systems

The bare bones structure of the class of GUI applications that we investigate
is that of a local state transition system [3], which is basically the same as that
of a nested while-case as discussed in the introduction. In this section we reveal
this structure (Section 2.1) in order to point out the technical problems that
need to be resolved when adding/removing (Section 2.2) and testing (Section
2.3) properties in a type-safe and dynamic way.

2.1 Local State Transition Systems

The set of types is very similar to those presented in [3], except that here we do
include interactive processes (in order to reason about complete programs). A
program (Program) is a collection of processes (Process), each of which encapsu-
lates a state ps via an existential quantifier (∃ ps:). This state is shared by all
of its elements. It effectively models the global data that is accessible by every
element. To enforce this, the type (Proc ps) is used.

::1 Program :== [Process]
:: Process = ∃ps: Process (Proc ps)

Every process (the record type Proc ps below) has a number of actions that
respond to process related events. These are modelled by the list of functions in
the field pcbfs. Note that the type of an action, ((Proc ps) → (Proc ps)) provides
it with full access to all elements of a program. In particular, the other processes
are also an element of a process (pcontext). Processes are identified by an ID,
which is a simple integer. An event (id ,i)::Event identifies the i-th action of
the process id. This is of course a very simplified form of events.

:: Proc ps = {2 pstate :: ps

, pid :: ID

, pcbfs :: [(Proc ps) → (Proc ps)]
, pobjs :: [Object (Proc ps)]
, pcontext :: [Process] }

:: ID :== Int

:: Event :== (ID ,Int)

Processes have top-level objects (these correspond with menus, windows, and
so on), stored in pobjs, each of which again encapsulate their piece of local state
ls and operate on the same state of the program pst, which is always (Proc ps):

:: Object pst = ∃ls: Object ls [Comp ls pst]

Top-level objects have components with access to the shared state (Proc ps)
and the local state of the top-level object (ls). A component (Comp ls pst)

1 All Clean type definitions are introduced by the keyword ::. Synonym types are
indicated with separator symbol :==. Algebraic and record types are indicated with
separator symbol =.

2 {f0 :: t0, . . . , fn :: tn} denotes a record type with field names fi and types ti.

3

is either a concrete object (Obj ls pst), or it replaces the current local state
(NewLS ls pst), or it extends the current local state (AddLS ls pst).

:: Comp ls pst = Obj (Obj ls pst)
| NewLS (NewLS ls pst)
| AddLS (AddLS ls pst)

:: NewLS ls pst = ∃new: {newLS :: new , newDef :: [Comp new pst]}
:: AddLS ls pst = ∃new: {addLS :: new , addDef :: [Comp (new ,ls) pst]}

Analogous to processes, concrete objects are identified via an ID, have actions,
and can contain other objects. An event (id ,i) identifies the i-th action of the
concrete object identified by id.

:: Obj ls pst = { oid :: ID

, ocbfs :: [(ls ,pst) → (ls ,pst)]
, oobjs :: [Comp ls pst] }

With this collection of types we can model scoped state structures. A value
p::Program represents the complete quiescent state of a program. When an ap-
plication successfully polls for an event e = (id ,i), then the next quiescent state
of the program is computed by (eval e).

eval :: Event Program→ Program3

We will not discuss its implementation: it is basically a recursive function
that searches for a process or concrete object that is identified by id and applies
the i-th action to the current program state. Details can be found in [3].

Example In order to make this discussion more concrete, consider the following
small example of a local state transition system that has a few ‘bugs’:

program :: Program

program

= [Process // the process
{ pstate = [] // shared [Int] state of process
, pid = 1 // identification value of process
, pcbfs = [] // process has no actions
, pobjs = [Object // top-level object

0 // local Int state of top-level object
[Obj { oid = 2 // identification value of child object

, ocbfs = [λ(n ,pst=:{pstate=l}) // action 1
→ (n+1,{pst &4 pstate=[n+1:l]5})

, λ(n ,pst=:{pstate=l}) // action 2
→ (n-1,{pst & pstate=tl l})]

, oobjs = [] }]]
, pcontext = [] }]

3 Clean separates function arguments by whitespace, instead of →.
4 {r & f0 = v0,. . . , fn = vn} is a record equal to r, except that fields fi have value vi.
5 Clean lists are always delimited by [and].

4

The process maintains and shares a list of integers, pstate :: [Int] . The
concrete object, identified by oid = 2, has two actions: the first adds one element
to the list, and the second shortens the list. The object has a local integer state
which value should reflect the length of the shared integer list. The second action
contains two bugs caused by unrestricted uses of tl in tl l and - in n-1.

2.2 Adding and Removing Properties at Run-Time

A property of some data type st is a boolean function:

:: Prop st :== st→ Bool

In Section 2.1 we have introduced the elements that we want to probe:

– Complete programs, of type [Process] are probed with (Prop [Process]).
– Processes, of type (Proc ps), with ps the type of the shared state, are probed

with (Prop (Proc ps)).
– Concrete objects, of type (Obj ls (Proc ps)), with ls the type of the local

shared state of the concrete object. Note that, due to NewLS and AddLS, ls
can be a nested tuple composition of several local states. They are probed
with (Prop (ls ,Proc ps)).

In order to test any of these elements at run-time with an appropriate prop-
erty one needs to provide a property of the correct type. Unfortunately, only the
type of complete programs is immediately accessible; the types of the scoped
state of processes and concrete objects can not be retrieved, even though we,
as program developer, are well aware of their concrete types. The deliberate
existential quantification has rendered it impossible for us to check properties
afterwards using a solution within the static type system.

We need to resort to dynamic type checking if we are to solve this issue. For
several years now, Clean has had dynamic types [15, 18]. There are basically two
ways to use dynamic types for our problem:

1. Do not use existential types to hide the types of the states but use dynamic
types. In that case, checking for type equality is straightforward, using run-
time type unification.

2. Use existential types to hide the types of the states, but do the type equality
match inside the object’s scope where the types are known.

Alternative 1 is alien to the philosophy of working in a strongly typed lan-
guage. Instead, we show that alternative 2 can be used within the framework.

First we wrap properties in a dynamic, and give such a property a name:

:: UserProp = { name :: PropName

, prop :: PropDynamic }
:: PropName :== String // A sensible name
:: PropDynamic :== Dynamic // A (Prop st) function

5

We need to make a few modifications to the data types that we have intro-
duced in Section 2.1. We store the properties of each object in an association
list. Its key value is (Just id) with id::ID of processes and concrete objects,
and Nothing for complete programs. The association list is stored globally in the
Program type, which now becomes a record.

:: Program = { procs :: [Process] // As before
, props :: [Property] } // The property list

:: Property :== (Maybe ID , [UserProp]) // For each element, all its properties

The second change that we need to make is related with the dynamic type sys-
tem. We are going to match the type of a property encapsulated in a PropDynamic

with the state in scope of concrete objects and processes. This is done by a type
dependent function [15]. A type dependent function can match a dynamic type
with a static type, provided the static type belongs to the TC type class. We need
to impose this restriction to the type variables of Proc and Obj. Because Clean
does not support type class restrictions on data type definitions, we do this with
an explicit dictionary (DictTC) which amounts to the same thing:

:: DictTC a = { unpack :: Dynamic→ (Bool ,Prop a) }

:: Proc ps = { ... , pdict :: DictTC (Proc ps) }
:: Obj ls pst = { ... , odict :: DictTC (ls ,pst) }

The unpack member is a function that returns the content of its dynamic
argument if it correctly contains a property of the right type. It is easy to define
a type dependent function that creates a dictionary of the desired type:

dictTC :: DictTC a |6 TC a

dictTC = { unpack = λdx→ case dx of
(x :: Prop a^7) = (True , x)
_ = (False ,⊥) }

We can now proceed by defining the function addProperty that associates a
property with an element:

addProperty :: (Maybe ID) UserProp Program→ (Bool ,Program)

The task of (addProperty mid prop prog) is to extend the prog.props list with
an entry for (mid ,prop) either by extending an existing entry or creating a new
one. The function fails (returns False) if the type of the property does not
match. The key challenge of this function is the check for type equality. Let us
assume that this function, propertyTypeMatches, exists. Then the definition of
addProperty is straightforward:

addProperty :: (Maybe ID) UserProp Program→ (Bool ,Program)
addProperty mid p=:8{prop} program=:{props}
| not (propertyTypeMatches mid prop program)

6 In a function type, | introduces all overloading class restrictions.
7 â refers to a in the parent function type, in this case DictTC a.
8 x =: e binds x to e.

6

= (False ,program)
| otherwise = (True,{program & props=new_props})

where
new_props = case span (λ(mid ‘ ,_) = mid6=mid ‘) props of

(otherProps , []) // no properties yet
= otherProps++ [(mid , [p])]

(otherProps , [(_ ,ps):otherProps2]) // extend properties
= otherProps++ [(mid ,ps++ [p]):otherProps2]

Note that addProperty maintains the order of registered properties, so prop-
erties are tested in the same order all the time.

The function application (propertyTypeMatches mid p program) must decide
whether the indicated object operates on the type as given by p. If mid==Nothing,
then it must be a program property, and hence the dynamic content should be
matched with type (Prop [Process]):

propertyTypeMatches :: (Maybe ID) PropDynamic Program→ Bool

propertyTypeMatches Nothing dp _ = case dp of
(_ :: Prop [Process]) = True

otherwise = False

If (mid == (Just id)), then it must either correspond with a process or with
a concrete object.

propertyTypeMatches (Just id) dp {procs} = any (processMatches id dp) procs

A process matches if its pid matches id and the dynamic property dp matches
the dictionary pdict. A process also matches if any of its components matches:

processMatches :: ID PropDynamic Process→ Bool

processMatches id dp (Process proc) = procMatches id dp proc

where
procMatches :: ID PropDynamic (Proc ps) → Bool | TC ps

procMatches id dp { pid ,pobjs ,pdict }
= id==pid && fst (pdict.unpack dp) || any (objectMatches id dp) pobjs

The search for the proper concrete object is handled recursively. The inter-
esting case is the match on a concrete object, which proceeds analogously to
matching a process: either the concrete object matches or any of its children.

objectMatches :: ID PropDynamic (Object (Proc ps)) → Bool | TC ps

objectMatches id dp (Object _ cs) = any (compMatches id dp) cs

where
compMatches :: ID PropDynamic (Comp ls (Proc ps)) → Bool | TC ls

compMatches id dp (Obj {oid ,odict ,oobjs})
= id==oid && fst (odict.unpack dp) || any (compMatches id dp) oobjs

compMatches id dp (NewLS {newDef}) = any (compMatches id dp) newDef

compMatches id dp (AddLS {addDef}) = any (compMatches id dp) addDef

Finally, it is convenient to have a version of addProperty that aborts in case
the property type does not match the indicated object’s state:

add :: (Maybe ID) UserProp Program→ Program

7

add mid prop program

]9 (ok ,program) = addProperty mid prop program

| ok = program

| otherwise = abort ("Could not add "+++10prop.name)

Because properties are stored globally in Program, it is trivial to define the
function that removes properties by name:

delProperty :: PropName Program→ Program

delProperty name program=:{props}
= {program & props=[(mid , [p \\ p←ps | p.name6=name]) \\ (mid ,ps)←props]}

Example We continue our running example given at the end of Section 2.1 by
extending it with properties. The only change of definition of program is the ex-
tension with two record fields pdict=dictTC and odict=dictTC at the appropriate
places, as well as an empty properties list (props=[]).

We introduce one property for the program and process, and two for the
concrete object. They are:

singleProp // Program property
= { name="singleProcess"

, prop=dynamic11 (λprocs→ length procs==1)::Prop [Process] }
sortedProp // Process property
= { name="sortedProp"

, prop=dynamic (λ{pstate=l} → l==reverse $ sort l)::Prop (Proc [Int]) }
lengthProp // Object property
= { name="lengthProp"

, prop=dynamic (λ(n,{pstate=l}) → n==length l)::∀a:Prop (Int ,Proc [a])}
definedProp // Object property
= { name="definedProp"

, prop=dynamic (λ(_,{pstate=l}) → 0≤length l)::∀a b:Prop (a ,Proc [b]) }
singleProp states that there is one single process at every stable state; sorted-

Prop says that the integer list of the process is in reverse order; lengthProp defines
that the integer value of the concrete object correctly keeps track of the length
of the list of its parent object; definedProp defines that the list spine does not
contain ⊥. Note that the polymorphism in the types of the latter two functions
makes them suitable for probing other objects.

2.3 Testing Properties at Quiescence

In the previous section we have explained how properties of programs, processes,
and concrete objects can be added and removed at run-time. In this section we
show how these properties can be tested when the application is in a stable state,
is quiescent. The function reportProperties evaluates all current properties of
its program argument and collects the results in a report:
9 This is Clean’s ‘do-notation’ for explicit environment passing.

10 +++ is the Clean string concatenation operator.
11 dynamic e :: t turns expression e of type t into a value of type Dynamic.

8

reportProperties :: Program→ PropertiesReport

The report assigns, for each step in a run, a verdict for each tested property.
A verdict is a simple boolean, which is true iff the property holds.

:: PropertiesReport = { run :: Int

, reports :: [PropertyReport] }
:: PropertyReport :== (Maybe ID , [(UserProp ,Verdict)])
:: Verdict :== Bool

To keep track of the run, the program type is extended with a run-count that
is incremented by eval:

:: Program = { ... , run :: Int }
The purpose of (reportProperties program) is to test every property in the

props field of program. Recall that properties are boolean functions on the par-
ticular state of the object with which they are associated. This means that
reportProperties must construct the appropriate state of each object at which
the property function can be applied. The function can then compute the verdict
simply by application of the property to the constructed state.

The top-level of this function is easily defined:

reportProperties :: Program→ PropertiesReport

reportProperties program=:{run ,props}
= foldl (programProperties program) {run=run ,reports=[]} props

Note that this implies that if no properties are added to a program, the
only computational overhead is generated by incrementing the run count by the
modified eval function.

The function application (programProperties program pr prop) needs to test
a program property in case prop = (Nothing ,props). We know that props contains
(Prop [Process]) property functions because addProperty is type-safe.

programProperties :: Program PropertiesReport Property→ PropertiesReport

programProperties program=:{procs} pr=:{reports} (Nothing ,props)
= {pr & reports=reports++ [(Nothing , [(p ,programProperty p.prop procs)

\\ p← props

]
)]}

where programProperty :: PropDynamic→ Prop Program

programProperty (f :: Prop [Process]) = f

In case prop = (Just id ,props) then the correct state context needs to be
built for a process or a concrete object. First consider testing a process property.
If a process is found with a pid::ID that matches id then we know that the list
of properties props contains functions of type (Prop (Proc ps)), with ps the type
of the current value of its state. We can safely unpack every such property using
the dictionary of the process (pdict) and apply it to the process. Note that we
need to filter itself from the list of all processes in the pcontext field before doing
so.

9

programProperties program=:{procs} pr (Just id ,props)
= foldl processProperties pr procs

where
processProperties :: PropertiesReport Process→ PropertiesReport

processProperties pr (Process proc) = procProperties pr proc

where
procProperties :: PropertiesReport (Proc ps) → PropertiesReport

procProperties pr=:{reports=rs} proc=:{pid ,pobjs ,pdict}
| id==pid

= {pr & reports=rs++ [(Just id , [(p ,snd (pdict.unpack p.prop) pst)
\\ p← props

])]}
| otherwise

= foldl (objectProperties pst) pr pobjs

where
pst = {proc & pcontext=[p \\ p=:(Process {pid}) ← procs | pid6=id]}

objectProperties ... // see definition below

Testing concrete object properties proceeds in an analogous way, except that
now a local state structure needs to be built to which the properties can be
applied. This is a recursive definition that follows the nested structure of the
objects and their state scopes, which makes it a bit verbose.

objectProperties :: (Proc ps) PropertiesReport (Object (Proc ps))
→ PropertiesReport

objectProperties pst pr (Object ls cs)
= foldl (compProperties ls pst) pr cs

where
compProperties :: ls (Proc ps) PropertiesReport (Comp ls (Proc ps))

→ PropertiesReport

compProperties ls pst pr=:{reports=rs} (Obj {oid ,odict ,oobjs})
| id==oid

= {pr & reports=rs++ [(Just id , [(p ,snd (odict.unpack p.prop) (ls ,pst))
\\ p← props

])]}
| otherwise

= foldl (compProperties ls pst) pr oobjs

compProperties _ pst pr (NewLS {newLS ,newDef})
= foldl (compProperties newLS pst) pr newDef

compProperties ls pst pr (AddLS {addLS ,addDef})
= foldl (compProperties (addLS ,ls) pst) pr addDef

Given the reportProperties function, it is straightforward to define extended
eval functions that produce property report(s) and next program(s):

step :: Event Program→ (PropertiesReport ,Program)
step event program = (reportProperties program ,eval event program)

steps :: [Event] Program→ ([PropertiesReport] ,Program)
steps es program = seqList (map step es) program

10

Finally, for decent output, we define an instance of the toString function for
a PropertiesReport that displays the number of tested properties, and names
those that have failed in a particular run. We do not want to print the Program

value, but we are interested in the definedness of its state values. We realize this
by adding appropriate strictness annotations in its type definitions.

Example We finish our running example by mimicking a probing session of the
faulty program. The program definition is extended with run=0 field. We start by
running the program without any properties, given a particular scenario:

Start12

] (rs0 ,program) = steps scenario0 program

= map toString rs0

The scenario first picks the first action of concrete object with ID value equal
to 2, then takes the second action twice, and ends with the first action:

scenario0 = [(2 ,1) ,(2 ,2) ,(2 ,2) ,(2 ,1)]

This scenario reveals the first ‘bug’ in the program:

Step 0: tested 0 properties. 0 failing properties.

Step 1: tested 0 properties. 0 failing properties.

Step 2: tested 0 properties. 0 failing properties.

tl of []

This means that everything runs properly until just before the second invo-
cation of the second action (step 2), but after doing that action apparently the
tail of an empty list is taken. We want to probe the definedness of the integer
list that can be accessed by concrete object identified by ID 2. For this purpose
we use definedProp (Section 2.2).

Start

] program = add (Just 2) definedProp program

] (rs0 ,program) = steps scenario0 program

= map toString rs0

Applying the same scenario provides evidence that the list was defined ini-
tially and after the first two steps:

Step 0: tested 1 property. 0 failing properties.

Step 1: tested 1 property. 0 failing properties.

Step 2: tested 1 property. 0 failing properties.

tl of []

This bug is easily fixed by replacing tl with tl ‘ :

tl ‘ :: [a] → [a]
tl ‘ xs = i f (isEmpty xs) xs (tl xs)

12 Start is the main function of a Clean program.

11

Running the program through the same scenario confirms that the defined-
ness property now holds for this trace:

Step 0: tested 1 property. 0 failing properties.

Step 1: tested 1 property. 0 failing properties.

Step 2: tested 1 property. 0 failing properties.

Step 3: tested 1 property. 0 failing properties.

At this stage we no longer wish to probe the definedness of the list, but
instead probe the other properties that have been given in Section 2.2. This is
specified as follows:

Start

] program = add (Just 2) definedProp program

] (rs0 ,program) = steps scenario0 program

] program = delProperty definedProp.name program

] program = add Nothing singleProp program

] program = add (Just 1) sortedProp program

] program = add (Just 2) lengthProp program

] (rs1 ,program) = steps scenario1 program

= map toString (rs0++rs1)

scenario1 = [(2 ,1)]

Running the program through this longer scenario reveals the second ‘bug’:

Step 0: tested 1 property. 0 failing properties.

Step 1: tested 1 property. 0 failing properties.

Step 2: tested 1 property. 0 failing properties.

Step 3: tested 1 property. 0 failing properties.

Step 4: tested 3 properties. 1 failing property.

lengthProp

Although property lengthProp is actually violated immediately after the sec-
ond invocation of the second action, this is not displayed because the property
was not probed at that stage. Instead, violation of the property is detected im-
mediately after it is added (after step 3). This is caused by the local integer that
decreases below 0 and therefore incorrectly reflects the length of the integer list.
We fix this bug by replacing n-1 with n.-.1, defined as:

(.-.)13 infixl 6 :: !14Int !Int→ Int

(.-.) m n = max 0 (m-n)

Running the scenario again renders the properties invariant with respect to
this event trace.

13 (f) fix n :: t defines a new operator f of type t with fixity fix∈ {infix , infixl , infixr}
and precedence n.

14 In a type definition, !t puts type t in a strict context.

12

3 Object I/O is a Local State Transition Systems

In this section we explain the relation between the local state transition systems
of the previous section with Object I/O. We do this in an informal manner, by
means of an Object I/O program that is equivalent to the one shown in Section
2. A different account has appeared earlier in [3].

As in the local state transition example, the program consists of a single inter-
active process. Instead of manipulating an integer list, this program manipulates
an Id list (second argument of Process):

Start :: *15World→ *World

Start world = startProcesses

[Process MDI [] initGUI [ProcessClose closeProcess]] world

In Object I/O the state of an interactive process is given by the record type
(:: PSt ps = {ls :: ps , io :: IOSt ps}), with ps the state as discussed in the
previous section. io is a combination of the fields pobjs and pcontext. It is an
abstract data type by which the programmer must access all GUI elements and
the external world. In this example, we have a (PSt [Id]) process state.

The Id values are used to identify windows that are opened and closed dy-
namically by the two actions open and close. These actions are the callback
functions of two menu items, labelled “Open” and “Close” respectively. Their
parent object is the top-level menu object that corresponds with the Object of the
local state transition system, and indeed, it encapsulates an integer state (first
argument of openMenu). Note that the Object I/O program below has exactly the
same ‘bugs’ as the running example in the previous section.

initGUI :: (PSt [Id]) → PSt [Id]
initGUI pst = snd $ openMenu 0 mDef pst

where
mDef :: Menu (:+: MenuItem MenuItem) Int (PSt [Id])
mDef = Menu "&File"

(MenuItem "&Open" [MenuFunction open]
:+: MenuItem "&Close" [MenuFunction close]
) []

open :: (Int ,PSt [Id]) → (Int ,PSt [Id])
open (n ,pst=:{ls=l})

] (wid ,pst) = openId pst

] wDef = Window ("Window "+++toString (n+1)) NilLS [WindowId wid]
] pst = snd $ openWindow ⊥ wDef pst

= (n+1,{pst & ls=[wid:l]})

close :: (Int ,PSt [Id]) → (Int ,PSt [Id])
close (n ,pst=:{ls}) = (n-1 ,closeWindow (hd ls) {pst & ls=tl ls})
Recall that in the local state transition system there are three kinds of ele-

ments that can be probed:
15 Clean uses the ‘world-as-value’ paradigm for I/O. An annotated type *t indicates

that t is used in a single threaded way. This is guaranteed by the type system.

13

Programs probed with (Prop [Process]). Object I/O has a data type similar
to [Process] (viz. Context) but this is an internal data type and should not
be accessed by the programmer. There are no retrieval operations defined
on this data type, so basically, the programmer can not define program
properties as in the previous section. (Note that this suggests that the api
of Object I/O might be lacking functionality, so it is worthwhile to see what
useful access functions can be added.)

Processes probed with (Prop (Proc ps)). Object I/O processes are probed by
(Prop (PSt ps)); in the example by (Prop (PSt [Id])).

Objects probed with (Prop (ls ,Proc ps)). The GUI objects in the program are
mDef, its two MenuItem elements, and the dynamically created windows (wDef).
The menu and its items share an integer local state, so they are probed by
(Prop (Int ,PSt [Id])). The window has no significant local state (⊥ :: ∀a:a),
so it is probed by (∀a:Prop (a ,PSt [Id])).

4 Issues of Probing Object I/O Programs

In the previous section we have shown in a very informal way how Object I/O re-
lates to local state transition systems. In this section we discuss the major issues
that are likely to occur when Object I/O applications are dynamically probed.
Firstly, dynamically adding/removing properties to an Object I/O program re-
quires identification of the GUI elements at run-time (Section 4.1). Secondly,
assertions should be free of side-effects (Section 4.2). Finally, this work con-
tributes to an old debate about which state paradigm to use: explicit or implicit
state passing (Section 4.3).

4.1 Run-Time Identification of GUI elements

From the account in Section 2.2 we know that it is sufficient to retrieve the Id

value of an element in order to associate a property with it using addProperty.
The example in Section 3 shows that these identification values are known only
at run-time, which is a quite common approach in GUI apis. When probing
GUI elements dynamically, the user needs to identify them. For this purpose
we include a GUI browser for each application with which the user can select a
GUI element, and thereby its identification value. This browser can be defined in
Object I/O using the api inspection functions, and a tree list control to present
the hierarchical structure of the GUI. Fig. 1 gives screenshots of this browser for
the example program at several stable states.

Clean dynamics can be stored on disk, so the user can browse the file system
in search of interesting properties, or create them using the Clean IDE and store
them on disk. This gives the two arguments of the addProperty function, which
should allow us to associate a stored property with a given GUI element.

4.2 Properties Should Have No Side-Effects

A fundamental problem with assertion checking systems is the side-effect problem
[10]. It states that properties should, for obvious reasons, have no side-effects on

14

Fig. 1. The GUI browser after: [(2,1)], [(2,1),(2,2),(2,2)], and [(2,1),(2,2),(2,2),(2,1)].

the programs. In local state transition system terminology, this means that a
property should not change the state that it inspects. In Section 2.2 this was
effortlessly realized by defining a property over a state st as the simple function
type st→ Bool. We would like to adopt this simple scheme to Object I/O, but
unfortunately this is not possible. The main reason is that the types in Object
I/O have been designed to allow the programmer to use unique state, i.e. state
that can be destructively updated [6]. This requires the ‘container types’ to be
at least as unique as their content. As a consequence, we are forced to use the
following property type:

:: Prop st :== st→ (Bool ,st)

How can we guarantee that property functions have no side-effect? Such a
function might have an effect on the custom states and on the GUI state. The
latter can easily be eliminated by providing a ‘mirror’ library of Object I/O from
which all functions are removed that have a side-effect. What is left is a proof
obligation that property functions do not change the custom states. Systems
with proof obligations require good support of proof tools such as Sparkle [9] in
order to assist the programmer with these proofs.

4.3 The Influence Of The State Paradigm

Object I/O uses an explicit state passing paradigm. One advantage of this para-
digm is that each object carries in its type full information about which state it
manipulates, so we can quickly check if a property that is to be associated with
an object actually matches the type of the state.

However, it is also possible to use an implicit state passing paradigm using
MVars [13]. This has been discussed in [1]. The used GUI monad is a regular
IOSt state monad which uses MVars to hold the logical state. Advantages of this
approach are the simpler types of Object I/O GUI elements, and the ability
to have more complex state structures without loss of control over access. The
major disadvantage that was raised against its use is its less declarative nature
because programmers need to explicitly take and put values from these variables.

15

Interestingly, this paper identifies a new disadvantage of implicit state pass-
ing: in contrast with explicit state passing, the type of an object no longer
contains information on the state that is manipulated by the object. This means
that our approach of unifying the type of a dynamic property with the state of
an object no longer works. Instead, one needs to associate properties over MVars
that happen to be manipulated by objects. Identification and matching of MVars
against property types can be done in a similar way as object identification in
Sections 4.1 and 2.2, but is more complicated because all MVars must be retrace-
able for identification purposes, and a property of type (st1 . . . stn → GUI Bool)
must be matched against (MVar st1) . . . (MVar stn).

5 Related Work

Assertion checking has been integrated in the object-oriented languages Eiffel
[12] and JML– Java Modelling Language [10]. The Objective Caml language [11]
has an assert statement. In a recent experiment, assertion checking has been
added to Haskell [7]. We have in common with the Eiffel approach that we want
to use executable properties. With the JML approach we share the reuse of the
host language and libraries in order to encourage programmers to probe their
applications. The assert statement in Objective Caml evaluates boolean expres-
sions. These have no effect in case of true statements, but an exception is thrown
in case of false statements. The latter aspect is different from our approach: false
properties increase ones understanding of an application as much as true prop-
erties, and therefore do not terminate the application.

The main differences are: because of the side-effect problem, JML can’t han-
dle I/O methods, which is clearly a must in our case; we do not annotate source
code for our properties, but rather probe the application at run-time using dy-
namically associated properties; this requires properties to be persistent; we do
not yet intend these properties to be subject to formal verification as in JML;
in contrast with the Haskell approach in which properties are not asserted over
unevaluated expressions, we think that an assertion should evaluate an unevalu-
ated expression if needed. The reason for this is that our assertions are meant to
express properties of a program: a list must be sorted, a length invariant should
hold, and so on. Such properties do not stop at unevaluated expressions, but
refer to the complete value.

Probing application properties dynamically has the same flavor as using a
tracing/debugging tool such as Freja, Hat, and Hood [8] or those used in more
conventional programming languages such as C. With such tools one inspects
the run-time values of an application whereas we focus on relations between
run-time values expressed as properties.

Another area that is related to our work is that of testing [17] because in
both areas it is the application itself that is subject to probing and we can give
verdicts only for specific event traces, which in practice will not exhaust the
possible event trace search space. At this moment the theory and practice of

16

testing of GUI applications is starting to grow. Our project is a first step to
investigate what can be done in this area.

6 Conclusions and Future Work

In this paper we have shown how systems that are based on local state transition
systems can be probed at run-time for their stable state based properties. These
properties can be added and removed at any stable state of the application.
There are no limitations to the size of the application. We have shown what
needs to be done additionally for one particular instance of local state transition
systems, the Object I/O library. This provides us with a directly usable means
to probe GUI applications of arbitrary size.

There are many directions of research to take based on this framework.
Among others these are: adding good property management functionality to the
framework; extend it with value-inspection and back-tracing in case a property
is found to be invalid; explore the formal verification potential of our approach.

Acknowledgements

The author would like to thank Marko van Eekelen and the anonymous referees.

References

1. P. Achten and S. Peyton Jones. Porting the Clean Object I/O library to Haskell.
In M. Mohnen and P. Koopman, editors, Proceedings of the 12th International
Workshop on the Implementation of Functional Languages, IFL’00, Selected Pa-
pers, volume 2011 of LNCS, pages 194–213. Aachen, Germany, Springer, Sept.
2001.

2. P. Achten and R. Plasmeijer. Interactive Functional Objects in Clean. In C. Clack,
K. Hammond, and T. Davie, editors, Proc. of the 9th International Workshop on
the Implementation of Functional Languages, IFL 1997, Selected Papers, volume
1467 of LNCS, pages 304–321. St.Andrews, UK, Springer, Sept. 1998.

3. P. Achten and R. Plasmeijer. The implementation of interactive local state tran-
sition systems in Clean. In P. Koopman and C. Clack, editors, Proceedings of
the 11th International workshop on the Implementation of Functional Languages,
IFL’99, number LNCS 1868, pages 115–130. Springer-Verlag, Sept. 2000.

4. P. Achten and M. Wierich. A Tutorial to the Clean Object I/O Library - Version
1.2. Technical Report CSI-R0003, Computing Science Institute, Faculty of Mathe-
matics and Informatics, University of Nijmegen, The Netherlands, Feb. 2000. 294
pages.

5. K. Angelov. ObjectIO for Haskell. Description and Sources at www.haskell.org/Ob-
jectIO/, Applications at /free.top.bg/ka2 mail/, 2003.

6. E. Barendsen and S. Smetsers. Uniqueness typing for functional languages with
graph rewriting semantics. In Mathematical Structures in Computer Science, vol-
ume 6, pages 579–612, 1996.

17

7. O. Chitil, D. McNeill, and C. Runciman. Lazy Assertions. In Greg Michaelson
and Phil Trinder, editors, Draft Proceedings of the 15th International Workshop
on the Implementation of Functional Languages, IFL’03, pages 31–46. Edinburgh,
UK, Sept. 2003.

8. O. Chitil, C. Runciman, and M. Wallace. Freja, Hat and Hood – A Comparative
Evaluation of Three Systems for Tracing and Debugging Lazy Functional Pro-
grams. In M. Mohnen and P. Koopman, editors, Proceedings of the 12th Interna-
tional Workshop on the Implementation of Functional Languages, IFL’00, Selected
Papers, volume 2011 of LNCS, pages 176–193. Aachen, Germany, Springer, Sept.
2001.

9. M. de Mol, M. van Eekelen, and R. Plasmeijer. Theorem proving for functional
programmers - Sparkle: A functional theorem prover. In T. Arts and M. Mohnen,
editors, The 13th International Workshop on Implementation of Functional Lan-
guages, IFL 2001, Selected Papers, volume 2312 of LNCS, pages 55–72, Stockholm,
Sweden, 2002. Springer.

10. G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How the Design
of JML Accomodates Both Runtime Assertion Checking and Formal Verification.
In Formal Methods for Components and Objects, volume 2852 of LNCS, pages
262–284. Springer Verlag, 2003. Also available as Technical Report TR 03-04a,
Department of Computer Science, 226 Atanasoff Hall, Iowa State University, Ames,
Iowa, USA.

11. X. Leroy. The Objective Caml system – release 3.08; Documentation and user’s
manual. Institut National de Recherche en Informatique et en Automatique, July
2004.

12. B. Meyer. Eiffel: The Language. Prentice Hall, 1992.
13. S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In 23rd ACM

Symposium on Principles of Programming Languages (POPL’96), pages 295–308,
St.Petersburg Beach, Florida, 1996. ACM.

14. S. Peyton Jones and Hughes J. et al. Report on the programming language Haskell
98. University of Yale, 1999. http://www.haskell.org/definition/.

15. M. Pil. Dynamic types and type dependent functions. In D. Hammond and Clack,
editors, Implementation of Functional Languages (IFL ’98), LNCS, pages 169–185.
Springer Verlag, 1999.

16. R. Plasmeijer and M. van Eekelen. Concurrent CLEAN Language Report (version
2.0), December 2001. http://www.cs.kun.nl/∼clean/contents/contents.html.

17. J. Tretmans. Test Generation with Inputs, Outputs, and Quiescence. In T. Mar-
garia and B. Steffen, editors, Second Int. Workshop on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’96), volume 1055 of Lecture
Notes in Computer Science, pages 127–146. Springer-Verlag, 1996.

18. M. Vervoort and R. Plasmeijer. Lazy dynamic input/output in the lazy functional
language Clean. In R. Peña and T. Arts, editors, The 14th International Workshop
on the Implementation of Functional Languages, IFL’02, Selected Papers, volume
2670 of LNCS, pages 101–117. Springer, Sept. 2003.

18

